Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham e-Theses
You are in:

Simulations of cosmic reionization

RAICEVIC, MILAN (2010) Simulations of cosmic reionization. Doctoral thesis, Durham University.

[img]
Preview
PDF
14Mb

Abstract

In this thesis we investigate numerically how ionizing photons emitted by stars in galaxies cause the reionization of the Universe, the transition during which most of the gas in the Universe from a mostly neutral, to a highly ionised state it is in today. To this end, we discuss and improve two techniques for the transport of ionising radiation across cosmological volumes, analyse the sources of ionising photons at high redshifts predicted by a semi-analytical galaxy formation model (GALFORM), and combine these to make consistent model of how reionization proceeds.

Our improvements to the hybrid characteristics (HC) radiative transport scheme are significant, making the code faster and more accurate, as demonstrated by our contribution to a code comparison paper (Iliev et al., 2009). Our improvements to the SimpleX radiative transport scheme allow for accurate and significantly better numerically converged calculations of the speeds of ionization fronts of cosmological HII regions. This is
accomplished by a much more thorough analysis of how to properly model the density field on the unstructured density field in SimpleX.

The dependence of the ionizing emissivity of GALFORM galaxies on various parameters of the model is examined. We show that massive stars formed in abundance because of the assumed top-heavy stellar initial mass function during starbursts in the Baugh et al. (2005) model, triggered by galaxy mergers, are the dominant source of ionizing photons. We show that the luminosity functions predicted by this model are in good agreement with the most recent Hubble Space Telescope results at z \gtrsim 8. The model also demonstrates that most photons are produced in faint galaxies which are not yet seen in the current data.

We then combine the sources predicted by GALFORM with the SimpleX RT scheme to model inhomogeneous reionization including the effects of source suppression. We investigate how the morphology of reionization depends on the model for the sources, which may be crucial for future observations of this cosmic epoch.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Keywords:radiative transfer; reionization; numerical modelling
Faculty and Department:Faculty of Science > Physics, Department of
Thesis Date:2010
Copyright:Copyright of this thesis is held by the author
Deposited On:08 Jun 2010 11:54

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter