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Simulations of cosmic reionization

Milan Raičević

Abstract

In this thesis we investigate numerically how ionizing photons emitted by stars in galax-

ies cause the reionization of the Universe, the transition during which most of the gas in

the Universe from a mostly neutral, to a highly ionised state it is in today. To this end, we

discuss and improve two techniques for the transport of ionising radiation across cos-

mological volumes, analyse the sources of ionising photons at high redshifts predicted

by a semi-analytical galaxy formation model (GALFORM), and combine these to make

consistent model of how reionization proceeds.

Our improvements to the hybrid characteristics (HC) radiative transport scheme are

significant, making the code faster and more accurate, as demonstrated by our contribu-

tion to a code comparison paper (Iliev et al., 2009). Our improvements to the SimpleX

radiative transport scheme allow for accurate and significantly better numerically con-

verged calculations of the speeds of ionization fronts of cosmological HII regions. This is

accomplished by a much more thorough analysis of how to properly model the density

field on the unstructured density field in SimpleX.

The dependence of the ionizing emissivity of GALFORM galaxies on various pa-

rameters of the model is examined. We show that massive stars formed in abundance

because of the assumed top-heavy stellar initial mass function during starbursts in the

Baugh et al. (2005) model, triggered by galaxy mergers, are the dominant source of ioniz-

ing photons. We show that the luminosity functions predicted by this model are in good

agreement with the most recent Hubble Space Telescope results at z & 8. The model also

demonstrates that most photons are produced in faint galaxies which are not yet seen in

the current data.

We then combine the sources predicted by GALFORM with the SimpleX RT scheme

to model inhomogeneous reionization including the effects of source suppression. We

investigate how the morphology of reionization depends on the model for the sources,

which may be crucial for future observations of this cosmic epoch.
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A thesis submitted to the University of Durham

in accordance with the regulations for

admittance to the Degree of Doctor of Philosophy.

Department of Physics

University of Durham

March 2010



Contents

1 Introduction 1

1.1 Cosmology and structure formation . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 The homogeneous Universe . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Structure formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Reionization: transition to an ionized Universe . . . . . . . . . . . . . . . . 8

1.2.1 Observational constraints . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.2 Numerical simulations of reionization . . . . . . . . . . . . . . . . . 14

1.3 Basic concepts of radiative transfer . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Radiative hydrodynamics with FLASH 23

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 FLASH: AMR hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Euler equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.2 Adaptive mesh refinement . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.3 PARAMESH: the AMR technique used in FLASH . . . . . . . . . . 26

2.2.4 Hydrodynamics solver . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.5 The FLASH code architecture and other physics modules . . . . . . 30

2.3 Hybrid Characteristics: RT for FLASH . . . . . . . . . . . . . . . . . . . . . 30

2.3.1 Long versus short characteristics ray-tracing . . . . . . . . . . . . . 30

2.3.2 Tracing rays over the FLASH AMR grid . . . . . . . . . . . . . . . . 32

2.3.3 Ionization of hydrogen gas . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Ionization front basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5 Photon conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

i



2.5.1 Effect of spatial discretization . . . . . . . . . . . . . . . . . . . . . . 44

2.5.2 Effect of temporal discretization . . . . . . . . . . . . . . . . . . . . 45

2.6 Radiative hydrodynamics tests . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.6.1 Test 5: classical HII region expansion . . . . . . . . . . . . . . . . . 57

2.6.2 Test 6: I-front propagating in a 1/r2 density profile . . . . . . . . . 60

2.6.3 Test 7: photoevaporation of a dense gas clump . . . . . . . . . . . . 65

2.6.4 Conclusion: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.7 Gadget-to-Flash converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3 Radiative transfer with SimpleX 75

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.2 The SimpleX method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.2.1 Photon packet representation of the radiation field . . . . . . . . . 76

3.2.2 The grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2.3 Evolving the ionization field with SimpleX . . . . . . . . . . . . . . 81

3.2.4 Comparison of SimpleX to other Cosmological RT methods . . . . 85

3.3 Grid sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.3.1 Test 4 of the RT Code Comparison project . . . . . . . . . . . . . . . 88

3.3.2 Sampling effects on N-body data runs . . . . . . . . . . . . . . . . . 95

3.4 Representing the density field . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.4.1 IGM from N-body simulations . . . . . . . . . . . . . . . . . . . . . 101

3.4.2 Resolving the recombinations with clumping factors . . . . . . . . 103

3.4.3 Repeating the N-body test runs with the local clumping factor . . . 115
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Chapter 1
Introduction

The 20th century saw the transformation of cosmology from a physicist’s hobby to a

precision science with a well defined and predictive paradigm. This model is founded on

two main ideas: i) the Universe expanded a finite time ago from an infinitesimally small

size in an event dubbed the Big Bang (BB) and continues to expand to the present day

and, ii) all the structure we observe in the Universe has grown from very small density

inhomogeneities, seeded by inflation, under the influence of gravity. This picture is sup-

ported by 3 observational pillars: the expansion of the Universe, the BB nucleosynthesis

and the presence of the cosmic microwave background (CMB).

This thesis focuses on one of the last unseen frontiers in the study of the Universe: the

epoch of reionization (EoR). This is the period during which the radiation emitted from

the first luminous objects in the Universe transformed the previously cold and neutral

intergalactic hydrogen into the hot, highly ionized state in which we observe it today.

Very little about this process is known, beyond that it had to happen. When did the

reionization occur? How fast did it progress? What are the radiation sources responsible

for it? These are some of the questions this thesis aims to address.

In the last decade, the theoretical study of reionization was spurred on by the promise

of the direct observations of this epoch to come from a next generation of telescopes. Fu-

ture data from radio interferometers such as LOFAR1, MWA2 and SKA3 will be able

to image the process by mapping the distribution of neutral hydrogen as a function of

redshift. Furthermore, the next generation space telescope JWST4 and ground based

telescopes such as ELT5 will be capable of observing galaxies at the time that the Uni-

verse was only a few hundred million years old, thus providing a direct view of possible

sources ionizing the Universe.

1http://www.lofar.org
2http://www.haystack.mit.edu/ast/arrays/mwa/
3http://skatelescope.org/
4http://jwst.nasa.gov/
5http://www.eso.org/facilities/eelt/
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1. Introduction 2

For now, the study of reionization is largely limited to theory. The most promising

tools in this field are numerical simulations that track radiative transfer of ionizing radi-

ation over the cosmological density fields. A major part of this thesis is the improvement

and application of a number of such radiative transfer methods.

The organisation of this chapter is as follows. In Section 1.1, we present a short

overview of the current cosmological paradigm, from the initial density perturbations

to the formation of first stars and galaxies. In Section 1.2, we discuss the current state

of reionization studies, including the observational constraints and some of the numer-

ical techniques being employed. In Section 1.3, we introduce the basic quantities in the

theory of radiative transfer. Finally, Section 1.4 provides a summary of the topics and

results presented in this thesis.

1.1 Cosmology and structure formation

In this section, we briefly review the concordance model for the evolution of the Universe

and structure within it which provides the backdrop for the discussion of reionization.

We do not intend to present an exhaustive treatment, instead focusing on only the key

physical elements needed for the following discussions. There are many textbooks that

provide an in-depth look into this subject (e.g. Peebles, 1993; Peacock, 1999; Coles &

Lucchin, 2002), so the following overview is intentionally very brief.

1.1.1 The homogeneous Universe

Modern cosmology is based on two key theoretical and observational advances. One is

the development of the General Theory of Relativity by Einstein (1916), which describes

gravity in terms of the geometric properties of space-time intimately tied to the distribu-

tion of mass. The second is provided by Hubble & Humason (1931), who found that the

other galaxies in the Universe recede from the Milky Way at velocities, v, proportional

to the their distance, r. This is expressed in the form of the famous Hubble Law:

v = Hr, (1.1)

where the proportionality constant is the Hubble parameter, with the units of velocity

per unit distance. Common practise is to introduce the dimensionless Hubble parame-

ter, h, defined to give H = h × 100 km s−1 Mpc−1. The Hubble Law provided the first
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observational confirmation of the Cosmological principle, which postulates that the Uni-

verse, on large enough scales, is both isotropic (i.e. looks the same in any direction)

and homogeneous (i.e. looks the same from any location). The assumption underlying

this principle is motivated primarily by philosophical arguments. The physical expla-

nation, however, is provided by the theory of inflation (Guth, 1981; Linde, 1990), which

gives concrete foundations to the Big Bang cosmology by tying it with quantum theory.

The main assumption of inflation is that the Universe, when only 10−43s . t . 10−30s

old, went through a stage of exponential expansion. This rapid expansion results in

the apparent homogeneity of the Universe (the horizon problem in classic BB theory)

and explains why the Universe appears to be nearly perfectly flat (resolving the flatness

problem). It is also expected to blow up quantum-scale fluctuations from the earliest

moments of the Universe to cosmological scales, which seed the tiny ripples seen in the

cosmic microwave background (CMB). The theory of inflation provides remarkably ac-

curate predictions for the observed CMB anisotropies, making it a key element of the Big

Bang model.

The main tool for describing the evolution of the Universe as a whole was provided

by Friedman (1922), whose solution of the general relativity field equations gives the

relation for the evolution of the Hubble parameter in the Universe:

H2(a) ≡
(
ȧ

a

)2

=
8πG

3
ρ− kc2

a2
, (1.2)

where we have equated the Hubble parameter evolution with that of the scale factor a(t).

The scale factor describes how the physical distance between objects in the Universe

depends on time and is usually normalised to unity at the present day. The Friedman

equation, Eq. (1.2), therefore states that the relative scale of the Universe at any time

depends on its contents, ρ being the total energy density and k, the geometric curvature.

The critical density that yields a flat Universe (k = 0, obeying Euclidean geometry) is:

ρc(a) =
3H2(a)

8πG
. (1.3)

The relation of the actual mean density to the critical one defined in Eq. (1.3) determines

the ultimate fate of the Universe (unless there is dark energy). In that case, when the

mean density is super-critical the Universe is spatially finite (k > 0) and the gravitational

force is sufficient to arrest its expansion potentially causing it to recollapse. Conversely,
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the sub-critical Universe is spatially infinite (k < 0) and destined to expand ever faster

indefinitely. In between the two, a flat Universe (k = 0, ρ = ρc) is the limiting case in

which the expansion continues at all times, but at a constantly decreasing rate.

The energy density ρ in Eq. (1.2) consists of three components: ρ = ρm + ρr + ρΛ,

where ρm is the matter, ρr radiation and ρΛ dark energy density. All of these components

evolve differently with time: the matter density as ρm(a) ∝ a−3, caused by the increasing

volume of the Universe, while radiation density evolves even faster, ρr ∝ a−4 due to

both the increase in volume and redshifting of the emitted photon wavelength due to

the expansion. In the ΛCDM paradigm, where CDM stands for cold dark matter (see

below), the dark energy is assumed to be constant in time: ρΛ ≡ Λc2/(8πG), where Λ is

the so-called cosmological constant. Note that more general dark energy models are also

possible.

The relative contribution of each component in Eq. (1.2) to the evolution of the Uni-

verse is commonly expressed as the ratio of the component density to the critical density

at the present day, thus defining a set of cosmological variables dubbed the density pa-

rameters:

Ωm,0 =
ρm,0

ρc,0
; Ωr,0 =

ρr,0

ρc,0
; ΩΛ,0 =

ρΛ,0

ρc,0
, (1.4)

where index 0 denotes the value at the present day, when a = a0 = 1 as mentioned

previously. Dropping the said index for the sake of brevity, we can rewrite the Eq. (1.2)

as:

H2(a) = H2
0 (Ωma

−3 + Ωra
−4 + ΩΛ), (1.5)

which states how the Hubble parameter (i.e. the scale size of the Universe) relates to the

present day energy density content. Note that we have assumed that the Universe is flat,

k = 0, which is what is suggested by the latest observations and predicted by inflation

theory. This implies that Ωm + Ωr + ΩΛ = 1.

The matter component accounts for about 26% of the total energy density at the

present epoch (Ωm ≈ 0.26). About 83% of all matter is thought to be in the form of

some cold and dark, weakly interactive non-baryonic particles, the exact properties of

which are still unknown and are commonly referred to as dark matter. The existence of

dark matter was first inferred by Zwicky (1933) (who also coined the name) when he

found that the dynamics of galaxies in massive clusters cannot be explained by their vis-

ible components alone. Further studies have shown (see e.g. Sofue & Rubin, 2001, for
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a review) that the rotation curves of practically all galaxies do not exhibit a Keplerian

1/r2 drop-off that is expected when the mass within radius r is constant. The lack of

this drop-off well beyond the radius of the galaxy suggests the presence of some unseen

gravitating material. The existence of dark matter is also strongly suggested by CMB

observations.

The remaining 17% of the total matter mass is the “ordinary” matter, baryons and

fermions that are found in the atoms which form everything from largest galaxies to all

life on Earth. This is the only matter component we can directly detect, as baryons both

emit and interact with radiation across the electromagnetic spectrum. The primordial

composition of the baryonic component is well predicted by the Big Bang nucleosyn-

thesis theory (e.g. Alpher et al., 1948; Gamow, 1948): about 75% of mass consisted of

hydrogen and about 25% was helium. Trace amounts of deuterium, lithium and beryl-

lium were also present.

The majority of the energy density at present epoch is due to the cosmological con-

stant, ΩΛ ≈ 0.74. Even though Einstein introduced it to preserve the now discarded static

Universe model, it was later reintroduced to reconcile the CMB and large-scale structure

measurements (e.g. Efstathiou et al., 1990) and, later, the acceleration of the expansion

at lower redshift found by Type Ia supernovae observations at z . 1 (Riess et al., 1998;

Perlmutter et al., 1999). The exact nature of this dark or (vacuum) energy remains highly

uncertain (see reviews by e.g. Carroll et al., 1992; Frieman et al., 2008, for the current

state of the field). Finally, the radiation component (CMB photons, neutrinos and other

light relativistic components) contributes about 0.01%, Ωr ≈ 10−4.

At the present day, the expansion is dominated by the cosmological constant. This

was not always the case, as evidenced by the scale factor dependencies of the different

components in Eq. (1.5). This divides the history of the expanding Universe into three

broadly defined periods after inflation: i) radiation dominated, ii) matter dominated and

iii) Λ dominated epochs. The transitions between them are not abrupt, but boundaries

can be set by finding the redshift of equality between two components. Thus defined,

the end of the radiation-dominated era is reached at “equality”, zeq = Ωm/Ωr − 1 ≈

2.6 × 103. The matter-dominated era continues until zΛ = (ΩΛ/Ωm)1/3 − 1 ≈ 0.4, when

the cosmological constant begins to take over.
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1.1.2 Structure formation

The previous section discussed the evolution of the Universe as a whole, without a clear

connection to the formation of smaller structures (such as galaxies and groups of galax-

ies) we observe to exist. The mechanism that drives structure formation is thought to

be gravitational instability that amplifies the tiny ripples in the density distribution intro-

duced by inflation. A convenient way to describe density perturbations is by introducing

the dimensionless density contrast: δ(~r) = ρm(~r)/ρ̄m − 1, where ρ̄m is the mean matter

density of the Universe and ~r is the spatial coordinate. It is also mathematically conve-

nient to discuss the density constant in Fourier space, where the real space fluctuation

δ(~r) of wavelength λ is replaced by the corresponding Fourier fluctuation, δ(~k) with the

wave number k = |~k| = 2π/λ. The inflation theory predicts the primordial density fluc-

tuation field to be a Gaussian, scale-invariant random field for which all Fourier modes

are independent of each other. All statistical properties of such a field are fully defined

by a power spectrum, P (k).

When the density contrast is small, δ � 1, the growth of fluctuations can be followed

with linear theory. The evolution of fluctuations of different wavelengths λ generally

depends on the epoch of the expansion history of the Universe during which the fluc-

tuation enters the causally connected Universe, bounded by the particle horizon. The

proper radius of the particle horizon is defined by the distance the light is able to travel

since the Big Bang: λH(t) ∼ ct ∼ cH−1 (see e.g. Peebles, 1993, for a detailed discussion).

Once a density fluctuation reaches δ ∼ 1, the linear theory starts to break down.

A useful tool for understanding the following non-linear collapse is provided by the

spherical collapse model (Gunn & Gott, 1972; for a textbook presentation, e.g. Coles &

Lucchin, 2002). In this model, regions of high density decouple from the Hubble flow

under the pull of their self-gravity and collapse just like closed matter-dominated Uni-

verses (Ω > 1). The collapse is halted after a violent relaxation process governed by

the virial theorem (which provides a connection between kinetic and potential energy

in dynamically stable systems) forming a dark matter halo. The properties of a halo

can also be estimated from the virial theorem. The spherical collapse theory predicts

that the halo will have an overdensity, defined as ∆(~r) = ρm(~r)/ρ̄m, of ∆coll ≈ 180

(when Ωm = 1), independent of halo mass and redshift6. The mass of the halo is then:

6Only true in the Einstein-de Sitter Universe.
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Mvir = (4π/3)ρ̄m∆collr
3
vir, where rvir is the halo radius defined by its mass and predicted

overdensity. The baryon gas collapsing into the halo is shock-heated to a temperature

called the virial temperature:

Tvir =
µmHv

2
vir

2k
, (1.6)

where µ is the mean molecular weight, mH the mass of a hydrogen atom, k the Boltz-

mann constant and vvir =
√
GMvir/rvir is the halo circular velocity at radius rvir. Of

interest for some of the discussion in this thesis is the relation between the halo mass

and virial temperature: (e.g. Peacock, 1999):

Mvir ≈ 2× 106M�/h
(
Tvir

103K

)3/2(1 + z

10

)−3/2 ( µ

1.22

)−3/2
. (1.7)

The halos are the cradle for the formation of stars and galaxies (e.g. White & Rees, 1978;

White & Frenk, 1991), which in turn produce the ionizing radiation that causes reioniza-

tion and keeps the Universe ionized after it. We discuss the theory of galaxy formation

in more detail in Chapter 4. For now, it is sufficient to say that the luminosity produced

in halos is, among other things, a function of the halo mass, Eq. (1.7).

The dark matter is assumed to be pressureless and its non-linear evolution is fully

determined by gravity. On the other hand, when considering baryonic matter, non-zero

thermal pressure must be taken into account. The thermal pressure prevents the growth

of density fluctuations in the baryonic component if the sound crossing time of the fluc-

tuation λ/cs is smaller than the free-fall time: λ ≤ λJ ≡ csπ
1/2(Gρm)−1/2, where cs =√

γkT/(µmH) is the sound speed and γ is the ratio of specific heats (equal to 5/3 for ideal,

mono-atomic gas). The Jeans scale λJ defines the Jeans mass, MJ = (4π/3)ρm(λj/2)3,

which can also be written as (e.g. Barkana & Loeb, 2001):

MJ ≈ 6× 107M�/h
(

T

104K

)3/2(1 + z

10

)−3/2 ( µ

1.22

)−3/2
. (1.8)

Prior to reionization, the gas temperature evolves in two stages. In the first stage, it

remains coupled to the CMB temperature due to the scattering of residual free electrons

until redshift 1 + zdec ≈ 137(Ωbh
2/0.022)2/5 (e.g. Peebles, 1993). At the present day,

the CMB radiation has the spectrum of an almost ideal black body with temperature

TCMB,0 = 2.73 K. The temperature of the CMB (therefore also the gas temperature prior

to zdec) evolves as TCMB = TCMB,0(1 + z) due to the expansion. The Jeans mass remains

independent of redshift in this period. After zdec, the gas cools adiabatically, T ∝ (1+z)2,
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resulting in T ≈ 30 K at z = 10 with the corresponding Jeans mass at ∆ = 1 being

MJ ≈ 6 × 103 M�/h, from Eq. (1.8). The Jeans scales are relevant for photo-ionization

feedback, which we discuss later.

The number density of halos is best obtained from numerical simulations that solve

the equations of gravitational collapse (we will use such simulations extensively through-

out this thesis). Alternatives are analytically derived functions that approximate the re-

sults of computer simulations as simpler one-dimensional functions. While failing to

provide the spatial distribution of halos, these analytical techniques are extremely use-

ful as they allow for much faster exploration of the relevant parameters. The original

method for this purpose was developed by Press & Schechter (1974). In their approach,

the abundance of halos at redshift z is obtained from linear theory by applying the spher-

ical collapse theory to the density field. The method provides the co-moving number

density of halos, dn, with mass between M and M + dM in the form (Peebles, 1993):

M
dn
dM

=
(

2
π

)1/2 d(lnσ)
d(lnM)

ρm,0
M

νce
−ν2

c /2, (1.9)

where ρm,0 is the mean mass density at present day, σ = σ(M) is the standard deviation

of the density contrast smoothed over a window containing mass M , and νc = ∆coll/σ.

Since its introduction, the analytic approach has been improved by many authors (e.g.

Bond et al., 1991; Lacey & Cole, 1994; Sheth & Tormen, 2002; Reed et al., 2006).

Equation (1.9) also demonstrates one of the main features of current structure for-

mation theory: the hierarchical buildup of structure. The standard deviation increases with

decreasing mass in the window, leading to the (on average) earlier collapse of small

fluctuations. The buildup of structure proceeding from less to more massive halos is

evidenced by, for example, the fact that the galaxy sized halos are observed at redshifts

z . 10 while the larger, cluster sized halos (which hold hundreds of galaxies) do not

assemble until z . 1.

1.2 Reionization: transition to an ionized Universe

The formation of cosmic structure leads to the formation of radiation sources that trans-

form the neutral gas in the intergalactic medium to its highly ionized present day state
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during the period called reionization7. A number of review articles about this epoch

have been written in recent years (see e.g. Barkana & Loeb, 2001; Ciardi & Ferrara, 2005;

Loeb, 2006; Ciardi, 2007). The name itself suggests that during this epoch the Universe

becomes highly ionized for the second time. Indeed, for the first ≈ 350000 years, the

Universe was hot and dense enough for the collisions between particles to prevent the

formation of neutral atoms. Only at redshift z ≈ 1100 has the Universe cooled down

significantly enough (to about T ≈ 3000K) for the neutral atoms to form. This event is

known as the cosmological recombination (see Sunyaev & Chluba, 2008, for a recent re-

view) and it marks the first major phase transition in the ionization state of the Universe.

Recombination significantly decreased the Thompson electron scattering optical depth,

freeing most of the photons that were tightly coupled to matter before it. This radiation

constitutes the cosmic microwave background.

After recombination, the Universe continues to expand and cool with the majority of

the baryonic matter in the neutral state. The transition back to the highly ionized state

begins with the formation of the first luminous structures capable of producing ioniz-

ing radiation (photons with energies hν ≥ 13.59 eV needed to ionize hydrogen). The

exact nature of the radiation sources and their relative contribution to the total ionizing

photon budget are one of the many uncertainties in the understanding of reionization. A

probable candidate can be found in the first stars (also called Population III stars) formed

in the Universe (e.g. Abel et al., 2002a; Bromm & Larson, 2004). These stars are expected

to form out of primordial composition gas condensing in small mass halos, which are

the first to form in the hierarchical structure formation scenario. In order for the gas to

collapse, it must be able to efficiently cool in order to reduce its thermal pressure. In

general (e.g. Rees & Ostriker, 1977; Schneider et al., 2002), the cooling is efficient when

tcool � tff , where tcool = 3nkT/2Λ(n, T ) is the cooling time, tff = (π/Gρ)1/2 is the free-

fall time, n is the number density of gas with the mass density ρ and Λ(n, T ) is the net

radiative cooling rate per unit volume in units of erg cm−3 s−1. In the primordial gas

of temperatures T . 104K, the most efficient cooling mechanism is the radiative de-

7Note that all mentions of reionization in this thesis refer exclusively to the reionization of cosmic hy-

drogen. The (complete) reionization of helium is, while related, a different problem from the one discussed

here: it occurs at a significantly later time (z ≈ 3) and is most probably driven by radiation from quasars

which are necessary to produce significant amount of high energy photons (hν & 54 eV) needed to twice

ionize helium.
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excitation of collisionally excited molecular hydrogen (e.g. Abel et al., 2000; Bromm et al.,

2002). The conditions needed for effective molecular hydrogen cooling are found in ha-

los with virial temperatures Tvir ∼ 103K (e.g. Thoul & Weinberg, 1996; Yoshida et al.,

2003; Bromm & Larson, 2004) corresponding to virial mass of, according to Eq. (1.7),

Mvir ∼ 106M�/h. The typical mass of the stars formed, although still uncertain, is ex-

pected to be∼ 100M�, much more massive than typical present day stars (∼ 1M�). Their

primordial gas composition (i.e. practically zero-metallicity) means that their luminosity

is fuelled by proton-proton nuclear burning.

The first stars are expected to be hotter, and therefore produce more ionizing radia-

tion, than their more metal-enriched counterparts. For example, Bromm et al. (2001a)

find that a Pop III star with mass ≈ 300M� resembles a black body of temperature

≈ 105K and produces about an order of magnitude more H and HeI ionizing photons

than a Pop II star of comparable mass. The case for Pop III stars being the dominant

sources of ionizing radiation for the epoch of reionization is complicated by the fact that

the intergalactic H2 is easily dissociated by the soft-UV radiation in the Lyman-Werner

bands. This suppression is very efficient and just a single generation of Pop III stars can

significantly suppress the subsequent star formation in their host halos as well as their

surroundings (Omukai & Nishi, 1999; Nishi & Tashiro, 2000; Oh & Haiman, 2002; Susa

& Umemura, 2004a; Ahn et al., 2008). On the other hand, new H2 molecules can form

in gas compressed by shock fronts (e.g. Ferrara, 1998; Ricotti, 2002) or colliding atomic

gas clouds (Cen, 2005). This complex feedback loop makes estimates of Pop III stars

contribution to the ionizing photon budget uncertain. The Pop III era ends when the

metallicity reaches Z/Z� ∼ 10−3.5 and the formation of normal, lower mass Population

II stars begins (e.g. Omukai, 2000; Bromm et al., 2001b; Bromm & Larson, 2004; Fang &

Cen, 2004).

In halos with virial temperatures Tvir & 104K, the gas can cool through the collisional

excitation and radiative de-excitation of atomic hydrogen and helium and begin the for-

mation of galaxies as we know them today. Pop II stars found in them may also be a

dominant source of ionizing radiation. This scenario allows the application of the more

extensive knowledge of galaxy formation at lower redshifts to the epoch of reionization.

A number of works have found the Pop II stars with standard or somewhat top-heavy

initial mass functions (IMF) to be capable of single-handedly completing reionization
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within the redshift range suggested by current observations (e.g. Gnedin, 2000a; Cia-

rdi et al., 2003; Sokasian et al., 2003; Iliev et al., 2006a; Benson et al., 2006). Conversely,

there is still controversy about whether the currently observed population of galaxies at

z . 6 is sufficient to keep the Universe in its highly ionized state (e.g. Bolton & Haehnelt,

2007; Bouwens et al., 2008b; Gnedin, 2008; Pawlik et al., 2009), which may or may not be

important for the reionization itself. These uncertainties suggest that the contribution

of quasars or some more exotic sources (e.g. Rees, 1986; Tegmark et al., 1993; Dijkstra,

2006; Srbinovsky & Wyithe, 2007; Loeb, 2009), though thought to be sub-dominant (e.g.

Madau, 1999; Faucher-Giguere et al., 2008), cannot be completely discounted.

The issue of deciding which sources of ionizing radiation dominate during EoR is

further complicated by the highly uncertain escape fraction, fesc, i.e. the fraction of pho-

tons produced that reaches the intergalactic medium, from galaxies or quasars. The

observations used to infer the escape fraction of UV radiation from our own galaxy (e.g.

Bland-Hawthorn & Maloney, 1999) as well as local starbursts (e.g. Hurwitz et al., 1997;

Heckman et al., 2001; Inoue et al., 2006) and Lyman-break galaxies at z ∼ 3 (Shapley et al.,

2006) find fesc ≈ 0.01 − 0.1. These values are supported by some hydrodynamical sim-

ulations (e.g. Fujita et al., 2003; Razoumov & Sommer-Larsen, 2006, 2007; Gnedin, 2008).

The escape fraction may depend strongly on the porosity of the interstellar medium

within the galaxy, caused by the density distribution or, for example, the presence of su-

pernovae driven winds (e.g. Ciardi et al., 2002; Clarke & Oey, 2002). Some of the latest

models that attempt to include these density inhomogeneities in simulations are finding

a significantly larger escape fraction (fesc ∼ 0.5) in high-z galaxies (e.g. Wise & Cen, 2009;

Razoumov & Sommer-Larsen, 2009). In this thesis, fesc is treated as a free parameter.

If the sources of ionizing radiation are stars or quasars, they are associated with dark

matter halos and therefore spatially clustered. This leads to a highly inhomogeneous

progression of reionization. The overdense gas around the sources is generally the first

to be ionized. The low density gas becomes ionized when the radiation breaks into

the underdense voids. This reionization progression is dubbed inside-out, as it proceeds

from high to low density regions. The growth of HII regions continues in this fashion un-

til they begin to overlap in the voids. The reionization is completed once the overdense

regions further away from the sources are finally ionized, as they are circumvented in the

earlier stages due to their higher recombination rate. In this final stage, the reionization
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therefore proceeds outside-in. This scenario is supported by both analytical and numer-

ical works (e.g. Gnedin, 2000b; Miralda-Escude et al., 2000; Ciardi et al., 2003; Furlanetto

et al., 2004; Finlator et al., 2009a), but it is not universally accepted. More recent high res-

olution simulations suggest the exclusively inside-out reionization progression (e.g. Iliev

et al., 2006a; McQuinn et al., 2007; Trac & Cen, 2007; Zahn et al., 2007, see also Chapter

5).

Yet another aspect that may be important for understanding reionization is the back-

reaction of the ionization field onto the radiation sources. This photo-ionization feedback

affects the formation and evolution of galaxies in two ways. First, the gas is heated to

T ∼ 104K (e.g. Miralda-Escude & Rees, 1994; Hui & Haiman, 2003; Tittley & Meiksin,

2007) which, according to Eq. (1.8) raises the mean density (∆ = 1) Jeans mass to

MJ ∼ 109M�/h. This so-called Jeans filtering (e.g. Shapiro et al., 1994; Gnedin & Hui,

1998) prevents the baryons from collapsing into halos below the Jeans mass. The in-

crease in temperature may also evaporate the already collapsed gas out of the halo (e.g.

Thoul & Weinberg, 1996; Barkana & Loeb, 1999; Shapiro et al., 2004; Iliev et al., 2005a;

Okamoto et al., 2008; Pawlik et al., 2009) back into the IGM. Note that the characteristic

mass below which the halos are affected by the increase in temperature of the gas (e.g.

Gnedin, 2000b; Hoeft et al., 2006; Okamoto et al., 2008) is still under considerable debate.

Second, the ionization of neutral gas in the halo can significantly affect the halo when

the main cooling channel is the atomic hydrogen lines (e.g. Efstathiou, 1992; Wiersma

et al., 2009). All of these processes result in the suppression of the gas cooling and star

formation rate within the affected halo.

1.2.1 Observational constraints

The epoch of reionization is still beyond the direct reach of current telescopes. There are,

however, a number of indirect clues that place some constraints on the epoch. Here we

present a short overview of the available data. For more details, we refer the reader to

the reviews by Fan et al. (2006) or Furlanetto et al. (2006). The first constraint is pro-

vided by the observation of the absorption of light from high redshift quasars caused by

the intervening gas. The objects containing traces of residual neutral hydrogen produce

a forest of absorption features blueward of the Lyman-α line in the spectrum of back-

ground quasars (see Rauch, 1998, for a review). Gunn & Peterson (1965) (GP) predicted
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that, in the case of a neutral IGM, the quasar spectra would show near complete absorp-

tion instead of a series of absorption lines. The tentative evidence of the GP trough was

first observed by Becker et al. (2001) in a quasar at z ≈ 6.28 found in the SDSS8 sample.

The spectra of quasars of slightly lower redshifts do not exhibit the trough feature, which

suggested a significant change in the ionization state of hydrogen at z ≈ 6, i.e. the end

of the reionization era. Similar results were found with a bigger quasar sample by Fan

et al. (2002).

The second constraint is provided by the CMB observations. The CMB photons scat-

ter off the free electrons produced by reionization. This smooths the CMB temperature

anisotropies and generates a polarisation signal on angular scales . 10◦, corresponding

to the scale of the horizon at reionization (e.g. Zaldarriaga, 1997; Hu & White, 1997; Ko-

matsu et al., 2009). Analysis of the 7-year WMAP9 CMB data suggests that, assuming an

instantaneous complete reionization model, the redshift of reionization is z = 10.5± 1.2

(Komatsu et al., 2010). The CMB may also hold signatures of the inhomogeneous nature

of reionization in anisotropies on much smaller scales (e.g. Bruscoli et al., 2000; Benson

et al., 2001; Santos et al., 2003).

The quasar data only probes the very end of reionization, because strong absorption

appears in the spectra even for trace neutral fractions, xHI ≡ nHI/nH & 10−4. On the

other hand, the current CMB polarisation data provides only an integrated constraint,

since the electron scattering optical depth is largely insensitive to the reionization history

(i.e. the evolution of xHI with redshift). Much stronger constraints are expected to come

from the results of the upcoming 21 cm telescopes (Scott & Rees, 1990; Madau et al., 1997;

Furlanetto et al., 2006). This next generation of radio telescopes (e.g. LOFAR, MWA) will

provide the statistical measurements of the 21 cm signal, but we may have to wait for the

following generation (e.g. SKA, still in planing stages) to obtain the more detailed maps

of neutral hydrogen as a function of redshift, giving a direct look into the reionization

process.

8http://www.sdss.org/
9http://map.gsfc.nasa.gov/
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1.2.2 Numerical simulations of reionization

Numerical simulations are currently the most promising tool for the theoretical study of

the epoch of reionization. While analytic and semi-analytic models provide significant

glimpses into the process (e.g. Madau, 1999; Miralda-Escude et al., 2000; Barkana & Loeb,

2004; Furlanetto et al., 2004; Zahn et al., 2007; Choudhury et al., 2008), only full numer-

ical simulations can combine the inhomogeneous cosmological density field with full

3D radiative transfer without any assumed symmetries which is needed to model the

growth of HII regions during reionization self-consistently. The techniques used have

significantly evolved in the past 5 to 10 years, enough for the current state of the field to

warrant a review, recently provided by Trac & Gnedin (2009).

The numerical simulations bring their own set of limitations to the already large set

of uncertainties about the reionization process. For studying the large-scale properties of

reionization, the cosmological density field should be represented by a simulation box of

≥ 100 Mpc/h side length for two major reasons. First, this box size is needed to guarantee

that the simulation is representative of the cosmic mean, i.e. that it provides an accurate

sampling of the halo mass function at redshifts of interest (Barkana & Loeb, 2004; Iliev

et al., 2006a). Second, the HII regions during reionization are expected to be several tens

of Mpc in size (e.g. Furlanetto et al., 2004) so a large simulation box size is needed to

provide a significant statistic. In itself, the large box size is not an issue - the main prob-

lem comes from the need to resolve all the halos where stars can form, which, if Pop

III stars are included, means Mhalo ∼ 106 M�/h. The minimum resolved mass must be

even lower to include all the density field inhomogeneities that affect the recombination

rate, for which the relevant scale is given by the pre-heating Jeans mass. Current state-

of-the-art simulations of dark matter only resolve halos down to M ≈ 108M�/h (which

generally includes all the halos capable of atomic line cooling at the redshifts of interest)

in the 100 Mpc/h box sizes (Shin et al., 2008; Iliev et al., 2008; Trac et al., 2008). Hydro-

dynamical simulations that would include the gas physics at the same resolution are, at

this time, impossible. To combat the very high computational cost of these simulations,

the majority of the numerical models of reionization represents the density field by a

series of static snapshots computed beforehand (e.g. Ciardi et al., 2003; Iliev et al., 2006a;

McQuinn et al., 2007, see Chapter 5). This approximation is justified as the cosmological

HII regions expand much faster than the underlying density evolves (Shapiro & Giroux,
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1987) and it allows for a single density field to be reused with different assumptions

about the other components of the model (e.g. the source population). Note that some

groups follow a more consistent path of evolving the density concurrently with the ion-

ization field (e.g. Trac & Cen, 2007; Baek et al., 2009), though the potential benefits of this

approach compared to the former one have not been explored in detail. The unresolved

density fluctuations which may have a large effect on the recombination rate (which is

∝ nHne, i.e. the square of the density) are often ignored (e.g. Ciardi et al., 2003; Trac &

Cen, 2007) or represented by so-called clumping factors that are calibrated using higher

mass resolution, but smaller box size simulations (e.g. Iliev et al., 2005a; McQuinn et al.,

2007; Iliev et al., 2007; Kohler et al., 2007, see Chapter 3 for a more detailed discussion).

Regardless of the previously discussed issues with the density field representation,

the most severe challenge in numerical reionization simulation must be the accurate

treatment of the radiative transfer of ionizing photons. In general, the radiative transfer

equation that is solved to obtain the ionizing intensity throughout the simulation box,

which we present in the next section, has seven dimensions: three spatial, two direc-

tional and one for both frequency and time. The issue is further complicated by the

non-local influence of radiation e.g. similarly to gravitation, the radiation from a single

source may reach every volume element in the simulation box. Unlike gravity, the radi-

ation interaction between the two volume elements depends on the state of the elements

between them. Finally, the very large number of sources found in the boxes required

for reionization simulations significantly increases the computational cost, especially for

some traditional methods where this cost scales linearly with the number of sources (i.e.

every source interacts with every volume element, see Chapter 2 for a more detailed look

at such methods).

To make these problem tractable, a number of simplifying assumptions can be used.

This naturally lead to the development of a wide range of radiative transfer methods

designed specifically for reionization simulations. In general, the computational cost is

decreased by reducing the dimensionality of the radiative transfer (RT) equation and

by lessening the steep, linear scaling of the cost with the number of sources. The di-

mensionality is commonly reduced by tracing only a few relevant radiation frequencies

(e.g. assuming that all photons have the hydrogen ionization energy, ≈ 13.6 eV) and

by solving the radiative transfer equation along discrete directions (so-called ray trac-
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ing). Monte Carlo RT methods (e.g. Maselli et al., 2003; Semelin et al., 2007; Altay et al.,

2008) trace discrete packets of radiation energy along randomly cast rays and reduce

the cost by claiming that the ionization field is sufficiently resolved with a set number

of such packets irrespective of the number of sources. A popular method of adaptive

ray-tracing (Abel & Wandelt, 2002b) keeps the angular resolution of rays constant by

splitting them periodically with increasing distance from the source. The schemes using

this technique decrease the linear scaling by grouping the sources (Razoumov & Cardall,

2005), limiting the splitting of rays after some travelled distance (McQuinn et al., 2007) or

merging near-parallel rays (Trac & Cen, 2007). Similarly, the rays may be emitted in a set

number of directions from each volume element to its neighbours and grouped before

being emitted again in direction-conserving fashion (e.g. Ritzerveld et al., 2003; Pawlik

& Schaye, 2008; Paardekooper et al., 2009, discussed in more detail in Chapter 3). An

altogether different method, introduced by Gnedin & Abel (2001), considers moments of

the radiation field. In this way, the radiative transfer equation is simplified to a system

of differential equations for the photon density and flux, tied together with a term called

the Eddington tensor. This method is explicitly independent of the number of radia-

tion sources and its implementations generally differ in the way the Eddington tensor

is computed (Aubert & Teyssier, 2008; Finlator et al., 2009b; Petkova & Springel, 2009).

Note that the linear scaling of computational cost with the number of sources is not an

insurmountable obstacle as demonstrated by the C2-ray scheme (Mellema et al., 2006).

This method reduces the computational cost of radiative transfer by properly modeling

the time evolution of the optical depth along rays which allows the use of very long

computation time steps compared to other previously mentioned methods (this is fur-

ther elaborated in Chapter 2). Many of these codes have been compared by Iliev et al.

(2006b, 2009) who found them to produce generally the same results in a series of simple

tests, suggesting that a certain level of maturity of the radiative transfer codes has been

reached.

Even with all the mentioned improvements, the cost of solving the radiative trans-

fer equation is still much higher than that of, e.g. gravitational interaction. This results

in the spatial resolution of grids used to advance the ionization field to be significantly

worse than that of the underlying density field. Indeed, practically all the large-scale

reionization schemes interpolate the density field to a uniform Cartesian grid of mod-
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est resolution (compared to that of the density) before evolving the ionization field (e.g.

Ciardi et al., 2003; Iliev et al., 2006a; McQuinn et al., 2007; Trac & Cen, 2007; Shin et al.,

2008; Iliev et al., 2008). This in turn further smooths the density field, decreasing the

importance of recombinations. Several methods have been implemented to operate on

some type of spatially adaptive density field representation, e.g. smoothed particle hy-

drodynamics (SPH, Susa, 2006; Semelin et al., 2007; Altay et al., 2008; Pawlik & Schaye,

2008; Petkova & Springel, 2009), adaptive mesh refinement (AMR, Rijkhorst et al., 2006;

Wise & Abel, 2007; Reynolds et al., 2009) or more exotic grids (e.g. Voronoi tessellation,

Ritzerveld et al., 2003; Paardekooper et al., 2009, see Chapter 3). Still, almost none of

these methods have so far been used to model large scale reionization in the required

box sizes (≈ 100 Mpc/h, but see Chapter 5).

1.3 Basic concepts of radiative transfer

As a major part of this thesis concerns the techniques for numerical radiative transfer, it

is useful to introduce the main quantities in the theory of radiative transfer at this stage10

. For a more detailed discussion, we suggest the textbooks by Rybicki & Lightman (1986),

Chandrasekhar (1950) or Castor (2004).

In essence, RT theory describes the propagation of electromagnetic radiation energy

through any kind of medium. The basic variable is the specific intensity at frequency ν:

Iν =
dE

dAdtdΩdν
, (1.10)

which is defined as the amount of energy dE passing through surface dA in time dt and

in frequency range dν in the direction encompassed by the solid angle dΩ. The specific

intensity in the cgs system has the units of erg s−1cm−2ster−1Hz−1. In a general radiation

field, Iν is a function of seven variables:

Iν ≡ Iν(x, y, z, θ, φ, t), (1.11)

where x, y and z denote spatial coordinates, θ and φ direction angles and t time. The

spherically averaged intensity crossing surface dA defines the mean intensity:

Jν =
1

4π

∫
IνdΩ, (1.12)

10Note that this whole discussion neglects effects of the cosmological expansion on radiation propagation.
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which is commonly used in equations that describe interaction of radiation with matter,

for example, in the definition of the photo-ionization rate we introduce in Eq. (2.12).

Telescopes detect the net flux of electromagnetic radiation, i.e. the amount of energy

passing through surface dA. The net flux is related to the specific intensity as:

Fν =
∫
Iν cos θdΩ, (1.13)

where cos θ = ~n · ~n′/(|~n||~n′|) is the cosine of the angle between the normal vector of

surface dA, ~n, and the directional vector of solid angle dΩ, ~n′.

It can be shown that, in the case of no energy gains or losses, the specific intensity

along a single ray remains constant (see e.g. Rybicki & Lightman, 1986). This means that

the intensity of radiation at position ~r = x~ex + y ~ey + z ~ez travelling in the direction given

by unit vector ~n = sin θ cosφ~ex + sin θ sinφ~ey + cosθ ~ez is the same as the intensity at a

point s = cτ away after time τ , where c is the speed of light and s the distance light

travels in τ . Using Eq. (1.11) we get:

Iν(~r + ~ncτ, ~n, t+ τ) = Iν(~r, ~n, t). (1.14)

After the left-hand side is Taylor-expanded, the right-hand side transferred to the left

and the whole expression divided by cτ , we obtain:

1
c

∂Iν
∂t

+ ~n∇Iν = 0, (1.15)

which is the radiative transfer equation in the case of no energy gains or losses. These

two effects are, in general, described by the emission and absorption coefficients, jν and

kν , respectively which give the amount of radiation energy of frequency ν gained or lost

per unit time per unit solid angle per unit volume. The energy gains along path element

ds = cdτ usually11 do not depend on the value of Iν along the path, dIν = jνds, but the

losses do, dIν = −kνIνds. Taking the change in the energy into account leads us to the

default form of the radiative transfer equation (RTE):

1
c

∂Iν
∂t

+ ~n∇Iν = jν − kνIν . (1.16)

When solving the radiative transfer along specific rays and assuming that the in-

tensity remains constant during time, Eq. (1.16) transforms from a partial differential
11There are some astrophysical systems that feature stimulated emission, e.g. naturally occurring masers

in the ISM (e.g. Strelnitski, 1997).
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equation to an ordinary differential equation along the ray:

dIν
ds

= jν − kνIν . (1.17)

Note that this formulation ignores the finite speed of light. In the case of point sources

and no scattering, jν = 0, which leads to the simple solution:

Iν(s) = Iν(0) exp(−kνs), (1.18)

i.e. the solution is that of pure attenuation. This relation will be our main tool for evolv-

ing the ionization fields in methods we present in both Chapters 2 and 3.

1.4 Thesis overview

In this section, we provide a short overview of the contents of subsequent chapters.

Chapter 2: we discuss the Hybrid characteristics (HC) radiative transfer method (Ri-

jkhorst et al., 2006), implemented in the adaptive mesh refinement code FLASH (Fryxell

et al., 2000). After introducing both FLASH and HC, we present the improvements and

fixes we introduced to the method. The most important of these is the inclusion of both

spatial and temporal photon-conservation (the terminology is introduced in this chap-

ter), which results in computational efficiency improvement measured in orders of mag-

nitude. We briefly discuss the physics of ionization fronts before presenting the results

of the radiative hydrodynamics tests we performed for the second Cosmological Code

Comparison project (Iliev et al., 2009). These tests show our improved HC method to be

in excellent agreement with other RT codes taking part in the project.

Chapter 3: we introduce another radiative transfer method, SimpleX (Ritzerveld

et al., 2003). This scheme solves the radiative transfer equation by transporting pho-

ton packets between neighbouring Voronoi tessellation cells. The main features of the

scheme are an adaptive grid for representing the density field (we construct the tessella-

tion directly on the particles from N-body runs, thus matching their spatial resolution)

and a computational cost that does not depend on the number of sources. We show that

the original SimpleX implementation, specifically the way it sampled the density field,

introduced significant numerical errors, as evidenced by the results of Test 4 in Iliev et al.

(2006b). We introduce a different density field sampling, directly proportional to the lo-

cal density and corresponding to an unweighted random selection of N-body particles,
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and show that it results in SimpleX finding much better agreement with other codes in

the aforementioned Test 4. The rest of the chapter focuses on how to accurately compute

the recombination rate on a coarse RT grid that does not resolve all the density field data.

First, we show that the clumping factor must be a function of both the local overdensity

and the spatial window over which it is computed in order to avoid severe overestimates

of the total recombination rate. Second, we argue for a different interpretation of the ion-

ized fraction in highly optically thick cells in order to obtain the correct recombination

rates. The importance of this change is demonstrated in the case of an HII region propa-

gating through a cosmologically expanding uniform density field. The SimpleX method

with all the changes discussed in this Chapter is used to evolve the ionization field in

our reionization simulations presented in Chapter 5.

Chapter 4: We introduce GALFORM, a semi-analytic scheme for modelling the for-

mation and evolution of galaxies (Cole et al., 2000). We use the GALFORM scheme to

provide the source model for the full reionization simulations of Chapter 5. We focus on

the specific implementation introduced by Baugh et al. (2005) and examine the role of

different parameters in the model on the production of ionizing photons during reion-

ization. We find that the largest contribution comes from the assumed top-heavy IMF

during merger-triggered bursts of star formation. In the second part of the Chapter, we

compare the predictions of the Baugh et al. (2005) model, and some variations of it, to

the observed population of Lyman-break galaxies at z ∼ 6 − 10 (Bouwens et al., 2008b,

2009a,b). We find a good agreement between the observed data and the predictions of the

default Baugh et al. model, in terms of both the luminosity function and the Schechter

fit parameters.

Chapter 5: We present our method for simulating large scale reionization, constructed

by coupling the SimpleX and GALFORM schemes, both discussed in the two previous

chapters. The key element is the communication between the two codes that allows for

the inhomogeneous reionization to be taken into account when computing the evolu-

tion of galaxies. The resulting method can compute the evolution of the ionization field

during reionization with spatial resolution comparable to (or better than) that of other

state-of-the-art codes, in a fraction of the CPU time. This makes it ideal for exploring the

currently largely unconstrained parameter space of reionization. In the first half of the

Chapter, we show that our results are converged for the chosen RT grid resolution. The
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second part discusses some of the first results we obtained addressing the issues of: i)

the topology of reionization and its dependence on the local overdensity, ii) the morphol-

ogy of HII regions in a source model dominated by starbursts and iii) the importance of

source suppression for the progression of reionization.
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Chapter 2
Radiative hydrodynamics

with FLASH

2.1 Introduction

Many problems in astrophysics, e.g. the formation and evolution of stars and galax-

ies, evolution of supernova remnants, stellar winds and other outflows just to name a

few, require accurate numerical treatment of multi-dimensional fluid flows. While some

systems can be successfully modelled in two dimensions or with imposed symmetries,

a majority of problems requires a general, three dimensional approach. Without any

simplifying assumptions, the numeric solution of the astrophysical fluid flows in three

dimensions requires the memory and CPU cycles available only with the use of modern

supercomputers. Even then, the brute force approach is impractical and sophisticated

numerical techniques must be developed. The models are further complicated by the

addition of radiative transfer. The radiation field can have a large impact on astrophys-

ical fluid flows, yet its characteristic temporal and spatial scales are often very different

from the hydrodynamic ones, evident in the orders of magnitude difference between the

speed of light and the speed of sound in the cosmic gas. Examples of the complex inter-

action between radiation and fluid flow can be found in the study of ionization fronts,

that will be discussed in detail throughout this chapter.

The subject of this chapter is a radiative hydrodynamics scheme constructed by adding

radiative transfer into the adaptive mesh refinement (hereafter, AMR) hydrodynamics

code FLASH (Fryxell et al., 2000). The radiative transfer method in question, Hybrid

characteristics (Rijkhorst, 2005; Rijkhorst et al., 2006), efficiently traces rays across the

block structured AMR grid employed by FLASH and computes the intensity of radi-

ation at every computational cell. In the following section, we discuss the basics of

23
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FLASH, focusing mostly on the AMR grid structure. In Section 2.3, we describe the

Hybrid characteristics (hereafter, HC) RT scheme as it was implemented in FLASH. Sec-

tion 2.4 introduces the basic physics of ionization fronts. Section 2.5 discusses the errors

arising in RT schemes due to the necessary spatial and temporal discretization of the RT

equation, commonly called photon conservation issues as well as the steps we take to

avoid them in HC. Finally, in Section 2.6 we present the results of the radiative transfer

tests we performed with our updated version of HC for the second RT Code Compar-

ison Project paper (Iliev et al., 2009). Such a precise radiative hydrodynamics method

will allow us to study several problems relevant to the epoch of reionization, e.g. the

gas dynamical evolution of HII regions around first stars or the photo-evaporation of

minihalos encountered by cosmological ionization fronts.

2.2 FLASH: AMR hydrodynamics

2.2.1 Euler equations

Inviscid astrophysical fluid flows can be described with a system of partial differential

equations called Euler equations (e.g. Landau & Lifshitz, 1959):

∂ρ

∂t
+∇ · ρ~v = 0 (2.1)

∂ρ~v

∂t
+∇ · (~v ⊗ (ρ~v)) +∇p = 0 (2.2)

∂E

∂t
+∇ · (E + p)~v = 0, (2.3)

where ρ is the fluid mass density, ~v is the fluid velocity vector, p is the pressure and

E = 1
2ρv

2 + ρe is the total energy per unit volume, with e being the internal energy per

unit mass. This system is closed once the relation between pressure, density and internal

energy is supplied, given by the equation of state. In essence, these equations represent

three conservation laws for the fluid motion: mass, momentum and energy in Eqs. (2.1),

(2.2) and (2.3) respectively.

There are two fundamental approaches to solving the Euler equations numerically.

In the Eulerian description, the computational mesh is fixed in space. The fluid flow is

modelled by computing the fluxes of mass, momentum and energy across a static grid.
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There is a large degree of freedom in choosing the shape of the grid. It can be struc-

tured (e.g. uniform Cartesian mesh; Norman, 2000) or unstructured (e.g. Delaunay tri-

angulation; Xu, 1997). Structured grids are not necessarily limited to a single spatial

resolution: we will discuss adaptive computational meshes in the next section. On the

other hand, in the Lagrangian description, the mesh moves along with the fluid flow. The

mass of every grid cell is constant in time i.e. there is no mass flux between cells. Com-

monly used Lagrangian methods are mesh-free particle based methods grouped under

the name smoothed particle hydrodynamics (hereafter SPH; Monaghan, 1992). Finally, a

combination of the two approaches leads to arbitrary Lagrangian Eulerian methods. Here,

the grid is allowed to move, but the mass in the cell is not constant, i.e. the advection

fluxes need to be computed (e.g. Gnedin, 1995; Pen, 1998; Springel, 2009). The strengths

and weaknesses of many of these methods have been tested in various comparison pa-

pers (e.g. Frenk et al., 1999; Agertz et al., 2007; Tasker et al., 2008).

2.2.2 Adaptive mesh refinement

In general purpose Eulerian schemes, Cartesian grids are most commonly used, due

to their conceptual simplicity and easy implementation. While a uniform mesh is the

obvious choice, its use is often impractical if the dynamic range of the problem is too

large. To properly model such systems, the mesh must resolve the smallest spatial scales

relevant to the problem, resulting in a highly redundant number of cells on larger scales.

To circumvent this issue, the so-called adaptive mesh refinement (AMR) grids can be

used (Berger & Oliger, 1984; Berger & Colella, 1989). In these schemes, the problem

is initially represented by a coarse grid. Higher resolution meshes are placed where

necessary, according to some criteria, until all the features in the problem have been

resolved. Special care is taken to ensure that the fluxes between cells with different

resolution are correct and all quantities are conserved. At every time step, the position

and scale of the “interesting” areas may change and an AMR scheme must be able to

adapt the mesh as needed, by both refining and derefining the grid to match the new

state of the system.

The main distinction between AMR schemes is in the way the mesh cells are grouped.

In the cell-structured AMR, every mesh cell can be independently refined if the refinement

criterion is met (e.g. Raga et al., 2000; Teyssier, 2002; Lim & Mellema, 2003). On the
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Figure 2.1: A single PARAMESH block in 2 dimensions. The number of

cells along each coordinate, nx and ny, are the input parameters of the

code and fully define the shape of all blocks. Around the central cells

of the block is a layer of guard cells, nguard cells thick. The guard cell

layer is used to provide the boundary conditions and holds the state of

the fluid in neighbouring blocks.

other hand, in the block-structured AMR, groups of mesh cells are refined and de-refined

together (e.g. Berger & Colella, 1989; Bryan & Norman, 1997, 1998; Fryxell et al., 2000).

The FLASH hydrocode uses a block-structured AMR mesh provided by the PARAMESH

package, which we discuss in the following section.

2.2.3 PARAMESH: the AMR technique used in FLASH

The FLASH code uses the PARAMESH AMR module (MacNeice et al., 2000) to construct

the computational mesh. PARAMESH is a block-structured AMR scheme in which all



2. Radiative hydrodynamics with FLASH 27

Figure 2.2: An example AMR 2D grid (left) and its corresponding

quadtree data structure (right). The grid shows only the leaf blocks,

nodes on the quadtree that have no child nodes and where all the fluid

data is stored. The distance of the block from the root node on the

quadtree gives its refinement level (e.g. the highest level of refinement

in this grid is 5). Each block has nx = ny = 4.

the blocks have the same shape. This is the main difference from the original AMR

implementation (Berger & Colella, 1989) where the blocks are allowed to have varying

shapes. A PARAMESH block consists of nx × ny × nz central cells, where nx, ny and

nz are integers that give the number of cells along every spatial coordinate. Around

the central cells is a layer of guard cells, nguard cells thick, which are used as boundary

conditions for the central cells and are set by the fluid states in neighbouring blocks.

The required number of guard cells, nguard, is given by the interpolation scheme used in

specific physics modules (e.g. PPM hydro requires nguard = 4). An example of a single

block in 2D is given in Fig. 2.1.

The full mesh is constructed hierarchically, starting from a few blocks that represent

the whole simulation volume. A block is refined by being split in half along each coor-

dinate to form new blocks (4 or 8 new blocks in 2D and 3D, respectively) that cover the

same volume as the original block. Each block is a node of the tree data structure (quad

or octree tree in 2D or 3D, respectively), where the newly spawned child blocks are con-

nected to the block from which they are spawned, the parent block. The data values in the
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new blocks are interpolated from the values in the parent block in a so-called prolongation

procedure. The opposite step, restriction, is used when derefining a region. The distance

of each block from the root node on the tree graph gives its refinement level. The solvers

operate only on leaf blocks, blocks that do not have any children. In PARAMESH, neigh-

bouring leaf block cannot differ by more than one refinement level. Figure 2.2 shows an

example AMR grid in two dimensions and its corresponding quad tree structure.

The FLASH code was written for use on distributed memory machines. In order for

the code to run optimally on such machines, all the computational work must be evenly

distributed among all the used processors. The domain decomposition in FLASH is

also based on blocks. A Morton space filling curve (Morton, 1966) is used to map the

multi-dimensional distribution of blocks to a one dimensional array of indices. The key

property of space filling curves is that spatially close regions will also be placed close

on the 1D mapping on average. Once the workload of each block is estimated, the 1D

mapping can be chopped in pieces with approximately the same work balance and dis-

tributed among processors. Since the blocks that are neighbours on the space filling

curve are also spatial neighbours on average, the inter-processor communication is min-

imised. The idea of using the Morton space-filling curve for domain decomposition was

first proposed by Warren & Salmon (1993). It is not the only space-filling fractal that can

be used for load balancing, e.g. the Gadget code (Springel, 2005a) uses a Peano-Hilbert

curve for the same purpose.

2.2.4 Hydrodynamics solver

In Cartesian coordinates, the system of Euler equations, Eqs. (2.1) - (2.3), can be written

in a general form as:
∂~U

∂t
+
∂ ~Fα(~U)
∂xα

= 0, (2.4)

where ~U ≡ (ρ, ρ~v,E) is the state vector of the fluid and ~Fα are the corresponding fluid

fluxes along each axis. Another transformation gives:

∂~U

∂t
+Aα ∂

~U

∂xα
= 0, (2.5)

where we have introduced the Jacobian matrices:

Aα =
∂ ~Fα(~U)

∂~U
. (2.6)
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The system of Euler equations is hyperbolic, since the Jacobians in Eq. (2.6) have real and

distinct eigenvalues (called characteristic velocities) and the corresponding eigenvectors

form a complete set in R3.

Godunov (Godunov, 1959) proposed a way to numerically solve Eq. (2.4) in the

Eulerian paradigm. On finite volume cells, the fluid variables are cell-centred quantities,

given at time tn, the beginning of the time step. The evolution of U in these discrete

steps is found by averaging Eq. (2.4) over the volume of each cell and the time step,

∆t = tn+1 − tn (e.g. Castor, 2004):

V
∆〈~U〉

∆t
= −

∫ ∫
S

~Fα · ~ndA, (2.7)

where 〈~U〉 is the cell-averaged state vector and ~Fα·~n is the flux of fluid quantities through

a cell edge, averaged over the time step. If we can obtain all fluxes from the value of 〈~U〉

at tn, we automatically get its value at tn+1.

Since the fluid variables are assumed to be constant over each cell, the edges between

cells will mark a discontinuity in U . This discontinuity defines the initial conditions for

a Riemann problem, a generalisation of the shock tube problem (e.g. Sod, 1978) with non-

zero initial fluid velocities. The essence of the Godunov method is calculating the fluxes

in Eq. (2.7) by solving the evolution of the Riemann problem at every cell edge during

the time step. Without going into the details of the numerical solution of the Riemann

problem, we must point out that it is, in general, very computationally intensive. Still,

much of the structure in the solution is lost due to the averaging of the fluid variables

in discrete cells. This suggest that approximate solutions to the Riemann problem can

be used in numerical hydrocodes to obtain satisfactory results. Here we must point

out the largest benefit of basing the numerical technique on the Riemann solver: using

a Riemann solution explicitly introduces the non-linearity in the difference equations

of Eq. (2.4) and provides a tool for precise resolution of the sharp shock fronts that

may arise in the flow. This is a very important feature for hydrocodes used to model

astrophysical fluid flows, where the shocks are a rule rather than the exception.

The FLASH hydro solver uses an extension to the Godunov method, the piecewise

parabolic method (hereafter, PPM). The method was described in detail by Woodward &

Colella (1984) and Colella & Woodward (1984). The PPM method combines the values

of the cell and its two neighbours on each side to estimate cubical polynomials used to
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extrapolate the variables to cell boundaries. When integrated over space, these polyno-

mials are required to reproduce the average state in the cells and may be modified to

produce monotonicity and contact discontinuity steepening. The PPM algorithm is very

well suited for modeling both smooth flows and flow discontinuities. For more details

on the method and its implementation in FLASH see Colella & Woodward (1984) and

Fryxell et al. (2000), respectively.

2.2.5 The FLASH code architecture and other physics modules

The FLASH code is designed to be highly modular. It is easy for the user to choose which

physics modules to use for any given problem or to write and include new ones. A

python script is used to put together the source codes of all the chosen physics modules

and resolve any inconsistencies in the setup.

Many physical modules are provided in the default FLASH distribution. We men-

tioned only the two most basic ones: PARAMESH for the grid construction and PPM for

solving the hydrodynamics equations. There are modules for different materials equa-

tions of state, for nuclear burning, simple gravitational potentials or self-gravity and

many more. In the next section, we will discuss a radiative transfer technique written

specifically for FLASH that we use in our work.

2.3 Hybrid Characteristics: RT for FLASH

This section discusses the Hybrid characteristics scheme (Rijkhorst, 2005; Rijkhorst et al.,

2006) for modeling the transport of ionizing radiation over the PARAMESH grids. The

ray tracing in HC borrows the best features from both long and short characteristics

schemes (discussed in Section 2.3.1), resulting in a precise and fully parallel scheme,

described briefly in Section 2.3.2. The chemistry equations that describe the interaction

of the gas with incoming ionizing radiation are presented in Section 2.3.3.

2.3.1 Long versus short characteristics ray-tracing

Let us examine the propagation of ionizing radiation through a static hydrogen-only

medium. Along a single line of sight, or ray, the general partial differential form of

the radiative transfer equation (RTE), Eq. (1.16), transforms to an ordinary differential
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equation, Eq. (1.17), making the ray a characteristic of the general RTE. If the emissivity,

jν can be ignored, e.g. in case the radiation field is dominated by a point source, the

intensity along the ray is simply obtained by integrating Eq. (1.17):

Iν(r) = Iν(0)e−τν(r), (2.8)

where r is the distance from the source and we introduced τν , the optical depth at fre-

quency ν:

τν(r) = σνNHI(r), (2.9)

where σν is the hydrogen photo-ionization cross-section and NHI is the column density

of neutral hydrogen between the source and r. From Eqs. (2.8) and (2.9), it is clear that

the intensity of radiation at any point can be obtained if the column number density up

to that point is known. The column density of neutral hydrogen is:

NHI(r) =
∫ r

0
nHI(r′)dr′, (2.10)

which is just the integral of the HI number density field along the line of sight. In numer-

ical simulations, the density field is represented by discrete value cells. Equation (2.10)

is then discretised as:

NHI(r) =
Ncut∑
i=1

nHI,i∆li, (2.11)

where Ncut is the number of cells cut by the ray up to r, nHI,i is the neutral hydrogen

number density in the i-th cell along the path and ∆li is the length of the path section

going through that cell. The sum of all sections ∆li is the distance r, r =
∑Ncut

i=1 ∆li.

In a computer model, Eq. (2.11) is solved through ray tracing, an umbrella term for

algorithms used to compute the paths of particles or waves through interacting media.

In RT, the most straightforward ray tracing technique is the long characteristics1 scheme,

where a single line is drawn between the source and the target and the intersection of

the line with cells is computed to obtain ∆li for each cell on the intersected list. An

example is given in the left panel of Fig. 2.3. While this scheme is very precise, it is

also rather inefficient, as the cells close to the source are crossed by rays many times.

1Characteristics is a historical name for ray-tracing methods used in numerical RT field, due to the con-

nection with the method of characteristics technique for solving PDE. While it is an appropriate term for the

long characteristics method, where every ray is a characteristic, it is purely descriptive for more complex

ray tracing schemes, such as short characteristics.
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Figure 2.3: Examples of two approaches to ray tracing. Left: the long

characteristics method. The rays are simply drawn from the source to

every cell on the mesh. While this method is precise, it also sports many

redundant calculations since the cells near the source are crossed many

times. Right: the short characteristics method. Each cell is crossed only

once. The column density at each cell uses the interpolated value of the

upwind cells. This scheme is less precise, but more computationally

efficient.

Their contribution to the column density is calculated for every ray, resulting in many

redundant calculations.

This calculation redundancy is removed in the short characteristics scheme. There, ev-

ery cell is traversed only once and the total column density in each cell is computed by

interpolating the values from upwind cells. The interpolation technique necessarily in-

troduces some numerical diffusion, but the number of operations is significantly smaller

than in the long characteristics method. This is demonstrated in the right panel of Fig.

2.3. The main drawback is that the grid must be traversed in a specific order, since up-

wind values must be available for each cell. This, in turn, complicates the parallelization

of the algorithm.

2.3.2 Tracing rays over the FLASH AMR grid

We discussed previous ray tracing schemes with the implicit assumption that the com-

putational grid is uniform and fully stored in the available computer memory. This is
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Figure 2.4: Local ray tracing in each block. Left: Local contribution to

the ray that end at the cells in this block. Right: Values at the faces of

cells away from the source on the opposite side of the block. The contri-

bution of the block to every ray crossing it is computed by interpolation

from these face values.

not true for the grid in FLASH, as discussed in Section 2.2.3. The Hybrid characteristics

scheme was designed to perform efficient ray tracing over the PARAMESH distributed

AMR grid. As the name might suggest, HC borrows the best features from both long

and short characteristics methods: the long characteristics paradigm is employed to en-

sure a fully parallel algorithm and high precision, while the short characteristics idea of

interpolation is used to increase the efficiency of the calculation and minimise memory

use and inter-processor communication.

If we use the long characteristics scheme, a single ray will, in general, traverse more

than one AMR block. Since computing the contribution of cells in one block toNHI along

the ray is independent from the contributions of others (i.e. Eq. (2.11) can be summed

in any order), the tracing of each ray segment in a block can be done in parallel. To ob-

tain NHI along the whole ray, the individual contributions from all ray segments must

be summed. The rays can be assembled one at a time, but then only the blocks that are

crossed by the ray do any work which results in many wasted CPU cycles. Alternatively,

every block can compute the contribution along every segment of every ray that crosses

it. This again leads to much more work being done in blocks close to the source, in turn

complicating load balancing. To avoid this issue, the HC scheme employs the interpo-
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lation idea of short characteristics, but on the block level - every block only computes

the ray segments leading from the source to the cell edges on the opposite side of the

block. The contribution of the block to each ray is then obtained by interpolating these

face values to the desired ray section length. Note that in all instances of ray tracing, the

fast voxel traversal algorithm of Amanatides & Woo (1987) is used to efficiently find the

list of traversed cells or blocks and the lengths of individual ray segments in each.

The algorithm for computing the column densities to every cell from a single source

is then as follows:

1. Compute the local contribution to NHI for every block. These are the “ends” of

each full ray, computed by drawing a ray segment from the block edge closest to

the source, along the ray direction and to the edge of every cell in the block. An

example is given in the left panel of Fig. 2.4. This is a fully parallel, well load-

balanced process.

2. Compute the face values: local column densities to the block edges opposite the

source, used to calculate the contribution of this block to each ray traversing it.

These are computed by drawing block ray segments from the source to the corners

that touch the opposite side of the block of each block cell furthest away from the

source. Right panel of Fig. 2.4 gives an example. Similar to the previous step, this

is a local calculation, thus fully parallel.

3. Exchange the face values between processors. After a global communication (a

“gather” operation), every processor ends up with all the face values from all the

blocks. This data is used to construct full rays in parallel.

4. On every processor, construct a global block map, an array of integers that gives the

global spatial distribution of blocks. In practise, this is a uniform grid with cell

size equal to the smallest block. Each cell stores the unique index of the block that

covers its spatial position. For example, in 3D, a block at highest refinement level,

RLmax, will be represented by a single cell on the global block map, while a block

at RLmax − 1 will be represented by 8 cells and so on. Each processor first creates

its local block map, with the global map obtained through the reduction of all local

ones. The global block map is used to obtain the list of blocks that are cut by each

ray.
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Figure 2.5: A single ray (green arrow) constructed by traversing blocks

with varying level of refinement. The contribution of each ray segment

is obtained by interpolation from face values at that block (red arrows),

until the last block, where the column density to the cell itself is added

(blue arrow). In the HC schemes, the traversal of the AMR grid is han-

dled with ease, due to all operations in the ray being local to blocks.

5. Assembly of the whole ray. Once all the face values and the global block map have

been exchanged, the contribution of ray segments can be summed to obtain NHI

along the whole ray. In this step, every ray is traced again, this time through the

global block map, to obtain the list of intersected blocks. The contribution of each

block to NHI is obtained by linear interpolation from the face values closest to the

intersecting ray segment. Finally, the local contribution to NHI, computed in step

1, is added to the ray. An example of a single ray construction is shown in Fig. 2.5.

The final product of the procedure is the column density between the source and the

face of every cell at position ~r , NHI(~r), which goes into Eq. (2.8) to obtain the intensity

of radiation from the source at each cell. The HC scheme provides high precision, com-

parable to that of the long characteristics method, yet the number of operations is closer

to short characteristics. It also exploits the full resolution provided by the AMR grid,

and is well balanced for parallel execution, with only a few global communications per

each step. For more details about the scheme, we refer the reader to the original paper

(Rijkhorst et al., 2006).
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2.3.3 Ionization of hydrogen gas

Currently, we use HC to model the transport of ionizing radiation through a medium

consisting of hydrogen only. Ionizations may influence the fluid flow by heating the gas,

as well as by changing the material composition, thus affecting the equation of state.

In hydrogen-only gas, the ionization rate depends on the radiation field as (Osterbrock,

1989):

Γ =
∫ ∞
νth

4πJν
hν

σνdν, (2.12)

where Jν is the mean radiation intensity at frequency ν, σν is the hydrogen photo-

ionization cross section at frequency ν and νth is the Lyman limit frequency giving the

minimum photon energy necessary to ionize hydrogen, hνth = 13.59 eV. For example,

the mean intensity Jν from an isotropically radiating point source is:

4πJν =
Lν

4πr2
e−τν(r), (2.13)

where Lν is the luminosity of the source and the (4πr2)−1 term represents the geometri-

cal dilution of a spherical radiation field. The optical depth τν to every cell is calculated

using the ray tracing procedure described in Section 2.3.2.

The photo-ionization cross-section for hydrogen is given by (Osterbrock, 1989):

σν = σνth

(ν0

ν

)4 e4−(4/ tan(ε)/ε)

1− e−2π/ε
, (2.14)

for ν ≥ νth. Here, σνth
= 6.3 × 10−18cm2 is the cross-section at frequency νth and ε =√

ν/νth − 1. Throughout this thesis, we use an appropriate approximation to Eq. (2.14):

σν = σνth

(
ν

νth

)−3

. (2.15)

Note that we do not follow the radiation at different frequency bins to obtain τν . For a

known source spectrum, Eq. (2.15) gives a direct relation between τνth
and the optical

depths for any other frequency. This allows us to tabulate the ionization rate from Eq.

(2.12) as a function of τνth
which is the only optical depth we compute through ray trac-

ing. This approach is both faster and more memory efficient than explicitly following

different frequency bins, while at the same time giving the exact solution.

If the gas has sufficiently high temperature or velocity, collisions between energetic

particles can also cause ionizations. The collisional photo-ionization rate we employ is
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(Theuns et al., 1998):

Γcoll = 1.17× 10−10T 0.5e−157809.1/T

(
1 +

(
T

105K

)0.5
)−1

. (2.16)

Free electrons can recombine with the hydrogen ions, forming neutral atoms. If the

free electron is captured directly to the ground state, a new ionizing photon is produced.

This in turn means that the material away from the source can have non-zero ioniz-

ing emissivity. In order to simplify the calculation, we assume the on-the-spot approx-

imation (Spitzer, 1978; Mihalas & Mihalas, 1984; Osterbrock, 1989), i.e. all the ionizing

photons produced by recombinations to the ground state are assumed to be absorbed

locally. This approximation is implemented with a modified recombination rate, called

case-B recombination rate:

αB(T ) = αB(104K)
(

T

104K

)−0.7

. (2.17)

Here, the case-B recombination rate at T = 104 K is αB(104K) = 2.57× 10−13cm3/s.

Putting together the processes from Eqs. (2.12) - (2.17) leads to the rate equation for

neutral hydrogen number density:

dnHI

dt
= αB(T )nHIIne − ΓnHI − ΓcollnHIne. (2.18)

Here, nHI and nHII are the number densities of neutral and ionized hydrogen respec-

tively, and ne is the number density of free electrons.

The rate of change of thermal energy per unit volume is given by:

ρ
du
dt

= n2
H (H(nH, nHI)− C(T, nH , nHI, nHII, ne)) , (2.19)

where ρ is the mass density of hydrogen, nH = ρ/mu is the number density of hydrogen

and mu is the atomic mass constant (very close to proton mass, mu ≈ mp) and H and

C are the heating and cooling rates, respectively. The heating rate includes only the

contribution from photo-ionization heating,H = nHIε/n
2
H, where the rate is given by:

ε =
∫ ∞
νth

4πJν
hν

h(ν − νth)σνdν. (2.20)

Effectively, every ionization inputs h(ν − νth) energy towards heating the medium. For

the cooling rate, C, we use a sum of collisional ionization, collisional excitation, recombi-

nations and Bremsstrahlung cooling rates (see Table B2 from Theuns et al., 1998). We as-

sume the ideal gas equation of state: the total internal energy in the gas is U = 3/2NkT ,
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where k = 1.38 × 10−16 ergK−1 is the Boltzmann gas constant and N is the number of

particles. Noticing that N = m
µmu

, where m is the mass of all particles, and µ is the mean

molecular weight, we get the connection between internal energy per unit volume and

temperature:

u =
3
2
k

µ
nHT. (2.21)

The pressure of the gas is:

p =
k

µ
nHT. (2.22)

The mean molecular weight depends on the ionization state of the gas as µ = (1 + x)−1,

where x = nHII/nH is the ionized hydrogen fraction. When the material is completely

neutral, µ = 1, meaning there is only one type of particle in the medium, while when it

is completely ionized, µ = 1/2.

In every time step, the system of equations (2.18) and (2.19), called chemistry equations,

are solved in every cell to obtain the full evolution of the ionization and temperature

fields. The chemistry equations are stiff2 and special care must be taken to integrate

them. We discuss this issue in more detail in Section 2.5.

We conclude the HC scheme discussion with a list of major improvements we intro-

duced to the scheme:

1. Changed the chemistry solver to make the code photon conserving (Abel et al.,

1999; Mellema et al., 2006). This change allows for much longer time steps to be

used in the RT calculations, making the scheme orders of magnitude faster. See

Section 2.5.

2. Adapted the fast voxel traversal ray-tracing scheme used by HC (Amanatides &

Woo, 1987; Rijkhorst, 2005) to allow a source to be placed anywhere. In the original

implementation, the source had to be placed in a cell corner. Furthermore, the orig-

inal implementation suffered from round-off issues that produced incorrect results

even when the source is placed correctly. Our implementation allows sources to

be placed outside of the box, a feature used in one of the radiative hydrodynamics

tests (Section 2.6.3).

2Stiff differential equations are broadly defined as equations for which some types of numerical solutions

are unstable unless the integration step is taken to be very short. This is due to the very different scales of

equation terms.
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3. Fixed bugs that were making the accurate calculation of temperature impossible.

Due to these issues, HC scheme did not perform Test 2 in the first RT code com-

parison paper (Iliev et al., 2006b). The correct temperature calculation is crucial for

radiative hydrodynamics (Section 2.6).

2.4 Ionization front basics

For the rest of this chapter we will focus on a commonly encountered problem in as-

trophysics: propagation of ionization fronts. Ionization fronts (of I-fronts for short) oc-

cur when ionizing radiation emitted by an energetic source (e.g. an O star) propagates

through the cold neutral medium (e.g. interstellar medium) and produces an HII re-

gion. The I-front is an interface, only a few photon mean free paths thick, that marks

the boundary between ionized and neutral gas as well as a discontinuous jump in tem-

perature and pressure (Mihalas & Mihalas, 1984). As a first approximation, we assume

an infinitely sharp I-front (i.e. its thickness is zero, the source-side gas to be completely

ionized and the gas on the other side to be completely neutral) propagating through a

static hydrogen-only medium, leading to the I-front “jump condition”:

uI =
F

nH
. (2.23)

Here, uI is the speed of the I-front, F is the flux of ionizing radiation through the front

interface and nH is the hydrogen number density. Equation (2.23) states that the I-front

speed is given by the rate at which newly ionized atoms pass through the front interface.

If the front is expanding around an isotropically-radiating point source that produces

Ṅγ ionizing photons per unit time, the flux F at the distance r from the source is:

F (r) =
1

4πr2

[
Ṅγ −

4π
3
r3αB(T )n2

H

]
. (2.24)

Here, the flux is obtained by decreasing the number of photons that arrive from the

source to distance r by the number of recombinations in the sphere of that radius, where

we used the case-B recombination rate, introduced in Eq. (2.17). The position of the front

as a function of time evolves as (Spitzer, 1978):

rI = rS

(
1− e−t/trec

)1/3
, (2.25)
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Figure 2.6: The ionized (x) and neutral (1− x) fractions as a function of

distance to the source in Test 1 of the RT Code Comparison (Iliev et al.,

2006b) obtained with our final HC scheme (including all updates dis-

cussed in this chapter). The three panels give results at three different

times: 10 Myr, 100 Myr and 500 Myr, from left to right respectively. The

vertical red dashed line marks the position of the front from the ana-

lytic solution of Eq. (2.25). The HC I-front position (defined as x=0.5,

the intersection of x and 1 − x lines) is slightly in front of the analytic

solution. This is expected as the HC front is not infinitely sharp. For

the same reason, the HC I-front extends slightly beyond the Strömgren

sphere, Rstrom.

where

trec =
1

αB(T )nH
, (2.26)

is the recombination time and

rS =

[
3Ṅγ

4παB(T )n2
H

]1/3

, (2.27)

is the “Strömgren” radius (Strömgren, 1939), which is reached when the number of ion-

izations is balanced by the number of recombinations.

In reality, an I-front always has a finite thickness. Fig. 2.6 shows the results of RT

Code Comparison Test 1 (Iliev et al., 2006b) we obtained with our final version of HC,

which includes all the updates that we discuss in this chapter. Test 1 involves an I-front

expanding around a point source of monochromatic ionizing photons with frequency νth
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Figure 2.7: Top: Same as Fig.2.6 for the Test 2 results with our final HC

scheme. Bottom: The temperature at the same distance from the source

and at same times: 10, 100 and 500 Myr. The HC results are plotted

with black solid lines. The C2-ray results are plotted for reference (red

dashed lines). In comparison to the results of Test 1 (Fig. 2.6), the I-front

is significantly wider, due to the use of a harder source spectrum.

through a static (gas velocities ~v = 0) uniform (nH(~r) = const) density and constant tem-

perature (T (~r, t) = const) medium. The gas is initially completely neutral, i.e the ionized

fraction x = 0 in the whole volume. While the I-front clearly has a finite thickness and

the ionized fraction x > 0 always, Eq. (2.25) still provides a good estimate of the front’s

position when compared to the simulation data (where we defined the front position to

be x = 0.5). The right panel of Fig. 2.6 depicts the distribution of x with distance from

the source R inside the HII region, once the Strömgren radius, Eq. (2.27), is reached. The

results of or HC code are in excellent agreement with other codes performing the same

test in Iliev et al. (2006b), as well as with the analytic solution presented in Pawlik &

Schaye (2008).

The constant temperature approximation is not good when the massive O and B stars
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produce the ionizing radiation. These sources are approximately black body spectra,

with non-negligible energy output at frequencies ν > νth. Photo-ionization increases

the thermal energy of the gas, as per Eq. (2.20). Thus, the presence of the I-front marks

the boundary between regions with very different temperatures, as shown in Fig. 2.7.

There, we show our HC scheme results of the Test 2 of the RT Code Comparison (see

Iliev et al., 2006b, for exact numerical parameters). Test 2 has the same setup as Test 1,

shown in Fig. 2.6, but now the source has a black body spectrum (with Tsource = 105 K)

and the gas temperature changes due to photo-ionization heating and gas cooling, i.e.

we solve Eq. (2.19) along with (2.18). Figure 2.7 shows the effect of multi-frequency

transport on the shape of the HII region (bottom panels): the higher energy photons have

longer mean free paths (smaller cross-sections) which allows them to penetrate further

into the neutral medium, increasing the front’s thickness. The higher energy photons

are very effective at heating the gas, as demonstrated by the fact that the temperature

field expands further than the I-front position. The recombination rate also depends on

the temperature, but only weakly, as in Eq. (2.17). Therefore, this dependence does not

significantly affect the shape of the front.

Finally, the static medium approximation does not universally hold. The change in

temperature following photo-ionization inevitably leads to the departures from pressure

equilibrium. At the I-front interface, the conservation equations defined by the Euler

equations (2.1)-(2.3) must apply. As the I-front marks a discontinuity, we can describe it

with the same “jump conditions” used for shock fronts (Mihalas & Mihalas, 1984; Castor,

2004). Assuming that the flow proceeds in one dimension, the first two Euler equations

lead to:

ρ1u1 = ρ2u2 = muF, (2.28)

p1 + ρ1u
2
1 = p2 + ρ2u

2
2. (2.29)

Here, index 1 marks the fluid conditions in front of the shock, while 2 marks the same

behind the shock. The energy equation jump conditions are not given since they are not

used in the following text. The muF term in Eq. (2.28) is an addition to the usual shock

front jump conditions (e.g. Landau & Lifshitz, 1959), making clear that the front speed is

not defined by the gas flow but by the radiation flux.

Historically, I-fronts have been classified according to their speed with respect to

the gas and the change in gas density at the front interface (Kahn, 1954; Axford, 1961;
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Spitzer, 1978). To derive the critical speeds, we must remember that the ionization fronts

are not isothermal: due to the input of radiation energy, the sound speeds at each side

of the front can be markedly different. The speed of sound in the ideal gas is given by

C =
√
γp/ρ. Using this definition (with γ = 1, Spitzer, 1978) and Eq. (2.28), we can

obtain the general solution of Eq. (2.29):

ρ2

ρ1
=

(C2
1 + u2

1)±
√

(C2
1 + u2

1)2 − 4u2
1C

2
2

2C2
2

. (2.30)

The ratio of densities must be a real number, restricting the possible values u1 can take.

It may either exceed uR, given by:

uR = C2 +
√
C2

2 − C2
1 ≈ 2C2, (2.31)

or it must be less than uD, given by:

uD = C2 −
√
C2

2 − C2
1 ≈

C2
1

2C2
. (2.32)

If uI ≥ uR, the I-front is called “R-type”, where R refers to the rarefied gas, as uI always

exceeds uR for sufficiently low ρ1. Using the negative sign in Eq. (2.30) leads to a “weak

R-type” front, where the relative change of density is small. This is the most commonly

found R-type in astrophysical problems. The opposite, “strong R-type”, obtained using

the positive sign in Eq. (2.30), requires some special mechanism to maintain large front

velocity in the face of large changes in density at the front. When uI ≤ uD, the I-front is

D-type, with D referring to the dense gas. With respect to the ionized gas, this type of

I-front can be either subsonic, “weak D-type” obtained from the positive sign in (2.30)

or supersonic, “strong D-type” from the negative sign in (2.30). Front velocities between

two critical values uD < uI < uR are possible but, in that case, the I-front must be

preceded by a shock that compresses the gas entering the front sufficiently to slow it

down and guarantee it transitions to D-type. This evolution of I-fronts in full radiative

hydrodynamics calculations will be seen in the tests we present in Section 2.6.

2.5 Photon conservation

Assume a radiation field around a point source of luminosity Lν in a medium with the

frequency-dependent optical depth τν . Combining equations (2.12) and (2.13), the photo-
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ionization rate is:

Γlocal(r) =
1

4πr2

∫ ∞
νth

Lν
hν
e−τν(r)dν. (2.33)

Equation (2.33), used in the original implementation of HC, is only accurate in a sin-

gle point in space and a single moment in time. To numerically solve the relevant RT

and chemistry equations, space and time must be discretised into finite-sized cells and

time steps. With discrete cells, the use of Eq. (2.33) will provide an accurate estimate

of Γ only if all the cells are optically thin and the time step is very short, e.g. a frac-

tion of the light crossing time. To satisfy these conditions, the mesh resolution must be

very high and the time step orders of magnitude shorter than the hydrodynamics CFL

criterion (e.g. Bodenheimer et al., 2007). This makes the RT calculation very costly, if

not entirely impossible. If these conditions are not satisfied, the RT scheme may violate

the conservation of energy - this issue is called “photon conservation”. The loss of pho-

ton conservation results in incorrect propagation speed of ionization fronts, as we will

demonstrate shortly.

In this Section, we examine the roots of the photon non-conservation, found in nu-

merical implementation of Eq. (2.33). We separate the discussion on the issues stemming

from spatial (Section 2.5.1) and temporal (Section 2.5.2) discretization. This updated code

is used for radiative hydrodynamics tests presented in Section 2.6.

2.5.1 Effect of spatial discretization

Assume that the density field is discretised in finite-sized cells of side length ∆l. The

photo-ionization rate computed with Eq. (2.33) is a good approximation for the whole

cell only if the cell is optically thin, ∆τν = σνnHI∆l� 1. In this case, the photo-ionization

rate is approximately constant through the cell. In contrast, when ∆τν is not small, dif-

ferent regions in a given cell should experience different photo-ionization rates and Eq.

(2.33) is no longer representative of the actual number of ionizations occurring in that

cell.

Abel et al. (1999) proposed setting Γ directly to the analytic solution to RTE along

a ray passing through that cell, given by Eq. (2.8). If Ṅν,0 photons per second enter

the cell with optical depth ∆τν , Ṅν,0e
−∆τν photons are going to pass through it. All the

Ṅν,0(1 − e−∆τν ) that stay in the cell result in ionizations, giving the ionization rate. We

adopted this idea in the form presented in Mellema et al. (2006).
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Consider a spherical shell in the region with constant hydrogen density nH with a

point source of luminosity Lν at its centre. Let r be the radius of the inner shell edge and

r+∆r the radius of the outer one, thus making ∆r the thickness of the shell. The volume

of the shell is:

Vshell =
4π
3
(
(r + ∆r)3 − r3

)
. (2.34)

The number of hydrogen atoms in the shell is Nshell = nHVshell. The total number of

ionizations per unit time in the shell is Ṅ(r) − Ṅ(r + ∆r), where Ṅ(r) and Ṅ(r + ∆r)

are the number of photons that reach and leave the shell per unit time, respectively. The

ionization rate is then given simply as:

Γ =
Ṅ(r)− Ṅ(r + ∆r)

nHIVshell
. (2.35)

Let τν be the optical depth between the source and the inner shell edge and ∆τν the

optical depth within the shell. Then, we can rewrite Eq. (2.35) as:

Γ =
∫ ∞
νth

Lνe
−τν

hν

1− e−∆τν

nHIVshell
dν. (2.36)

Putting ∆r = ∆l, Eq. (2.36) can be used to compute the ionization rate in a Cartesian

cell.

In the limit ∆r → 0, for which ∆τν → 0, one retrieves Eq. (2.33), backing our earlier

claim that Eq. (2.33) is appropriate for use in optically thin cells. The left panel of Fig. 2.8

shows the dependence of the ionization rate on the optical depth of the cell, ∆τν . Using

Eq. (2.33) in optically thick cells overestimates the ionization rate, which directly results

in I-fronts moving too fast (right panel of Fig. 2.8). This means that, for a given problem,

the results may depend on mesh resolution. Increasing the resolution improves agree-

ment with the expected result (black crosses), but provided a sufficiently short time step

is used. In general, a treatment for the temporal discretization, which will be discussed

in the following section, is also needed.

2.5.2 Effect of temporal discretization

The ionization rate of Eq. (2.36) is only correct if τν ≈ const and ∆τν ≈ const during the

calculation time step, ∆t. To guarantee this, RT schemes are usually forced to employ

very short time steps e.g. a fraction of the light crossing time ∆l/c (Abel et al., 1999)

or a few ionization times, Γ−1 (Bolton et al., 2004). Increasing the scheme computational
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Figure 2.8: Left: the dependence of the photo-ionization rate, Γ com-

puted with Eq.(2.36), on the optical depths τ and ∆τ . All values of Γ

were computed assuming r � ∆r and a monochromatic source. The X

symbols give Γlocal computed with Eq. (2.33). For easier comparison, all

curves have been normalised to Γlocal(τ = 10−3). The solid curves, from

top to bottom, show the results of Eq. (2.36) with increasing cell optical

depth, ∆τ . When ∆τ is low (i.e. ∆τ � 1), the results of Eqs (2.36) repro-

duce the results of Eq. (2.33), but when ∆τ increases into the optically

thick regime (∆τ > 1), Γ decreases. Effectively, Γ will be overestimated

in optically thick cells if one employs Eq. (2.33), leading to too fast I-

fronts as shown in the right panel. Right: The neutral fraction at t = 10

Myr in Test 1 on varying resolution computational grids using the orig-

inal, non-photon conserving HC implementation. The calculation time

step was chosen to minimise the temporal issues (discussed in Section

2.5.2). As the cell size is increased (by reducing the spatial resolution),

the I-front speed increases: this is consistent with the prediction based

on the left panel plot. The optical depths ∆τ ≈ 0.5, 1, 2, 4 for grids with

256, 128, 64 and 32 cells along a box size respectively.

efficiency by taking longer time steps is possible if an estimate for optical depth evolution

during ∆t is included. This idea is the basis of the C2-ray RT code (Mellema et al., 2006).
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Figure 2.9: The effect of temporal photon conservation on the Test 1

results. Resolution is 643 cells and time step is varied by order of mag-

nitude. Top: Γ, computed with Eq. (2.36), is constant during a time

step, and as a consequence the speed of the I-front is overestimated for

longer time steps. Bottom left: The same as in the top panel, but with

time-dependant Γ in the cell only (only ∆τ = f(t), see text). With this

change the time steps may be much longer, yet very long time steps

now result in the I-front moving too slowly, as evidenced by the lag-

ging fronts at ∆t = 0.5 Myr and 5 Myr. This effect is less important at

later times, e.g. bottom right panel, when the front slows down due to

the distance from the source.
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Time-dependent τ in the RT cell

We will discuss the evolution of the two optical depths in Eq. (2.36) separately. The

evolution of the optical depth in the cell, ∆τν , is easier to include in the calculation as it

only depends on variables local to the cell. Given that ∆τν = σν(1 − x)nH∆l, ∆τν can

vary during a time step only when the cell ionized fraction x changes, since both the

number density and cell size are constant during ∆t. For a constant incoming flux, the

correct evolution of x in a cell is obtained by integrating Eq. (2.18) with the ionization rate

of Eq. (2.36) with ∆τν = ∆τν (x(t)). The original HC implementation uses the DORIC

solver (e.g. Frank & Mellema, 1994) to integrate the chemistry system of equations, Eqs.

(2.18) and (2.20). This solver is built around the work of Schmidt-Voigt & Koeppen (1987)

who showed that Eq. (2.18) can be solved analytically if Γ, ne and T are assumed to be

constant in time. The solution is:

x(t) = xeq + (x0 − xeq)e−t/ti , (2.37)

where

ti = (Γ + neΓcoll + neαB(T ))−1 (2.38)

and

xeq =
Γ + neΓcoll

Γ + neΓcoll + neαB(T )
. (2.39)

The general solution to the chemistry equations system can then be obtained by iterating

on ne. The assumption of constant Γ means we cannot use the DORIC package, because

we want to have Γ = Γ(t) explicitly. We therefore replaced the original set of solver

routines with new ones based around a backward differentiation ODE solver provided

in the LSODE (Hindmarsh, 1980), a package commonly used to solve stiff systems. This

implementation allows for explicitly time-dependent ionization and heating rates. We

present the effect of time-evolving ∆τν in Fig. 2.9. All panels present the Test 1 results

(see Section 2.4) of the HC method using Eq. (2.36) and varying the time step ∆t. The

top panel shows the results at t = 10 Myr with ionization rate being constant during a

time step, while the bottom two show the results with Γ varying only due to the change

in ∆τν (τν = const during each time step). A constant ionization rate (top panel) clearly

leads to wrong results for ∆t & 5 × 10−5 Myr. Once the time-dependent Γ is included,

the scheme produces correct results for ∆t . 0.05 Myr (bottom panels). For even longer
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time steps, the I-front begins to lag behind: at such high ∆t, more than one cell is crossed

at a time, meaning τν cannot be treated as a constant. This is further evidenced by the

fact that this delay is more prominent at early times (bottom left panel), than at later

times (bottom right panel) as the I-front speed decreases with increasing distance from

the source (see Eq. (2.25)).

Time-dependent τ between the RT cell and the source

If an I-front is allowed to cross multiple cells in ∆t, a cell that did not see any radiation

flux, due to high τν at the beginning of the step, may see a much more intense flux at

some later time during ∆t. If τν is kept constant in this case, the flux will be constant and

the I-fronts will propagate slower than expected as evidenced in Fig. 2.9 (bottom two

panels). Therefore, for an RT scheme to be truly independent from the time step ∆t, the

change in τν during a time step must be included.

The C2-ray code (Mellema et al., 2006) is the only characteristics-based RT scheme

that explicitly handles this issue. Their method uses the short characteristics paradigm

because of the specific order in which the cells are crossed (see Section 2.3.1). In their

scheme, they do not have the explicit time-dependence of optical depths. Instead, they

use the time-averaged optical depths in each cell, 〈∆τν〉 = 1
∆t

∫
∆t ∆τν(t)dt, when inte-

grating the chemistry equations. To construct τν in short characteristics schemes, all the

cells between the cell and the source must be crossed in order. This means that 〈∆τν〉 for

all cells along the ray are known at the time when the optical depth in a given cell is to

be evaluated. In that case, the time-averaged optical depth between the source and the

cell is known: 〈τν〉 =
∑

crossed〈∆τν〉, a sum of time-averaged optical depths of all cells

crossed by the ray.

The HC ray-tracing scheme is much more similar to long characteristics, i.e. there

is no specific order in which the cells are crossed. In addition, we found that using the

time-averaged optical depths may result in incorrect temperature evolution for long time

steps, a problem that may appear in C2-ray as well (Garrelt Mellema, private communi-

cation). Therefore, we propose using the ionization front tracking method (hereafter IFT;

e.g. Alvarez et al., 2005) for computing the change of τν during a time step. In principle,

the IFT method solves the jump condition presented in Eq. (2.23) for a (non-uniform)

static density field. Along every ray, the incoming flux at the front interface is then given
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by:

F (r) =
1

4πr2

Ṅγ −
i−1∑
j=0

αB(T )n2
H,j∆Vj ,

 , (2.40)

where the recombinations rate in a sphere with radius r, Eq. (2.24), is replaced by the

sum of rates in spherical shells of density corresponding tho j-th cell cut by the ray and

with volume ∆Vj = 4π(r3
j+1 − r3

j )/3, where rj+1 − rj = ∆rj is the ray length in cell j.

To test the validity of using IFT, we wrote a 1D long characteristics code, with the

exact same chemistry module as in HC. The IFT procedure is done as follows. At the

beginning of every time step, we set the IFT front position so that both IFT and HC find

the same column of ionized gas along the direction of the ray well beyond the position

of both fronts. Once the position of the IFT front is set, we solve the jump condition Eq.

(2.23) along the ray with the flux computed with Eq. (2.40). We tabulate positions of

the IFT front in equal substeps during ∆t. This table is used in the chemistry solver to

provide the change in τν since the beginning of the time step. Because the IFT front is

sharp, its position fully defines the optical depth along the ray: at t = 0, τ = σνth
nHIl,

where l is the distance between the front and the end of the ray, while at some later time

t = δt, τ = σνth
nH(l − δl), where δl is the distance the front travelled in δt. Since the

initial optical depth defines l, the change in τ obtained through raytracing is given by

the change of the IFT front position, δl, at every time during the time step: 0 ≤ δt ≤ ∆t.

Figure 2.10 shows the results of Test 1, as in Fig. 2.9, but now with the evolution of τν

computed using IFT. While the IFT is not a perfect estimate, it does allow for solutions

close to the correct one to be computed at even longer time steps. As we suggested

before, an estimate of evolving τν is crucial the I-front crosses a multiple of cells in one

time step, for example when the front is close to the source. The importance of temporal

photon conservation is clear also when the temperature evolution is being computed (i.e.

if the energy Eq. (2.20) is solved, as shown in Figure 2.11). The reason for the extreme

spikes in the temperature is the overestimated heating rate, itself a consequence of the

constant optical depths. Only a few cells closest to the source are affected in this case

and the temperature approaches the correct value for cells further away from the source.

This purely numerical effect may be important in radiative hydrodynamics applications,

where these temperature spikes will result in unphysical pressure forces. The problem is

largely avoided when the time evolution of ∆τν is introduced - the time evolution of τν
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Figure 2.10: Test 1 with full photon conservation, using time-dependant

Γ both in the cell and in front of it (see text). The results are well con-

verged for all used time steps (better than temporal conservation in the

cell-only case, Fig. 2.9).

is not crucial for two reasons: the effect of constant τν is that the rates are actually lower

than they should be (e−τν term in Eq. (2.36)) and the temperature spikes are located in

the cells nearest to the source.

The new chemistry solver we developed for HC uses Eq. (2.36) to achieve spatial

photon conservation and implements the temporal photon conservation in each cell with

time dependent ∆τν . The change of optical depth in front of the cell using the IFT solu-

tion is not yet implemented at this point. We have found it only to be important for very

long time steps. In practise, especially for the tests we are to present in the next section,

these time steps are longer than the hydrodynamics time step. We demonstrate this at

the end of Section 2.6.1, where we show that our results are converged irrespective of
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Figure 2.11: The importance of temporal photon conservation on the

state of the temperature in Test 2. The black crosses give the result of

the run with full temporal photon conservation (both in the cell and be-

tween the cell and the source), which the coloured lines do not include.

The ∆t = 5 × 10−4Myr case (dashed black lines) agrees with the full

photon conservation case. The temperature is overestimated if the time

step is too long. This effect may be important in radiative hydrodynam-

ics applications, since the temperature around the source produces the

pressure difference that drives the gas flow.

the chosen RT time step. To achieve this result without implementing the IFT solution,

we use a simple trick: we choose the initial time step to produce the correct evolution

in the early R-type stages and let it increase as dictated by the FLASH internal hydrody-

namics criteria. At the later D-type stage, the I-front speed matches the gas flow speed,

which guarantees that it does not cross more than one cell, i.e. the I-front travels at the
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same speed as the gas. We note however that the short time step with which we start the

simulations is 100 times longer than what would be necessary without any treatment of

temporal photon conservation.

We have not performed detailed timing tests, because the improvements that the

photon conserving chemistry solver we introduced are anything but subtle. The chem-

istry calculation itself is more computationally expensive, but the ability to take 5 orders

of magnitude longer time steps more than makes up for it: for example, the original HC

implementation had to compute Test 1 for several CPU days (while still not getting the

exact solution due to not using Eq. (2.36)), where as we can do this computation in less

than 1 CPU hour. We present the use of our improved HC scheme in the radiative hydro-

dynamics tests in the next section. As a final note, we discuss when the implementation

of the time-dependent Γ is important.

Time-dependent ionization rate as a function of optical depth

In all the previously discussed tests, the RT cells are mildly optically thick (∆τν ≈ 1−10).

Now we ask the question of how important the temporal photon conservation is in other

optical thickness regimes. The main consequence of the time-evolving optical depth in a

single cell is that it takes longer for that cell to become fully ionized, due to Γ decreasing

with the increasing ionized fraction. Assume a single RT cell that is being ionized by

a constant incoming mean intensity, i.e. τν and Lν are constant in Eq. (2.36). In that

case, the photo-ionization rate in the cell will only depend on its own optical depth, ∆τν ,

which in turn depends only on the ionized fraction of the cell. Assuming a simple case

of no recombinations, the rate equation (2.18) transforms to:

dx
dt

= Γ(1− x). (2.41)

Hence, if Γ is constant in time, x = 1− exp(−Γt). The time to fully ionize a cell is clearly

infinite. However, for physical insight it is sufficient to see how long it takes for a cell to

become highly ionized, e.g. up to x = 0.99, the time we label as Tion.

We consider two versions of Eq. (2.41) that results in two different ionization times:

one which assumes the photon-conserving time-evolving Γ = Γ(x = f(t)), for which we

label the ionization time as T tion, and one which assumes a Γ constant in time, set to the

value at x = 0, Γ = Γ(x = 0), labelled as T const
ion . We solve Eq. (2.41) numerically in both
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Figure 2.12: Importance of including time-dependent Γ in the evolution

of x in a cell. Left: The evolution of the ionized fraction during cell ion-

ization (ignoring recombinations) for cells with different initial optical

depths of neutral cells, ∆τ . Time is quoted in units of the “ionization

time” computed assuming Γ does not change with evolving x (i.e. it has

the same value as when x = 0), Tion(Γ = Γ(x = 0)) (see text for elabora-

tion). The black crosses give the evolution of x assuming said constant

Γ. The solid lines give the evolution when Γ varies with ∆τ , which in

turn depends on x. Line colors correspond to different initial optical

depths: blue, green and red for ∆τ = 1, 10 and 100, respectively. Right:

Dependence of Γ on x. While in lower optical depth cells (e.g. dotted

black and solid blue lines) Γ varies for all values of x, in optically thick

cells (solid red line), it remains mostly constant. This is reflected in the

time it takes to ionize the cell, as shown in the left panel.

cases, with the latter also tested against the analytic solution. We look at the evolution of

x with time in these two cases for cells of various optical depths, ∆τν in the left panel of

Fig. 2.12. A larger optical depth of a cell necessarily means more neutral absorbers in the

cell, which results in a longer ionization time. To remove this dependence, we quote the

time in units of T const
ion for each ∆τν . This allows us to discuss the change of Tion caused

by the change of Γ in relative terms, i.e. how much longer does it take to ionize a cell

when the photo-ionization rate is allowed to change due to the increase of the ionized
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fraction. The black crosses show the evolution of x with constant Γ - it is independent

from ∆τν because T const
ion for each single ∆τν is used as a unit of time in that run. The solid

lines show the evolution of x when Γ changes with x. In that case, we see that x = f(t)

now depends on the cell initial optical depth ∆τν . The delay in achieving “complete”

ionization (x = 0.99) increases with decreasing optical depth, e.g. when ∆τ = 1 (blue

line), T tion ≈ 15× T const
ion (remember that Tion is the time it takes to reach x = 0.99), while

for ∆τ = 100 (red line), T tion ≈ 1.1× T const
ion .

The reason for this behaviour can be seen in the right panel of Fig. 2.12, where we

show Γ as a function of x in cell of different initial ∆τν . For optically thin cells (∆τν . 1,

blue solid and black dotted lines), Γ evolves almost linearly with x, meaning that it

begins to drop as soon as any fraction of the cell is ionized. Conversely, for optically

thick cells (red and green solid lines), Γ stays constant for a significant range of x. The

actual drop in Γ happens only when ∆τ begins to transition from optically thick to thin

regimes. Plainly put, the more optically thick the cell is initially, the longer it will stay

optically thick (remember that ∆τ ∝ x) thus making Γ computed at x = 0 to be the

correct value longer. This fact directly translates to the differences in the two ionization

times shown in the left panel of Fig. 2.12.

These results point to a conclusion that the importance of temporal photon conser-

vation, measured in the delay of ionization due to the change in opacity, decreases with

increasing optical depth. It is interesting to point out that it is very important in optically

thin cells - while optically thin cells may solve the problem of spatial photon conserva-

tion (as discussed in Section 2.5.1), this is not a sufficient fix for the temporal issues. The

opposite is true for highly optically thick cells, where the spatial component is crucial

(as shown in the left panel of Fig. 2.8), yet time-dependence of ∆τ is not. All cells make

the transition to the optically thin regime as x→ 1 where Γ becomes highly variable, but

if this transition happens late (as for ∆τ = 100 case in Fig. 2.12), the speed of I-fronts

crossing the cell is not significantly affected. For reionization simulations in general, RT

cells are extremely optically thick (e.g. the minimum optical depth of a cell in the 50

Mpc/h box we use in Chapter 5 is ∼ 100, while the maximum ∼ 1000), due to the large

scales considered. Keeping in mind the conclusions we reached here leads to simpler

radiative transfer schemes, where longer time steps can safely be taken without imple-

menting temporal photon conservation. One such scheme is the SimpleX scheme we
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use to simulate reionization in the following chapters (see Chapter 3 for more on that

scheme).

2.6 Radiative hydrodynamics tests

In some problems, such as the epoch of reionization, the I-fronts are R-type (e.g. Shapiro

& Giroux, 1987; Gnedin, 2000b; Ciardi et al., 2003; Iliev et al., 2006a; McQuinn et al.,

2007; Trac et al., 2008) and the slow response of gas to the I-front motion allows for the

assumption of a static medium. However, a number of astrophysical problems involve

slow, D-type I-fronts where the gas motion influences the behaviour of the I-front. Mod-

eling these problems requires numerical methods that fully couple radiation transport

with hydrodynamics, e.g. the photo-evaporation of minihalos (e.g Shapiro et al., 2004)

The computational cost of radiation hydrodynamics calculations necessitates the use

of many simplifying assumptions. Thus, it is very important to validate schemes for their

reliability and accuracy. The approach we take in this section is to compare our results

with various other schemes on a set of well-defined simple astrophysical problems. For

that purpose, we took part in the second RT Code Comparison project, results of which

have been published in Iliev et al. (2009).

The first paper of this comparison (Iliev et al., 2006b, hereafter Paper 1) focused on

the fixed density field tests, two of which we already presented in Section 2.4. It was

found that all codes produce reliable results for I-front positions, but not all methods are

appropriate for problems where a precise determination of the evolution of gas temper-

ature is required, such as the radiative hydrodynamics problems we present here. The

chosen test problems are relatively simple, but still trigger the commonly encountered

problems in an astrophysical setting. The comparison was made between 10 different

codes, see Iliev et al. (2009) (hereafter Paper 2) for more details about each. All the test

results had to be supplied on a regular 1283 Cartesian grid. All the codes that use AMR

grids, one of those being our method, have been asked to restrict the refinement and use

grids as close as possible to the required data format.

In the rest of this section, we present the three test problems defined for this code

comparison. We focus on the results we obtained with the FLASH-HC method, dis-

cussing them in more detail than was done in Paper 2, presenting a direct comparison
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with some other codes only at a few places. For a more detailed discussion of the differ-

ences between the codes, we refer the reader to Paper 2. Note that the test numbering

scheme assumes that the tests presented here are a continuation of the set of tests pre-

sented in Paper 1.

2.6.1 Test 5: classical HII region expansion

This test problem is the expansion of an HII region in an initially uniform medium

around a point source of UV radiation. Irrespective of the simplicity of the setup, it

is very relevant for the study of I-fronts, as the front will transition from a weak R-type

in the early stages of evolution to a D-type. While analytic solutions can be constructed

for early and late stages of the problem, the I-front type transition itself does not have

one.

The numerical parameters for the problems are given as follows: the computational

box size Lbox = 15 kpc, initial gas number density nH = 10−3 cm−3 (we assume the

gas is pure hydrogen), the ionizing photon emission rate Ṅγ =
∫∞
νth
Lν/(hν)dν = 5 ×

1048 photons s−1, initial gas velocity is zero and its environment temperature Te = 100 K.

The source is a 105 K black body placed in the (xs, ys, zs) = (0, 0, 0) corner of the box. The

boundaries that contain the source origin are reflective while the rest are permissive. The

total running time is tsim = 500 Myr. Note that this is the exact same setup as in Tests 1

and 2 of Paper 1, only with a larger simulation box.

Figure 2.13 shows the values of 4 relevant variables in the Test 5 results we obtained

with FLASH-HC at three different times: 10 Myr, 200 Myr and 500 Myr. These output

times showcase three distinct phases in the evolution of the front. At early times, the

front is weak R-type: the ionized region propagates without almost no response from

the gas (compare left panels of two top rows, x and nH, respectively in Fig. 2.13). The ex-

pansion of the ionized region begins to stall after a recombination time, trec = 122.4 Myr

(Eq. (2.26)) for the given value of nH . If the medium were static, the I-front would stop

propagating once the Strömgren radius is reached, rS = 5.4 kpc (Eq. (2.27) when all the

emitted ionizing photons are lost to recombinations in the HII region). In the non-static

case, the large pressure difference between ionized and neutral gas (due to ionization

heating) drives the gas out of the HII region, which decreases the recombination rate

and increases the Strömgren sphere, allowing the I-front to expand further. Still, the
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Figure 2.13: Evolution of fluid variables in Test 5 as given by FLASH-

HC. Top to bottom rows: neutral and ionized fraction, number density,

temperature and Mach number. Columns are the results at three differ-

ent output times. See text for discussion.

front slows down enough to start the transition from R-type to D-type at ≈ trec. The

transition is complete by t ≈ 4trec ≈ 500 Myr, where the I-front is D-type and preceded

by a weak shock (third panel second and last rows of Fig. 2.13, nH and Mach number).

All the codes find more or less the same evolution of all variables (see Figs. 11-14

in Paper 2, FLASH-HC results given with pink dashed line). The position of the I-front,



2. Radiative hydrodynamics with FLASH 59

defined to be at x = 0.5 (i.e. at the intersection of x and 1 − x curves in top rows of

Fig. 2.13) and its velocity varies by only a few percent between all codes. Most of the

differences are caused by a different handling of the energy equation, Eq. (2.20), and of

hard photons with long mean free paths. An interesting flow feature seen by almost all

codes are the double peaks in the density distribution at intermediate times (see middle

panel in second row of Fig. 2.13). The cause of the double peaks is heating due to high

energy photons (see Paper 2 for a detailed discussion). In short, while the I-front position

is behind the shock front at t = 200Myr, the high energy tail of the spectrum is able to

penetrate the shock. The high energy photons are unable to maintain a high ionized

fraction (it is x ≈ 0.1 at 0.5Lbox), but they still can inject a significant amount of heat,

as evidenced by a temperature jump at around 0.45Lbox visible in the second panel of

third row of Fig. 2.13. This temperature increase causes the shock front to split in two

by producing opposite photo-evaporative flows in the front frame. The high pressure

in the inner part of the HII region causes the inner peak to join its outer counterpart by

t = 500Myr. The only code that does not show this feature is ENZO-RT, which is the only

scheme taking part in the project that does not implement multi-frequency transport in

some form (cyan dashed line in middle panel of Fig. 14 in Paper 2). We also note that all

codes find spherically symmetric and dynamically stable fronts (see Fig. 9 in Paper 2).

This will not be the case in the other two tests.

In this code comparison, the performance of the contributing schemes was not tested.

Still, we wish to point out the performance increase that our improved photon-conserving

scheme brings (Section 2.5). Figure 2.14 shows the stability of our Test 5 result with re-

spect to varying the time step. Very long time steps give the same answer as shorter ones

at a fraction of the CPU time. The hydrodynamics time step (CFL) is ∆thydro ∼ 3−4 Myr

for the largest part of the calculation and our implementation of HC gives a perfectly

accurate result when using that time step (red line in Fig. 2.14). The inclusion of both

spatial and temporal photon conservation allows us to solve the tests we are presenting

here several orders of magnitude faster than with the original implementation. For ex-

ample, the results we supplied for Test 5 were obtained in only 4 CPU hours (15 minutes

on 16 processors). The results are also robust for changes in spatial resolution, both with

the use of AMR of uniform meshes.
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Figure 2.14: Test 5 results of our photon-conserving scheme with vary-

ing time step. All flow variables are robust with respect to the calcula-

tion time step at all times: here we show temperature (left) and density

(right) at 200 Myr. See Section 2.5 for the discussion about photon con-

servation.

2.6.2 Test 6: I-front propagating in a 1/r2 density profile

Test 6 is the propagation of an I-front around a point source located at the centre of

spherically symmetric density field with a constant density core surrounded by a steeply

decreasing density profile. The (number) density field is defined as:

nH(r) =

 n0 if r ≤ r0

n0

(
r
r0

)2
if r > r0,

(2.42)

where n0 and r0 are the number density and radius of the central core, respectively. The

density profile of Eq. (2.42) was chosen to mimic the conditions for I-fronts breaking out

of typical cosmological structure with an embedded radiation source, e.g. minihalos or

dwarf galaxies. Again, an analytic solution for the full hydrodynamic problem does not

exist, but this type of density profile has been extensively studied with semianalytic and

numerical methods (e.g. Franco et al., 1990).

The evolution of the I-front in the core is identical to Test 5, presented in the previous

section. The further behaviour of the front depends on whether or not it converts to D-

type before it falls onto the slope. If the initial Strömgren radius rS < r0, the I-front will
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begin the transition to a D-type before the slope is reached. In general, when travelling

down the density slope a D-type front may accelerate and become R-type once again.

The numerical simulations of Whalen & Norman (2008) showed that, for density profiles

similar to Eq. (2.42), an initially D-type front remains D-type on the slope for the lifetime

of the source, meaning the transition back to R-type is not sudden. If, on the other hand,

rS > r0, the front will remain R-type and “flash” ionize the whole density field. In such

a fully ionized and nearly isothermal medium, large pressure gradients will naturally

arise wherever there are steep density gradients. This pressure gradient will drive the

gas down the density slope r−2 at a roughly constant speed (Franco et al., 1990).

The exact numerical parameters for Test 6 were chosen to model an I-front that does

transition to a D-type: the computational box length Lbox = 0.8 kpc, n0 = 3.2 cm−3, r0 =

91.5 pc (the Strömgren radius corresponding to the density in the core is rS,0 = 67.5 pc),

initial ionized fraction x = 0, ionizing photons emission rate Ṅγ = 1050 photons s−1 and

initial environment temperature Te = 100K. Source position and boundary type are the

same as in Test 5. Total running time is tsim = 75 Myr, with outputs at times t = 1, 3, 10,

25 and 75 Myr. Note that this setup is not in hydrostatic equilibrium. This fact is ignored

for the sake of simplicity, as the neutral gas pressure forces are much weaker than the

ones driven by photo-ionization heating.

Figure 2.15 shows the fluid variables as a function of distance from the source in

FLASH-HC Test 6 results at three different times: t =3, 10 and 25 Myr. The left columns

(t = 3 Myr) show the already formed shock front as it approaches the edge of the con-

stant density core. Note the non-zero Mach numbers on the far side of the box: these

are due to the pressure forces that arise because the hydrostatic equilibrium was not im-

posed. By t = 10 Myr (middle panels), the I-front has propagated deep into the density

slope, rI ≈ 3r0. The temperature in Fig. 2.15 (third row, middle panel) shows a small

plateau of T ≈ 104 K in front of the radiation driven temperature field, which is due to

heating produced by the preceding shock front. Finally, at t = 25Myr (right-hand side

plots), the front is about to leave the simulation box. The heating caused by the shock

front is now evident, as it increases with increasing front speed. All of these flow features

are seen in the results of the other codes as well (see Figs. 25-29 in Paper 2).

Slices through the data show a somewhat worse agreement between codes than the

spherical averages. Figure 2.16 shows the slices through the density, ionized fraction
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Figure 2.15: Evolution of fluid variables in Test 6 as obtained by

FLASH-HC. Top to bottom rows are: neutral and ionized fraction, num-

ber density, temperature and Mach number. Columns left to right give

results at times t = 3, 10 and 25 Myr. See text for discussion.

and temperature of FLASH-HC at t = 25 Myr. There appears to be some weak flow

instability, yet its cause is not clear. Our results are not unique in finding deviations

from expected spherical symmetry, as is seen in Fig. 2.17. The root of the instabilities

is most likely not physical. Paper 2 discusses three known instabilities in the I-front re-

lated flows. First, Vishniac-type (Vishniac, 1983) instabilities might arise if the neutral
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Figure 2.16: Slices along z = 0 through density (top left), ionized frac-

tion (top right) and temperature (bottom) at t = 25Myr as obtained by

our FLASH-HC scheme. The results show a presence of weak depar-

tures from sphericity in the shock front (top left panel; note that the

colorbar shows the restricted data range to point out the issue), which

results in varying optical depth along the rays and allows high energy

photons to penetrate deeper into the neutral medium along some direc-

tions (as seen in top right and bottom panels). See text for discussion of

potential causes of this instability.

shocked shell preceding a D-type I-front is able to cool by radiation. Still, this is not the

likely case as Whalen & Norman (2008) have shown that atomic hydrogen cooling alone

(as used in this test setup) is not enough to instigate such instabilities. Second, I-fronts

on descending density profiles may instigate Rayleigh-Taylor instabilities (e.g. Sharp,
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Figure 2.17: Slices along z = 0 through the ionized fraction, x, at

t = 25Myr in 4 codes: clockwise from top left, C2-ray+Capreole, C2-

ray+TVD, FLASH-HC and LICORICE. FLASH-HC results are not alone

in finding some departures from spherical symmetry, though not for

the same reasons (see text for discussion). The features seen in x are

generally mirrored in the density and temperature.

1984), but the 1/r2 used for this test is not known to produce them. Third, small density

inhomogeneities may trigger a shadowing instability when they are passed by an R-type

front (Williams, 1999). These inhomogeneities should not exist in a density field defined

by Eq. (2.42), but may appear due to the discretization of the density field on the com-

putational mesh. In our initial conditions, we assign density to each cell by computing

the value of Eq. (2.42) at cell centres, resulting in a departure from spherical symme-

try between neighbouring cells. To test if this is indeed the source of the instability, we

performed a higher resolution run of Test 6 (2563 uniform grid) as well as computed the

density as a volume weighted mean in each cell, i.e. we computed the densities in each
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cell on a much finer grid and use the average value. Neither of these approaches had any

effect on the presence of the instabilities seen in Fig. 2.16. The same two approaches were

used by Capreole+C2-Ray (the top left panel of Fig. 2.17, shows the most pronounced

instabilities), but also without any significant effect.

As for numerical causes, a likely suspect is the “carbuncle” instability (Quirk, 1994).

This is a somewhat unpredictable problem found in Riemann solver-based techniques,

such as FLASH and Capreole, arising when a shock travels parallel to a coordinate axis.

The case is strengthened by the fact that the TVD solver (Trac & Pen, 2004), which is not

known to suffer from carbuncle problems, gives an undisturbed result when coupled

with C2-ray (top right panel of Fig. 2.17). LICORICE (bottom left in Fig. 2.17) shows

the irregularities consistent with the spurious fluctuations in the density field which are

unavoidable in SPH methods such as the one it employs. Finally, as the 1D profiles

presented in Fig. 2.15 and Figs. 25-29 in Paper 2 show, the presence of these instabilities

does not significantly affect the global flow properties.

2.6.3 Test 7: photoevaporation of a dense gas clump

This test involves a plane-parallel front encountering a uniform spherical clump in a con-

stant low-density background. This problem is relevant in, for example, the photoevap-

oration of dense clumps in planetary nebulae (Mellema et al., 1998) or minihalos during

reionization (Shapiro et al., 2004; Iliev et al., 2005b). Depending on the column density in

the clump, an incoming R-type front may either flash ionize it without significant speed

decrease or transition to a D-type and possibly halt completely until the clump is evap-

orated (as simulated by Bertoldi, 1989 and Iliev et al., 2005b, respectively). Following

the same logic for deriving the Strömgren radius in Eq. (2.27), when a plane-parallel

front with given flux F encounters a slab of neutral hydrogen with number density nH ,

it will penetrate it up to length ls before recombinations balance the ionizations. The

equilibrium is achieved when: FS = αBn
2
H lsS, where S is a surface area. This leads to

lS being:

ls =
F

αBn2
H

. (2.43)

If hydrodynamics are neglected, the clump is able to trap the front if 2rclump/ls > 1,

where rclump is the radius of the clump and the length lS is computed using the number

density of the clump (Shapiro et al., 2004).
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The numerical parameters for Test 7 are as follows: the constant ionizing flux incident

on the x = 0 plane is F = 106 photons s−1cm−2, the background hydrogen number den-

sity and temperature nout = 2×104 cm−3 and Tout = 8000 K, respectively while the initial

clump density and temperature are nclump = 200 × nout = 0.04 cm−3 and Tclump = 40 K.

This choice of parameters sets the clump in pressure equilibrium before the radiation

flux is applied. This column density is sufficient to trap the front and force its transi-

tion to a D-type, as we will show shortly. The simulation box length is Lbox = 6.6 kpc,

the clump has radius rclump = 0.8 kpc and is centred at (xc, yc, zc) = (5, 3.3, 3.3) kpc =

(97, 64, 64) cells. All boundary conditions are outflow. Note that these are the same pa-

rameters used in Test 3 presented in Paper 1, where this test was performed on a static

medium.

For the FLASH-HC run, we model the plane-parallel front by placing a source of

radiation far out of the box, at (xS , yS , zS) = (−850, 3.3, 3.3) kpc. The source luminosity

is set to produce F at the x = 0 box edge. The distance of the source is chosen so

that every ray that hits the cell with indices (0, j, k) at x = 0, leaves the box from cell

(127, j, k), where the grid has 128 cells along each coordinate.

Figure 2.18 shows the initial trapping phase, as seen in FLASH-HC results at t =

1 Myr. The incoming flux produces a thin ionized shell at the source side and a clear

shadow behind the clump. As the gas is essentially static early on, the results are almost

the same as in Test 3 (see Paper 1.). There are some small differences as evidenced by the

non-zero Mach number (right panel in Fig. 2.18). All the codes agree very well at this

stage, with the biggest discrepancies seen in SPH codes that have slightly more diffuse

shadows (see Fig. 31 in Paper 2). The discrete assignment of densities to grid cells,

already mentioned in Test 6, may introduce grid artifacts that can affect the ablation

flow at later times if the fix, also discussed in Test 6, is not applied. Two other grid codes

in the comparison, ZEUS-MP and Capreole+C2-ray, were forced to implement this fix,

but we found it does not affect our results.

By t= 10 Myr, the front begins its transition to D-type front and the heated gas at the

source side of the clump starts to photoevaporate in the form of a supersonic wind flow-

ing away from the clump. As the front eats through the clump, more and more layers of

neutral gas are heated and blown away. Figure 2.19 shows the results we obtained with

FLASH-HC. A notable feature in our results, not seen in other codes, is the presence of
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Figure 2.18: Images of neutral fraction 1− x (top left), temperature (top

right) and Mach number (bottom) at t = 1 Myr, cut through the centre

of the clump in FLASH-HC in Test 7. In the early stages of evolution,

the results are almost identical to the ones obtained in Test 3 (see Paper

1). The non-zero Mach numbers show that the photo-ionization flow

appears almost immediately.

irregularities in the left-hand side edge of the shadow, at the centre of the clump, in the

HI values (top left panel of Fig. 2.19). Irregularities are also seen in the outward velocity

of the photoevaporative wind (bottom left panel of Fig. 2.19). The source of these irregu-

larities is almost certainly a bug in the ray tracing scheme. We repeated Test 7 with AMR

at higher level of refinement (maximum cell resolution corresponding to 2563 uniform

grid), presented in Fig. 2.20. It is clear that increasing of resolution only amplifies the

problem, suggesting it is not rooted in any density fluctuations introduced by limited
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Figure 2.19: Slices through the FLASH-HC results at t = 10 Myr. Plot-

ted variables are, top to bottom left to right, neutral fraction, tempera-

ture, Mach number and pressure. The neutral fraction shows uneven

features in the source-side edge of the shadow. The irregularity is also

seen in in other variables but to a lesser extent. The root of these irregu-

larities is probably numerical and may be related to our plane-parallel

front implementation. See Fig. 2.20 and text for further discussion.

grid resolution. Fig. 2.20 shows that the “fingers” of more highly ionized gas that pen-

etrate the shadow edge trace the edges of blocks. Placing sources out of the box is not

a very thoroughly tested functionality and it is possible that some subtle bug leads to

these unexpected features. The original HC implementation performed Test 3 in Paper

1 and these irregularities were not found. Still, in that work, the source was not placed

outside of the computational box, but the box was extended to place the source far from
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Figure 2.20: The effect of grid resolution on irregular protrusions in

the left-hand side edge of the shadow in the neutral fraction results of

FLASH-HC at t = 10 Myr. The top panel is the default, 1283 grid result

with block boundaries overplotted for reference. The bottom plot is

the same problem with higher resolution in the region of interest (AMR

grid). The features in the shadow edge only increase in intensity once

the resolution is increased, meaning the density field resolution is not

the cause. Features seem to follow the block edges in both panels, po-

tentially pointing to a subtle bug in the ray tracing procedure as a pos-

sible cause.

the clump. This lead to many unnecessary computations, as blocks must be placed in

those unused regions. The number of extra blocks makes placing a source at our desired

distance impossible, so the front coming into the regions interest was not plane-parallel

in the same terms we presented in the test description. Finally, as we will show in the

rest of this section, the effect of this irregularity does not significantly affect the evolution
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Figure 2.21: Slices through the FLASH-HC results at t = 50 Myr. Plotted

variables are, top to bottom left to right, neutral fraction, temperature,

Mach number and pressure.

of the system, nor produce results very different from other codes.

Figure 2.21 shows the state of the system in FLASH-HC at t = 50 Myr. By that time,

the photoevaporation is well advanced, with only a small core of neutral material left in

the clump. The shape of the core is distorted due to pressure forces from the surrounding

hot, ionized gas. The temperature and pressure (top and bottom right panels in Fig.

2.21) clearly show a supersonic shock front sweeping the previously photoevaporated

material. The inner region of the shock cools adiabatically, while the material in front

of the front is very hot, ≈ 60,000 K in FLASH-HC, within the range of 40,000-70,000 K

found in other codes.

We compare the morphology of our result with other codes in Fig. 2.22, where we
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Figure 2.22: Mach number images cut through z = 3.3 kpc at t = 50 Myr

for (from left to right and top to bottom) Capreole+C2-ray, ZEUS-MP,

Coral and FLASH-HC. The morphology found by FLASH-HC, while

somewhat irregular, generally agrees with other codes.

show the Mach numbers at t= 50 Myr. The results we obtained with FLASH-HC, even

though they show some flow irregularities, are not far off from the rest of the codes.

For example, Coral finds a significantly weaker shock, probably due to the particular

hydrodynamic solver employed (based on van Leer flux splitting, see Mellema et al.

(1998); Shapiro et al. (2004) for more details). ZEUS-MP produces an almost spherical

supersonic wind, a feature not reproduced by other codes.

Finally, the morphological issues we presented do not affect the general evolution,

as seen in spherically-averaged profiles in Fig. 2.23. At early times all codes agree very

well on the position of the I-front and its profile (first two panels of Fig. 2.23). At later

time, the hydrodynamic evolution introduces some differences, yet the scatter remains

small. Temperature plots in Fig. 2.23 show that all the codes agree in the shape and
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Figure 2.23: Evolution of neutral fraction (top row), temperature (mid-

dle row), pressure and Mach number (bottom row) Test 7 results of all

codes. FLASH-HC results are shown as pink dashed line. See text and

Paper 2 for discussion.

position of the major flow features, with the distinction being the absolute values. The

largest variance is found in the temperature of the neutral gas in the clump at t=10 Myr,

which is again explained with the different treatment of high energy photons. This fine

agreement is also seen in pressure and Mach number plots, not presented here.
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Figure 2.24: A single galaxy from the GIMIC simulation: the position

of SPH particles (left) and the density field on a FLASH grid obtained

with the converter module (right).

2.6.4 Conclusion:

We presented the results of 3 radiative hydrodynamic tests we performed with FLASH-

HC scheme for the RT Code Comparison project (Iliev et al., 2009). While some problems

in the HC scheme were uncovered during the tests, the results we obtain are very close

to the other methods. We also note that the improvement in computation speed we

introduced, made possible by the inclusion of the photon-conserving chemistry solver,

does not affect the final result. We have shown that our improvements allow for the time

step of the whole calculation to be chosen by the hydrodynamics criteria, significantly

improving the performance of the whole scheme. See Chapter 6 for more discussion and

future uses of this scheme.

2.7 Gadget-to-Flash converter

To facilitate future projects, we have written a new FLASH module that converts output

of Gadget (Springel et al., 2001; Springel, 2005a) SPH simulations to the FLASH AMR

grid. Gadget is an SPH hydrodynamics method (Monaghan, 1992), therefore the density

field is represented by discrete particles and the mass of each is assumed to be smoothed
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in a sphere of radius h, called the smoothing radius. Here we briefly describe the algo-

rithm for mapping the SPH fluid variables from particles to the FLASH AMR grid.

In the first step, the AMR block hierarchy is created. First, all the blocks are refined

to the minimum level. Next, we mark blocks for further refinement if a particle found

within it has h < fplblock/2, where lblock is the physical size of the block and fp is the

fraction of the block given as an input parameter. For example, when fp = 1/nx, the

block is marked for refinement if the smoothing diameter of a particle, 2h, found in

the block is smaller than one cell. Once all the particles have been tested or all blocks

marked for refinement, the next level of refinement is added. The procedure is repeated

until all the blocks are fully refined in respect to fp or the maximum level of refinement

is reached. We point out that at no stage must all SPH particles be kept in memory: all

operations involving particles can be performed on a chunk of SPH data, with the chunk

size being chosen by the user.

Once the grid is constructed, the mass from each particle is assigned to grid cells that

are intersected by the particle smoothing volume. We use a normalised 3D Gaussian

instead of the default spline kernel of Gadget-2 (Monaghan & Lattanzio, 1985; Springel,

2005a) to represent the mass distribution within the smoothing volume. The standard

deviation along every coordinate is chosen so that it provides a good match for the shape

of the spline kernel used in Gadget-2. The Gaussian is truncated after 3σ and normalised

so the mass of smoothed particles is conserved. The Gaussian kernel is employed be-

cause it can be easily integrated over in Cartesian coordinates to obtain the exact amount

of mass to be assigned to every cell. It is also computationally efficient, since the error

functions, erf(x), that result from the integration of Gaussian functions are implemented

as intrinsic functions in FORTRAN. All the other fluid variables are assigned to cells as

the mass weighted mean from the contributing particles.

As an example, Fig. 2.24 shows the density field of a single galaxy extracted from the

GIMIC simulation (Crain et al., 2009) converted to a FLASH grid. We intend to use this

FLASH module in our future projects, as well as make it available to the whole FLASH

community.



Chapter 3
Radiative transfer with

SimpleX

3.1 Introduction

In this chapter we will discuss the radiative transfer scheme, SimpleX, we employ for

simulating reionization. Section 3.2 presents the SimpleX method in some detail. The fol-

lowing sections discuss the tests we performed as well as improvements we introduced

to make the method more suited for our purposes. We discuss the sampling strategies

for computational grid creation in Section 3.3. The representation of the density field on

a computational grid is discussed in Section 3.4. We also present the results of a cosmo-

logical Strömgren sphere test that lead to the correct way of calculating recombinations

in a highly optically thick cells in Section 3.5. Finally, the parallelization of the SimpleX

algorithm we implemented is briefly presented in Section 3.6.

The epoch of reionization is a global transition involving most baryons in the Uni-

verse. In order to obtain a converged statistical representation of this process from a

computer model, a simulation box of order of 100 Mpc/h side length must be used (e.g.

Barkana & Loeb, 2001; Iliev et al., 2006a). The intensities of the density field in such a

box span several orders of magnitude: from the highest density virialized halos, through

overdense filamentary structures to under-dense voids. The sources of ionizing radia-

tion are found in the highest density regions, where the recombination of ionized gas is

most effective as well. It is then imperative for the numerical RT method to correctly rep-

resent the smallest spatial scales in a cosmological density field. This means that some

kind of adaptive computational grid, in the same vein as the one discussed in Chapter 2,

should be used to provide the necessary detail while reducing computational costs.

The number of dark matter halos that can host ionizing radiation sources in such cos-

75
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mological volumes is counted in the millions. Therefore, any RT method employed for

reionization must be capable of efficiently handling such a high number of sources. This

instantly disqualifies most characteristics-based techniques (i.e. Hybrid Characteristics,

Chapter 2), whose computational costs scale linearly with the source count. Note that

there are exceptions, like the C2-ray code (Mellema et al., 2006).

The SimpleX scheme discussed in this chapter uses a spatially adaptive unstructured

grid to represent the density field and is explicitly independent of the number of sources.

It is also very computationally efficient, allowing for quick production of ionization field

realisations with modest computational resources. This makes it ideal for our purposes.

3.2 The SimpleX method

3.2.1 Photon packet representation of the radiation field

On the smallest scale, the movement of a single photon through a medium can be de-

scribed as a random walk, fully specified by the interaction cross-section, α. The in-

teraction coefficient is a combination of two processes: α = αabs + αscat, where αabs is

the cross-section for absorption and αscat is the scattering cross-section, where the direc-

tion of scattering is given by a normalised probability distribution function, f(~n, ~n′) that

gives the probability for a photon incoming from direction ~n to be scattered in the direc-

tion ~n′. In the large number of photons limit, the microscopic random walk transform

into the macroscopic radiative transform equation (Chandrasekhar, 1943).

The small scale picture motivates the SimpleX approach to computationally solving

the radiative transfer equation, Eq. (1.16), as well as many Monte Carlo methods (e.g.

Maselli et al., 2003; Semelin et al., 2007; Altay et al., 2008; Cashwell & Evrett, 1959, for a

general discussion). Tracing single photons through a medium is impractical. Instead,

photons are grouped in photon packets, discrete amounts of radiation energy emitted from

a source during a time step. In the case of ionizing radiation:

Nγ =
∆t

Npackets

∫ ∞
νth

Lν
hν

dν, (3.1)

where Nγ is the number of photons in the packet, the integral over luminosity, Lν , gives

the total number of ionizing photons emitted per unit time (since it is integrated from the

Lyman limit frequency, hνth = 13.59 eV, νth = 3.29 × 1015Hz), ∆t is the simulation time
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step and Npackets is the number of photon packets representing the radiation emitted by

the source during ∆t. Photon packets are transported along paths defined by the re-

quired spatial sampling (i.e. radiation energy must reach all the computational cells that

it is supposed to) and the interaction with matter (e.g. photon packets may change paths

due to scattering). Along each path, a photon packet may interact with the traversed

density field and lose energy due to absorption or gain energy due to emission.

3.2.2 The grid

Voronoi tessellation

The photon packet representation of the radiation field is independent of the computa-

tional grid used to represent the density field or the exact choice of photon paths. Most

commonly employed grids for this purpose in Monte Carlo methods are Cartesian grids,

either regular (e.g. Maselli et al., 2003) or adaptive (e.g. Semelin et al., 2007; Altay et al.,

2008). SimpleX uses an unstructured mesh, the Voronoi tessellation, to represent the

density field.

Broadly defined, a tessellation is any set of geometrical figures that covers (“tessel-

lates”) space without any overlaps or gaps (see Okabe et al., 2000, for more details on the

Voronoi diagram and tessellations in general). Let Φ = xi be a finite set of points in the

d-dimensional space Rd. The Voronoi tessellation of that space is:

V (Φ) = Ci, (3.2)

where Ci is a Voronoi cell with nucleus xi. The cells are defined as:

Ci =
{
y ∈ Rd :‖ xi − y ‖≤‖ xj − y ‖, ∀i 6= j

}
. (3.3)

Simply put, Voronoi cell Ci is a set of all points in Rd closer to xi than to any other point

in Φ. An example Voronoi diagram is shown in the left panel of Fig. 3.1. In R3 space,

Voronoi cells are polyhedrons. Their facets are polygons, bounded by lines called Voronoi

edges. The intersections of Voronoi edges give a set of points called Voronoi vertices. A set

of Voronoi vertices and edges fully defines the Voronoi diagram corresponding to the set

of points Φ.

At a first glance, using a Voronoi diagram as a computational grid may seem unnec-

essarily complicated. Indeed, in comparison to regular Cartesian meshes, the conceptu-

alisation and construction of the Voronoi diagram is much more challenging. Why, then,
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Figure 3.1: Left: An example Voronoi diagram in 2 dimensions. The

red circles are the Voronoi cell nuclei. Middle: Delaunay triangulation

of the same set of points. The Voronoi nuclei are tips of the Delaunay

triangles. Right: Combination of the previous two plots, showing the

relation of the Voronoi diagram and the Delaunay triangulation. The

Delaunay lines connect all Voronoi cells that share an edge.

should one chose to use it over the regular meshes? First and foremost, it allows for a

more precise estimate of the density field. Voronoi based density estimation techniques

have been shown to be much more precise than the regular grid based ones (e.g. Za-

ninetti, 1991; Pelupessy et al., 2003; Melnyk et al., 2007; van de Weygaert, 2007). This is

due to the fact that the Voronoi grid can be constructed directly on the points defining

the density field, whether they are galaxies obtained form observational surveys or the

particle positions in an N-body simulation, and it naturally adapts to the spatial scales

of the data. When used as a computational grid, it avoids common mesh tangling that

plagues other unstructured grids (e.g. Gnedin, 1995). This is why the Voronoi diagram

was recently used by Springel (2009) in a hydrodynamics scheme that bridges the gap

between the Lagrangian and Eulerian approaches. Still, for radiative transfer, the most

important benefit of using the Voronoi diagram is its dual graph, the Delaunay triangu-

lation.

Delaunay triangulation

Graph theory (e.g. Harary, 1994) tells us that every planar graph G, i.e. a graph whose

edges intersect only at the vertices, has a dual planar graph G∗, which has a vertex in

every region of G and its edges connect neighbouring regions in G. The term “dual”
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references the “symmetric” property of the graphs: if G∗ is a dual of G, then G is a

dual of G∗. The dual of the Voronoi diagram is the Delaunay triangulation. Given the

Voronoi diagram, the Delaunay triangulation is easily obtained: simply connect nuclei

of all Voronoi cells that share an edge with straight lines. The resulting diagram is a

triangulation of space, since its unit figure is a simplex, a d-dimensional generalisation

of a triangle (e.g. it is simply a triangle in 2D space). The connection with the Voronoi

diagram is even deeper, as it can be shown that the circumcenters of all simplices are

Voronoi vertices (Okabe et al., 2000). The triangulation example is shown in the middle

panel of Fig. 3.1.

From the RT perspective, the most important property of the Delaunay triangulation

is that it connects every Voronoi cell with its neighbours. Thus, the Delaunay lines pro-

vide natural paths for the propagation of photon packets. This approach removes the

need for costly ray tracing operations, but it also introduces some diffusion, since the

Delaunay line directions are isotropic only on average. Furthermore, the triangulation is

computed only once thus defining all the possible paths before the RT calculation starts.

Thanks to this property, the scheme does not have to move only one photon packet at a

time as it is commonly done in Monte Carlo RT methods. Instead, all the photon packets

can be moved at the same time. In practise, this means that the loop over individual photon

packets is replaced by a loop over Voronoi cells. In every step, a cell receives pack-

ets and redistributes them to all neighbours after accounting for the interaction with the

medium. It is this algorithm that is the root of the major strength of the SimpleX method:

the independence of the computational cost from the number of radiation sources. The

number of operations for the radiation transport in a single step is of order O(N) at the

most, where N is the number of cells, in a case where all cells send and receive photon

packets.

SimpleX uses the QHull library (Barber et al., 1996) to construct the Voronoi/Delaunay

diagram. This is one of the fastest available libraries designed for this purpose. It also

includes provisions for handling poorly behaving point sets (e.g. overlapping points).

Before we continue with the overview of the interaction of radiation with matter in the

SimpleX scheme, we will take a brief look at the specific grid choice that motivated the

original development of SimpleX.
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Grid based on the photon mean free path

Ritzerveld et al. (2003) advocated a specific setup of the Voronoi/Delaunay grid for use

in radiative transfer. They argued that the points used as Voronoi nuclei should be cho-

sen in such a way that the Delaunay lengths correlate, on average, with the mean free

path of photons in the medium. This means that the probability for interaction with

matter will be the same along every line, i.e. it needs to be computed only once.

In the simplest case, a uniform density field, this desired relation can be obtained by

sampling the mass distribution with a Poisson point process (see e.g. Stoyan et al., 1996,

for more details about point processes). For general density fields, a correlated point

process must be used for the same purpose, where the probability of placing a point

is weighted by the local density at its potential position. The local mean free path of

photons (e.g. Chandrasekhar, 1950) at point ~r is:

λ(~r) =
1

σn(~r)
, (3.4)

where σ is the interaction cross-section and n(~r) is the local number density. On the other

hand, the average local Delaunay line length can be obtained from stochastic geometry

(see Okabe et al., 2000):

λD(~r) =
ζ

nD(~r)1/d
, (3.5)

where nD(~r) is the local grid point density, d is the number of spatial dimensions and ζ is

a constant that depends on d, ζ2D = 32/9π ≈ 1.132 and ζ3D = 1715/2304(3/4π)1/3Γ(1/3) ≈

1.237. The originally stated requirement is that the two lengths defined in Eqs. (3.4) and

(3.5) scale linearly:

λD = Qλ, (3.6)

where Q is a global constant, i.e. it applies to all Delaunay lines. Replacing Eqs. (3.4) and

(3.5) into Eq. (3.6), we see that the linear scaling is reproduced if the density of Voronoi

grid nuclei is:

nD(~r) ∝ nd(~r). (3.7)

For example, in a 3D density field, the probability of putting a grid point at a given

position is weighted by the cube of the local density at that point.

Following Eq. (3.6), we see that on the grids constructed with such a scaling the

optical depths will, on average, be the same along all Delaunay length, τ = λ−1λD = Q.
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While elegant, this idea is almost unattainable in practise. For one, when modeling

ionizing radiation transport, this scaling holds only when the grid is constructed. The

reason is clear: the mean free path depends only on the neutral hydrogen density, nHI,

so as soon as the gas ionization state changes, the mean free path scaling is broken.

This can be avoided by changing the grid every time the ionization state is updated (see

Paardekooper et al., 2009, for a possible implementation and discussion). The update

requires either a complete reconstruction of the grid or the use of more sophisticated

triangulation techniques that allow for the incremental change of the triangulation. In

any case, the computational costs would be much higher. More importantly, the steep

sampling weights of Eq. (3.7) result in many more points placed in the high density

regions which, in turn, exacerbates the numerical diffusion. Simply put, photon packets

are not getting where they should. We will come back to this issue in Section 3.3, where

we will discuss and test the sampling techniques.

3.2.3 Evolving the ionization field with SimpleX

In this section we discuss how the SimpleX schemes obtains the mean ionizing intensity

and solves the chemistry equations to obtain the evolution of the ionization field on the

defined computational grid. The problem in which we employ the scheme, cosmic reion-

ization of hydrogen, allows us to make a few simplifying equations. First, radiation is

assumed to be monochromatic, with all photons at the Lyman limit frequency, νth. This

approximation is reasonable when sources have stellar spectra (e.g. Loeb, 2006), as they

do in our work. Second, we assume that radiation only interacts with hydrogen gas.

Again, this approximation is justified by the source spectrum being strongly peaked at

the Lyman limit, meaning only hydrogen can be fully ionized before the number density

of QSOs increases enough to produce significant numbers of high energy photons (e.g.

Madau, 1999; Barkana & Loeb, 2001). The heating rate, Eq. (2.20), for Lyman limit pho-

tons only is zero, leading to the same temperature in the neutral and ionized gas. This

is clearly wrong, which motivates our final approximation: we set the temperature of

the ionized gas to 104 K, a typical temperature in HII regions after thermal equilibrium

is reached (e.g. Osterbrock, 1989, see also Fig. 2.7). The assumed constant temperature

removes the need for solving the energy equation, Eq. (2.19), reducing the system of

chemistry equations to a single rate equation.
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Figure 3.2: Left: Propagation of radiation in the SimpleX scheme. At ev-

ery grid node, the incoming photon packet (decreased by the number of

photons remaining in the cell) is split among the most straightforward

outgoing lines. The splitting of the photon packet is done to improve

angular sampling. Right: Source cell emitting new photon packets. The

total number of photons in a source cell is split among all the Delau-

nay lines leading from it. It is easy to implement anisotropic radiation,

i.e. sent photon packets can have different sizes. Diffuse radiation, e.g.

recombination radiation, can easily be added by making every cell a

source.

The ionization rate is obtained by transporting photon packets along Delaunay lines

and modeling the absorption of radiation energy along each line. When a photon packet

is moved from one cell to the next, the number of photons deposited in the cell is:

Nkept = Nin(1− e−τ ), (3.8)

where Nkept is the number of photons that interacts with neutral atoms in the cell, Nin

is the number of photons in the packet entering before interaction in the cell and τ =

σthnHIlD is the optical depth along the Delaunay line of length lD the photon packet

travels along. In addition, nHI is the number density of neutral hydrogen in the cell1

1Even though a Delaunay line passes through two Voronoi cells, we simplyfy the calculation by assum-

ing that the density along the line is the same as in the origin cell. We tested this assumption and found it

not to affect our results, as neighbouring cells typically have similar densities.
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and σth = 6.3× 10−18cm2 is the ionization cross-section at the Lyman limit frequency νth

(e.g. Spitzer, 1978; Osterbrock, 1989). The number of photons in the packet that do not

interact with the cell is:

Nout = Nine
−τ , (3.9)

so Nout photons leave the cell on the opposite side. Instead of propagating further a

single packet, it is instead split in three (two in 2D) new packets propagated along the

three most straightforward paths leading away from the initial incoming direction. The

splitting is done to improve sampling of radiation directions. An example of a single

photon packet propagating over a 2D grid is shown in the left panel of Fig. 3.2. The

photon packets are created in source cells, cells containing a source of radiation. The

source luminosity L is used in Eq. (3.1) to compute the number of photons initially

assigned to each packet, where the number of packets Npackets is equal to the number

of Delaunay lines leading from the cell. Emission of new packets is shown in the right

panel of Fig. 3.2. The same procedure is used to model diffuse radiation, as every cell

can be treated as a source at no extra computational cost.

If NH is the number of hydrogen atoms in the cell, then the ionized fraction x defines

the number of ionized atoms, NHII = xNH, and neutral atoms, NHI = NH − NHII =

(1 − x)NH . With the assumptions made above, the evolution of the ionization state of

the cell is given by the ionized hydrogen rate, Eq. (2.18), which we rewrite in terms of

the number of atoms instead of densities:

dNHII

dt
= ΓNHI − αB(104 K)

N2
HII

V
, (3.10)

where V is the cell volume and we used NHII = Ne for a hydrogen-only medium. Note

that we ignore the collisional ionization rate, since it is not a significant contributor at

T = 104 K. We also ignore the diffuse recombination radiation and use case-B recombi-

nation rate throughout the rest of this work (see Section 2.3.3 for the definition of case-B

recombination rate).

We assume that all the photons that interact with the cell within the time step go

towards ionizations, therefore the change in the number of ionized atoms due to ioniza-

tions is:

∆N ion
HII =

Npackets∑
i=1

Nkept,i, (3.11)
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i.e. it is the sum of interacting photons, given by Eq. (3.8), from all photon packets that

cross the cell in a time step. In case that ∆N ion
HII > NHI, the number of extra photons kept

is returned to outgoing photon packets, i.e. there can be no more ionizations than there

are neutral atoms in the cell. The photo-ionization rate directly follows from ∆N ion
HII:

Γ =
∆N ion

HII

NHI∆t
, (3.12)

where ∆t is the time step. The rate equation (3.10) is integrated explicitly:

NHII(t+ ∆t)−NHII(t) = ∆N ion
HII(t)− αB(104 K)

N2
HII(t)
V

∆t, (3.13)

where (t) marks the value of the variable at the beginning and (t+ ∆t) at the end of the

time step.

The time step is intimately connected to moving photon packets on the grid, the

grid sweeps. A single sweep is a loop over the grid in which all photon packets are

moved from one cell to the next. The time step is then: ∆t = Tsim/Nsweeps, where Tsim

is the total simulation time of a single RT run and Nsweeps is the number of sweeps.

The minimum Nsweeps is given by the requirement that the photon packets be moved

enough times to cross the simulation box. In practise, a much larger Nsweeps is needed to

reach a converged result. Convergence is achieved when ∆t is a fraction of the shortest

recombination and ionization times on the grid. For example, through some trial and

error, we found Nsweeps = 1500 to be an appropriate number for reionization runs we

perform in this thesis (see Chapter 5). For example, in the 1283 RT runs on a 50 Mpc/h

boxes used in Chapter 5, when z ≈ 15 (at early redshifts the recombinations are more

effective since density scales as n ∝ a−3), trec ≈ 1Myr in cells with overdensity ∆ ≈

100. The time between N-body snapshots at that redshift is Tsim ≈ 15Myr. Assuming

Nsweeps = 1500, the time step in that RT run is then ∆t ≈ 0.01Myr, therefore two orders

of magnitude shorter than the recombination time in the highest density regions. At

the same redshifts the cosmological I-fronts move slowly due to the high densities and

small fluxes from the rare sources that drive them (see the I-front jump condition, Eq.

(2.23), that can be used to estimate the I-front speed), meaning that only a few cells are

ionized in Tsim. At low redshifts, near the end of overlap, the I-fronts driven by many

more sources may move through the voids at much lower density, therefore many more

cells can be crossed in Tsim. Even then, the number of cells crossed in Tsim is much lower
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than our chosen Nsweeps, which guarantees that no cell is fully ionized in a single ∆t and

the I-front propagation is governed by ionization time instead of the speed of light.

The use of Eq. (3.8) guarantees spatial photon conservation as it takes the optical

depth of the cell into account, as we discussed in Section 2.5.1. The temporal photon

conservation is also a natural consequence of our choice of ∆t, discussed in the previous

paragraph, since the ionization state x is updated every integration step of Eq. (3.13).

Note also that the temporal photon conservation is not a large issue for very optically

thick cells such as the ones typically found in reionization simulations (e.g. even at

z = 5, the lowest redshift in our simulations, practically all cells in a 50 Mpc/h box have

τ & 100), as we discussed in Section 2.5.2.

The number of sweeps is motivated by both physical time scales in the rate equation

and the spatial transport of photon packets. In order to separate the two issues, we

introduced a slightly different sweeping procedure. A single loop over sweeps has been

separated into two loops. The outer one is a time stepping loop, during which new

photon packets are emitted and recombinations are estimated. The embeded loop is

used to propagate the existing photon packets, which are moved along the grid as long

as either they have photons to deposit in the cells or they move as far as the speed of

light allows2. The step of the outer loop is fully specified by physical time scales, e.g.

the recombination time in the highest density cell, while the step of the inner one is

computed internally to satisfy the described conditions. This removesNsweeps as an input

parameter. However, we found this more accurate procedure not to be necessary on the

scale of our reionization simulations (tens of megaparsecs) because the speed of light

limits the packets to crossing no more than a single cell per time step anyway for the

typical Nsweeps and Tsim at all redshifts.

3.2.4 Comparison of SimpleX to other Cosmological RT methods

Before we proceed to the tests and improvements of the method, we will briefly discuss

the reason why we chose to use SimpleX for simulating the evolution of the ionization

fields during reionization in the first place, instead of one of many techniques devel-

2To estimate the maximum number of cells a photon packet is allowed to move, we use the global aver-

age Delaunay line length. Due to that, some photon packets may move faster or slower than the speed of

light
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oped for this purpose. Our prime concern was speed. The major issue in that regard

is, as we already mentioned, the number of sources that is found in simulation boxes.

The characteristics-based schemes (see Chapter 2 for more detailed examples) must loop

over individual sources, thus having a computational cost that scales linearly with their

number. Still, there are some optimised characteristics methods that alleviate this is-

sue. For example, in Chapter 2 we already discussed the C2-ray method (Mellema et al.,

2006) that allows the use of very long integration time steps by properly taking photon

conservation along a ray into account.

Another popular method is the adaptive ray-tracing of Abel & Wandelt (2002b) (used

by e.g. Sokasian et al., 2001; McQuinn et al., 2007; Zahn et al., 2007; Trac & Cen, 2007).

This technique is in essence a photon packet method. The speed of the scheme comes

from the fact that the rays are followed only as long as there are photons in the packet

initially cast along the ray. The eponymous adaptivity comes from the fact that rays

can be split to improve the spatial sampling (same as we do in the SimpleX scheme) or

merged where the high precision is not necessary. Even with all the improvements, the

number of operations in these schemes still depends on the number of sources, though

the scaling is not always linear. Furthermore, all the groups use uniform meshes to

represent the density field, losing resolution in the high density regions.

The Monte Carlo codes (e.g. Maselli et al., 2003; Semelin et al., 2007; Altay et al., 2008)

also scale with the number of sources. This scaling is only broken once the number of

sources is high enough for one to claim that the radiation field is sufficiently sampled

with some given number of photon packets emitted from all sources.

A more apt comparison for SimpleX should be methods that do not depend on the

number of sources. TRAPHIC, a radiative transfer method implemented in Gadget-2

(Pawlik & Schaye, 2008), is to a large degree inspired by SimpleX. The main difference is

that TRAPHIC does not use the Voronoi/Delaunay grid: photon packets are transported

directly on SPH particles in Gadget-2. The packets are not sent along direct connecting

lines from one particle to the next, but are instead emitted isotropically in equal spherical

angle cones. This scheme does not suffer from the numerical diffusion that the SimpleX

transport along Delaunay lines may introduce, but is more computationally expensive

since the travel paths need to be recomputed during the calculation.

Another class of methods that we considered are the moment methods (e.g. Gnedin
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& Abel, 2001; Petkova & Springel, 2009). While they are explicitly independent of the

number of sources, the use of a single Eddington tensor in both optically thick and thin

regimes necessarily leads to errors. The precision is much better if one computes the

Eddington tensor for every cell explicitly (as in Finlator et al., 2009b), but this entails the

use of ray-tracing methods, thus severely reducing the performance speed of the scheme.

In terms of computational speed, SimpleX compares very well to all of the previ-

ously mentioned codes. For example, while Iliev et al. (2006a) quote tens of thousands

of CPU hours needed to perform a single reionization realisation, a run of compara-

ble or better spatial resolution performed with SimpleX takes only a few hundred CPU

hours. Comparable speeds can be obtained with approximate RT solvers designed to

quickly produce reionization maps (e.g. Alvarez et al., 2009; Thomas et al., 2009), but

their semi-analytic approach does not accurately represent the density field, which re-

sults in approximate morphologies of HII regions during reionization and, more impor-

tantly, the less precise calculation of recombinations. We concluded that SimpleX pro-

vides us with a very good compromise between speed and precision compared to other

available methods.

3.3 Grid sampling

In Section 3.2.2 we argued that the main strength of the Voronoi/Delaunay graph pair in

RT applications is that it provides connections between neighbouring cells, along which

the radiation can travel. This is true irrespective of the actual choice of Voronoi grid

point positions. Still, this choice can have important consequences because it determines

the detail in which the density field data is resolved by the grid. In this section, we will

discuss our choice of grid point sampling and compare it to some other possible choices.

We will test the grid sampling in two cases: the Test 4 of the RT Code Comparison project

(Iliev et al., 2006b) and on a number of test cosmological density fields we obtained from

N-body runs.

The adaptivity of the Voronoi diagram comes from the complete freedom of choosing

the position of grid points. We already gave an example of the grid choice in Section

3.2.2: using Eq. (3.7) the original SimpleX method created a grid that correspond to the

mean free path in the medium. There we claimed that the high gradient in the number of
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grid cells produced by Eq. (3.7) may result in unphysical propagation of radiation. This

problem has been observed in the Test 4 of the Code Comparison project (Iliev et al.,

2006b) and will be discussed in more detail in the following section.

Let us introduce here our preferred grid sampling technique. For our reionization

simulations (see Chapter 5), we will obtain the density fields using N-body simulations,

for which the outputs are just positions of equal mass particles. The easiest way to choose

a Voronoi grid that corresponds to such density field data is simply to use the particles

themselves as Voronoi cell nuclei. If a lower RT grid resolution is necessary3, we choose

a random subset of the particles. This sampling approach results in the following grid

sampling relation:

nD ∝ nH. (3.14)

This is the same scaling the N-body technique has, i.e. the local density is represented

by the particles found in that volume. We prefer this technique for two reasons. Firstly,

when using Eq. (3.14) the spatial scales resolved in the N-body data are naturally mir-

rored by the RT grid. Secondly, we do not need to estimate the density field before

constructing the RT grid. In the following section, we will show that this scaling is, in

fact, a much better choice than Eq. (3.7).

3.3.1 Test 4 of the RT Code Comparison project

This test involves the propagation of ionization fronts from multiple sources through a

static cosmological density field. The initial conditions are provided on a 1283 uniform

grid computed from a time slice of a cosmological N-body and gasdynamic simulation

performed using the PM+TVD code (Ryu et al., 1993). The simulation box used is a cubic

region with side length of 0.5 Mpc/h populated by dark matter and hydrogen gas. The

16 most massive halos identified in the box are used as sources of ionizing radiation.

Ionizing luminosities were assigned to the halos by assuming a linear mass-luminosity

relation:

Ṅγ = fγ
MΩb

Ω0mpts
, (3.15)

3This will be almost always the case in the reionization simulations we present in Chapter 5. High reso-

lution N-body runs are needed to produce the dark matter merger trees that are used to model the sources

of reionization, but no RT method can match that resolution due to RT being a much more computationally

expensive problem then gravity.
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where fγ is an efficiency parameter, M is the total halo mass, Ωb and Ω0 are baryon

and dark matter density parameters, mp is the proton mass and ts is the lifetime of the

source, chosen to be 3 Myr. The efficiency parameter, fγ , defines how many photons are

produced per hydrogen atom in the halo during its lifetime. The codes taking part in the

test were expected to follow the time evolution of the ionization and temperature fields

for 0.4 Myr and provide outputs at 5 chosen times.

Figure 3.3 compares the results we obtained with our version of SimpleX against

the SimpleX used in the original Code Comparison project and another code, C2-ray

(Mellema et al. 2006). Perfect agreement between SimpleX and other codes cannot be

expected, since all the other codes ran the problem with multi-frequency transport and

self-consistent ionization gas heating, while SimpleX assumed a temperature of 104 K

in ionized regions and approximated the hardness of the spectrum through the use of a

single frequency bin and a spectrum-averaged ionization cross-section:

〈σ〉 =

∫∞
νth
σνIνdν∫∞

νth
Iνdν

, (3.16)

where σν was defined in Eq. (2.15) and Iν is the intensity of the radiation source (as-

sumed to be a blackbody with effective temperature Teff = 105 K, so the intensity is

given by the Planck law: Iν = (2hν3/c2)(exp(hν/kTeff) − 1)−1). Regardless of these dif-

ferences, general shape of the HII regions should be similar. Radiation originates in dark

matter halos located in the peaks of the density field. Once the I-front breaks out of the

high density filaments, it starts expanding much faster in the lower density voids (recall

that the I-front speed, Eq. (2.23), depends on the local density). This results in I-fronts

having a typical “butterfly” shape, as their propagation speed stays much lower in the

filament than in the voids. In Fig. 3.3, all codes demonstrate this I-front behaviour, but

it is very clear that the front speeds in voids are lower in the original SimpleX (blue line)

than in C2-ray (red line). This is a direct consequence of undersampling the low density

regions through the use of Eq. (3.7). If there is an insufficient number of vertices in a

region, there are not enough potential routes for radiation packets to reach it. Since there

are many more connections in the high density regions, the radiation will preferentially

stay there, somewhat bypassing the lower density ones and leading to the delay of the

I-fronts. Also, the more jagged shape of the fronts in the voids is due to the violation of

radiation isotropy because of the lack of potential radiation travel routes.



3. Radiative transfer with SimpleX 90

Figure 3.3: Slices through the middle of the Test 4 simulation box (see

text for test description) at 4 output times: 0.05, 0.1, 0.2 and 0.3 Myr

(clockwise from top left). The grey-scale image in the background is the

density field, log10 nH. Contours represent the x = 0.7 ionized fraction

boundary from three different runs: C2-ray code (red line), SimpleX

with Eq. (3.7) sampling function (blue line) and SimpleX with direct

point sampling, Eq. (3.14) (white line). The blue lines under-sample

the low density regions resulting in delayed propagation of I-fronts in

voids. The more spatially uniform SimpleX sampling (white lines) re-

sults in much better agreement with C2-ray and the other codes that

took part in the Code Comparison project.

The white lines in Fig. 3.3 show the results obtained with our current version of Sim-

pleX. Before discussing the results we will present the sampling technique we employ

and how it differs from the technique used by original SimpleX. The main difference is
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in the way the density field is supplied at input. The original SimpleX scheme uses the

uniformly gridded density values. Our version, on the other hand, uses the direct output

of N-body simulations - positions of equal mass particles. From this data, we reconstruct

the density field on the Voronoi grid in several steps. First, we choose a desired size sub-

set of all particles to be Voronoi nuclei, where the probability of choosing any particle is

weighted by some function of density, W = f(ρ). Our preferred sampling technique, de-

scribed earlier in this section, Eq. (3.14), is given by the weighting function: W = 1, i.e. a

uniform (unweighted) selection of particles. Secondly, using an octree-based neighbour

search, we assign the mass of all the points we did not select to their closest neighbours

among the ones that we did select. Remembering the definition of the Voronoi cell, Eq.

(3.3), it is clear that this step corresponds to the nearest grid point interpolation on the

Voronoi grid. Finally, the density of every grid cell is computed after the full triangu-

lation is set up and it is simply equal to the total mass assigned to the Voronoi nucleus

divided by the volume of the corresponding Voronoi cell. This procedure is equivalent to

the density reconstruction scheme called Voronoi Tessellation Field Estimator (Schaap,

2007), which was found to be a much more precise technique for density field recon-

struction than the commonly employed SPH (Monaghan, 1992) or grid-based (Hockney

& Eastwood, 1981) schemes.

The original SimpleX procedure for setting up the density field on the Voronoi grid

is somewhat different. First, given a uniform grid of density values, Voronoi nuclei are

created through a correlated point process. A random number generator is used to gen-

erate point coordinates. The probability for a point to be kept as a Voronoi nucleus is

weighted by the density of the uniform grid cell in which it falls, using Eq. (3.7). This

procedure is repeated until the required number of points is kept. After the Voronoi dia-

gram has been generated, the value of density of every Voronoi cell is obtained by linear

interpolation from the density values of the neighbouring uniform grid cells. Contrary

to our method, this procedure operates with densities and not masses, thus it is not ex-

plicitly mass-conserving (i.e. the interpolation of densities from one grid to another does

not guarantee that the total mass on both grids is going to be the same).

For Test 4, the original SimpleX has used the default grid assignment method de-

scribed in the previous paragraph. Since the data for the test is supplied on a uniform

grid, we were not able to employ our default method. To bridge the gap, we generated
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Figure 3.4: Different sets of Voronoi nuclei representing the same N-

body run. Weighting functions are given in top-left corners of each

panel. See text for discussion.

the point data from the supplied grid. In every uniform grid cell, we generate a number

of points proportional to the density in that cell. We require that there be a minimum of

one point per cell. We also assign mass to every point equal to the mass in the parent

grid cell divided by the number of points spawned in that cell. Using these points, we

proceed with our default technique: we choose the subset of points to be the Voronoi nu-

clei, allocate left-over mass to nearest nuclei and compute the density once the Voronoi

cell volumes are computed.

Coming back to Fig. 3.3, we see that our sampling scheme (white line) produces

a much better agreement with other codes (represented by C2-ray, red line) than the

original SimpleX (blue line). This is entirely due to more Voronoi nuclei being placed in

the voids. We can conclude that a simple change in the sampling procedure is all it takes

to fix the perceived inadequacies of SimpleX radiative transfer in cosmological density

fields. The same conclusion was reached by Paardekooper et al. (2009), who modified

the original, grid-based sampling procedure with sampling functions similar to the ones

we used here.

To make sure that our preferred sampling procedure places a sufficient number of

points in the low density regions, we compare the result presented in Fig. 3.3 with the

results obtained from Voronoi grids created by two other weighting functions chosen to

sample the low density regions in even more detail: W = 1/ρ1/3 and W = 1/ρ. The dif-

ference between Voronoi nuclei sets created with these weighting functions is illustrated

in Fig. 3.4. This figure shows the range of possible samplings our weighting functions
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Figure 3.5: The effect of different sampling on the Test 4 results. Shown

is a slice through the middle of the density field (grey scale) with con-

tours representing the x = 0.7 ionized fraction boundary at time t =

0.1 Myr for runs with different samplings: W = 1 (white line), W = 1/ρ

(yellow line), W=1/ρ1/3 (green line) with the same grid resolution, 643

cells. Using more spatially uniform sampling thanW = 1 does not pro-

duce any significant changes in I-front position, suggesting that W = 1

adequately resolves the low density regions.

cover: while W = 1 is proportional to the local density, the W = 1/ρ is inversely propor-

tional to the density which results in a constant number of vertices per unit volume.

We repeated the Test 4 runs with these two grids and we present the results in Fig. 3.5.

We see that further “smoothing” of the Voronoi nuclei spatial distribution does not result

in any significant change in the position of I-fronts at any time. This leads us to conclude
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Figure 3.6: Comparison of volume-weighted density PDFs of differ-

ently sampled realisations of the Test 4 density field. The PDFs of fields

sampled with W = 1 and W = 1/ρ are shown as blue and red his-

tograms, respectively. The PDF of the original density field supplied

for the Code Comparison project is given for reference (dashed black

line). See text for details about the sampling procedures. Even though

the use of different point sampling can affect the highest or lowest den-

sity regions, it should not make a significant difference in the Test 4 case

because the original data is sufficiently resolved (as seen in Fig. 3.5).

that our preferred sampling procedure, which reproduces the Eq. (3.14) relation, already

sufficiently resolves the low density regions in Test 4.

The agreement between differently sampled Voronoi grids presented in Fig. 3.5 is

not enough to put the Test 4 to rest, as it might be possible that all those Voronoi grids
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represent the original density field in the same, yet incorrect way. To show that this is not

the case, we present the volume-weighted probability density functions (hereafter, PDF)

of the cell densities in the original uniformly gridded data and two Voronoi grids (Fig.

3.6). At a first glance, the Voronoi grids resolve both higher and lower densities than

the original data provides. This is an unavoidable consequence of using the Voronoi

grid. Even the W = 1/ρ grid that was, as we discussed previously, constructed to be as

uniform as possible, still does not have equal volume cells. This results in densities that

differ from the values supplied on the uniform grid. On the W = 1 grid, the number of

vertices is proportional to the local density, so the cell volumes exhibit the same variance

as the density field. Even though the number of grid points is the same for Voronoi grids

(1283 in both), the spatial resolution is not the same and this leads to the difference in

the cell density PDFs. The spatial sampling also causes the differences between the two

Voronoi grids. Still, the agreement in PDFs is excellent in the density range that all grids

resolve.

The largest discrepancies between the original data and the Voronoi grids are in the

low density regions. These differences should not affect the obtained I-front positions

in a Test 4 run. For one, the low density regions have a smaller fraction of total gas to

be ionized, thus the loss of ionizing photons in those regions will not be as important

as in the high density regions. The same is true for the number of recombinations in a

cell. Finally, the low density voids are the final regions to be ionized in a cosmological

volume4, so even if some discrepancies do arise due to the density field differences they

will be relevant only in the final overlap stages (Gnedin, 2000a), when reionization is

practically complete. Taking all this into account, Fig. 3.6 leads us to conclude that the

density field is sufficiently well represented by the Voronoi grids we used in our Test 4

runs.

3.3.2 Sampling effects on N-body data runs

Now that we have shown that SimpleX with our sampling procedure can obtain satisfac-

tory results in the Test 4 of the Code Comparison project, we want to make sure that the

4We find that reionization proceeds completely “inside-out”, so that the highest density regions are the

first to be ionized and low density voids are the last. Note that this is not a universally agreed-upon scenario

(e.g. Finlator et al., 2009a). This issue is discussed in more detail in Chapter 5
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Simulation Lbox NDM mDM

[Mpc/h] [105 M�/h]

L12.5N128 12.5 1283 646.2

L20N512 20 5123 41.35

L10N512 10 5123 5.17

L10N1024 10 10243 0.65

L20N1024 20 10243 5.17

Table 3.1: Parameters of the N-body runs used in Chapter 3. See text

for the description of the labelling scheme. The stated values are as

follows: size of the computational box, Lbox; number of dark matter

particles, NDM; mass of dark matter particles, mDM. The Cosmological

parameters [Ω0, ΩΛ, Ωb, σ8, ns, h] used for all runs are [0.25, 0.75, 0.045,

0.9, 1, 0.73]. The runs marked by bold names are used in the single

snapshot tests of grid sampling effect on RT results (Section 3.3.2)

same procedure is appropriate for use in the context of the reionization runs we intend

to perform. As already mentioned in the previous section, we intend to compute the

density field on the Voronoi grid directly from the N-body simulation particles. In order

to test the effects of sampling, but also of grid resolution, we perform runs on z = 5

snapshots from two N-body runs, L12.5N128 and L20N512. The labelling of the runs is

as follows. Letter “L” means “length” and the following numerical value gives the side

length of the simulation box in Mpc/h. The letter “N” marks the number of particles

used in the run and the numerical value is the cubic root of that number, i.e. if a simu-

lation uses 5123 particles, it is marked as N512. All the N-body runs in this section have

been performed using the “lean” version of Gadget-2 (Springel, 2005a). More details

about the simulations are given in Table 3.1.

The L12.5N128 box is chosen mainly for quick test runs, since a representative Voronoi

grid can be constructed quickly. The L20N512 box is chosen because it has approximately
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the same particle mass as our target simulation for the large scale reionization runs, the

Millennium-II simulation (Boylan-Kolchin et al., 2009). The typical RT resolutions we

employ with SimpleX are 643 and 1283 RT cells, so only a sub-section of L20N512 par-

ticles will be used to construct the RT Voronoi grid, as discussed earlier. For the tests

in this section, we use the z = 5 snapshots, because the density contrasts are highest

at that time and all inadequacies due to sampling or grid resolutions should be most

pronounced. The friends-of-friends algorithm (Davis et al., 1985) was employed to iden-

tify dark matter halos. We use 16 and 37 of the most massive halos found at z = 5

in the L12.5N128 and L20N512 runs, respectively, as the sources of ionizing radiation,

the numbers chosen to make these tests comparable to Test 4 presented in the previous

section. We used Eq. (3.15) to assign ionizing luminosities to the chosen halos. The ef-

ficiency parameter, fγ , was not the same in all runs, but varied with the sole intention

of producing a significant change in the ionized fraction within the time chosen for each

specific run. In simple words, we change the luminosity to get the whole box ionized in

an arbitrarily chosen time. For these runs we were not concerned with reproducing the

correct physical conditions as we only wanted to study the numerical effects stemming

from the properties of the Voronoi grid.

We first look at the effect of the choice of Voronoi nuclei positions on the radiative

transfer results. The left panel of Fig. 3.7 shows the results of RT runs on Voronoi grids

created with three sampling functions introduced in the previous section (Fig. 3.5) in

the L12.5N128 box. All RT grids have 643 Voronoi nuclei, i.e. every eight particle was

used as a cell nucleus. All sources have the efficiency parameter of fγ = 25000 and the

total simulation time was 1 Myr5. With these parameters, the total number of ionizing

photons produced is ≈ 2 times larger than the total number of atoms in the box. The

I-fronts move much faster on grids that have less grid cells in high and more in the low

density regions. The change of Voronoi grid resolution, i.e. the increase of the total

number of grid cells, shows a similar effect as seen in the right panel of Fig. 3.7. The

lower resolution runs produce faster I-fronts than the higher resolution ones.

These result seems to contradict the conclusion of the previous section where we

5The running time is much shorter than the recombination time at the average density at z = 5, but the

recombinations are still an important factor, as evidenced by the fact that the box is not fully ionized even if

more than enough photons have been emitted.
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Figure 3.7: The effect of sampling on the L12.5N128 test run results (see

text for run setups). Left: The effect of Voronoi nuclei placement on

the evolution of the mean mass-weighted ionized fraction, xm. Line

styles represent different sampling function weights: W = 1 (solid line),

W = 1/ρ (dashed line), W=1/ρ1/3 (dot-dashed line). All grid have 643

cells. More spatially uniform grids produce significantly faster I-fronts.

Right: The effect of the number of grid points on the evolution of xm.

Line colors represent different Voronoi grid resolutions: 643 (black line),

1003 (red line) and 1283 (blue line). All points sampled with the same

weighting function (W = 1). The decrease of RT grid resolution results

in the same effect as the spatial “smoothing” of cell numbers per unit

volume shown in the left panel.

found that all the differently sampled grids we are testing produce the same RT result,

as shown in Figure 3.5. The reason for this discrepancy is found in a much smaller im-

portance of recombinations in Test 4, compared to the tests discussed here. For example,

the difference in the total recombination rate on 643 RT grids sampled with W = 1 and

W = 1/ρ from the Test 4 density field data is about 30% in favour of the former. On the

other hand, for the same grids sampled from L12.5N128, W = 1 has an≈ 10 times larger

recombination rate than W = 1/ρ. In the case of Test 4 density data, the importance

of recombinations is probably smaller because the details of the density field have been

smoothed out on the Cartesian grid on which it is supplied. Note also that the density
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field for Test 4 was obtained from a hydro simulation, meaning that the Jeans smoothing

may have also played a role.

Figure 3.7 showed that both the resolution and sampling of the Voronoi RT grid can

have a large effect on the final result. The main difference between the runs shown in

both panels of Fig. 3.7 is the spatial size of cells in regions of different densities. As we

pointed out earlier, a grid chosen with a W = 1/ρ weighting function will have approxi-

mately equal-sized cells in the whole volume, thus having a much lower spatial resolu-

tion in high density regions than the W = 1 grid, which adapts to the density field and

has approximately constant cell mass. Equally, a larger number of RT grid cells (right

panel of Fig. 3.7) results in higher spatial resolution in all regions. Note that we empha-

sise the high density regions: these are the regions where the bulk of recombinations are

produced, as the rate depends on the square of the local density (see the recombination

term in Eq. (3.10)). This means that insufficient grid resolution in high density regions

can result in a significantly underestimated total number of recombinations.

To confirm our suspicion that the RT grids are not resolving sufficiently well the

recombination rate on the provided N-body density fields, leading to the large discrep-

ancies seen in Fig. 3.7, we repeat the RT runs on Voronoi grids created with different

samplings, but this time without including recombinations in the calculation. We ran on

two grids that showed the biggest difference in Figure 3.7, W = 1 and W = 1/ρ. We

decreased the efficiency parameter of sources to fγ = 10000 in order to avoid having the

box completely ionized too quickly. We show the results of those runs in Figure 3.8. Once

the recombinations are neglected, different grid samplings give virtually indistinguish-

able results. Figure 3.8 confirms that it is not the position of grid cells that introduces

the differences in the RT results. Instead, they are the result of the unsatisfactory repre-

sentation of the underlying density field. More precisely, the lack of spatial resolution

smooths the density field thus decreasing the number of recombinations produced on

the grid. The following section discusses how to include the unresolved details from the

N-body data to the RT grid.



3. Radiative transfer with SimpleX 100

Figure 3.8: The evolution of the mean ionized fraction in the L12.5N128

test run without recombinations. The number of RT cells is 643 in both

runs. Two lines represent two different sampling function weights:

W = 1 (black solid line) and W = 1/ρ (red solid line). This figure

clearly demonstrates that the position of RT grid cells is not the deter-

mining factor in the evolution of I-fronts.

3.4 Representing the density field

As we suggested in the previous section, the representation of the density field on the

computational grid can have a severe influence on the simulated propagation of I-fronts.

In this section, we describe a simple technique to include all the available density field

data from N-body simulations to the RT grids, not only for SimpleX but for any RT

scheme in general. First, in Section 3.4.1, we discuss the backdrop for reionization, the

intergalactic medium (hereafter, IGM) and its representation using N-body simulations.
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Next, we introduce the tool used to represent the sub-cell density field, the clumping

factor, in Section 3.4.2. We discuss its usage by other groups, how we compute it from

N-body data and, most importantly, how it can be used to improve convergence of RT

results. In Section 3.4.3, we revisit the single snapshot tests performed in Section 3.3.2

and show how they are improved through the use of the clumping factor.

3.4.1 IGM from N-body simulations

The largest part of the baryons found in the Universe fills the space that separates the

galaxies, creating the intergalactic medium (IGM; see Madau, 2000; Meiksin, 2007, for re-

cent reviews of the subject). It was the IGM that was reionized during the eponymous

epoch that is the main subject of this thesis. It is then clear that we must understand the

density distribution of the IGM if we are to simulate the process of its ionization.

Most of the information about the intergalactic gas comes from studying the Lyman

alpha forest, a pattern of absorption lines associated with structures in the IGM, that is

observed in the spectra of high redshift quasars (see e.g. Rauch, 1998; Bechtold, 2003, for

detailed reviews of the subject). Computer models (e.g. Cen et al., 1994; Hernquist et al.,

1996; Theuns et al., 1998) successfully connect the Lyman alpha forest features and the

large scale IGM density field with the paradigm of hierarchical structure formation.

In this picture, on the largest, linear scales, it is safe to assume that the baryons closely

follow the distribution of dark matter as on those scales gravitational dynamics dom-

inate over the thermodynamics of the gas (e.g. Zhang et al., 2004). This assumption

allows us to use the N-body simulations (i.e. dark matter only) to estimate the IGM den-

sity field, as is commonly done in large scale reionization numerical work (e.g. Ciardi

et al., 2000; Iliev et al., 2006a; McQuinn et al., 2007; Trac & Cen, 2007). Still, one must

be aware that the N-body simulations do not provide an accurate representation for the

gas on smaller scales. For one, as gravitational collapse proceeds, the gas pressure forces

become more important and decouples it from dark matter as Jeans length scales are

approached (a characteristic length at which the gravitational force is opposed by the

pressure force, see e.g. Peebles (1993), mentioned in Chapter 1). The Jeans smoothing is

also increased by the photo-ionization heating of the gas during reionization (e.g. Paw-

lik et al., 2009). The hydrodynamical effects are usually ignored in current large-scale

simulations (e.g. Iliev et al., 2007; McQuinn et al., 2007; Shin et al., 2008).
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The gas that has collapsed into dark matter halos makes up the rest of the cosmic

baryons, but it is not straightforward to include it in simulations. For one, gas in halos

with Tvir & 104K is able to efficiently cool through atomic line transitions which eventu-

ally leads to the formation of galaxies. In that case, the assumption that baryons trace the

dark matter fails completely. Furthermore, the virialized structures take up only a small

fraction of the typical computational cell volume, meaning that most of the ionizing pho-

tons passing through the cell will not interact with them. This is, of course, not true for

the ionizing photons produced in the halos themselves. Since it is impossible to properly

model the breakout of photons from their sources in large scale simulations needed for

reionization study, this effect is included with a parameter called the escape fraction (fesc

for short), the fraction of photons produced by sources within a halo that escapes into

the IGM. The escape fraction can be obtained from both higher resolution simulations

(e.g. Razoumov & Sommer-Larsen, 2007; Gnedin, 2008; Wise & Cen, 2009) and observa-

tions (e.g. Leitherer et al., 1995; Bland-Hawthorn & Maloney, 1999; Heckman et al., 2001;

Bergvall et al., 2006; Shapley et al., 2006), but its exact value during reionization remains

largely unknown. These arguments suggest that gas in halos should not be considered

part of the density field in a reionization simulation. Therefore, we neglect the N-body

particles associated with dark matter halos when constructing the density fields for the

reionization RT runs in Chapter 5. We single out those particles by choosing a threshold

overdensity a particle associated with the IGM is allowed to have, as we discuss in more

details in the following sections. We will, however, demonstrate the role of halo particles

on the propagation of I-fronts in the following discussion.

Finally, the necessary N-body resolution is given by the need to resolve the halos that

can host sources of ionizing radiation (generally taken to be halos with Tvir & 104 K).

Smaller so-called “minihalos”, where the gas is not capable of atomic line cooling, can

have a large effect on both the time evolution of the ionized fraction (e.g. Ciardi et al.,

2006) and the shape of the HII bubbles (e.g. Furlanetto et al., 2004; McQuinn et al., 2007).

The issue of minihalos is complicated due to the fact that the gas can be photoevaporated

from their shallow potential wells so more complex modeling is required to gauge their

true importance (Shapiro et al., 2004; Iliev et al., 2005b). Minihalos may or may not

be the main source of the Lyman limit systems (LLS for short) observed in the Lyman

alpha forest, absorption features that owe their name to the fact that they are optically
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thick to Lyman limit radiation, νth. They correspond to column densities of 1017.2cm2 .

NHI . 1020cm2. These still poorly understood objects (Tytler, 1982; Sargent et al., 1989;

Prochaska, 1999), and to a lesser extent the even more optically thick damped Lyman-α

objects (reviewed by Wolfe et al., 2005), determine the mean free path of ionizing photons

in the post-reionization Universe (Haardt & Madau, 1996; Miralda-Escude, 2003) and

may also be important during the EoR itself. All these features must be included in the

simulation if one wants to claim to have a proper representation of the density field.

3.4.2 Resolving the recombinations with clumping factors

As we discussed in Section 3.4.1, an accurate representation of the IGM for reionization

simulations is not a trivial problem. Here, we focus on a single aspect - the recombi-

nation rate, which depends on the gas distribution (the self-shielded structures such as

LLS or minihalos do not affect the ionizing photon budget in the same way). In all

our reionization simulations, to be presented in Chapter 5, we obtain the IGM from N-

body simulations by assuming that the gas is a perfect tracer of the dark matter. Still, as

pointed out in Section 3.3.2, due to the computational cost constraints RT grids may not

always match the spatial and mass resolution provided by the N-body runs. This results

in a “smoothing” of the density field by its representation on the lower resolution RT

grid. In this section we focus on how the effect of this smoothing on the recombination

rate can be alleviated.

What is the clumping factor?

The recombination rate (number of recombinations per unit time) in a single computa-

tional cell (or any finite volume for that matter) in a hydrogen-only medium is (right

hand side term in Eq. (3.10)):

Ṅrec = αn2
HIIV, (3.17)

where V is the volume of the cell, nHII is the ionized number density of hydrogen in the

cell and α is the recombination rate coefficient (could be either case A or B). What one

must always remember is that the values of cell variables are actually meant to represent

a continuous field. The discrete cell values are averages of that field over a finite volume



3. Radiative transfer with SimpleX 104

of the cell, V :

nHII = 〈nHII〉 =

∫
V nHII(~r)d3r

V
, (3.18)

where nHII(~r) is the value of the continuous ionized number density field at position

~r and the 〈〉 brackets denote an average over the volume V . We rewrite Eq. (3.17) to

explicitly show what is computed on a discrete grid cell:

Ṅdis
rec = α〈nHII〉2V. (3.19)

A discrete grid representation is adequate for evaluating physical quantities that de-

pend on the continuous density field linearly. For example, to get the number of ioniza-

tions per unit time in the volume V :

Ṅion = Γ
∫
V
nHI(~r)d3r = Γ〈nHI〉V. (3.20)

In other words, using the mean density in the cell, nHI is equivalent to integrating the

continuous density field to get the number of ionizations in volume V . This result im-

plies that the number of ionizations computed on a discrete grid does not depend on the

grid construction, i.e. the choice of V for each cell, as shown in Fig. 3.8.

The recombinations, on the other hand, depend on the square of the density. Given

a density field, the correct recombination rate in volume V , obtained by integrating the

field, is:

Ṅ cont
rec = α

∫
V
n2

HII(~r)d
3r = α〈n2

HII〉V. (3.21)

A comparison of Eq. (3.21) with (3.19) shows that using the mean value of the density

in the volume V does not produce the correct number of recombinations in that volume

(to be more precise, it does so only when V → 0). The same comparison also reveals that

Ṅ cont
rec = CṄdis

rec where:

C =
〈n2

HII〉
〈nHII〉2

. (3.22)

The linear factor C is the clumping factor, computed over the volume V .

We have shown that, in principle, one should be able to compute the correct number

of recombinations on a discrete grid irrespective of the grid construction, if the clump-

ing factor in every cell is known. Note that the number of recombinations obtained will

be only as correct as the continuous density field data. This density field is provided

by other numerical simulations (the dark matter-only N-body runs in our case), which
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are themselves limited in resolution and included physics, as mentioned in Section 3.4.1.

Therefore, we should not talk about the “correct”, but instead “converged” recombina-

tions - our goal is to compute the same number of recombinations for a given N-body

density field, irrespective of the RT grid used to represent it. In the next section, we show

how we compute the clumping factor from the N-body simulations.

Computing the clumping factor from the N-body data

To compute the clumping factor using Eq. (3.22), we must first estimate the continuous

density field from the N-body outputs, the positions of equal mass particles. There are

a number of techniques one can employ for this purpose. Very well known examples

are the grid techniques, where the mass of every N-body particle is redistributed among

regularly spaced grid cells according to some weighting function and the density ob-

tained by dividing the assigned mass with the volume of the cell (Hockney & Eastwood,

1988). While grid techniques are easy to use, they are not appropriate for density fields

with a large dynamical range. The cell size must match the smallest scales resolved by

the N-body run which results in too many cells placed in lower density regions, many

of them remaining empty (we mentioned this issue as an argument for AMR grids, see

Chapter 2).

A more efficient method for cosmological density fields are smoothed particles hy-

drodynamics techniques (see Monaghan, 1992, for review and further references). This is

a particle-based scheme for solving the hydrodynamics equations and the density field

at an arbitrary point can be recovered from the set of particles representing the fluid.

This is accomplished by smoothing the mass of every particle within some 3D compact

kernel, usually a spline function, but many variations exist. The density at the point of

interest is computed as the sum of contributions from all the particles in its smoothing

region:

ρ(~ri) =
N∑
j=1

mjW (~ri − ~rj ;hi). (3.23)

Here N is the total number of particles in the smoothing region, W is the smoothing

function and h is the smoothing length. The contributing particles j can be either all

particles that are within hj of particle i (the “scatter” approach) or all particles j that are

within hi of the particle i (the “gather” approach). We use a “gather” SPH interpolation
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scheme, as in Gadget-2 (Springel, 2005a), to calculate the density field at with every N-

body particle in our simulations6.

In Section 3.3 we mentioned that our sampling procedure incorporates the density es-

timation technique (VTFE from Schaap, 2007). In principle, it would be more consistent

to estimate the density field for clumping factor calculations with the Voronoi grid. The

main reason we employ the SPH technique instead is that, in our current implementa-

tion, the creation of the tessellation demands a very large amount of computer memory.

Construction of the Voronoi grid with grid resolution matching the number of particles

in even the intermediate N-body runs (e.g. 5123 particles) is beyond the machines we

had available for this project. The tessellation can be created in chunks to use less mem-

ory and we intend to use such a technique in future work. For all the runs presented in

this thesis, we computed the clumping factor with the SPH densities. We have compared

the SPH densities to Voronoi diagram-computed densities on smaller N-body runs. The

density results and the corresponding clumping factors differ no more than by a factor

of a few. We conclude that the use of SPH densities to compute the clumping factors is

adequate.

We evaluate the integrals over the volume in Eq. (3.22) as the sum over the values at

N-body particles found in the volume V ,
∫
V ρ(~r)d3r ≈

∑Npart

i=1 ρiVi. Equation (3.22) thus

becomes (note that in hydrogen-only medium ρ = mHnH and mH terms cancel out):

C =

PNpart
i=1 ρ2

i ViPNpart
i=1 Vi(PNpart

i=1 ρiViPNcell
i=1 Vi

)2 . (3.24)

Here, Npart is the number of particles found in volume V , ρi are SPH densities at N-

body particle positions and Vi is the SPH volume associated with particles. The volume

Vi can be estimated in two ways: Vi = mi/ρi or Vi = 4π/3h3
i , where mi is the mass of the

particle and hi is the SPH smoothing length at the particle’s position. We chose to use

the former definition because it allows us to write Eq. (3.24) in a more concise way, as we

will show shortly. The actual choice does not affect our results as both definitions yield

similar volume estimates. For the N-body simulations, all the particles have the same
6SPH densities are automatically calculated in Gadget-2. However, for the N-body runs we used the

“lean” version of Gadget-2, which solves the gravity-only problem and does not compute the densities.

This is why we had to compute them in post-processing, using an SPH density calculator based on the

original Gadget-2 method, also written by Volker Springel.
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mass, mi = m. Note that this need not be the case in an SPH hydrodynamics calculation.

Taking the same mass into account and including the chosen definition of the particle

volume we can rewrite Eq. (3.24) as:

C =

PNpart
i=1 ρ2

i
m
ρiPNpart

i=1
m
ρi(PNpart

i=1 ρi
m
ρiPNpart

i=1
m
ρi

)2 =
1

N2
part

Npart∑
i=1

ρi

Npart∑
i=1

1
ρi
. (3.25)

Clearly, we can evaluate the clumping factor in any N-body volume by knowing only

the SPH density of all particles in that volume. Note that, in general, the sum of SPH

volumes of particles found in a volume is not equal to that volume:
∑Npart

i=1 Vi 6= V .

We can re-scale the particle volumes so that their sum equals the volume,
∑Ncell

i=1 AVi =

V , where A is a constant scaling factor. If we use the re-scaled volumes in Eq. (3.24)

all the scaling terms A will cancel out and the value of the clumping factor does not

change. We conclude that the exact volume representation is not a factor in the clumping

factor calculation - it is only the relative spatial distribution of matter that enters in the

clumping. The same argument applies when calculating the clumping in any volume.

We will use Eq. (3.25) to compute all the clumping factors in the following discussion.

Clumping factor in reionization simulations

In Section 3.4.1, we discussed what an accurate model of IGM density field for reioniza-

tion simulations would entail. A simulation that would include all these components in a

≈ 100 Mpc/h side computational box is probably decades away7. This is why large-scale

reionization simulations tend to either completely ignore the gas distribution beyond the

resolution of their RT grids (Ciardi et al., 2000) or to include it through a clumping factor

representative of the sub-cell matter distribution.

This sub-cell clumping factor is usually obtained from simulations with higher mass

resolution and smaller box size (e.g. Kohler & Gnedin, 2005; Iliev et al., 2007; Pawlik

et al., 2009). What is missing in this approach is the clumping factor’s dependence on

the local density - cells with different densities are assumed to have the same sub-cell
7For example, if an N-body simulation is to resolve the pre-reheating mean density Jeans mass at redshift

10 (MJ ≈ 104M�/h) in a Lbox = 100 Mpc/h box would require ≈ 10, 0003 particles. Simulations have

been run to date with ≈ 40003 particles (e.g. Habib et al., 2009), about 10 times less than required. The

hydrodynamical simulations that reach these mass and spatial scales are nowhere in sight.
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gas distribution. McQuinn et al. (2007) tested the effects of an overdensity-dependent

clumping factor on HII region morphology during reionization. Still, they used only a

simple analytical estimate without any comparison to simulations.

We will argue that the clumping factor is not only a function of overdensity, but also

of the spatial window in which it is computed. The latter effect follows from the existence

of the smallest scales on which the matter is “clumped”. In the N-body simulations we

consider here, this limit is set by the mass resolution. While this is an artificially imposed

scale, a physical one does exist in the IGM, the Jeans scale, where the pressure forces

smooth out the density field (e.g. Bryan et al., 1999; Schaye et al., 2000). This means that

the conclusions we reach here on the N-body data will apply for representing the IGM

density fields in general.

Figure 3.9 shows the value of the clumping factor as a function of IGM threshold

overdensity, ∆thresh, computed from several N-body simulations (see Table 3.1 for sim-

ulation parameters). The overdensity is defined as ∆(~r) = ρ(~r)/ρ̄, where ρ̄ is the mean

density of the Universe. The vertical dashed line marks our default IGM overdensity

value, ∆thresh = 100, above which we chose to exclude particles (see discussion why in

Section 3.4.1). The chosen value is between the mean overdensity of a spherical top-hat

halo (≈ 178 in the Einstein-de Sitter universe, Coles & Lucchin, 2002) and the overden-

sity at the virial radius of an isothermal halo (≈ 60, Lacey & Cole, 1994). We tested a

range of values between 50 and 200 and found that our conclusions are unaffected by

the exact choice.

While the clumping factor values in Fig. 3.9 are converged with respect to the box

size (blue solid and red dashed lines), the same is not the case with respect to particle

mass. This is not surprising, since the dark matter-only simulations lack the gas pressure

forces that provide the limit to gas clumping, as we discussed previously. Indeed, if we

compare Fig. 3.9 with the same tests performed on SPH hydrodynamical simulations by

Pawlik et al. (2009) (their Fig. 4), we see that even though their particle mass is larger

than ours, their runs do reach convergence for the same choice of ∆thresh.

Considering the discussion so far, the N-body simulations we use are not an accu-

rate representation of the IGM. This is why we ask the reader to keep in mind that the

clumping factors we discuss in the following section are not meant to represent the cor-

rect density field beyond the scales resolved in N-body runs, as in other works. Our
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Figure 3.9: Global clumping factor as a function of IGM overdensity

threshold. Lines represent the results of Eq. (3.25) using all particles

from different N-body simulations. Red and blue lines represent runs

in 10 and 20 Mpc/h boxes, respectively. The solid lines represent runs

with 10243 particles, while the dashed lines are runs with 5123 particles.

See Table 3.1 for particle masses. The vertical dashed black line marks

∆thresh = 100, the value we choose for our default overdensity thresh-

old. The clumping factor results are converged with respect to the box

size, but there is no convergence with respect to particle mass. We can-

not claim that any of these simulations is an appropriate representation

of the IGM.

clumping factor represents the resolved matter clumping, only what is given by the N-

body simulation. If we could construct an “ideal” RT grid, with one Voronoi cell for

each N-body particle, computing this clumping factor would be pointless. As this is not
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the case, we will show that the clumping factor computed from the available N-body data

can significantly improve the convergence of the RT results with respect to grid spatial

resolution and construction. This idea is comparable to the method used by Trac & Cen

(2007) who compute the ionizations on a coarse RT grid, but compute the recombinations

on individual N-body particles. All other groups ignore this issue.

Global versus local clumping factors

An almost unanimous approach to modeling sub-grid density distribution for reioniza-

tion simulations is to compute a single clumping factor (but evolving with redshift, e.g.

Iliev et al., 2007) from a higher resolution run and assume that the same clumping factor

describes the density distribution in any other volume in the Universe e.g. the com-

putational cells of a larger simulation box. This assumption implies that the clumping

factor over some volume V is the accurate representation of the density distribution in a

sub-volume of the same volume, Vi, V =
∑

i Vi.

Figure 3.10 shows that this is in fact incorrect. We computed a single redshift-dependent

clumping factor from all the particles with ∆ < 100 in the L20N1024 simulation, using

Eq. (3.25). From this point on, we will name such clumping factors global, Cglobal, to sig-

nify they were computed from all available density field data. So,Cglobal = 〈nHII
2〉/〈nHII〉2

where the brackets signify the mean over the whole simulation volume, introduced in

Section 3.4.2. The obtained value of Cglobal for L20N1024 is shown with a solid line in

Fig. 3.10. We compare Cglobal with the fit provided by Iliev et al. (2007) (dotted line):

while their run is very different from the one used here (they computed C in a smaller

box with higher mass resolution and assumed cosmology parameters from the WMAP

3-year best fit, Spergel et al., 2007), the clumping factor results are approximately in the

same range.

As a next step, we subdivided the L20N1024 computational volume in 643 uniform

square cells and computed a clumping factor in each, again using Eq. (3.25). We call

these the local clumping factor, Clocal, to point out that they are computed using sub-

volumes. The local clumping in a cell with volume Vi is Clocal,i = 〈nHII
2〉i/〈nHII〉2i , where

the 〈〉i8 indicates volume averaged over the cell i. The dashed line in Fig. 3.10 is the

8Note that while the global 〈nH〉 corresponds to the mean density in the Universe, 〈nH〉i does not, since

it is an average over a region with ∆ 6= 1 in general.
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Figure 3.10: Evolution of the clumping factor with redshift in the

L20N1024 simulation. The solid black line gives the clumping factor

computed using all the particles in the box, Cglobal. The red and green

areas respectively show the 50% and 99% ranges of Clocal, in this case

computed on 643 uniform cell subdivision of the original volume. The

dashed line gives the mean Clocal as a function of redshift. All the

clumping factors are computed assuming ∆thresh = 100. The global

clumping factor is a poor representation of clumping on smaller scales,

severely overestimating the actual values in most cells.

mean of the Clocal distribution and the red and green shaded areas show the 50% and

99% range of values, respectively. It is clear that Cglobal is much higher than what one

finds in most regions in the simulation box. Therefore, a singleCglobal is not only an inap-

propriate representation of matter on all scales, it will necessarily lead to overestimated
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Figure 3.11: The mean local clumping factor as a function of overden-

sity in L20N1024 at z=5. The clumping factors are computed assuming

∆thresh = 100. Histograms show the results on three subdivisions of the

L20N1024 box, uniform Cartesian grids with 323 (blue dot-dashed), 643

(red dashed) and 1283 (black solid line) cells. For reference, we show the

global clumping factor (see text for definition) with the same threshold

overdensity (black dotted line). See text for discussion.

recombination rates if used as the representation of matter distribution in the majority

of the volume.

Figure 3.11 shows the volume-weighted mean Clocal as a function of overdensity in

the cell. First,Clocal decreases with increasing grid resolution. This is not surprising since

the N-body simulation mass resolution sets a limit on the matter clumping, as mentioned

earlier. For the same reason, increasing RT resolution leads to more and more converged

RT results. Second, it is clear that Cglobal (dotted horizontal line) overestimates the mean
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clumping on all scales. This will necessarily lead to overestimated recombination rates

as we will show shortly. Interestingly, the clumping is highest in moderately overdense

regions. This is true irrespective of whether or not the halos have been removed from the

density field. This kind of overdensity dependence of the clumping factor has not been

previously considered in the literature, as the usual choice is a monotonically increasing

or decreasing function (e.g. McQuinn et al., 2007). On higher resolution grids, the peak of

the distribution shifts towards higher overdensities, simply because these grids resolve

a larger overdensity range, but the shape of the distribution remains largely the same.

More importantly, the same shape is obtained when using an adaptive Voronoi grid

instead of the uniform Cartesian ones used for this discussion.

To understand the distribution of clumping factors, in Fig. 3.12 we show slices

through the middle of the L20N1024 density field, with overplotted contours of re-

gions with high clumping factor. In the left panel, all particles have been included in

the clumping estimate (∆thresh → ∞). The highest density regions correlate with high

Clocal regions. Once the halos are removed (by setting ∆thresh = 100; right panel) the

clumping decreases significantly everywhere, but the least so in the regions between

voids and filaments, consistent with the peaks of 〈Clocal〉 in Fig. 3.11. This would imply

that the large scale density gradients contribute significantly to the clumping factor, of-

ten overlooked in favour of the smaller scale density fluctuations. We defer a rigorous

study of the contribution of different scales in the density field to total gas clumping to

future work.

In the end, the clumping factor is just a tool for obtaining the correct number of

recombinations. The total recombination rate in the L20N1024 simulation box, assumed

to be fully ionized, x = 1, is:

Ṅrec,total = α

∫
V
nH(~r)d3r = αCglobal〈nH〉2V, (3.26)

where we remind the reader of definition of the clumping factor as presented in Section

3.4.2.

The question is whether Ṅrec,total can be obtained from the discrete values in sub-

volumes of V , the computational cells Vi, i.e. what is the error in the recombination rate

introduced by representing the continuous density field with discrete volume cells. The
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Figure 3.12: Slices through the middle of the L20N1024 density field

(z=5) showing high clumping regions. All contour lines represent re-

gions with clumping factor Clocal ≥ 5, computed on a 643 and 1283 uni-

form grids (red and cyan lines, respectively). The left-hand side plot

shows the regions where the clumping is computed using all the N-

body particles, while the right-hand side plot shows the regions where

particles with ∆ > ∆thresh = 100 were not included. Both plots demon-

strate that high clumping regions trace high density regions, irrespec-

tive of the grid resolution. If ∆ > ∆thresh particles are excluded, the

highest clumping regions are not in the highest density regions, point-

ing to the important contribution of the large scale gas distribution to

the clumping factor.

total recombination rate computed as a sum of rates in each cell is:

Ṅrec,sum =
Ncell∑
i

αCi〈nH〉2iVi, (3.27)

where Ci is the estimate of the clumping in cell i.

Figure 3.13 shows the ratio of Eqs. (3.27) and (3.26) as a function of grid resolution

and clumping factor employed. The bar colors correspond to various choices of Ci: yel-

low bars assume there is no matter clumping in the cell, Ci = 1, blue bars use the locally

computed clumping factor in each cell, Ci = Clocal,i, and the red bars assume the same

globally computed clumping factor in all cells, Ci = Cglobal. The dashed line gives the
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target value, where Ṅrec,sum = Ṅrec,total. Ignoring subgrid matter clumping (yellow bars)

underestimates the recombination rate. This is entirely due to the smoothing of the den-

sity field, as evidenced by the increase of the recombination rate with increasing grid

resolution. Using the local clumping factor (blue bars) largely solves this issue. While

there is still some dependence on the grid resolution, it is much smaller than when Ci is

ignored, e.g. while the 643 grid with Ci = 1 produces 3 times less recombinations per

unit time, the same resolution grid with Ci = Clocal,i produces only about 20% more. The

2563 grid with Clocal gets to within a few percent of the desired result. Finally, the most

important insight is that the use of a single clumping factor Cglobal (red bars) drastically

overestimates the recombination rate. Furthermore, it does nothing to boost convergence

between results from different grids as it only linearly amplifies the differences that exist

when Ci = 1 (orange bars). The locally computed C does the opposite and works to-

wards converging different grid results to the “correct” solution. In the next section, we

will use the locally computed clumping to fix the issues stemming from grid sampling

presented in Section 3.3.

3.4.3 Repeating the N-body test runs with the local clumping factor

We have demonstrated how the use of locally computed clumping factors can produce

converged recombination rates computed on density data grids. The volume over which

the clumping is computed can have any shape, so there is nothing preventing us from

computing it on Voronoi cells. We identify the N-body particles belonging to each Voronoi

cell using the same octree-based neighbour search procedure used to assign masses to

cells, mentioned in Section 3.3 and use Eq. (3.25) to compute local clumping factors, then

repeat the test runs presented in Section 3.3.2.

First we repeat the runs presented in the left panel of Fig. 3.7, where we showed

the effect of grid cell sampling of the evolution of the ionized fraction in the L12.5N128

box. The results are shown in Fig. 3.14. The inclusion of the local clumping factor in the

calculation (lines marked with circles) slows down the I-fronts and brings the evolution

significantly closer to the desired result (blue line). The same effect is observed in Fig.

3.15, where we repeat the runs with different numbers of grid cells originally presented

in the right panel of Fig. 3.7.

While using local clumping factors produces a noticeable improvement (bringing the
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Figure 3.13: Total number of recombinations computed in the

L20N1024 simulation with respect to grid resolution and clumping fac-

tors employed. The bars represent ratios of recombination rate inte-

grated over the grid cells representing the density field and the total

value defined by Eq. (3.26). The use of Clocal converges the results from

different resolution grids towards the desired value, while the use of a

single Cglobal only amplifies the issues due to grid resolution. See text

for further discussion.

low resolution I-front positions about 50% closer to the desired result), the local clump-

ing factor used in the L12.5N128 runs does not produce perfect convergence with the

desired result (blue line in both figures). This is probably due to the small number of

particles in this N-body run. In all the runs presented in Fig. 3.14 and 3.15 a Voronoi cell

has, on average, only 8 particles. This results in relatively low values of the clumping

factors, decreasing their effect on the I-front propagation.
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Figure 3.14: The evolution of the mass-weighted ionized fraction in

the L12.5N128 test runs with different sampling functions, with and

without the local clumping factor. Runs using a local clumping factor

are marked with circles. While different sampling functions make a

large difference for the 643 resolution run (black lines, solid for W = 1,

dashed for W = 1/ρ), inclusion of the local clumping factor converges

the results towards the run with all N-body points used as Voronoi nu-

clei (1283 resolution, blue solid line).

This is not the regime we are primarily interested in. In the reionization runs we per-

form in Chapter 5, the RT cells represent many more N-body particles. To test the effect

of the local clumping factors in such runs we do single snapshot runs on the L20N512

box. This simulation box is used in Chapter 5 to study the numerical effects in full reion-

ization runs. We again chose the final output snapshot at z=5 as the underlying density

field. The 37 most massive halos identified in the box at that redshift are used as radia-
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Figure 3.15: Same as Fig. 3.14 , but now with different RT grid resolu-

tions (all grids sampled assuming W = 1). The local clumping factor

brings lower resolution run results (black lines for 643 and red lines for

1003) towards the highest resolution one (1283, blue solid line). Once

again, the runs that include the local clumping factor are marked with

circles.

tion sources, again assigning them luminosities with Eq. (3.15). The efficiency parameter

was fγ = 1000. It is lower than in the previous runs because we chose both a larger num-

ber and more massive halos as sources than in the L12.5N128 box. The system is again

evolved for 1 Myr and the ratio of ionizing photons produces to the total number of

atoms in the box is ≈ 1.5. We present only results from grids created with the W = 1

weighting function: since we are interested in the detailed representation of the density

field, using a grid that explicitly adapts to it is a logical choice.

Figure 3.16 shows the effect of the local clumping factor on runs in the L20N512
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Figure 3.16: The effects of the local clumping factor on the evolution

of the mean mass-weighted ionized fraction in the L20N512 box. The

runs that use the local clumping factor are marked with circles. All

runs use the W = 1 sampling function with different numbers of cells:

2563 (black solid line), 1283 (red long dashed lines) and 643 (blue short

dashed lines). We do not show the result of the 2563 run with C, be-

cause it gives identical results to the runs without C, meaning the grid

effectively resolves all the available density field data. As in Figure

3.15, the inclusion of the local clumping factor helps convergence of the

different resolution results. See text for further discussion.

box. On these grids there are many more N-body particles per Voronoi cell: on average

512 and 64 for 643 and 1283 grid, respectively. The effect of the inclusion of the local

clumping factor is as expected from previous results. Without the local clumping factors,

the I-fronts in the 643 resolution run are about 20% faster at final time than in the 2563
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Figure 3.17: The effects of excluding particles with overdensities higher

than 100 on the evolution of the ionized fraction in the L20N512 test

run. Line styles are the same as in Figure 3.16, with the addition of a

323 run (green dotted line). All runs used the local clumping factor. The

triangle symbol marks the runs that do not include high overdensity

particles in both the density field and the local clumping factor. The lo-

cal clumping factor applied on the density field without high overden-

sity particles gives a higher level of convergence of the global ionization

state.

run. With the clumping factors, the difference between runs is much smaller, with 643

run being just a few percent slower than the other two runs, that agree almost perfectly.

The test runs presented in Figs. 3.14 and 3.15 have not excluded the halo particles

(i.e. ∆thresh =∞). Removing them will decrease the very high recombination rate other-

wise found in source cells. Figure 3.17 shows the evolution of the mean ionized fraction
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with and without the halo particles in the density field. When the halo particles are ex-

cluded, the convergence of RT results improves even further (lines marked with triangle

symbols). Note that a further decrease in the RT grid resolution in the case when all par-

ticles are included starts breaking the convergence in evolution of xm (green dotted line

with circle symbols). We must remember that the clumping factor by itself is not a re-

placement for a properly resolved RT grid, but only a tool for representing the available

density data that is not resolved in practise. To get the best results, one should still use

the highest RT grid resolution possible9 The results presented in Figures 3.16 and 3.17

show that the local clumping factor helps in obtaining converged RT results in typical

reionization run conditions. We show this explicitly in Section 5.3.1.

3.5 Cosmological Strömgren sphere test

In this section we present the results of the cosmological Strömgren sphere test, per-

formed here with SimpleX for the first time. The test entails the evolution of a spher-

ically symmetric HII region in a uniform cosmologically expanding medium. This is

a test relevant for all cosmological radiative transfer applications, such as reionization

simulations.

In Section 2.4, we introduced the basic equations for the I-front expansion in physi-

cal (non co-moving) coordinates. To obtain the evolution of the radius of a spherically

symmetric I-front, RI , we substitute the flux at front interface, Eq (2.24) into the I-front

jump condition, Eq. (2.23):

nH
dRI
dt

=
1

4πR2
I

(
Ṅγ −

4π
3
αBn

2
HR

3
I

)
, (3.28)

where all the variables have been introduced in 2.4. Equating the terms in the bracket,

defines the Strömgren radius RS , Eq. (2.27), where the I-front speed becomes zero.

The HII region expansion given by Eq. (3.28) is modified for a density field in the

expanding Universe. Let us rewrite Eq. (3.28) in co-moving coordinates:

nH,c
dRI,c

dt
=

1
4πR2

I,c

(
Ṅγ −

4π
3
αBn

2
H,cR

3
I,ca
−3

)
. (3.29)

9At the moment, the highest number of RT cells used in a large-scale reionization simulation is 5123

(McQuinn et al., 2009), while the typical number is ≈ 2563 (e.g. Iliev et al., 2006a; McQuinn et al., 2007; Trac

& Cen, 2007). All these works use different N-body box sizes and mass resolutions, so a comparison of the

detail with which the density field is resolved is not straightforward.
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Here, we have included the scale factor a, introduced in Chapter 1, which relates the

physical and co-moving coordinates: RI = aRI,c for the HII region radius and nH =

nH,ca
−3 for the hydrogen number density. Equation (3.29) is simplified by the fact that

the peculiar velocity of the I-front dominates over the cosmic expansion speed, adRI,c
dt �

RI,c
da
dt , which is true for all typical sources (Shapiro & Giroux, 1987). Comparing Eqs.

(3.28) and (3.29) we see that the one difference is the a−3 term in the recombination rate

in Eq. (3.29), i.e. that the number of recombinations decreases with decreasing redshift.

This suggests that it is possible for an HII region never to reach its Strömgren radius.

We compare the SimpleX results against the work of Shapiro & Giroux (1987), who

have shown that Eq. (3.29) has an analytic solution in the matter-dominated Einstein-de

Sitter universe:

y(t) = λeλ
ti
t

[
t

ti
E2(λ

ti
t

)− E2(λ)
]
, (3.30)

where y ≡ [RI,c(t)/RS,c]
3, i.e. the co-moving position of the front in the units of the

co-moving Strömgren radius, RS,c =
[
3Ṅγ/4παBn2

H,c

]1/3
, λ = ti/trec,i = tiαBnH,c is the

ratio of the recombination time and the age of the Universe at the epoch of source turn-

on, and E2(x) ≡
∫∞

1
e−xt

t2
dt is the second order exponential integral. The scale factor is

normalised to the epoch of source turn-on, ai = 1.

The setup for the SimpleX run was as follows. The source was always turned on

at redshift zon = 20, but we varied the density of the medium to correspond to var-

ious overdensities of the mean hydrogen density in the Universe. Since reionization

in most of our runs starts at about z ≈ 20, we were more interested to see how Sim-

pleX models the transport through regions of different overdensities at that epoch. The

effect of increasing the density is equivalent to turning the source on at an earlier red-

shifts, since the density enters the solution only through the λ term. We assumed a

matter-dominated Universe, Ωm = 1, with baryonic component of Ωb = 0.045, Hubble

parameter h = 0.73 and finished the runs at z = 0. The source luminosity was set to

be Ṅγ = 1052 photons s−1h−2. Simulation box has the side length of 10 Mpc/h, chosen

so that the HII region never leaves the box for the density used. We use a 643 Voronoi

grid with randomly positioned cell nuclei and impose a constant density in the cell10.

During the run, we modify the Delaunay line lengths and cell densities to correspond

10Note that this is different from our grid creation procedure described in Section 3.3, where the grid is

created on equal mass N-body particles.
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to a(t) at every time step (sweep). We also tried evolving the density in various coarser

steps, equally spaced in log10a as in our reionization runs (see Chapter 5), and found

only negligible differences from the fine step density updates. We compute the position

of the I-front by assuming all the ionized atoms are located in a sphere centred on the

source, RI = 3
√

3VI/4π, where VI = (NHII/NH)V = xV is the volume of the ionized

region, V is the total volume of the computation box while NH and NHII are respectively

the total number of hydrogen atoms and the number of hydrogen ions in the box. This

was done because the unstructured Voronoi grid is unable to produce perfectly spherical

HII regions, especially at lower resolutions. Using the actual number of ionized atoms

to compute the front position allows for a comparison that is independent of the actual

grid.

Figure 3.18 compares the results from the SimpleX runs at two overdensities, ∆ = 1

and ∆ = 10, with the analytic results of Shapiro & Giroux (1987). The behaviour hinted

at by Eq. (3.29) is clearly observed here. As the density decreases due to the expansion

of the Universe, the recombination rate reduces, leading to an increase of the Strömgren

radius. This increase of RS is large enough to out-race the propagation of the I-front at

our chosen source turn-on redshift11 and RI,c < RS,c at all times. Therefore, the cosmo-

logical I-fronts are expected to remain very fast, R-type (see Section 2.4), throughout the

lifetime of the source. This result provides the rationale for ignoring the effects of the ra-

diation driven gas flow in large-scale reionization simulations, which is the assumption

we adopt in our work (Chapter 5).

The original results we obtained with the SimpleX method are presented with the

green X symbols. Even at moderate overdensities, ∆ = 10, the result does not agree with

the analytic solution. Even worse, the SimpleX method seems to produce unphysical

results: I-fronts that reach beyond their Strömgren radius (points above the y-axis value

of one). The root of this problem is, once again, an inadequate RT computational grid.

As the density is uniform, the issue is not the representation of the density field we

discussed in Section 3.4. Instead, it is purely a result of inadequate spatial resolution.
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Figure 3.18: The evolution of the co-moving I-front position in an ex-

panding density field. The I-front positions are given in units of the co-

moving Strömgren radius, RS,c computed at source turn-on redshift,

zon = 20. Bottom set of curves represents runs at the mean density,

∆ = 1, while the top ones represent moderately overdense regions,

∆ = 10. The black solid lines give the analytic solution (see text), while

the two sets of symbols represent SimpleX runs: green X symbols give

the result of the original SimpleX implementation while the plus sym-

bols represent the runs with the new, volume interpretation of the ion-

ized fraction. See text for further discussion.

Volume interpretation of the ionized fraction

As we pointed out in Section 3.4.2, the values in computational cells are averages of

continuous field values over the cell volumes. The recombination rate in a cell can be
11For higher turn-on redshifts (or overdensities), the I-front can reach the Strömgren sphere in the early

evolution. See Shapiro & Giroux (1987) for more details.
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Figure 3.19: Diagram showing the actual distribution of ionized gas in

the case when a whole HII region is contained within one cell. In that

case, we know that all of the ions, Nion,i are located in a sphere around

the source, Vion,i. The total volume and number of atoms in the cell are

Vi and Ni, respectively.

written as:

Ṅrec = α〈x〉2nH
2V. (3.31)

This is the same as Eq. (3.17), but since the density field is uniform in each cell, the re-

combination rate depends only on the ionized fraction x. The usual assumption (and the

one used by the original SimpleX implementation) is that the ionized fraction is constant

throughout the cell. This is accurate for optically thin cells, but becomes increasingly

incorrect for optically thick cells. To understand why, first recall the relation between the

optical depth of a cell and the mean free path: τ = l/λ, where l is a spatial dimension of

the cell (e.g. the Delaunay line in the SimpleX scheme) and λ = (σnHI)−1 is the mean free

path. Secondly, as we discussed in Section 2.4, the I-front thickness is of order of a few

mean free paths, e.g. for an I-front driven by Lyman limit photons only (hνth = 13.59 eV)

has the thickness of≈ 18λ (Ritzerveld, 2007, see also Test 1 results in Fig 2.6). This means

that an I-front crossing the grid will be fully contained in a cell with τ & 18. For even

higher optical depths, τ & 100, the I-front thickness will only correspond to a small

fraction of the cell’s spatial dimension, so one can assume that it represents an infinitely
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sharp transition between neutral and ionized regions, see Eq. (2.23).

The average value 〈x〉 used in Eq. (3.31) cannot distinguish between these two ex-

treme cases. For example, 〈x〉 = 0.5, either when the whole cell has x = 0.5 (uniformly

ionized cell) or when 0.5V of the cell is fully ionized (x = 1) and the rest is neutral, which

occurs when a sharp front crosses half of an optically thick cell. However, the recombina-

tion rate should not be the same in those two cases. The left panel of Fig. 3.19 shows an

example of the latter case: a very optically thick cell holding a radiation source around

which a spherical HII region is expanding. In that case, the ionized fraction should be

interpreted as the fraction of the cell volume V that is completely ionized, Vion = 〈x〉V . As

only ionized gas can recombine, the recombination rate is:

Ṅvol
rec = αnH

2Vion = α〈x〉nH
2V, (3.32)

where we assume that x = 1 in Vion.

Comparing Eqs. (3.31) and (3.32), we see that the recombination rate in a cell depends

on how we interpret the mean ionized fraction in that cell. The right panel of Fig. 3.19

shows the consequences of two interpretations we are discussing for a highly optically

thick cell presented in the left panel. When 〈x〉 is interpreted as the fraction of the volume

to be ionized and Eq. (3.32) used to compute the recombination rate (red pluses), the

exact analytic solution, given in Eq. (2.25) (black solid line), is reproduced. This is no

surprise since using the volume interpretation of 〈x〉 in a cell is equivalent to solving

the I-front jump condition, Eq. (3.28). On the other hand, assuming that 〈x〉 represent a

uniformly ionized cell, with x(~r) = 〈x〉 throughout the cell as is assumed in Eq. (3.31), the

obtained I-front speed (or the number of neutral atoms ionized per unit time) is incorrect

and leads the front to surpass its Strömgren radius (green X symbols). Comparison of

Eqs. (3.31) and (3.32) shows that the difference in the recombination rate evaluated with

two interpretations is exactly 〈x〉 i.e. the assumption of uniformly distributed x leads to

〈x〉 times fewer recombinations produced per unit time in very optically thick cells.

This is exactly the issue that leads to the wrong results in Fig 3.18 (green X symbols):

due to limited spatial resolution and very high density in cells, the optical thickness is

very high (τ & 100) meaning that x is to be interpreted as a fraction of volume that is

fully ionized. The original SimpleX rate equation solver, Eq. (3.13), does not discriminate

between the scenarios we described here. Instead, it always uses Eq. (3.31) to evaluate

the recombination rate which is an underestimate in the conditions of this test. A simple
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switch to using Eq. (3.32) produces excellent agreement between SimpleX results and

the analytic solution of Eq. (3.30) (red pluses).

Simply using Eq. (3.32) instead of Eq. (3.31) in all possible problems is also incorrect

as it will overestimate the recombination rate in optically thin cells. We therefore use

each when it is appropriate. We use the volume interpretation if the optical thickness in

the cell is τ > 10, i.e. if the I-front is resolved by less than 2 cells. Since the cells always

transition to the optically thin regime when they are fully ionized (see Fig. 2.12), the clas-

sic interpretation of the ionized fraction will always be used. The volume interpretation

is therefore necessary only for highly optically thick cell in the process of being ionized.

This is still a very important contribution, since highly optically thick cells remain opti-

cally thick for almost all values of x, as demonstrated by the ∆τ = 100 result in the left

panel of Fig. 2.12.

Finally, this issue is not specific to SimpleX. Indeed, any method that uses Eq. (3.31)

exclusively will underestimate the recombination rate in the very optically thick cells.

The solution we discussed in this section is therefore complementary to the photon con-

servation idea of Abel et al. (1999): where their fix guarantees the correct number of

ionizations in the optically thick cell, ours does the same for recombinations.

3.6 Parallelization

Dividing up an RT problem in order to solve it in parallel is different from hydrodynam-

ics or gravity problems. The “area of influence” of radiation is much larger than that of

gas flow, due to the vastly different characteristic speeds. This non-locality of influence

is similar to that of gravity, but with an important distinction: for gravity one density el-

ement act on another at some distance without any interference from all other elements.

This is not true for radiation, as the energy arriving from one element to the other de-

pends on all the matter between the two. The subdivision of an RT problem for optimal

parallel performance is complicated by the fact that the number and spatial distribution

of active computational cells changes in unpredictable ways. As an example, consider

the evolution of an HII region around an isotropically radiating source in an uniform

density field. We can chose to divide the volume so that the number of cells affected by

radiation energy is equal on each processor used, by splitting the volume around the ra-
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diation source. The number of cells affected by radiation increases with the expansion of

the HII region, but when the subdivision is symmetric this increase will be equal on all

processors. Any departure from these “ideal” conditions will break the load balancing

e.g. if the density field is not uniform the I-front will expand faster in some directions

than others. Indeed, one needs to know the solution of the problem to plan a proper

division in advance, which in a sense negates the whole point of modeling it.

The original SimpleX could not be run in parallel. In fact, this was used as an example

of the method’s efficiency: interesting RT problems can be modelled on a single desktop

machine. While this is certainly impressive, we wanted to get the highest possible speed

out of the scheme, which necessarily meant using a multi-processor machine. To avoid

the issues with domain decomposition discussed in the previous paragraph, we chose

to use shared memory parallelism paradigm and used the OpenMP programming direc-

tives. In a shared memory implementation, the whole computational domain is visible

to all processors. The loops to be executed by multiple threads are marked by simple

compiler directives. Since the cell indices are not correlated with the spatial distribution

of cells, simply executing equal-sized chunks of a loop over cells on each thread pro-

vides, on average, good load balancing. This is not strictly true when the mean ionized

fraction of the whole volume is low, but in that case the total operation count is small

anyway.

In order to use OpenMP to parellelize the scheme, we had to make a small change

to the way the photon packets are moved on the Delaunay grid. We already discussed

the sweeps in Section 3.2.3. In the original, serial implementation, photon packets are

moved at every cell visitation. In some compositions of the grid, this can result in pho-

ton packets that are moved more than once per sweep. For example, say that a photon

packet is moved from cell with index i to cell with index j. If j > i the photon packet

will be moved again once the cell j is visited later on in the sweep. This scheme can lead

to undefined behaviour in a multi-threaded implementation (i.e. two threads simultane-

ously accessing the same memory register). Furthermore, the final result depends on the

order in which the grid is swept. To avoid this problem, we split photons transported

along a Delaunay line into the incoming and outgoing photons. When a photon packet

is moved from cell i to cell j, it is written in the outgoing section of cell i. Once all the

photons have been moved, the outgoing section of i is copied to incoming section of



3. Radiative transfer with SimpleX 129

j, which is then propagated further in the next sweep. This implementation results in

photon packets that move only once per sweep and no simultaneous memory access by

multiple threads.

The creation of the Delaunay triangulation was also parallelized with OpenMP. For

that purpose, the whole domain is divided into equal volume cubes and each of them

is triangulated individually. In order for the triangulation to be correct (i.e. identical to

the one created serially over the whole volume), every cube needs to have a boundary

region populated with grid points from neighbouring cubes. If the density field is very

irregular, this implementation will not provide sufficient load balancing. Fortunately,

for the high redshifts and the box sizes we employ for simulation reionization, this is not

the case. Furthermore, the triangulation part of the computation takes a smaller fraction

of the time compared to actual sweeps, thus not requiring further optimisation.

Finally, while not used for any runs presented in this thesis, we have also developed

a version of the code for distributed memory machines. This version is “multi-threaded”

to take advantage of machines that have multiple cores on a single node. Such a node

can act as an independent shared memory machine. We distribute the computational

domain in planes nodes. Then, on every node we use the original OpenMP implementa-

tion to evolve the radiation field. With this we reduce the number of boundary regions

that need to be used to set up the triangulation and to communicate between distributed

regions, thus reducing MPI communication cost. Before we proceed with the RT calcu-

lation, we test whether the triangulation was properly created (by comparing the neigh-

bours of cells in boundaries with the same cells in the main region on another node) and

make a list of all Delaunay lines that connect regions on different nodes. The fact that

we distribute larger domains means that the number of particles is better load balanced

i.e. distributed volumes have on average the same density. This implementation will be

tested in more detail and used in our future work.

3.7 Conclusions

This chapter presented the SimpleX radiative transfer scheme. The main strengths of

the scheme include an operation count that is independent from the number of ra-

diation sources (much more efficient when many sources are present as compared to
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characteristics-based scheme, such as HC, Chapter 2), an adaptive grid representation of

the density field (an important factor in resolving the range of densities in a cosmologi-

cal density field) and the replacement of the ray-tracing procedure with the construction

of the grid itself (Delaunay lines used as paths for photon packets). All these features

make SimpleX an attractive method for simulation the reionization process and we jus-

tified our choice by comparing its strengths and weaknesses with other codes used for

the same purpose in Section 3.2.4.

All of the tests and improvements we introduced in this chapter were motivated

by our use of SimpleX in large-scale reionization simulations. First, in Section 3.3.1 we

showed that the perceived inaccuracy of the SimpleX method in the Test 4 of Iliev et al.

(2006b) code comparison is completely due to the point sampling scheme used in the

original implementation. We argued that the original sampling strategy, based on Eq.

(3.7) was motivated by scaling arguments unattainable in practise and showed that our

preferred sampling procedure, based on matching the scales present in the density field,

results in much better agreement with other codes in the Test 4 problem. We elaborated

on the point sampling process with further tests in Section 3.3.2. The runs we performed

on single snapshots of N-body data, mirroring a step of a procedure we will use in Chap-

ter 5 to model reionization, showed that the RT results may depend on the point selection

and grid resolution. However, the cause of these differences is not native to the SimpleX

scheme, but a consequence of representing the detailed density field on coarser discrete

computational grids.

We focused on this issue in Section 3.4. There, we argued that the root of differences

seen in Section 3.3.2 is the “smoothing” of the N-body density field by the computa-

tional grid used to represent it. We introduced the clumping factor as a numerical tool

to combat this issue. We showed that using a clumping factor evaluated locally in each

computational cell can indeed result in much better convergence of RT results, a claim

demonstrated by repeating tests from Section 3.3.2 in Section 3.4.3. Equally important,

we showed that the common use of a single clumping factor as a representation of the

sub-cell density field, as is commonly done in most other reionization modeling work, is

inadequate and may lead to severe overestimates of the recombination rate, as demon-

strated in Fig. 3.13. Indeed, taking into account the definition of the clumping factor we

introduced at the beginning of the same section, a single value of C can be considered
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an accurate representation of the density field only in the volume in which it was com-

puted. We conclude that an accurate representation of gas clumping in a computational

cell must take into account both the cell’s local density and its spatial size, as shown in

Fig. 3.11.

In Section 3.5 we tested the SimpleX scheme on the problem of an HII region prop-

agating through a density field that expands with the Universe, for which the analytic

solution was provided by Shapiro & Giroux (1987). The test results we obtained pointed

out the issue of correctly computing the recombination rate in very optically thick cells.

There, we introduced a simple fix to the recombination rate evaluation, based on rein-

terpretation of the ionized fraction in the cell as a fraction of the cell volume that is fully

ionized, and showed that it completely fixes the issue. We pointed out that the recom-

bination rate of optically thick cells is the other side of the coin presented in the work

of Abel et al. (1999), who only fix the ionization rate with what has been called spatial

photon conservation in Chapter 2.

Some of the work presented here, namely the clumping factor as a tool for RT con-

vergence, will be elaborated upon further in Chapter 5. For now, we conclude that the

improved SimpleX scheme is a fast and accurate method for simulating RT during the

reionization epoch. =
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Chapter 4
GALFORM: modelling

the galaxies that reionize

the Universe

4.1 Introduction

On the list of potential sources of photons that reionize the Universe, the most plausible

dominant sources are the galaxies (see the discussion in Chapter 1). However, the obser-

vations of galaxies at redshifts of EoR are still scarce. We must therefore turn to theory to

obtain estimates of the production of ionizing photons by galaxies during reionization.

For that purpose, we employ the Durham semi-analytic galaxy formation and evolu-

tion model, GALFORM (Cole et al., 2000). The current theory of galaxy formation rely

heavily on the ΛCDM cosmological paradigm and the hierarchical buildup of structure

discussed in Chapter 1. The key elements of the theory were put forward by Fred Hoyle

some fifty years ago. Hoyle (1951) suggested that the source of galactic rotation are the

tidal torques that affect the collapsing gas, later expended upon by others (e.g. Peebles,

1969; Doroshkevich, 1970; White, 1984; Catelan & Theuns, 1996). Hoyle (1953) also in-

troduced the cooling time argument to explain observed galaxy masses. This idea was

elaborated on by Rees & Ostriker (1977) and Silk (1977). White & Rees (1978) combined

the cooling arguments with the theory of Press & Schechter (1974) laying the foundation

of the modern galaxy formation theory.

The semi-analytic models of galaxy formation, one of which is GALFORM, aim to

treat the relevant physics in a simplified manner which allows the use of analytic or easy

numerical solutions. The first semi-analytic galaxy formation model was introduced by

White & Frenk (1991), who expanded on the work of White & Rees (1978) by includ-

133
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ing many features present in today’s models: gas cooling, star formation, feedback ef-

fects and stellar population models (see also Cole, 1991; Lacey & Silk, 1991; Kauffmann

et al., 1993a; Cole et al., 1994). The alternative to this approach are the numerical sim-

ulations that explicitly solve the relevant gravitational and hydrodynamical equations

using some of the numerical techniques developed for this purpose (e.g. Crain et al.,

2009; Schaye et al., 2010, to name recent examples). The semi-analytic approach makes

several important simplifications, e.g. the assumption of spherical symmetry. Simula-

tion methods cannot include the physics that occurs below their resolution limit and

treat such unresolved physical processes phenomenologically, in a way similar to semi-

analytic methods. The two approaches are complementary and have been shown to

agree fairly well (e.g. Pearce et al., 1999; Benson et al., 2001).

The GALFORM models have been carefully calibrated using a wide range of avail-

able observational data that sketches an empirical picture of galaxy formation and evo-

lution. Major breakthroughs in observations of high redshift galaxies have been made

in the final years of the 20th century. For example, the Hubble Space Telescope (HST)

and its Deep Field project (Williams et al., 1996; Ferguson et al., 2000) provided crucial

information for understanding early galaxy formation. The Deep Field data played a

part in the first determination of the cosmic star formation history and accompanying

metal production history from z ≈ 5 to the present day (Madau et al., 1996; Ellis, 1997;

Madau et al., 1998). On the other hand, the development of the Lyman-break dropout

selection technique (Steidel et al., 1996a) provided both ground based telescopes and

the HST with an efficient method for identifying high-z star-forming galaxies (z & 3).

Further technological advances lead to the discovery of sub-millimetre galaxies, a pop-

ulation of star-forming galaxies at z ≥ 2 that were too heavily obscured by dust to be

easily found in the optical surveys (Smail et al., 1997; Ivison et al., 1998; Blain et al., 2002,

for a review). Yet another route for finding young star-forming galaxies at high redshifts

is by detecting their Lyman alpha emission (e.g. Hu et al., 2004; Taniguchi et al., 2005;

Kashikawa et al., 2006; Ouchi et al., 2008). Our knowledge of the galaxies in the Local

Universe has also been vastly improved by several large galaxy survey programs such

as the two-degree Field Galaxy Redshift Survey (2dFGRS, Colles et al., 2001) and Sloan

Digital Sky Survey (SDSS, York et al., 2000) leading to among other things the precise

determination of the galaxy luminosity functions in various bands (e.g. Kochanek et al.,
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2001; Norberg et al., 2002; Nakamura et al., 2003; Pozzetti et al., 2003). GALFORM mod-

els have been shown to be able to reproduce a large fraction of this huge pool of data,

giving it credence as a model of the galaxy formation process.

Most importantly for the subject of this thesis, in the last year the observations have

begun to reach the redshifts relevant to the study of reionization: for example, the

Lyman-break technique has been used to observe galaxies as high as z ∼ 10 (Bunker

et al., 2004; Bouwens et al., 2007, 2009a,b; Oesch et al., 2009). This new data allows us

to compare (and potentially adjust) GALFORM models to the galaxies near the end of

reionization as predicted by the CMB data, potentially providing a first direct glimpse

to the sources causing the EoR. Finding a significant agreement with this data would

further strengthen the case for using GALFORM galaxies as sources of ionizing photons

during reionization.

We will use the GALFORM code to model galaxies during EoR, and in particular to

investigate how reionization progresses if GALFORM galaxies are used as sole sources

of ionizing photons. Before proceeding to couple GALFORM sources with our chosen RT

method (SimpleX, discussed in Chapter 3), we must examine whether it is appropriate

for this purpose. GALFORM was already used to study some aspects of the reionization

of the Universe, such as the effect of photoionization on galaxy formation (Benson et al.,

2001, 2002a,b) or the global history of reionization (Benson et al., 2006). These previous

models included some of the main physical processes, such as a detailed treatment of

gas cooling in the presence of ionizing radiation, but modelled the radiative transfer ef-

fects in a very simplified manner. This is why they mostly focus on simply counting the

number of ionizing photons without going into more details about their origin or prop-

agation. The discussion of ionizing emissivity we present in this chapter is an expansion

of that previous work, focusing mostly on which galaxies dominate the ionizing emis-

sivity, an important component in full RT simulations in that it may affect the spatial

distribution of HII regions (McQuinn et al., 2007).

The organisation of the Chapter is as follows. In Section 4.2, we briefly present the

basic ingredients that make up the GALFORM scheme. This discussion is based mostly

on the paper by Cole et al. (2000), which originally presented GALFORM. The scheme

was later updated and used by a number of authors (e.g. Benson et al., 2003; Baugh et al.,

2005; Bower et al., 2006; Lacey et al., 2008). In Section 4.3, we discuss the most important
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model parameters in terms of the production of ionizing photons. Section 4.4 presents a

comparison of predictions of GALFORM models (varying some of the same parameters

as in Section 4.3) with the recently observed Lyman-break galaxy data at z ∼ 6 − 10.

Finally, in Section 4.5, we discuss the ionizing emissivities predicted by GALFORM runs

performed on N-body data with limited mass and spatial resolution, as will be the case

in our full reionization runs in Chapter 5.

4.2 The GALFORM semi-analytic method

In this section we briefly describe the key components of the GALFORM semi-analytic

model of galaxy formation. The discussion borrows heavily from Cole et al. (2000),

to which we refer the reader interested in a more detailed presentation of the scheme.

We present the generation of dark matter halo merger trees (Section 4.2.1), the assumed

structure of said halos (Section 4.2.2), gas cooling (Section 4.2.3), star formation (Section

4.2.4), stellar population modelling (Section 4.2.5), galaxy mergers (Section 4.2.6), photo-

ionization feedback parameters (Section 4.2.7) and the default Durham GALFORM pa-

rameters (Section 4.2.8).

4.2.1 Dark matter halo merger trees

In the current paradigm, the galaxies form at the centres of dark matter halos. The dark

matter provides the gravitational scaffolding for the forming galaxy. The evolution of

galaxies will depend on the merger histories of the halos containing them, so it is imper-

ative to have an accurate description of how every halo evolves through mass accretion

and hierarchical merging.

The halo merger histories (also called merger trees, due to their specific visual repre-

sentation) for use in the GALFORM model can be obtained in two ways: generated with

a Monte-Carlo algorithm or directly extracted from N-body simulations.

Monte-Carlo merger tree generation algorithm

The dark matter halo merger trees can be generated without any numerical calculations

of structure formation using a technique based on the extension of the Press-Schechter

formalism (Press & Schechter, 1974) as proposed by Bond et al. (1991) and Bower (1991).
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The algorithm is described in Cole et al. (2000) and here we present the basic idea behind

it.

Lacey & Cole (1993) derived the equation for the average fraction of mass, f12(M1,M2)dM1,

found in a halo of mass M2 at time t2 that was, at an earlier time t1, found in halos with

masses between M1 and M1 + dM1:

f12(M1,M2)dM1 =
1√
2π

δc1 − δc2
(σ2

1 − σ2
2)3/2

× exp
[
−(δc1 − δc2)2

2(σ2
1 − σ2

2)

]
dσ2

1

dM1
dM1, (4.1)

where σ1 and σ2 are the linear theory root mean squares (rms, abbreviated) of den-

sity fluctuations in spheres of mass M1 and M2, while δc1 and δc2 are the critical linear

overdensity thresholds for collapse at times t1 and t2. In an Einstein-de Sitter Universe

(Ωm = 1), the assumed time dependence of the critical density is δc = 1.686(1 + z), while

for low-Ω0, open and flat universes the expressions for δc are given by Lacey & Cole

(1993) and Eke, Cole & Frenk (1996), respectively.

In the limit of t1 → t2, Eq. (4.1) leads to an expression for the average mass fraction

of a halo of mass M2 which was in halos of mass M1 at a slightly earlier time:

df12

dt1

∣∣∣
t1=t2

dM1dt1 =
1√
2π

1
(σ2

1 − σ2
2)3/2

dδc1
dt1

dσ2
1

dM1
dM1dt1. (4.2)

This leads to the number of halos of mass M1 at the earlier time dt1 that will become a

part of a halo of mass M2:
dN
dM1

=
df12

dt1
M2

M1
dt1, (4.3)

valid whenM1 < M2. Introducing the parameter,Mres, which is the minimum halo mass

to be considered in the merging hierarchy, Eq. (4.3) can be used to compute:

P =
∫ M2/2

Mres

dN
dM1

dM1, (4.4)

which is the mean number of progenitor halos with masses in the range Mres < M1 <

M2/2. For mass conservation, it is important to know the fraction of halo mass M2 that

comes from “unresolved” halos, M1 < Mres. Again using Eq. (4.3), this fraction is:

F =
∫ Mres

0

dN
dM1

M1

M2
dM1. (4.5)

Equations (4.4) and (4.5) are the main tools for constructing the merger trees. Given

the required mass of the final halo, its merger tree is built with the following procedure.

First, note that both Eqs. (4.4) and (4.5) depend on the choice of dt1, through the use
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of Eq. (4.3). A sufficiently small time step dt1 is used to have P � 1, meaning that it

is unlikely that the halo had multiple mergers during dt1. Next, a random number R

is generated in the interval between 0 and 1. If R > P , the halo is assumed to have

only one progenitor in the time step i.e. the halo did not go through any mergers. Its

mass still increased in that time by accretion, so the mass of the progenitor is set to be

Mp = M2(1 − F ), where the fraction F comes from Eq. (4.5). On the other hand, if

R < P , the halo is assumed to have grown through both a single merger and accretion.

The mass of the merging halo, M1 is drawn randomly from the distribution defined by

Eq. (4.3), while the mass of the accreting halo is Mp = M2(1− F )−M1. This procedure

is recursively performed on all generated halos until the mass resolution limit, Mres is

reached.

This procedure results in a binary-type tree with very fine time resolution. Before the

semi-analytic galaxy formation prescriptions are applied, the binary tree is converted to

a new one with a coarser time resolution, where the number of time steps is also an input

parameter, Nsteps.

The merger trees are also divided into “branches” that define the lifetime of each

halo in the tree. Each “leaf” progenitor (the halo that has no progenitors itself) is fol-

lowed until it becomes a part of a halo with fform times its original mass. This procedure

leads to the definition for the halo formation times: a new halo is “born” at the point

where the mergers produce a halo which is fform times more massive than its most mas-

sive progenitor. Cole et al. (2000) set fform = 2 to agree with the earlier tree generation

technique (Cole et al., 1994), but the final results of the galaxy formation model do not

depend strongly on the actual choice. In this work, we employ a modified version of the

algorithm designed to produce a closer fit to merger trees in the Millennium simulation

(Springel et al., 2005b), was described by Parkinson et al. (2008).

Generation of merger trees from N-body simulation outputs

Alternatively, the dark matter halo merger trees employed by GALFORM can be con-

structed using outputs of N-body simulations using a technique developed by Helly

et al. (2003). As a first step, the halo catalogue must be extracted from every N-body

simulation snapshot. The method of Helly et al. (2003) uses the friends-of-friends (here-

after FOF) algorithm (Davis et al., 1985) for this purpose, which connects all the particles
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with separations smaller than some chosen value, b, usually expressed in the units of

mean inter-particle separation. Once the halos are identified in each simulation output,

they are connected in a merger tree. For every pair of snapshots, at times t1 and t2 where

t1 < t2, halos at time t1 are marked as progenitors of whichever halo contains the largest

fraction of its particles at t2. Repeating this procedure for all snapshots leads to fully

fleshed out merger trees of halos at the final time. Special care is taken to correct the

FOF “bridging” issue, where the algorithm artificially connects two separate halos into

a single structure.

The mass resolution limit, which is a free parameter in the previously described MC

tree construction technique(Mres), is dictated by the minimum number of particles,Nmin,

that must be connected by the FOF algorithm for that group to be considered a halo, with

the exact choice motivated by the need for the group to be numerically well defined. Our

choice throughout this thesis is Nmin = 20. The cosmological parameters and Nsteps,

input parameters in the MC tree-generating technique, are now also given by the N-

body simulation.

The generation of N-body merger trees that we use in this thesis also employs the

SUBFIND code (Springel et al., 2001), which identifies bound dark matter structures

within every FOF halo by searching for overdense regions using the local SPH density

estimate. The substructures are defined as regions bounded by an isodensity surface that

traverses a saddle point of the density field and are gravitationally bound systems. The

halos in the merger tree are still identified by the FOF finder, but the SUBFIND output is

used to better separate artificially merged halos and to provide positions for individual

galaxies within the halo. These updates to the scheme have been previously discussed

in Harker et al. (2006).

The main difference between the N-body and MC merger trees is that, in the former

case, the halo mass can decrease with time. The number of particles in a halo can de-

crease both due to tidal striping and the use of the FOF group finder. In terms of the

semi-analytic model, this results in negative mass accretion rates leading to unphysical

results. To avoid this, Helly et al. (2003) chose to enforce the mass conservation by in-

creasing the mass of affected halos to ensure that the accretion rate is always positive.

Regardless of this difference, it was found that the galaxy formation model results do not

strongly depend on the exact way the merger trees are obtained. In Section 4.5, we will
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compare the ionizing photon emissivities obtained from both merger tree construction

techniques.

4.2.2 Structure of dark matter halos

The merger history is not the only information about dark matter halos needed by the

galaxy formation model. First, as we already mentioned in the introduction, the galaxy

spin is thought to be a consequence of the angular momentum of dark matter halos, itself

caused during the halo collapse by tidal torques resulting from matter inhomogeneity

(Fall & Efstathiou, 1980; Mo et al., 1998). The amount of angular momentum gained by

the halo in this fashion is conventionally described by a dimensionless spin parameter:

λH =
JH|EH|1/2

GM
5/2
H

, (4.6)

where JH is the total angular momentum, EH the total energy (potential and kinetic)

and MH the total mass of the halo. The distribution of halo spin parameters has been

extensively studied using N-body simulations (e.g. Efstathiou & Jones, 1979; Barnes &

Efstathiou, 1987; Frenk et al., 1988; Catelan & Theuns, 1996; Cole & Lacey, 1996; Bullock

et al., 2001; Bett et al., 2007). These studies generally agree in the shape of the distribu-

tion, finding that it only weakly depends on the halo mass and initial density fluctuations

spectrum. By default, GALFORM uses the log-normal probability density function of λH

given by Cole & Lacey (1996) to assign a spin parameter to each newly created halo (the

criterion for halo creation was discussed in Section 4.2.1). Alternatively, the fit from the

Millennium simulation obtained by Bett et al. (2007) can also be used.

The key assumption made GALFORM and many other semi-analytic models (e.g.

Lacey & Cole, 1993; Kauffmann et al., 1994; Somerville & Kolatt, 1999; Hatton et al., 2003)

is that the gas has initially the same angular momentum as the dark matter halo, and that

angular momentum is conserved as the gas collapses. This assumption leads to a good

agreement with observed disc sizes (e.g. Mo et al., 1998; de Jong & Lacey, 2000; Cole

et al., 2000), though the typical scalelengths depend on other parameters as well (e.g.

Cole et al. (2000) demonstrate the role of supernova feedback on the disc sizes). Note that

numerical simulations struggle to reproduce the observed disc sizes, due to the angular

momentum transfer between baryons and dark matter, possible due to numerical or

limitations of the simulations (e.g. Okamoto et al., 2003; Governato et al., 2004).
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As we will discuss in the following section, not all of the gas found in the halo will be

capable of cooling and taking part in the formation of the galaxy. To obtain the angular

momentum of the fraction of gas that does cool, the distribution of matter within the

halo must be known. GALFORM models the halo dark matter density using the NFW

profile (Navarro, Frenk & White, 1996, 1997):

ρ(r) =
∆virρcrit

f(aNFW)
1

r/rvir(r/rvir + aNFW)2
(r ≤ rvir), (4.7)

where f(aNFW) = ln(1 + 1/aNFW) − 1/(1 + aNFW). The virial radius of the halo, rvir

is the radius at which the mean density in the halo is ∆vir times the critical density,

ρcrit = 3H2/(8πG). The value of the virial overdensity ∆vir in GALFORM is given by

the spherical top-hat collapse model (e.g. Coles & Lucchin, 2002, mentioned in Chapter

1) and is ∆vir = 178 for an Einstein-de Sitter Universe (Ω0 = 1)1. Expressions used for

evaluating ∆vir in low-Ω0, open and flat universes were supplied by Lacey & Cole (1993)

and Eke et al. (1996). The NFW profile has one free parameter, aNFW, which gives the

scalelength measured in units of the virial radius which can be varied to provide the

density profile fits for a wide range of halos found in N-body simulations. This free

parameter also correlates with the halo mass and the analytic fit of this relation provided

by Navarro et al. (1997) is used in GALFORM to set the halo density profiles.

GALFORM assumes that the rotational velocity is constant in concentric shells of

material in the halo (remember that the density profile in Eq. (4.7) depends on r only)

and always aligned in the same direction, which is a picture broadly consistent with

simulations (e.g. Warren et al., 1992; Cole & Lacey, 1996). This, together with Eqs. (4.7)

and (4.6), leads to the mean rotational velocity of the shells:

Vrot = A(aNFW)λHVH, (4.8)

where A(aNFW) is a dimensionless coefficient weakly dependent on aNFW and VH ≡

(GM/rvir)1/2 is the circular velocity of the halo at rvir. The derivation of Eq. (4.8) is given

in Appendix A of Cole et al. (2000).

The assumption of conservation of the angular momentum and Eq. (4.8) allow us

to estimate the amount of angular momentum added to the galaxy by the cooling gas.

1We already mentioned this value in Chapter 3, when choosing the threshold overdensity to exclude

halos from the density fields for reionization simulations
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Note, however, that the gas distribution is not exactly equal to that of dark matter, given

by Eq. (4.7). We return to this issue in the next section.

4.2.3 Gas cooling

The cooling of gas in dark matter halos is the foundation of current galaxy formation

theory. As we discussed in Chapter 3, the assumption of gas as a perfect tracer of dark

matter holds on large, linear scales. When an overdense region decouples from the Hub-

ble flow, it begins the collapse eventually resulting in the formation of a virialized halo.

The gas is thought to be heated by shocks associated with the virialization process to

about the virial temperature of the halo (e.g. Peacock, 1999):

Tvir =
1
2
µmu

k
V 2

H, (4.9)

where µ is the mean molecular weight of the gas andmu is the atomic mass unit. The gas

is also thought to reach hydrostatic equilibrium. We will call this gas “hot” to distinguish

it from the “cold” gas that is found in galaxies. A first order approximation for the

density distribution of the hot gas would be to assume that it traces the dark matter,

therefore that is distributed according to the NFW profile, Eq. (4.7). GALFORM takes

a different distribution, one motivated by the results of high-resolution hydrodynamic

simulations of galaxy cluster formation (e.g. Navarro et al., 1995; Eke et al., 1998; Frenk

et al., 1999) which find the shock-heated gas to be less centrally distributed than the dark

matter. The assumed distribution in the GALFORM is:

ρgas(r) ∝ 1/(r2 + r2
core), (4.10)

where rcore is the β-model parameter used to fit the results of the simulations (Cavaliere

& Fusco-Femiano, 1976). Since the hot gas is less centrally concentrated, as seen in Eq.

(4.10), assuming that it has the same mean rotational velocity as the dark matter, given

by Eq. (4.8), will result in it having a slightly higher angular momentum than the dark

matter. To avoid this, the gas is assumed to have a somewhat different (but still constant

with radius) rotational velocity, V gas
rot , defined so that the gas and dark matter have the

same angular momentum within the virial radius.

With the known density distribution of gas and its temperature, assumed to be con-

stant throughout the halo and given by Eq. (4.9), we can define the cooling time on
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each radius as the ratio of thermal energy density to the cooling rate per unit volume,

ρgasΛ(Tgas, Zgas):

tcool(r) =
3
2
µmu

kTgas

ρgas(r)Λ(Tgas, Zgas)
. (4.11)

Here, ρgas is given by Eq. (4.10), Tgas = Tvir is the gas temperature and Zgas is the metal-

licity. The cooling function, Λ(Tgas, Zgas), is provided by Sutherland & Dopita (1993).

Using Eq. (4.11) we can introduce the cooling radius at time t since the formation of

the halo, rcool, as the radius at which tcool = t. The cooling radius gives the amount of

gas that can cool within the time t, hence losing pressure support leading to collapse.

The amount of gas that actually collapses does not depend solely on the cooling time

scale, but also on how much of it is able to reach the centre of the halo if it collapses

under the influence of gravity alone. This time scale is estimated by the free-fall time

(e.g. Lang, 1999, introduced in Chapter 1), which allows us to define the free-fall radius,

rff(t), which limits the amount of gas that is able to fall onto the halo centre.

Finally, to compute the amount of gas that is able to collapse and be accreted onto

the galactic disc within one GALFORM time step, ∆t, the radius rmin = min[rcool, rff ] is

computed at times t and t + ∆t marking the shell of material that cools and collapses

within ∆t. If Mshell is the mass within this shell then:

Ṁcool =
Mshell

∆t
, (4.12)

is the cooling rate, the rate with which the galactic halo is supplied with fresh cold gas.

This rate enters the system of differential equations that describe star formation, chemi-

cal enrichment and various feedback effects.

4.2.4 Star formation

The lack of a complete theory of star-formation may be the main missing element in

understanding galaxy formation and evolution. The processes grouped under the star

formation umbrella convert the cold gas to luminous stars, which in turn affects the state

of the gas through various feedback processes. A simple treatment of all these processes

has been shown to be sufficient for reproducing many observations of how the galaxies

evolve. In the previous section, we showed how to obtain the amount of gas that cools

and becomes available for star formation. Given the amount of cold gas available in the

galaxy, Mcold (which is increased by accretion of cooling gas at the rate Ṁcool introduced
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in the previous section), GALFORM calculates the instantaneous star formation rate as:

ψ = Mcold/τ∗, (4.13)

where τ∗ is the star formation timescale. The timescale can be defined in different ways,

some of which will be discussed in the following sections, but is in general a function of

the properties of the galaxy and its halo. GALFORM assumes that some fraction R of

the total mass taking part in the star formation is instantly recycled back into the ISM, so

the stellar mass production rate is actually:

Ṁ∗ = (1−R)ψ. (4.14)

The star formation process is regulated by the injection of energy from stars into the

ISM. The importance of such feedback processes was recognised early on in the devel-

opment of the theory of galaxy formation. White & Rees (1978) noted that the faint-end

slope of the luminosity function computed in their model is steeper than the observed

one, hinting at the existence of processes that decrease the efficiency of star formation in

low mass halos. One of the processes that can be invoked for this purpose is the ejection

of cold gas from galaxies by supernova driven winds (e.g. Larson, 1974; Dekel & Silk,

1986; Bower et al., 2001). A detailed treatment of this procedure would need to include

a multiphase ISM, track the collisions between cold gas clumps and their evaporation

by supernova heating (e.g. McKee & Ostriker, 1977; Efstathiou, 2000). However, semi-

analytic models include this process with simple parametric relations. In GALFORM,

the amount of gas ejected from the disc is proportional to the star-formation rate (Cole

et al., 2000):

Ṁeject = βψ, (4.15)

where,

β = (Vdisc/Vhot)−αhot , (4.16)

where Vdisc is the circular velocity of the galactic disc at the half-mass radius, and Vhot

and αhot are input parameters, the former having units of velocity. The Vhot parameter

controls which galaxies are significantly affected by the feedback: when Vdisc = Vhot

(i.e. β = 1), for every solar mass of stars formed another solar mass of cold gas is ejected
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from the galactic disc. The dependence of Vdisc comes from the amount of energy needed

for the gas to escape the gravitational potential well of the galaxy, characterised by the

circular velocity of the disc. For example, if the galactic potential well is assumed to be

self-similar, the required energy to eject gas from the disc should scale as V 2
disc (Benson

et al., 2003), implying αhot = 2 in Eq. (4.16). In practise, the value of αhot is allowed

to vary between models, e.g. Cole et al. (1994) had αhot = 5.5, Cole et al. (2000) uses

αhot = 2 and Bower et al. (2006) use αhot = 3.2.

The fusion processes that fuel stellar energy production change their composition

and, together with supernova explosions, are responsible for the formation of elements

heavier than helium (beyond the amounts produced in during early Universe nucle-

osynthesis). These heavy elements are commonly referred in astrophysics as metals. In

GALFORM, the production of metals is given by the yield, p, which is a fraction of frac-

tion of stellar mass formed that returns to the ISM as metals. A fraction, e, of the metals is

ejected straight out of the galaxy into the hot gas component, while the remainder, (1−e),

goes into the cold gas in the galactic disc. The latter can still contribute to the enrichment

of the hot gas due to the feedback driven ejection, Eq. (4.15). Note that the majority of

GALFORM works assumes e = 0 (e.g. Cole et al., 2000; Benson et al., 2001; Baugh et al.,

2005; Bower et al., 2006; Lacey et al., 2008). The yields remain an uncertain quantity

so it is treated as an input parameter chosen to reproduce the observed metallicities in

local elliptical galaxies. For example, Cole et al. (2000) originally assumed p = 0.02.

Later models, e.g. Baugh et al. (2005), use the yields predicted by stellar nucleosynthesis

models for a given choice of IMF.

4.2.5 Stellar population synthesis and dust extinction

In order to compare stellar populations of GALFORM galaxies to the observable quan-

tities, we must assign luminosities to the stars. This is done with stellar population

synthesis techniques, originally introduced by Tinsley (1972) and later developed by

various groups (e.g. Bruzual & Charlot, 1993; Bressan et al., 1994; Bruzual & Charlot,

2003; Maraston, 2005).

In general, the stellar population synthesis starts with spectral energy distributions

(hereafter, SED), lλ(t, Z) for stellar populations that have a given age, t, and metallic-

ity, Z. The SED of a model galaxy is obtained by convolving lλ with its star formation
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history:

Lλ(t) =
∫ t

0
lλ[t− t′, Z(t′)]ψ(t′)dt′, (4.17)

where Z(t′) is the metallicity of stars forming at time t′ and ψ(t′) is the star formation

rate at that time.

The key element of any stellar population model is the choice of the initial mass

function (hereafter, IMF) of the stellar population. The IMF gives the number of stars

of a given mass that form in an episode of star formation. It is commonly given in the

following form:
dN

dlnm
∝ m−x, (4.18)

where N is the number of stars formed and m is the mass of the star. The parameter x

is chosen by comparing with observations. Salpeter (1955) found x = 1.35 to be a good

match for the solar neighbourhood for stars with masses m & 2M�. Kennicutt (1983)

studied the IMF in disc galaxies finding x = 0.4 for m < M� and x = 1.5 for m > M�.

The Kennicutt (1983) IMF, found to also agree well with more recent studies of the local

IMF (Kroupa, 2001), is the default choice in the GALFORM model. The choice of IMF

is a crucial component in the production of ionizing photons, as we discuss in Section

4.3.3.

Also, we note that Cole et al. (2000) included the fact that a fraction of star forming

mass will end up in brown dwarfs (m < 0.1M�), which do not contribute any light to

the stellar population SED. The fraction of brown dwarfs is specified by the parameter

Υ as:

Υ =
(mass in visible stars + brown dwarfs)

(mass in visible stars)
, (4.19)

at the time a stellar population forms. By definition, Υ ≥ 1. The parameter is used to

decrease the luminosities of the population by 1/Υ. Cole et al. (2000) show that a choice

of a small value of Υ . 2 is a good match to the observed local stellar populations.

More recent models (Baugh et al., 2005; Bower et al., 2006) found that the inclusion of

brown dwarfs is not necessary for reproducing observations, as their role is replaced by

the additional feedback mechanisms introduced to match the observations of high-mass

galaxy counts.

Finally, for the modelled galaxies to match the observations, it is necessary to include

the effect of dust extinction. The presence of dust affects the luminosities and colors of
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galaxies, especially the UV luminosities used to estimate the star formation rate. The

original model of Cole et al. (2000) used the extinction tables of Ferrara et al. (1999),

obtained from MC radiative transfer simulations that include absorption and scattering

on dust particles. More recent versions of GALFORM employ a more detailed model

of Silva et al. (1998), which better deals with star formation bursts and can compute the

spectrum of energy re-radiated by dust in the far-infrared and submillimetre.

4.2.6 Galaxy mergers

The GALFORM model assumes that the elliptical galaxies and bulges in disc galaxies

are a consequence of mergers between galaxies. The key concept for understanding the

mergers is dynamical friction, discussed in detail by Chandrasekhar (1943). This term

relates to the loss of momentum and kinetic energy of moving celestial bodies (be it stars

or galaxies) due to gravitational interaction with surrounding matter. Dynamical friction

caused by surrounding dark matter erodes galactic orbits which may lead to a collision

(e.g. Binney & Tremaine, 1987; Sparke & Gallagher, 2007).

In the GALFORM model, when two dark matter halos merge, the central galaxy of

the most massive halo automatically becomes the central galaxy of the new halo, while

the others become satellite galaxies with randomly assigned orbits. The satellite galaxies

merge with the central one after the time it takes for the dynamical friction to decay

their orbits. This time depends on the initial specific energy and angular momentum of

the orbit and on the galaxy and halo masses. The GALFORM scheme sets the merging

timescale for each satellite using the results of Lacey & Cole (1993), who estimate the

time for an orbit to decay in an isothermal halo:

τmrg = fdfΘorbitτdyn
0.3722
ln(Λ)

MH

Msat
. (4.20)

Here, MH is the mass of the halo in which the satellite orbits, Msat is the mass of the

satellite galaxy plus the mass of the halo in which the galaxy formed (see Navarro et al.,

1995, for more discussion) and ln(Λ) is the Coulomb logarithm which depends on the

range of impact parameters of the collisions (Binney & Tremaine, 1987) and is taken to

be equal to ln(MH/Msat). The dynamical timescale of the halo is τdyn ≡ πrvir/VH. The

factor Θorbit describes the dependence of τmrg on the orbital parameters:

Θorbit = [J/Jc(E)]0.78[rc(E)/rvir]2, (4.21)
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where E and J are the initial energy and angular momentum of the satellite’s orbit and

rc(E) and Jc(E) are the radius and angular momentum of a circular orbit with the same

energy. The time it takes for every satellite to merge with the central galaxy is calculated

using Eq. (4.20) resulting in a list of galaxy mergers. If a satellite does not merge during

the halo’s lifetime, it is assigned a new random orbit and thus new τmrg in the next halo.

For every merger event, the GALFORM scheme has two scenarios depending on

the ratios of the satellite and central galaxy masses2, Msat and Mcen, based on the pre-

scription used by Kauffmann & White (1993b) and Baugh et al. (1996). The first type of

mergers, labelled major mergers, occur when Msat/Mcen ≥ fellip, where fellip is an input

parameter, the choice of which is motivated by numerical simulations of galaxy merg-

ers (e.g. Barnes & Hernquist, 1992; Walker et al., 1996; Barnes, 1998). When this type of

merger occurs, the disc is assumed to be destroyed, producing a bulge or elliptical galaxy.

All the cold gas found in the disc at the time of the merger is converted into stars in a

starburst which assumes a shorter timescale, related to the dynamical time of the formed

spheroid. The second type, called minor mergers, occurs when Msat/Mcen < fellip. In the

original Cole et al. (2000) model, this type of merger does not trigger starbursts. Instead,

the stars of the satellite galaxy are added to the bulge of the central one and its cold gas

is added to the central galaxy’s main cold gas disc without changing the disc’s specific

angular momentum. The Baugh et al. (2005) model, which we will discuss in more de-

tail shortly, allows for minor mergers to trigger starbursts if Msat/Mcen > fburst (while

fburst < fellip) and the gas fraction in the central galaxy is larger than fgas,crit. This choice

is motivated by the simulations of Hernquist & Mihos (1995) who found gas-rich discs

to be susceptible to SF bursts induced by the accretion of small satellites. Baugh et al.

(2005) adopt fellip = 0.3, fburst = 0.05 and fgas,crit = 0.75.

4.2.7 Photo-ionization feedback

The presence of ionizing radiation affects the formation of galaxies through two pro-

cesses. First, the photo-heating of the IGM increases the pressure of the gas which both

prevents its collapse in dark matter halos and evaporates the gas already collapsed into

halos with shallow potential wells. The net effect of this process is that low mass halos

have a significantly lower baryon fraction, fb, than the cosmic mean, 〈fb〉 = Ωb/Ω0.

2For this purpose, the mass of a galaxy includes only stars and cold gas.
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The important role of the photo-heating in galaxy formation was first suggested by

Doroshkevich et al. (1967) and later examined in the CDM framework by Couchman &

Rees (1986). Since this initial discussion, many authors have focused on quantifying this

effect using semi-analytic calculations (e.g. Babul & Rees, 1992; Efstathiou, 1992; Shapiro

et al., 1994; Nagashima et al., 1999; Benson et al., 2002a,b; Somerville, 2002), idealised

1D simulations (e.g. Thoul & Weinberg, 1996; Kitayama et al., 2000; Mesinger & Dijk-

stra, 2008) and full 3D cosmological hydrodynamical simulations (e.g. Quinn et al., 1996;

Weinberg et al., 1997; Gnedin, 2000a; Okamoto et al., 2008). The role of self-shielding of

gas to ionizing radiation has also been explored using radiative hydrodynamics simu-

lations (e.g. Susa & Umemura, 2004a,b). The exact value of the characteristic mass, Mc,

below which galaxy formation is strongly affected by photo-heating is still under consid-

erable debate. An important observational constraint for the choice of Mc is the number

of satellite galaxies in the Milky Way (e.g Martin et al., 2007; Koposov et al., 2008), as

they are thought to be significantly affected by the photo-heating suppression.

The second effect of ionizing radiation on galaxy formation comes from the ioniza-

tion of gas found in halos. The ionization of hydrogen removes the most important

cooling channel (the H atomic line radiative cooling, see cooling function in Sutherland

& Dopita, 1993) in halos of Tvir ≈ 104K, effectively suppressing star formation in them.

The role of photo-ionization feedback was examined with the GALFORM scheme

in a series of papers by Benson et al. (2002a,b, 2003) and expanded on by Benson et al.

(2006). The model of Cole et al. (2000) ignores the IGM pressure and assumes that the

mass of gas that collapses into a halo of mass Mtot to be a equal to the cosmic mean

baryon fraction, Mgas = (Ωb/Ω0)Mtot. Benson et al. include the photo-heating with the

prescription introduced by Gnedin (2000a), in which the collapsed baryon fraction is a

function of the filtering mass, MF, which is a characteristic mass over which the bary-

onic density fluctuations are smoothed in the presence of dark matter derived using

linear theory. The simulations of Gnedin (2000a) found that when MF = Mtot, then

Mgas = 0.5〈fb〉Mtot, and decreasing for Mtot < MF. The existence of an analytic rela-

tion for MF made it a favourite criterion for the effect of photo-heating in semi-analytic

galaxy formation models (e.g. Benson et al., 2002a,b; Somerville, 2002), but later numer-

ical simulations have found it to be somewhat of an overestimate (e.g. Hoeft et al., 2006;

Okamoto et al., 2008). To compute the filtering mass, Benson et al. estimate a cosmically
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averaged ionization and temperature fields from the Lyman-continuum luminosities of

galaxies. The same estimate is included in the calculation of gas cooling, as mentioned

above.

The work of Benson et al. has shown that the effect of photo-heating during reioniza-

tion on the subsequent galaxy formation can be approximately reproduced by a simpler

model than the one they employed - by assuming that all gas cooling is suppressed

(Ṁcool = 0) for redshifts z < zcut in halos with circular velocity Vc < Vcut. Later GAL-

FORM models use this implementation to model the effect of reionization and we do

the same in this thesis. The values of zcut and Vcut are input parameters, but the exact

choices are motivated by the observations (e.g. redshift of reionization suggested by the

CMB polarisation data, Dunkley et al., 2009) and simulations (e.g. the filtering mass of

Gnedin (2000a) corresponds to Vcut ≈ 60 km/s). We investigate the effect the choices of

zcut and Vcut have on the ionizing emissivity in Section 4.3.8.

4.2.8 Two fiducial GALFORM models

The model of Cole et al. (2000) has been further refined by a number of authors. In

this section we present the key features of two such models, Baugh et al. (2005) and

Bower et al. (2006), and compare them in terms of ionizing photon production. These

two models can be labelled as “default” models as they have been a starting point for

almost all following GALFORM related work (e.g. Bower et al., 2008; Font et al., 2008;

Orsi et al., 2008; Lacey et al., 2009).

Baugh et al. 2005

The work of Baugh et al. (2005) (we refer to this model as Baugh05 hereafter) was mo-

tivated by the failure of previous GALFORM models (Cole et al., 2000; Granato et al.,

2000; Benson et al., 2003) to reproduce the observed counts of submillimetre galaxies

(SMGs), a population of high redshift galaxies detected by emission from warm dust in

the rest-frame far-IR/submillimetre bands (see Blain et al., 2002, for a review), already

mentioned in the introduction. They are thought to be young star-forming galaxies em-

bedded in a thick clouds of dust. The dust envelope is heated by the UV radiation of

the young massive stars and reemits the absorbed energy as IR radiation. Estimates of

their star formation rate are not straight forward due to the UV part of the SED being
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almost completely obscured. Also, it is possible that a part of the submillimetre emis-

sion is powered by active galactic nuclei (AGN), though X-ray observations suggest this

is fraction is small, . 10% (Alexander et al., 2003).

The most significant change introduced in Baugh05 is the use of a top-heavy IMF dur-

ing galaxy-merger induced star formation bursts. The galaxy merger model in GAL-

FORM was introduced in Section 4.2.6. In the top-heavy IMFs, as hinted by their name,

the number of massive stars produced is assumed to be significantly higher than what is

observed in the solar neighbourhood. In practise, this is achieved by choosing a flatter

IMF by modifying the parameter x in Eq. (4.18). The Baugh05 model uses an extreme

value of x = 0 during SF bursts, but still employs the Kennicutt (1983) IMF for qui-

escent star formation (the Kennicutt IMF parameters were introduced in Section 4.2.5).

The top-heavy IMF increases the SMG counts in two ways. First, as more massive stars

are formed, the UV luminosity is significantly higher, e.g. the energy at 1500 Å released

per unit stellar mass formed is about 4 times higher for the top-heavy IMF than for the

Kennicutt one. Clearly, the top-heavy IMF is crucial for the ionizing photon emissivity,

as we will discuss in Section 4.3.3. Second, the top-heavy IMF results in a higher metal

yield p, which increases the absorption of UV radiation by dust. Combined, this results

in a more efficient heating of the dust, boosting sub-mm emission. Baugh et al. (2005)

find both of these effects to be crucial for reproducing the SMG luminosity functions: a

simple increase of the UV luminosity is not enough.

To maximise the impact of the top-heavy IMF during bursts on luminosities of high-

z galaxies, the merging discs must have a significant pool of cold gas available for star

formation triggered by the burst. The Baugh et al. (2005) model accomplishes this sce-

nario through its prescription for the star formation timescale, i.e. the denominator in

Eq. (4.13):

τ∗ = τ∗0(Vdisc/200 km/s)α∗ , (4.22)

where τ∗0 and α∗ are constant parameters. This definition is in contrast from the one

introduced in Cole et al. (2000), which depends on the dynamical time of the galactic

disc. There are no strong arguments to prefer one prescription over the other, as both

are constrained by the same observed gas fraction-luminosity relation at z = 0 (Fig. 9 of

Cole et al. (2000)). Baugh et al. (2005) chose τ∗0 = 8 Gyr and α∗ = −3. With this choice of

parameters, the star formation timescale is roughly equal to the one defined by Cole et al.
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(2000) at low redshifts, but it is much longer at high redshifts of interest for the SMGs.

This results in a less efficient quiescent star formation which leaves more gas available

for the star formation in bursts. The model employs a different SF timescale during SF

bursts:

τ∗burst = max[fdynτdyn,bulge, τ∗burst,min], (4.23)

where τdyn,bulge is the dynamical time of the spheroid created in the merger that triggers

the burst. The Baugh05 model sets fdyn = 50 and τ∗burst,min = 0.2 Gyr to produce the best

match to the present-day 60-µm luminosity function and the abundance of SMGs. The

burst SF timescale is typically much shorter than the quiescent one, given by Eq. (4.22).

On a final note, the Baugh05 model includes feedback by supernova driven super-

winds, introduced in Benson et al. (2003), to produce a better agreement of luminosity

functions with the observations at the high luminosity end. This model component is

not crucial for calculating the production of ionizing photons during reionization, as we

discuss in Section 4.3.7.

Bower et al. 2006

The key new element introduced by Bower et al. (2006) (hereafter, Bower06) is the feed-

back due to injection of energy by AGN. This model, together with similar work of Cro-

ton et al. (2006), has shown that AGN feedback provides an answer to a number of

outstanding questions in the theory of galaxy formation: what shapes the high mass

end of the luminosity function at z = 0, why was the star formation rate in massive

galaxies larger at higher redshift than it is in the local Universe (the so-called “cosmic

downsizing” problem, e.g. Cowie et al., 1996) and what suppresses the cooling flows at

the centres of rich clusters that are expected to form using the cooling time arguments

discussed in Section 4.2.3.

The Bower06 model is significantly different from the Baugh05 model. The already

mentioned AGN feedback replaces the superwind feedback as a tool for reproducing the

high mass end of the luminosity function. In the model, the growth of the black holes at

high redshift is primarily driven by disc instabilities, which we discuss in Section 4.3.6.

Bower06 does not use a different IMF in bursts, employing Kennicutt (1983) throughout

the model instead. To compute the star formation rate, the model uses the Cole et al.

(2000) parametrisation for the star formation timescale, which depends on the galactic
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disc dynamical timescale:

τ∗ = η−1
∗ τdisc(Vdisc/200 km/s)α∗ , (4.24)

where η∗ and α∗ are dimensionless parameters and the disc dynamical timescale is de-

fined as τdisc ≡ rdisc/Vdisc. Disc radius rdisc and rotational velocity Vdisc are defined at the

half-mass radius. The exact choice of parameters is η∗ = 0.002857 and α∗ = −1.5. The

Bower06 model also has significantly stronger supernova feedback, discussed in Section

4.3.4. The Bower06 model focuses on different problems in the theory of galaxy forma-

tion than Baugh05 and thus does not provide a satisfactory model for high redshift SMGs

and Lyman-break galaxies, as we show in Section 4.4.

4.3 Lyman continuum emissivity from GALFORM

The nature of sources that dominate the Lyman continuum emissivity during reion-

ization remains uncertain. A range of models, both semi-analytical (e.g. Fukugita &

Kawasaki, 1994; Shapiro et al., 1994; Haiman & Loeb, 1997; Ciardi et al., 2000; Wyithe

& Loeb, 2003; Benson et al., 2006) and numerical (e.g. Gnedin & Ostriker, 1997; Gnedin,

2000b; Sokasian et al., 2003; Ciardi et al., 2003; Iliev et al., 2006a), have shown that reion-

ization can be achieved with stellar sources alone by z ∼ 6−15. The notion of a Universe

reionized only by high redshift galaxies hosting Population II stars is an attractive one

due to them being far better understood than some more exotic source candidates such

as mini-quasars (e.g. Haiman & Loeb, 1998; Valageas & Silk, 1999; Wyithe & Loeb, 2003)

or Population III-type stars (e.g. Abel et al., 2002a; Bromm & Larson, 2004). If this is

the case and galaxy formation is not drastically different at the high redshifts relevant to

reionization study, the semi-analytic models such as GALFORM can be used to model

the sources of LC radiation. Furthermore, using such detailed models is a large improve-

ment over most current work that model sources with simple mass-luminosity relations

applied to dark matter catalogues (e.g. Iliev et al., 2006a; McQuinn et al., 2007).

As we mentioned earlier, GALFORM was previously used to model reionization in

Benson et al. (2006) (see also Benson et al., 2001, 2002a,b, for their earlier work on the

subject). They improve the cooling calculation (described in Section 4.2.3) by introduc-

ing cooling due to molecular hydrogen, H2, as well as more detailed treatment of photo-

ionization heating feedback, and model reionization with a range of different models.
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Our approach in this section differs from theirs in several respects. First, they do not at-

tempt to include the effects of inhomogeneous reionization in their models, while we do

this by coupling GALFORM with an RT code in Chapter 5. Because of this limit, Benson

et al. focus their study on the total emissivity of ionizing photons and the global growth

of the ionized fraction. As the proper modeling of HII region spatial distribution is one

of our main motivations, we study in more detail where exactly the ionizing photons are

coming from in GALFORM models. Second, at this stage, we chose not to include the

mentioned improvements introduced in Benson et al. (2006). Instead, we examine the

predictions of “default” models that have been calibrated in detail using lower redshift

data. We will examine the effect of a more detailed treatment of basic physics in future

work. Finally, we present comparison of GALFORM results with latest observations that

have become available since the publishing of Benson et al. (2006).

This section is concerned with examining the effect of various GALFORM parameters

on the production of ionizing photons. First, in Section 4.3.1 we compare the number of

ionizing photons produced in Baugh05 and Bower06 and show that Bower06 does not

produce enough photons to ionize the Universe by the redshift broadly suggested by

observations. Next, we show the evolution of emissivity with redshift in the default

Baugh05 model in Section 4.3.2. Here we also introduce two figures we will be using fre-

quently in the following discussion. In the rest of the section, we discuss the role of star-

bursts (Section 4.3.3), supernova feedback (4.3.4), star formation timescale (4.3.5), disc

instabilities (4.3.6), some sub-dominant effects (AGN and superwind feedbacks, metal

production, Section 4.3.7) and photo-ionization feedback (4.3.8). We will return to some

of the more important parameters in Section 4.4 where we compare the results of GAL-

FORM with the latest observations of Lyman-break galaxies at z . 10.

4.3.1 The production of ionizing photons in the two default models

Here, we compare the production of ionizing photons in the two default models pre-

sented in the previous paragraphs. The main variable of interest is the ionizing emissivity

of Lyman-continuum (LC) photons, i.e. the total number of photons capable of ionizing

hydrogen (hν ≥ 13.6 eV) emitted per unit time per unit co-moving volume:

ε =
∑Ngalaxies

i=1 ṄLC,i

Vsample
, (4.25)
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where ṄLC,i =
∫∞
νth
Lν,i/hνdν is the number of hydrogen-ionizing photons emitted from

a single galaxy per unit time, Lν,i is the luminosity per unit frequency ν of the said

galaxy (in units of erg s−1) and Ngalaxies is the number of galaxies found in the volume

Vsample. The emissivity ε is a function of time and is intimately tied to the formation and

evolution of galaxies.

To get a first order estimate of the reionization process, one can track the total number

of ionizing photons produced up to some moment in time. Figure 4.1 shows how the to-

tal number of ionizing photons produced per hydrogen atom (both neutral and ionized)

evolves with redshift in the two default models, using MC merger trees (Section 4.2.1)

and assuming the same cosmological parameters as used in the Millennium 3 (Springel

et al., 2005b). The minimum requirement for reionization is that at least one ionizing

photon is produced per hydrogen atom in the IGM, marked by the bottom dashed line

in Figure 4.1. It is clear that the Baugh05 model is much more effective in the production

of ionizing photons: by z ≈ 10 it produces ≈ 100 times more photons than the Bower06

model. The gap between the two models decreases with redshift and by z = 5 Bower06

produces only ≈ 15 times fewer photons than Baugh05. The minimum requirement

of one photon per H atom is unrealistic, as it ignores all the possible sinks of ionizing

photons starting with the escape of ionizing UV radiation from galaxies themselves. If

we assume an escape fraction of 10%, in line with current simulations and observations

mentioned in Chapter 1, then 10 photons must be produced to ionize a single hydrogen

atom (marked by the top dashed line in Figure 4.1). In that case, the Bower06 model is

not able to produce enough ionizing photons to ionize all hydrogen by z ≈ 6, the end

of reionization suggested by quasar data (e.g. Fan et al., 2002, see Chapter 1). Including

recombinations and self-shielded structures increases the needed number of ionizing

photons moving the redshift of reionization in the Bower06 model to even lower red-

shifts.

Following the result shown in Fig. 4.1, we conclude that the Bower06 model will

not be able to produce enough photons to reionize hydrogen by z ≈ 6. Therefore, we

chose the Baugh05 model as the default model for our numerical reionization runs we

3Ω0 = 0.25, ΩΛ = 0.75, Ωb = 0.045 and h = 0.73. Note that we chose to use this cosmology because it

is the same cosmology employed by the Millennium-II (Boylan-Kolchin et al., 2009) simulation we will use

for future reionization studies. The original Bower06 model is optimised for this cosmology, but Baugh05

assumed a slightly different one.
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Figure 4.1: The number of ionizing photons produced per hydrogen

atom up to redshift z in the two default GALFORM models, Baugh05

and Bower06. The horizontal dashed lines mark the minimum number

of photons per H atom that must be produced to achieve reionization:

in the most optimistic case, only one (bottom line), but 10 or more when

the escape factor is taken into account (top line). The Baugh05 model

produces ≈ 100 times more ionizing photons at z ≈ 10 and reaches one

photon per H atom ∆z & 4 earlier.

will present in Chapter 5 and the rest of this Chapter. The differences between the two

models are many, but we can point to the major ones that are responsible for the vastly

different LC photon production. First, the top-heavy IMF assumed in Baugh05 yields

approximately 10 times as many photons produced during bursts (as predicted by stel-



4. GALFORM: modelling the galaxies that reionize the Universe 157

lar population synthesis model of Bressan et al., 1998, for a typical stellar metallicity of

Z/Z� ≈ 10−2 in discs we find during EoR) than when Kennicutt IMF is assumed (see

Section 4.3.3). Second, the Bower06 model assumes a significantly stronger supernova

feedback, which decreases the number of low-mass galaxies (discussed in Section 4.3.4.

Finally, the quiescent star formation timescale in Bower06 is significantly shorter than in

Baugh05, which results in less star formation occurring in starburst mode (see Section

4.3.5). These parameters explain the bulk, but not all, of the difference in LC photon

production. The role of these and other parameters will be discussed in the following

section.

4.3.2 Evolution of ionizing emissivity in the Baugh05 model

As discussed in Section 4.2.8, we chose the Baugh05 model to be our reference model for

the following work, due to Bower06 not producing enough ionizing photons to satisfy

the current observational constraints on reionization. Here we show how the production

of LC photon by halos of a certain mass evolves with redshift. The LC photon production

as a function of halo mass will be the key variable we discuss in the rest of this section.

Figure 4.2 shows the evolution of the halo LC mass-luminosity relation as a function

of redshift. The discussion in terms of halos instead of galaxies is chosen for easier com-

parison with other numerical reionization work (e.g. Iliev et al., 2005a; McQuinn et al.,

2007) who estimate the LC luminosity directly from halo properties. We obtain the LC

luminosity of each halo as the sum of luminosities of all of the galaxies it hosts. The mean

of the distribution (thick lines) shows almost no evolution with redshift - the only signif-

icant feature is the drop-off at low masses (M . 108M�/h) consistent with the increase

of the minimum mass of halos that can cool by atomic hydrogen line cooling (i.e. halos

with (Tvir ≈ 104 K) with decreasing redshift. A striking feature in the figure is the large

difference between the mean and median mass-luminosity relations, which is caused by

the fact that a small number of starburst galaxies dominate the production of LC pho-

tons. We focus on this issue in Section 4.3.3. Note that the median shows some evolution

with redshift, with luminosity modestly decreasing with decreasing redshift. This is not

matched in the mean which is dominated by starbursts. The shape of the mean mass-

luminosity relation is also more complex than the linear or simple power-law relations

assumed in works by other authors.
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Figure 4.2: The LC luminosity of a halo as a function of its mass in

the Baugh05 model at redshifts z =14 (magenta dotted lines), 12 (red

dot-dashed), 10 (green dashed), 8 (blue solid lines) and 6 (black cir-

cles). The mean (thick lines) and median (thin lines) differ signifi-

cantly due to the small number of starbursts dominating the LC pho-

ton production (discussed in more detail in Section 4.3.3). The mass-

luminosity relation generally stays almost constant with redshift. The

modest decrease with decreasing redshift of Lhalo in the low mass end

(M . 5×108M�/h) is because the mass of halos with Tvir = 104 K (virial

temperature needed for atomic line cooling) increasing with time. See

text for more details.
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Figure 4.3: The LC emissivity per halo mass in the Baugh05 model as a

function of redshift. Line styles correspond to results at different red-

shifts, as in Fig. 4.2. Since the mean mass-luminosity relation remains

nearly constant (Fig. 4.2), the evolution of the emissivity is driven by

the evolution of the halo mass function. The top panel shows the frac-

tion of all LC photons produced by halos less (or more) massive than

M . The intersection of the two lines for a given redshift gives the mass

corresponding to the median halo mass for LC photon production. This

typical mass for ε increases with decreasing redshift.

Figure 4.3 shows the differential LC emissivity (the number of LC photons produced

by halos of a given mass) per halo mass as a function of redshift. Since the mean mass-

luminosity relation does not evolve, as seen in Fig. 4.2, the increase of emissivity with
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redshift seen in Fig. 4.3 is caused by the evolution of the halo mass function. A notable

feature is therefore the increasing contribution to LC photon production from more and

more massive halos. We demonstrate this in the top panel of Fig. 4.3, which shows

the fraction of total LC emissivity produced by halos with masses smaller (larger) than

M - the cross between the two lines (for a given redshift) gives the characteristic halo

mass up to which 50% of LC photons are produced. The importance of low mass halos

(M . 109M�/h) clearly decreases with decreasing redshift. For example, halos of M .

5 × 108M�/h are responsible for producing ∼ 50% of LC photons at z = 14 (magenta

dotted lines), but no more than ∼ 20% at z = 10 (green dashed lines) and ∼ 2 − 3% at

z = 6 (black circles).

These two relations will be our main tool, together with the cumulative production

of LC photons (as presented in Fig. 4.1) in the exploration of the importance of specific

GALFORM parameters for ε in the following sections. We show the importance of the

mass-luminosity relation of LC sources for HII region morphology in Chapter 5, Section

5.4.2.

4.3.3 Bursts and top-heavy IMF

As we discussed in Section 4.2.6, the mergers between galaxies are one of the crucial

components of the GALFORM model. The bursts of star formation triggered by mergers

may differ from the quiescent star formation, by assuming a different star formation

time scale or IMF, as in the Baugh05 model (Section 4.2.8). To gauge the importance of

both the IMF in bursts and the bursts themselves we ran three variations of the Baugh05

model: we turned off all SF bursts induced by mergers (fellip � 1 and fgas,crit > 1),

we allowed only major mergers to trigger bursts (fburst = fellip) and we used the same

solar neighbourhood, Kennicutt (1983) IMF for both bursts and quiescent star formation.

Figure 4.4 shows the number of photons per hydrogen atom produced in these models as

a function of redshift. The importance of bursts in the production of ionizing photons is

clear: turning them off completely (the red line) results in about 10 times fewer photons

produced than in the default Baugh05 model (black line) at all redshifts. If we assume

that the reionization is achieved when 10 photons are produced for every atom4 (top

dashed line), the exclusion of bursts from the model results in ∆z ≈ 4 delay in the

4Note that we will use this fiducial value as the redshift of reionization throughout this chapter.
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Figure 4.4: Number of LC photons per hydrogen atom produced up to

a given redshift with respect to the variations of the burst parameters.

Completely turning off the bursts (red line) reduces the total number of

photons produced by ≈ factor 5-10, depending on the redshifts. About

35% of the photons in bursts are produced in major merger bursts alone

(blue line). When only a single, Kennicutt (1983) IMF is used (green

line), the bursts are responsible for producing ≈ 20 − 50% of LC pho-

tons.

reionization redshift. The majority of these photons are due to the top-heavy IMF: when

a single IMF is used (green line), only ≈ 2 times as many photons are produced as in the

no bursts case and reionization is reached ∆z ≈ 3.2 later compared to the default model.

Finally, minor merger bursts seem to be the more important type (also found by Baugh
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Figure 4.5: Left: The emissivity per halo mass with and without bursts,

and with and without a top-heavy IMF. Turning off the bursts (red line)

decreases the emissivity by more than an order of magnitude in halos

withM ≈ 5×108−5×1010M�/h. The contribution of bursts themselves

is smaller than the contribution of the top-heavy IMF (green line). Mi-

nor merger bursts (compare blue and black lines) contribute less than

major merger bursts in the low mass halos (M < 109M�/h). Right: LC

luminosity per halo mass. Reducing the importance of bursts reduces

the skewness in the distribution as evidenced by the mean (solid lines)

approaching the median (dashed lines). The median is generally un-

affected by the burst parameters. See Fig. 4.6 for a closer look at the

scatter in Lhalo.

et al. (2005) in explaining SMG number counts), as about 35% of all photons is produced

in major mergers alone (blue line). The fact that major merger-only and a single IMF

yield similar emissivities is a coincidence.

Further insight can be obtained by the plots in Fig. 4.5. The left panel shows the LC

emissivity as a function of halo mass at z = 10. The values for different burst parameters

agree at the atomic line cooling halo mass limit, M ≈ 108M�/h, since no galaxies can

form in smaller halos. A similar argument can be invoked to explain the dominance of

major mergers in low mass halos (blue line at M < 109M�/h), as these have progeni-
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Figure 4.6: The fraction of halos with given LC luminosity Lhalo in halos

with mass M ≈ 109M�/h (left panel) and M ≈ 1010M�/h (right panel)

in models with different burst parameters. When no bursts are included

(red lines), the Lhalo distribution is close to Gaussian, with very similar

mean (vertical solid) and median (vertical dashed lines). The inclusion

of bursts results in a small number of halos being significantly more

luminous, more so in the default model (black lines), than in the one

with a single IMF (green lines). This results in the shifting of the mean

towards higher luminosities.

tors of similar masses and usually have only a single galaxy per halo. Interestingly, the

characteristic halo mass marking the median of the emissivity (intersection of lines in

the top panel) is not significantly affected by changing the burst parameters. A larger

difference is seen in the relative contribution of different halo masses: the presence of

bursts introduces a peak in the emissivity at moderate halo masses, M ≈ 109M�/h. The

peak causes the majority of the photons to be produced in smaller range of halo masses.

For example, the default Baugh05 model (black lines) produces 40% of all photons in

the range 3 × 108 . M . 109M�/h, while in the no bursts model (red lines), the same

fraction is produced in the range 7× 107 . M . 109M�/h (see top panel).

The right panel of Fig. 4.5 shows the ionizing luminosity of a halo as a function of

its mass. The mean luminosity as a function of halo mass varies strongly with the burst



4. GALFORM: modelling the galaxies that reionize the Universe 164

parameters, but the median is only slightly affected. This is again due to the merger

induced starbursts dominating halo emissivities: a single bursting galaxy skews the

mean toward higher luminosities even though the majority of galaxies have significantly

smaller luminosities characterised by the median. This can clearly be seen when exam-

ining the luminosities in halos of approximately the same mass, as we do in Fig. 4.6.

The majority of galaxies in all models have a close to Gaussian distribution centred close

to the median (horizontal dashed lines). Models that include the starbursts feature a

small “tail” of high luminosity halos, which causes the shift in the mean. The Poisso-

nian nature of bursting halos, which in practise dominate the production of LC photons,

should leave an imprint on the morphology of HII regions during reionization, as we

show in Chapter 5. Coming back to the right panel of Fig. 4.5, notice that all models that

have bursts in some form agree very well on the median of the distribution. This sug-

gests that the median characterises the galaxies forming stars quiescently. As the only

parameters we varied here relate to bursts, which occur in only a small fraction of halos

at any time, the quiescent star formation is the same between models, thus explaining

the equal medians. The bursts and, more importantly, the top-heavy IMF assumed in

Baugh05 are crucial for achieving reionization before the end of the epoch suggested by

the quasar data, z ≈ 6 (Chapter 1). As Fig. 4.4 suggests, without the top-heavy IMF,

reionization can barely be completed by that redshift. The criterion of 10 LC photons

produced per H atom is quite liberal, as it corresponds to a relatively high escape frac-

tion of 10% and neglects photon sinks completely. This means that the reionization will

in full RT simulations probably be occurring later for the same source model parameters

. The escape fraction remains unconstrained, so a faster reionization is still not out of the

question, but it is safe to assume that the model without any bursts will not be able to

reach reionization by z ∼ 6 in a complete reionization model.

4.3.4 Supernova feedback

Supernova (SN) feedback is usually invoked in semi-analytic models of galaxy formation

to produce a match with the low-luminosity end of the galaxy luminosity function. The

galaxies in that luminosity range are the most likely sources of the majority of ionizing

photons during reionization (since more massive galaxies are only appear later), so we

expect the choice of SN feedback parameters to have a significant impact on the LC
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Figure 4.7: Number of LC photons per H atom emitted by redshift z for

different SN feedback parameters. Decreasing the efficiency of SN feed-

back (red line) doubles the production of ionizing photons resulting in

∆z ≈ 0.5 earlier reionization. Increasing it to be similar to parameters

in the Bower06 model results in ∆z ≈ 2.5 later redshift of reionization.

See text for exact model parameters and further discussion.

emissivity.

The SN feedback implementation in GALFORM was introduced in Section 4.2.4. The

parameters of Eq. (4.15) chosen for Baugh05 model are αhot = 2 and Vhot = 300 km/s. We

compare this default selection with two models with different SN feedback parameters:

the first, “weak” feedback model has αhot = 1 and Vhot = 100 km/s, while the second,

“strong” feedback has αhot = 3 and Vhot = 500 km/s. The weak feedback model gives
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almost identical results to no feedback at all (set with αhot = 3 and Vhot = 1 km/s) and

the strong feedback parameters are close to the values in the Bower06 model (αhot = 3.2

and Vhot = 475 km/s). Figure 4.7 show the total number of LC photons produced up to

a given redshift. By z = 5, the weak feedback model produces ≈ 2 times as many LC

photons as the default Baugh05 model, while the strong feedback model produces ≈ 5

times fewer.

To illustrate the effect of the feedback parameters, we show the fraction of ionizing

photons produced by halos with circular velocity smaller than some value of Vdisc for

different supernova feedback parameters in Fig. 4.8. This allows us to quantify the im-

portance of SN feedback in each model, by finding the fraction of photons produced

by galaxies with Vdisc < Vhot, for which more cold gas is ejected from the galaxy by

SN-driven winds than is added to the stellar mass by star formation. For the default

Baugh05 model at z = 10 (black solid line), ≈ 50% of LC photon production is occur-

ring in galaxies with Vdisc < Vhot, so may be significantly affected by SN feedback. For

the weak feedback model (red solid line), ≈ 15% of the total emissivity is produced in

Vdisc < Vhot galaxies, while the strong feedback model (blue line) produces ≈ 70% of LC

photons in galaxies in the same range. Value of Vhot for each model is marked with a

thin horizontal line.

Why does the strong feedback model shows a more significant effect on LC pho-

ton production than the weak feedback model in Fig. 4.7? First, note that despite the

symmetric choice of parameters for the model variations, relative difference between the

two models and the default model are not equal. For example, evaluating Eq. (4.15) at

Vdisc = 300 km/s (the average Vhot) for parameters for each model, we see that the strong

feedback model ejects ≈ 4.5 times more cold gas than the default at that Vdisc, while the

weak feedback model ejects ≈ 3 times less. These ratios increase with decreasing Vdisc.

More importantly, Fig. 4.7 shows that the production of LC photons in the strong feed-

back model diverges slightly from the default with decreasing redshift, i.e. by z = 14,

strong feedback model has produced≈ 2 times fewer photons than the default, while by

z = 5 it has produced ≈ 5 times fewer photons. This is not seen in the weak feedback

model, which produces≈ 2 times more LC photons than the default at all redshifts. This

feature may be a consequence of the hierarchical buildup of galaxies. As seen in Fig. 4.8,

the strong feedback model affects more massive galaxies than the other two models. The
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Figure 4.8: Fraction of total emissivity produced by galaxies with circu-

lar velocities at half-mass radius smaller than Vdisc. The figure demon-

strates the effects of supernova feedback parameters (solid lines) on the

relative importance of galaxy masses to the LC emissivity. Thin hori-

zontal lines mark Vhot in each model. The growth of structure slightly

reduces the relative importance of small galaxies (dashed and solid

black lines, representing the default model at z = 5 and z = 10 re-

spectively). Default model shown at z = 5 and z = 10, but variant

models only shown at z = 10. See text for further discussion.

number of massive galaxies increases strongly with decreasing redshift (which may be

seen in the evolution of the luminosity functions we present in Section 4.4.2), causing the

production of LC photons to diverge in one model that affects the highest galaxy mass
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Figure 4.9: LC luminosity as a function of halo mass with respect to SN

feedback parameters. Line styles are the same as in Fig. 4.7. See text for

discussion.

range. On the other hand, the weak feedback model significantly affects only low mass

galaxies which are the first ones to form in the hierarchical picture and whose number

density does not evolve as strongly as for the more massive galaxies, which results in a

roughly constant effect on LC emissivity. The effect of structure growth on the relevant

galaxy mass for LC photon production can also be seen in Fig. 4.8, which shows the

relative contribution of different Vdisc galaxies at z = 5 and z = 10 in the default model

(dashed and solid black lines, respectively). The relative importance of small galaxies to

the LC emissivity decreases slightly: at z = 5, galaxies with Vdisc < Vhot produce ≈ 40%

of all LC photons, as opposed to ≈ 50% the same Vdisc galaxies produce at z = 10.
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This is further elaborated in Fig. 4.9, where we present the dependence of halo LC lu-

minosity on its mass for different SN feedback parameters. The decrease in SN feedback

efficiency increases the median luminosity, which reflects the behaviour in non-bursting

galaxies, with M & 109M�/h (median, dashed red line). For less massive halos, the dis-

tribution remains largely unaffected since SN feedback is effective in small galaxies even

in the weak feedback model (leading to a smaller difference between median values of

weak feedback and default models, red and black dashed lines respectively, in that mass

range). The strong feedback model suppresses the median luminosity in halos of all

masses more strongly (blue dashed line). More importantly, the mean luminosity (blue

solid line) is more severely affected by the increase in feedback efficiency than the me-

dian, most likely due to less cold gas being available for starbursts (as strong feedback

will eject more cold gas during the quiescent star formation mode) combined with the

strong feedback in bursts themselves. Note that the SN feedback efficiency parameters

are assumed to be the same in both burst and quiescent star formation in the Baugh05

model, in spite of the change in the IMF between the two modes.

We have shown that the SN feedback can be a significant process for regulating ion-

izing photon emissivity, though not as strong as the boost in photon production due

to the top-heavy IMF discussed in Section 4.3.3. The SN feedback in Baugh05 is not a

dominant effect on the production of LC photons, as evidenced by the fact that further

decrease of SN feedback strength does not result in a large shift in reionization redshift,

as seen in Fig. 4.7. The increase of efficiency, on the other hand, may have a much more

severe impact. The difference in SN feedback parameters can therefore explain a signifi-

cant fraction of the difference in the emissivities of Baugh05 and Bower06 models seen in

Fig. 4.1, which is not fully explained by just the different IMF in bursts. The parameters

chosen by Bower06 yield a slightly stronger feedback than the strong feedback model

presented in this section.

4.3.5 Star formation timescale

We have discussed the star formation timescales when comparing the two Durham de-

fault GALFORM models in Section 4.2.8. The choice directly affects the star formation

rate, defined in Eq. (4.13). The Baugh05 model defines τ∗ with Eq. (4.22), where it de-

pends only on the Vdisc of the galaxy, while the Bower06 model uses Eq. (4.24), which
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also includes the dependence on the dynamical time of the galactic disc, τdyn. As dis-

cussed in Baugh et al. (2005), the use of Eq. (4.22) is motivated by the fact that it gives

much longer τ∗ than Eq. (4.24) at high redshifts, thus leaving more cold gas in the disc

available for star formation in the burst mode. In this section we show the effect the

choice of τ∗ has on the ionizing photon emissivity.

Figure 4.10 shows the star formation time scale as a function of Vdisc using different

prescriptions for τ∗. The default Baugh05 model (black points) computes τ∗ using Eq.

(4.22) with τ∗0 =8 Gyr and α∗ = −3. The default model is compared with two variants

that also employ Eq. (4.22): the shorter timescale has τ∗0 =4 Gyr, α∗ = −2 and the longer

timescale has τ∗0 =16 Gyr, α∗ = −4. (blue and green points, respectively). The final

model replaces the default τ∗ relation of Baugh05 with the one from Bower06, Eq. (4.24),

with the same parameters as in the Bower06 model: η∗ = 0.002857 and α∗ = −1.5 (red

points). The scatter seen in the model that uses Bower06 τ∗ is due to the added depen-

dence on rdisc in Eq. (4.24). As seen in Fig. 4.10, the Baugh05 shorter and longer timescale

variants result in only show a difference in τ∗ for galaxies with Vdisc . 200 km/s when

compared to the default model. As shown in Fig. 4.8, these galaxies are responsible for

only ≈ 25% of total LC photons produced at z = 10, so the LC emissivity should not

be significantly affected by this change, as we will demonstrate shortly. On the other

hand, the use of the Bower06 prescription for τ∗, results in a much more significant de-

parture from the default Baugh05 model: τ∗ is on average 3 orders of magnitude shorted

for all values of Vdisc. This difference can have a much more significant effect on the LC

emissivity.

Figure 4.11 shows that our preliminary expectations were correct. Variation of pa-

rameters in Eq. (4.22) has a very small effect on the production of ionizing photons when

compared to the default values. On the other hand, the use of the Bower06 relation for

τ∗ results in two times fewer photons produced by z = 5 than in the default model, and

a delay in reionization redshift is ∆z ≈ 1.

Further insights can be obtained from panels in Fig. 4.12, which show the LC emis-

sivity and luminosity with respect to halo mass. Again, the variation of Eq. (4.22) has

a minimal effect on emissivity (left panel). Still, the right panel shows that the conse-

quences are not negligible: the median luminosity of individual halos is significantly

affected by the change in SF timescale for halos with M . 1010M�/h. The mean, on
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Figure 4.10: The star formation timescale as function of disc circular

velocity at half-mass radius for different definitions. The values plot-

ted use definitions given by Eq. (4.22) (black, blue and green points)

and Eq. (4.24) (red points), while the values of Vdisc and rdisc are taken

from galaxies at z = 10 in the default Baugh05 model. The scatter in

Bower06 τ∗ results is due to the dependence on rdisc. The SF timescale

at this redshift is, on average, ≈ 3 orders of magnitude shorter with the

Bower06 model prescription than in the default Baugh05 model. See

text for exact model parameters and further discussion.

the other hand, remains unaffected which explains the unchanged emissivities. This last

effect is not surprising when one remembers that a different SF timescale is assumed

during bursts that are responsible for the mean luminosity, Eq. (4.23), and which is com-



4. GALFORM: modelling the galaxies that reionize the Universe 172

Figure 4.11: Number of LC photons per H atom produced up to redshift

z with respect to different star formation timescales. The change of

parameters of Eq. (4.22) (blue and green lines) results in a negligible

differences from the default Baugh05 model (black line). On the other

hand, the use of Eq. (4.24) which introduces the dependence on the disc

dynamical time, results in ∆z ≈ 1 delay in reionization redshift (chosen

here to be achieved when 10 photons are produced per H atom).

pletely unrelated to the SF timescale in discs we are varying here. We tested the effect

of the timescale in bursts by varying fdyn in Eq. (4.23) by a factor of two5 and found

5The relatively small factor we varied the timescale by is justified due to the burst timescale being al-

ready significantly shorter (of order ∼ 10 Myr) than the quiescent one. Note that stronger variations of the

timescale may result in a more significant effect on LC emissivity.
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Figure 4.12: The LC emissivity per halo mass (left) and LC luminosity

of individual halos as a function of their mass (right) with respect to

different SF timescale prescriptions. See text for discussion.

a negligible difference in the LC emissivity. The quiescent star formation affects star

formation in bursts only by depleting the cold gas reservoir between burst events, as

we mentioned earlier. Therefore, a more severe decrease of the quiescent star formation

time scale should affect the LC luminosity during bursts. This is exactly what happens

when we use the Bower06 SF timescale prescription (red lines in Fig. 4.12). The Bower06

SF timescale model further increases the median halo LC luminosities (red dashed line

in the right panel of Fig. 4.12) over almost the whole range of halo masses. At the same

time, the mean LC luminosity is decreased (though not as severely as the increase in

the median), resulting in a reduction of the LC emissivity over the same mass range

(red line in the left panel). Note that the emissivity is higher in the lowest mass halos

(M . 2 × 108M�/h) in the Bower06 τ∗ model than in the others. This is due to the

negligible contribution of SF bursts in those halos caused by the lack of smaller mass

progenitors, as discussed in Section 4.3.3. In those halos, the emissivity is dominated by

the quiescent star formation, so the shorter SF timescale actually boosts the production

of LC photons.

Finally, Fig. 4.13 explicitly shows how the switch to SF timescale of Eq. (4.24) affects

star formation in bursts. In the default model (black lines), ≈ 50% of stars are produced
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Figure 4.13: Star formation rate density as a function of redshift in mod-

els with two different SF timescale prescription. The total star forma-

tion rate in the Bower06 τ∗ model (red solid line) is somewhat higher

than in the default model (black solid line), especially at higher red-

shifts. A much larger difference is seen in the star formation rate in

bursts (dashed lines). This is due to the shorter SF timescale increasing

the efficiency of quiescent star formation, reducing the cold gas reserve

available for bursts.

in the burst mode at redshifts 4 . z . 10. In contrast, the Bower06 τ∗ model forms no

more than ≈ 10% of stars in bursts over the same redshift range. Therefore, even though

the total SF rate density is slightly higher in the Bower06 τ∗model, the reduced efficiency

of star formation in bursts decreases the total LC emissivity produced.
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The main conclusion of this section is that a significant increase of the star formation

rate in the quiescent mode of the Baugh05 model may lead to a decrease of the total LC

photon emissivity. This may seem counterintuitive only if one forgets that the model

employs a top-heavy IMF for star formation in bursts. As a final note, we point out

that the effects discussed here are caused by the change in the- timescale alone, i.e. the

dependence on disc dynamical time in Bower06 τ∗ prescription does not play a role. The

same effects can be achieved with a Baugh05 τ∗ chosen to match the values of Bower06

τ∗.

4.3.6 Disc instabilities

The question of dynamical stability of galactic discs has been the subject of intense study

from the early 1970s (e.g. Toomre, 1964; Ostriker & Peebles, 1973; Toomre, 1977, 1981;

Efstathiou et al., 1982; Binney & Tremaine, 1987; Christodoulou et al., 1995). In short,

when a disc becomes sufficiently massive for its self-gravity to dominate the gravita-

tional potential of the combined galaxy bulge and halo, it becomes unstable to small

perturbations introduced by e.g. small satellite mergers or dynamical friction with dark

matter substructures. This instability leads to the formation of a bar in the galactic disc

and, eventually, to the conversion of the disc into a spheroid. The criterion for the sta-

bility of the disc introduced to GALFORM in Cole et al. (2000) is based on the work of

Efstathiou, Lake & Negroponte (1982) who used numerical simulations to study the evo-

lution of idealised disc galaxies with central spheroids. As a simple first-order estimate

of the disc stability, they introduced the following relation:

ε ≡ Vmax

(GMdisc/rexp)1/2
. (4.26)

In the GALFORM scheme, Vmax is the circular velocity at the disc half-mass radius, rdisc,

Mdisc is the mass of the disc alone and rexp = 1.68rdisc is the disc exponential scalelength.

Note that in the original implementation, Vmax is assumed to be maximum circular ve-

locity on the rotation curve. In essence, Eq. (4.26) is the square root of the ratio of mass of

the whole galaxy (with a significant contribution from the central spheroid) to that of the

disc alone within the disc half-mass radius. The choice of ε value needed for disc stabil-

ity, εstable, in GALFORM models is informed by the result of Efstathiou et al. (1982), who

found that the discs are stable when ε & 1.1. At each time step, Eq. (4.26) is evaluated
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for every galaxy. If ε ≤ εstable is found, the model assumes that the stellar disc evolves

into a bar and then to a spheroid with all the stars from the disc becoming part of the

bulge (Combes et al., 1990; Combes, 2000). Note that more recent simulations, show that

this may not be the best approximation (e.g. Agertz et al., 2009). From the LC emissivity

perspective, the most important point is that the disc instability is assumed to trigger

a burst of star formation with the same prescription as the ones triggered by mergers.

Disc instabilities are not a standard component of Cole et al. (2000) model, nor of the

Baugh05 model. We were motivated to consider them here, because the Bower06 model

finds the disc instabilities to be crucial for the growth rate of black holes that drive the

AGN feedback at early redshift (see Fig. 2 in Bower et al., 2006)), which we will briefly

discuss in the following section.

Figure 4.14 shows the effect of the introduction of disc instabilities into the default

Baugh05 model. The choice of εstable = 0.8 comes from the Bower06 model and can be

considered a somewhat modest instability criterion (taking into account that, from the

definition of ε in Eq. (4.26), the minimum possible value of ε is ε ≈ 0.62). In the second

model, we double εstable to 1.6 in order to introduce a more extreme instability criterion

(we increased the criterion up to εstable = 3 without causing further significant changes

to the emissivity). The increase in the emissivity in the whole halo mass range is entirely

due to the more common triggering of SF bursts i.e. a larger fraction of star formation

occurs with a top-heavy IMF. In our redshift range of interest (6 . z . 15), the instability-

triggered bursts are much more common than the merger induced ones. Indeed, if we

switch off the merger triggered bursts in the models with disc instabilities (in the same

way described in Section 4.3.3) there is practically no difference in the LC emissivity

relative to the model that includes both merger and disc instability caused bursts. As

seen in the right panel of Fig. 4.14, the strong criterion for instabilities results in burst SF

mode absolutely dominating in all halos (> 99% of star formation is in the burst mode at

all redshifts, evidenced by the fact that median is almost equal to the mean). On the other

hand, when using the weaker criterion, the instabilities are somewhat less common in

the least massive halos, M . 5 × 109M�/h. The use of a stronger instability criterion

shifts the characteristic halo mass for LC emissivity (median emissivity mass, top panel

in the left plot), to a slightly higher mass than seen in the default or weaker instability

models.
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Figure 4.14: LC emissivity (left) and LC luminosity (right) as a func-

tion of halo mass with the inclusion of disc instabilities to the Baugh05

model. The increase in emissivity in all halo masses is due to the trig-

gering of SF bursts by the disc instability prescription, resulting in even

more star formation in the burst mode than in the default Baugh05

model. For the strong instability model (red lines), the instabilities are

triggered efficiently in all halo masses (compare mean and median in

right panel, red dashed and solid lines). In the more modest instability

model (blue lines), discs are somewhat more stable in low mass halos

(see blue dashed line for M . 5× 109M�/h).

Figure 4.15 shows the increase in the photon production due to the addition of disc

instabilities to the model. The two models with instabilities produce almost the same

number of photons by z = 5, but the weaker instability criterion model has a somewhat

larger emissivity at early redshifts. This is due to the slightly stronger contribution of

smallest halos in the weak instability model, seen in Fig. 4.14. As massive halos become

more important at lower redshifts, the gap between the two instability models closes.

The difference between these models and the default one also decreases with decreasing

redshift: by z = 13, the weak instability model produced ≈ 7 times as many LC photons

as the default model, but by z = 5 it produced only ≈ 2 times as many.

The inclusion of disc instabilities in the Baugh05 model results in a significant boost
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Figure 4.15: Number of LC photons per H atom produced by redshift

z in Baugh05 models with disc instabilities. The models with disc in-

stabilities produce ≈ 3 times as many photons as the default models by

z = 10. This emissivity boost results in a ∆z ≈ 1.5 earlier redshift of

reionization. The weaker instability model has a slightly higher emis-

sivity at higher redshifts, possibly due to more cold gas being available

for bursts, as seen in Fig. 4.14.

to the LC emissivity, especially at higher redshifts. This is the result of a more common

triggering of SF bursts, during which the top-heavy IMF is assumed, which is the most

important component of the model in terms of the ionizing emissivity as we discussed

in Section 4.3.3. The inclusion of disc instabilities to the model also has important con-

sequences beyond those we discussed here. Most crucial are certainly the effect on the



4. GALFORM: modelling the galaxies that reionize the Universe 179

distribution of disc sizes and morphological types of galaxies, due to the conversion of

discs to spheroids. Cole et al. (2000) found that the inclusion of disc instabilities in their

default model results in a slightly better agreement of disc scale-lengths with observa-

tions (see Fig. 8 of their paper). They also showed that the disc instabilities significantly

shift the distribution of galaxy morphological types at lower luminosities towards el-

liptical galaxies. For more details, see their original paper as well as a recent study by

Benson & Devereux (2009).

4.3.7 Sub-dominant model parameters

We also tested the effect of a wide range of other physical processes modelled in GAL-

FORM on the ionizing emissivity. Here we briefly mention some of the ones we found

not to have a significant effect on the production of LC photons during reionization.

AGN and superwind feedback

The most recent updates to the semi-analytic models have focused on reproducing the

observed break in the bright end of the luminosity function (the shape of the faint end

can largely be explained by the supernova feedback discussed in Section 4.3.4). At the

present day, the cooling function drops quickly for halos roughly more massive than

the hosts of Milky Way-size galaxies6 (e.g. Sutherland & Dopita, 1993) leading to the

much longer cooling times and introducing the break in the luminosity function. Still,

this cooling argument is not sufficient to explain in detail the position of the observed

bright-end break therefore suggesting the existence of additional physical processes.

For this purpose, the Baugh05 model employs a model for supernova-driven super-

winds that remove the cold gas from the galactic disc completely out of the halo (regu-

lar supernova feedback from Section 4.3.4 only returns it to the hot halo gas reservoir),

previously implemented in GALFORM by Benson et al. (2003). See Baugh (2006) or

Lacey et al. (2008) for the exact implementation. The Bower06 model uses the previously

mentioned AGN feedback for the same purpose. In this implementation, gas cooling is

switched off in halos that are quasi-hydrostatically cooling (i.e. halos in which the gas

cooling time is longer than the free-fall time) if the energy lost to cooling is smaller than

6The mass of the Milky way halo is Mvir ≈ 2 − 3 × 1012M� (Xue et al., 2008), with the corresponding

virial temperature Tvir ≈ 106K.
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some fraction (a model parameter) of the Eddington luminosity of the central black hole.

See Bower et al. (2006) and references therein for a more detailed discussion about AGN

feedback and this particular implementation.

We tested the importance of both feedback prescriptions on the production of LC

photons during reionization, z & 6. We found both effects to have a negligible effect on

the LC emissivity, which is expected as these processes generally affect more massive

halos that form at significantly lower redshifts. The AGN feedback, particularly, makes

no difference whatsoever when added to the Baugh05 model. Bower et al. (2006) found

that, for the AGN feedback to be effective at all, the disc instabilities must be included

to provide a channel for mass-buildup of black holes. Even with the disc instabilities,

which we discussed in Section 4.3.6, the AGN feedback effect on LC emissivity is non-

existent at our redshifts of interest. On the other hand, the superwind feedback makes a

measurable difference, albeit a very modest one: a Baugh05 variant without superwinds

begins to produce slightly more LC photons after z ≈ 8, which results in ≈ 70% more

LC photons produced by z = 5. The redshift of reionization (10 LC photons produced

per H atom) is practically unaffected since it is reached before z ≈ 8 (see the default

Baugh05 model result in e.g. Fig. 4.1). We therefore conclude that these GALFORM

parameters are unimportant for the production of LC photons during reionization. Note

however that the ionizing radiation from AGN may provide a contribution to the total

LC emissivity. We will explore the GALFORM predictions for quasar production of LC

photons in reionization context in future work.

Metallicity

The chemical composition of the gas can affect the ionizing luminosities for two rea-

sons (e.g. Baugh, 2006): first, the rate at which the gas cools is a function of metallicity

(Sutherland & Dopita, 1993) and, second, the stellar populations formed out of more

metal-enriched gas will be redder and somewhat less luminous in UV (see Fig. 4 in Cole

et al., 2000). Also, the dust extinction increases with ISM metallicity. In GALFORM, the

metal abundance is given as a fraction of total mass of a galactic component that is made

out of elements heavier than helium, Z = MZ/M . We tested the importance of Z on

the LC emissivity with two Baugh05 variant models: one in which we assumed Z = 0

when evaluating the cooling rate and another in which no metals are produced (yield
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p = 0). The former has practically no effect on the LC emissivity at z ≥ 5. This is because

the mean metallicity of the hot halo gas (which is the component for which the cooling

is computed) remains close to primordial at these high redshifts e.g. 〈Z/Z�〉 ≈ 10−3 at

z ≈ 9. Switching off metal production completely by setting p = 0 results in a modest

boost in the LC emissivity, producing about 50% more LC photons at all redshifts and

having ∆z ≈ 0.3 earlier redshift of reionization. As the cooling is not affected by these

low halo gas metallicities at high-z, this effect comes from the slightly higher luminosi-

ties of Z = 0 stellar populations. Still, this observed difference is very modest compared

to other previously discussed parameters.

4.3.8 Photo-ionization feedback parameters

Lastly, we discuss the effect of the photo-ionization parameters, described in Section

4.2.7, on the evolution of the LC emissivity. While this type of feedback is clearly a

crucial feature in reionization modelling, at this stage of the discussion, where we fo-

cus only on the GALFORM predicted emissivities prior to the end of reionization, the

choice of zcut and Vcut parameters is irrelevant. This is simply because the GALFORM

implementation we use here assumes instantaneous reionization, which occurs at red-

shift zcut. This means that the photo-ionizing feedback affects galaxy formation only after

reionization. The two default GALFORM models set similar values of the reionization

parameters: zcut = 6 in both Baugh05 and Bower06, while Vcut = 60 km/s in the former

and Vcut = 50 km/s in the latter. The value of zcut was motivated by the presumed end of

reionization suggested by quasar Gunn-Peterson data (e.g. Fan et al., 2002), while Vcut is

motivated by the filtering mass implementation of Benson et al. (2002a,b) we mentioned

previously. Also, they both find that the exact choice of these parameters does not have

a significant impact on predictions for the low redshift observables they consider.

As we will discuss at more length later, we adopt the same implementation of the

effect of photo-ionization feedback in our full RT scheme in Chapter 5. The most impor-

tant difference is that there we do not assume a uniform instantaneous reionization, but

compute a reionization redshift for each individual halo using the RT calculation. Before

discussing the effect of photo-ionization feedback in such a scenario, it is valuable to

briefly address the effects the choice of the two parameters has on the LC emissivity.

Figure 4.16 shows the effect of the choice of zcut (left panel) and Vcut (right panel)
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Figure 4.16: Lyman-continuum emissivity per halo mass with varying

redshift of reionization, zcut (left panel) and halo circular velocity af-

fected by the photo-ionization feedback (right panel). The scale on top

of both plots gives the circular velocity of halos (in km s−1) at z = 5. See

text for discussion.

in the default Baugh05 model. The top axis in both panels shows the circular velocity

of halos at the redshift7, z ≈ 5. The first thing to notice is that the emissivity from

halos with Vc > Vcut is also affected by the photo-ionizing suppression. This is due to

the fact that the suppressed gas cooling in small mass halos affects the luminosity in

their (more massive) descendants down the hierarchy, both in terms of stellar mass and

the frequency of galaxy mergers. The left panel also demonstrates the delayed nature

of photo-ionization suppression in the GALFORM prescription: the emission is only

slightly affected when zcut = 6 (red line), one unit of redshift higher than the plot, z = 5.

Only when the redshift of reionization is zcut & 12, is the emissivity from halos with Vc <

Vcut completely suppressed (blue line). This is important to note because the majority of

numerical models that take photo-ionization into account when modelling reionization

sources assume that the emissivity of suppressible halos goes to zero as soon as they are

ionized. The left panel of Fig. 4.16 shows this is not necessarily an accurate assumption,

as it takes 3 units of redshift (≈ 550 Myr) to drop the emissivity of all but the smallest

7The mass of halo with circular velocity Vc decreases with increasing redshift as M(Vc, z) ∝ (1 + z)−3/2

in our redshift range of interest.
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halos by z = 5 (compare black and magenta lines in the affected mass range).

The right panel of Fig. 4.16 shows how the choice of the critical circular velocity,

introduced in Section 4.2.7, affects the LC emissivity. Assuming zcut = 10, the default

value of Vcut in the Baugh05 model, Vcut = 60 km/s (green solid line), results in a 50%

decrease in LC emissivity at z = 5 when compared with the model without any photo-

ionization feedback (black line with circles). If we assume a value suggested by more

recent numerical simulations (e.g. Okamoto et al., 2008) of Vcut = 30 km/s (green line

with X symbols), the emissivity is decreased by only 10% at the same redshift (and even

less at earlier times). This result suggests that photo-heating has only a small effect on

the course of reionization, a point which we demonstrate in Chapter 5. Note also that,

since all runs in this panel use the same merger trees, the mass at which the results of the

three suppressed runs converge (M ≈ 109M�/h) marks the halos which are completely

suppressed for all considered values of Vcrit.

Here we discussed the effect of photo-ionization feedback on LC emission in GAL-

FORM alone, meaning that a single redshift of reionization is assumed. We discuss the

importance of the photo-ionization feedback process on the progression of inhomoge-

neous reionization in Chapter 5.

4.4 Observed galaxies at the epoch of reionization

A crucial advantage of using sophisticated semi-analytic galaxy formation models such

as GALFORM to predict the sources of ionizing radiation is the ability to compare the

predictions of the model against other observational data. Indeed, as we mentioned ear-

lier, almost all GALFORM model parameters are constrained through such comparisons

(e.g. Cole et al., 2000; Baugh et al., 2005; Bower et al., 2006). The past few years saw

a substantial increase in the samples of known high redshift galaxies, especially in the

z ∼ 4 − 6 range where tens of thousands of galaxies with luminosities MAB . −16 or

∼ 0.01L∗z=3 are now known (Bouwens et al., 2008b). Much of this progress is due to

the deep multi-wavelength data collected by Hubble Space Telescope (HST) Advanced

Camera for Surveys (ACS, Ford et al., 2003) and Subaru’s Suprime-Cam (Miyazaki et al.,

2002). The installation of the new WCF38 camera on the HST in May 2009 allowed for a

8http://www.stsci.edu/hst/wfc3
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new push into even higher redshifts, with stronger constraints on the luminosity func-

tion (LF) at z ∼ 7 (e.g. Oesch et al., 2009; Ouchi et al., 2009; Wilkins et al., 2009) and

first estimates made on the LF up to z ∼ 10 (Bouwens et al., 2009b). These observations

provide, for the first time, a direct look at a galaxy population around the time of cosmic

reionization.

In this section we will compare the predictions of the GALFORM models (namely, the

default Baugh05 model and some variations discussed in Section 4.3) with the galaxy

sample obtained from the Hubble Ultra Deep Field 2009 (HUDF09) fields using the

Lyman-break technique. The HUDF09 program (GO11563) aims to create three ultra

deep fields using the near-IR filters on the WCF3 camera, one positioned over the origi-

nal HUDF field (Beckwith et al., 2006) and the other two over the HUDF05 fields (Oesch

et al., 2007). The data from three near-IR bands, Y105, J125 and H160, in conjunction with

the previously obtained optical data from the same fields, allows the selection of z ∼ 7

z850 (Oesch et al., 2009), z ∼ 8 Y105 (Bouwens et al., 2009a) and z ∼ 10 J125 (Bouwens

et al., 2009b) dropouts to up to ∼ 29 apparent magnitude at 5σ detection. In this work,

we focus only on the Lyman-break selected galaxies, ignoring the other promising tech-

niques for identifying high-z galaxies, namely the direct detection of their Lyman-α line

emission (e.g. Partridge & Peebles, 1967a,b; Djorgovski et al., 1985; Cowie & Hu, 1998;

Hu et al., 1998; Steidel et al., 2000; Stiavelli et al., 2001; Hu et al., 2004; Taniguchi et al.,

2005). The properties of these Lyα-emitters have been explored with GALFORM in de-

tail by Delliou et al. (2005, 2006) and Orsi et al. (2008). We focus on Lyman-break selected

galaxies because, at this time, this technique has yielded detections at higher redshifts

than the Lyman-α technique. GALFORM has previously been used to study the Lyman-

break galaxies at lower redshifts than here by various authors: Baugh et al. (1998, 2005);

Lacey (2006); Gonzalez et al. (2010, in preparation); Lacey et al. (2010, in preparation)

We structure this section as follows. In Section 4.4.1 we briefly introduce the Lyman-

break technique for selecting high-z galaxies. In Section 4.4.2, we compare the results of

the GALFORM models with the HUDF09 data and discuss the evolution of the luminos-

ity function and its implications for the ionizing emissivity. We discuss both the LF and

the parameters of the Schechter fits through the GALFORM LF predictions.
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4.4.1 The Lyman-Break technique

In essence, the Lyman-break technique refers to the selection of actively star-forming

galaxies at high redshifts using photometric measurements. The technique and its ap-

plications have been reviewed by Giavalisco (2002). For more details see also the first

successful uses of the technique by Steidel & Hamilton (1992, 1993) and Steidel et al.

(1995), where the authors attempted to detect galaxies in the field of QSOs with known

optically thick absorbers (which may be caused by massive galaxies, e.g. Wolfe et al.,

1986; Lanzetta et al., 1991; Steidel et al., 1994), or in the randomly chosen fields (Steidel

et al., 1996a,b). The Lyman-break technique rests on two assumptions about the spec-

tra of high-z galaxies: (2) there is a pronounced break in the galaxy SED at 912 Å, the

Lyman-limit and (2) the spectra are roughly flat (fν ∝ ν0) in the far-UV redward of the

Lyman limit, where the flux is dominated by emission from massive stars. The former

feature comes from the very efficient absorption of LC (λ ≤ 912Å) radiation in stel-

lar atmospheres, as well as in the ISM (Heckman, 2000) and IGM (Steidel et al., 1995,

1999; Madau, 1995). The detection of such galaxies by colour requires a minimum of

three broadband filters, chosen so that the redshifted Lyman-break feature falls approx-

imately between the bluer two. This means that the galaxy will be detected in the two

redder bands, while being almost invisible in the bluest band: this “disappearance” from

the bluest band is responsible for coining the name “dropout galaxies” for the objects se-

lected using this technique. As an example, (Steidel & Hamilton, 1992, 1993) used a set

of specially designed filters, UnGR, to detect star-forming galaxies in 3.0 . z . 3.5

range. At those redshifts, the Un filter is mostly shortward of the Lyman-break while

G is set so that it is not severely blanketed by the Lyman-α forest leading up to 1216Å.

Steidel et al. (1995) argued that for a galaxy to satisfy the previously stated criteria, the

Un − G colour should show a strong break (Un − G ≥ 1.6), while the colour redward

of the break should be blue (G − R ≤ 1.2). Finally, an additional criterion is applied

to minimise contamination of the sample by intrinsically red galaxies at lower redshifts,

Un −G ≥ 1 + (G−R). The sample may also be contaminated by individual stars in the

field, which may be distinguished from galaxies by their spectral features. These criteria

define a region on the colour-colour diagram which holds all of the prospective galaxies

at the expected redshift. The efficiency of this selection method was shown to be very

high by subsequent spectroscopic confirmations, with ≈ 85% of Un-dropout candidates
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confirmed as galaxies at the desired redshift (Steidel et al., 1996b, 1999). This makes it an

excellent tool for finding large numbers of galaxies at a specific redshift with a relatively

small investment in terms of observation time, compared to a complete spectroscopic

survey.

The technique remains largely the same when applied to higher redshifts (z & 6).

The main difference is that the Lyman-α forest line blanketing essentially removes all of

the flux blueward off the Lyman-α emission line (e.g. Bunker et al., 2009). In this case,

the Lyman-α line is used as location of the break instead of the LC break. Also, as we

mentioned earlier, for z & 7 the dropout feature is redshifted beyond the visible range,

requiring the use of a near-IR camera such as the WFC3/IR used for the HUDF09 project

or the upcoming James Webb Space Telescope9 (JWST).

4.4.2 Comparing GALFORM results with HST results

The data against which we compare the GALFORM results is compiled from various

sources. For z ∼ 4, 5 and 6 we use the data compiled by Bouwens et al. (2007) from

various HST ACS deep fields: HUDF (Beckwith et al., 2006), HUDF NICMOS parallels

fields (HUDF-Ps Bouwens et al., 2004; Thompson et al., 2005), HUDF05 (Oesch et al.,

2007) and GOODS (Giavalisco et al., 2004). For higher redshifts, we use the previously

discussed HUDF09 results at z ∼ 7 (Oesch et al., 2009), z ∼ 8 and 10 (Bouwens et al.,

2009a). For the details on how the observational data was reduced, we direct the reader

to these papers.

Luminosity function of dropouts and GALFORM parameters

We begin the comparison by looking at the luminosity function (LF) at various redshift.

In essence, this is the number density of galaxies, dn, with luminosity between L and

L + dL. It is a fundamental observable, in a sense that it is mostly10 independent of as-

sumptions about the theoretical models (Bouwens et al., 2008b). Figure 4.17 compares

the observations at redshifts 6, 7, 8 and 10 with the predictions of GALFORM models.

The observed galaxy densities were converted from the concordance cosmology (h = 0.7,

Ω0 = 0.3, ΩΛ = 0.7) to the Millennium cosmology used in the GALFORM models (h =

9http://www.jwst.nasa.gov/
10A cosmological model must be assumed to interpret the observed distances and volumes.
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Figure 4.17: UV luminosity functions (1500 Å) at z ∼ 6,7,8 and 10 (top to

bottom and left to right). The observational data with 1σ error bars are

given by black symbols, and are compared against the default Baugh05

(red line), Baugh05 without top-heavy IMF in bursts (green line) and

Baugh05 without any bursts (blue line). The downward arrow sym-

bols mark 1σ upper limits on the observed LF. Top panels show the

fraction of ionizing photons produced by galaxies with UV luminosi-

ties smaller or larger than M1500,AB. The default Baugh05 model shows

a good agreement with observational data at all redshifts. See text for

discussion.
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0.73, Ω0 = 0.25, ΩΛ = 0.75), resulting in ≈ 5% lower LFs than the ones published in the

original papers. The UV luminosities are represented by absolute magnitudes11 at 1500

Å in the rest frame. The dependence on h was accounted for in both number densities

and luminosities of galaxies in each bin (assuming h = 0.73). As the plots demonstrate,

the default Baugh05 model results are in good agreement with the presently available

observations. This model was previously shown to be in good agreement with Lyman-

break galaxies at z ∼ 3 (Fig. 3 in Baugh et al., 2005; Gonzalez et al., 2009) and z ∼ 6 (Gon-

zalez et al., 2010, in preparation). However, this is the first time a comparison with z > 6

samples has been performed. The UV LF is significantly underestimated in the model

without bursts (blue lines), as one might expect from the large difference in the produc-

tion of LC photons as see in e.g. Fig. 4.4. The difference between the default Baugh05

(red lines) and version without the top-heavy IMF in bursts (green lines) is smaller, espe-

cially when one remembers the large difference in the ionizing photon emissivity (Figs.

4.4 and 4.5) found between the two models. The more modest difference seen in the

1500 Å LFs is caused by the stronger dust extinction in the default model, due to more

efficient metal production caused by the higher yields in bursts. When the dust extinc-

tion is not considered, the difference in galaxy LFs of the two models becomes much

more prominent, but then both models significantly exceed the observed LF. With the

dust extinction included, the top-heavy IMF model is only slightly better in matching

observations than the one without it.

The top panels in Fig. 4.17 show how the production of LC photons shifts to less

luminous galaxies with increasing redshift: while the observed range of galaxy lumi-

nosities accounts for ≈ 50% of emissivity at z = 6 (M1500,AB . −18), at z = 10, the

observed galaxies sample only a few percent of the total emissivity. This results empha-

sises the potential inaccuracy when estimating the LC emissivity from observations such

as these alone. We remind the reader that the fractions shown in the top panels corre-

spond to the total production of LC photons in each model, but this does not reflect the

large differences in emissivities produced between the different models. Note that the

Baugh05 model have not been changed in any way to fit this most recent data.

Figure 4.18 compares the default Baugh05 and Bower06 in terms of the predicted

Lyman-break galaxy LFs at high-z. At lower redshift (z = 5, left panel), the predictions

11The AB magnitude system (Oke & Gunn, 1983) is used throughout this thesis.
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Figure 4.18: UV luminosity functions at z ∼ 5 (left panel) and 10 (right

panels) predicted by default Baugh05 (red solid lines) and Bower06

(green dashed lines) models. Observational data constraints are shown

with black symbols (downward arrows give upper limits only). The

Bower06 model seems to match slightly better the observed low-

luminosity end at z = 5, but it over-predicts the high-luminosity end.

At z = 10, the Bower06 model predicts many fewer low luminosity and

many more high luminosity galaxies than Baugh05, as expected by the

large difference in LC emissivity between the two models (see Fig. 4.1).

at lower luminosities are fairly similar between the two models, with Bower06 even pro-

viding a slightly better fit to the observed LF. However, there is a big difference in the

high-luminosity end, where the Bower06 model does not show the exponential drop-off

in the LF: the model’s predictions lack the drop-off in all z ≥ 5 predictions, having a sim-

ple power-law shape. The observed data features an obvious drop-off, which exposes

the inadequacy of the Bower06 model for matching the observations of galaxies at high

redshifts. At even higher redshifts (z = 10, right panel), the difference in the predicted

number of low luminosity galaxies between the two models also becomes clear. Since the

low luminosity galaxies are the dominant sources of LC photon production at these red-

shifts (see the fraction of ionizing photons produced by the Baugh05 model, top panel),

this feature certainly contributes to the large difference in LC emissivity produced by
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Figure 4.19: UV luminosity functions at z ∼ 5 (left panel) and 10 (right

panel) compared to Baugh05 model with disc instabilities (magenta

lines). More common starbursts in this model result in overestimated

number densities at z ∼ 5. The lack of observational constraints on the

low-luminosity end at z ∼ 10 prevents the complete discounting of the

disc instability model.

the two models (Fig. 4.1). The better agreement between the two models at z = 5 is

also matched by a smaller difference in emissivity at that redshift, mentioned in Section

4.2.8, but it is too late for the Bower06 model to produce significant number of ionizing

photons to meet the observational constraints on the epoch of reionization.

In Section 4.3.6, we have shown that the disc instability process can be more effective

in triggering starbursts than galaxy mergers, resulting in more gas converted to stars

with the top-heavy IMF, thus boosting LC emissivities (see Figs. 4.14 and 4.15). Figure

4.19 shows how the inclusion of disc instabilities in the default Baugh05 model affects

the predicted UV LF. The disc instability model used here assumes εstable = 0.8. At

z = 10 (right panel), the same redshift as Fig. 4.14, the predicted galaxy LF is boosted

over the whole range of luminosities, especially for the low-luminosity end. The expla-

nation is the same as the one we put forward in the case of the low-mass end of the

LC emissivity distribution: disc instabilities trigger bursts in the smaller halos where

the galaxy mergers do not occur due to the lack of progenitors of smaller masses. The
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model somewhat exceeds the upper limits suggested by the observational data in the

observed range (−18 . M1500,AB . −20). The current lack of data points at lower lu-

minosities means that the shape of the low-luminosity tail cannot be constrained at this

redshift. At lower redshifts, such as z = 5 (left panel), the disc instabilities result in a

much smaller difference from the default model. For M1500,AB & −18, the disc instabil-

ity model even produces a somewhat lower galaxy LF. This is a feature also mirrored in

the emissivity, where we find a significant drop for low mass halos (M . 109M�/h) at

the same redshift. The most likely cause for this behaviour is that, when disc instabili-

ties are present, starbursts are triggered early and often and consume the cold gas pool

thus reducing the efficiency of both quiescent star formation and later bursts. More mas-

sive halos which cool gas more efficiently remain unaffected and the model with disc

instabilities boosts the LF at higher luminosities at z = 5 even more efficiently than at

z = 10. Future attempts to unify the Baugh05 and Bower06 models into a single picture

of galaxy formation will most likely have to include disc instabilities since they appear

to be crucial for the buildup of black hole mass at early redshifts necessary for efficient

AGN feedback, as we mentioned in Section 4.3.6. This comparison against the observed

population of high redshift galaxies discourages a simple inclusion of disc instabilities

in the Baugh05 model, suggesting that the potential unified model will need to be more

than a sum of the parts of the original ones.

Throughout this thesis we have assumed the same ΛCDM cosmology as was used in

the Millennium simulation (Springel et al., 2005b). More recent measurements, namely

the ones made by the Wilkinson Microwave Anisotropy Probe12 (WMAP) mission, suggest

a somewhat different set of parameters for the 5-year dataset. From the perspective of

structure formation, the largest difference is introduced by the lower value of σ8, the

present-day mass variance on 8 Mpc/h scale used to normalise the linear power spec-

trum. The lowering of σ8 has the effect of delaying structure formation (e.g. McQuinn

et al., 2007), which can be crucial for the emissivity during reionization when the source

number density is already low. Figure 4.20 compares the UV LF of the Baugh05 model

in our default (Millennium) cosmology (σ8 = 0.9 and ns = 1; other values quoted ear-

lier) with the best-fit cosmology with 5 years of WMAP data (WMAP5; Ωm = 0.273,

ΩΛ = 0.726, Ωb = 0.0456, h = 0.705, ns = 0.96 and σ8 = 0.811; see Hinshaw et al., 2009).

12http://map.gsfc.nasa.gov/
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Figure 4.20: UV luminosity functions at z ∼ 5 (left panel) and 8 (right

panel) for the default Baugh05 model, but with two different sets of

cosmological parameters. The lower σ8 in the WMAP 5-year cosmol-

ogy (red dashed lines) results in the delayed structure formation when

compared to the Millennium one (red solid lines). This is demonstrated

by comparing WMAP5 result at z = 8 (right panel) with the Millennium

result at z = 10 (dotted black line). Use of the WMAP5 cosmology re-

sults in a better agreement with more abundant observations at lower

redshifts (z = 5, left panel). See text for further discussion.

At z = 5 (left panel), where the UV LF is well constrained, the use of WMAP5 cosmology

provides a better fit to the observational data. At higher redshifts such as z = 8 (right

panel) or z = 10 (not plotted) the difference with the Millennium cosmology results are

larger, but both models fit the sparse observational data. Further improvement of the

galaxy sample at high-z will better constrain this comparison. The dotted black line in

the right panel gives the UV LF of the Millennium cosmology model at z = 10, added to

demonstrate the delay in structure formation caused by lower σ8: the halo mass function

in the WMAP5 cosmology is the similar at z as at some earlier redshift z′ in Millennium

cosmology, when σ′8 > σ8. The observed difference introduced in the galaxy number

densities result in the ∆z ≈ 1.5 delay in redshift of reionization between the two mod-

els. Note that we have not adjusted any of the original Baugh05 parameters beyond the
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cosmology. Standard GALFORM practise requires the model parameters to be adapted

to the used cosmology, therefore the discussion about which cosmology is appropriate

to be used is not complete.

Schechter function fits through the luminosity functions

Observational studies commonly fit the LF data with Schechter functions, (Schechter,

1976):

Φ(L)dL = n∗
(
L

L∗

)α
exp

(
− L

L∗

)
d
(
L

L∗

)
. (4.27)

Fitting this function through the available data reduces the properties of the LF to three

quantities: the characteristic luminosity L∗ which marks the transition from a power

law representing low luminosities to an exponential for the high luminosities, slope α

of the power law at L � L∗ and the normalization n∗ (units of number density). It is

useful to express Eq. (4.27) in terms of absolute magnitude. Remembering that L1/L2 =

10−0.4(M1−M2) we get:

Φ(M)dM = n∗(0.4 ln 10)100.4(α+1)(M∗−M) exp
(
−100.4(M∗−M)

)
dM, (4.28)

where M∗ is the characteristic absolute magnitude with the same interpretation as L∗ in

Eq. (4.27).

It is interesting to see how the Schechter fits through the GALFORM model LFs com-

pare to those predicted by observations. To that end, we fit Schechter functions to the

LFs obtained from GALFORM models using a non-linear least square method (e.g. Bates

& Watts, 1988) using the SciPy numerical package (Jones et al., 2001). Before fitting, the

GALFORM LF results were truncated at both high and low end to remove spurious val-

ues stemming from numeric issues (a drop-off at the lowest luminosities and occasional

erratic values in highest luminosity bins). The fit takes into account the Poisson count

errors predicted by GALFORM. Note that this is a somewhat simpler procedure than the

one used to fit the HUDF09 data, where the fit is not done on the predicted LF, but on

the raw data. See Bouwens et al. (2007) and references therein for details on their fitting

procedure.

Before proceeding with the discussion of our results, we must point out that the com-

parison of Schechter fits does not provide more information than a direct comparison of
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Figure 4.21: Left: Schechter fits (lines) through the default Baugh05

model UV LF prediction (circles) at z = 6 (black), 8 (blue), 10 (red)

and 12 (green). Right: Evolution of M∗ (bottom) and α (top) Schechter

function parameters with redshift. Solid lines with error bars represent

fits through the GALFORM data, while the shaded areas give the em-

pirical fits (mean value shown by dashed black lines) from Bouwens

et al. (2008b). Dashed blue line in the top panel is a linear fit through

GALFORM α values, while the horizontal thin solid blue line marks the

mean α. See text for discussion.

LFs does. The fits we perform here are done over a significantly wider range of lumi-

nosities than the range covered by current observations. As there is not reason to expect

the Schechter fits to perfectly match the observed LF (as can be seen in left panel of Fig.

4.21), we must be careful not to over-interpret these results. Our main motivation here is

to demonstrate how the predictions of the model unconstrained by practical limitations,

compares to the currently available data.

The evolution of individual parameters of the Schechter function offers some insight

into the structure formation process. Notably, the evolution of M∗ (i.e. brightening of

galaxies) at high redshifts is expected from the evolution of the halo mass function, e.g.

the number density of present-day L∗ galaxy halo hosts (∼ 1012M�/h) increases by ap-

proximately three orders of magnitude between z=10 and 3, while remaining relatively
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constant for z < 3 (see e.g. Fig. 2 of Springel et al., 2005b). On the other hand, the

evolution of α can be very important for reionization, i.e. the slope of the power-law

part of the LF indicates the number of low luminosity galaxies that are thought to be the

dominant contributors to the LC emissivity as we discussed previously.

Figure 4.21 shows the redshift evolution of the UV LF in described terms of the

Schechter function and its parameters. The left panel shows the LF and the correspond-

ing Schechter fits as a function of redshift. It is clear that the Schechter functions are only

approximate fits to the LF data. However, some global trends in the evolution of the

LFs can be discussed in terms of the Schechter fit parameters, given in the right panel.

The evolution of M∗ in the considered redshift range is strong, as expected: it increases

from ≈ −17 at z = 16 to ≈ −20 at z = 6 (bottom in right panel). The shaded areas in

the right panels mark the range of the empirical fit to the data done by Bouwens et al.

(2008b) (see their Eq. 3). The results of the default Baugh05 model show excellent agree-

ment with the empirical relation for the evolution of M∗. The M∗ parameter is the only

parameter constrained by observations, because it is defined by the high-luminosity end

of the LF which is the only part currently observed. Still, as we pointed out before, our

model fits cover a much wider range of luminosities, so the perceived perfect match to

observations seen in this figure, must be at least partly accidental.

On the other hand, the evolution of the slope of the low-luminosity end of the LF is

not so clear. By eye, as seen in the left panel of Fig. 4.21, α evolves weakly at z ≥ 6, if at

all. A direct look at the values of α (top of right panel) shows some weak linear evolution

with redshift (dashed blue line is a linear fit through the α values). Arguably, the error

bars are sufficiently large not to be able to completely exclude the no-evolution case

(demonstrated by the horizontal blue solid line, which shows the mean α). The empirical

fit from Bouwens et al. (2008b) is unconstrained for the slope parameter α evolution, so

a comparison with GALFORM results would be pointless (we still include the predicted

values in the figure for completeness, grey shaded areas). We do note that the values of

α from the Baugh05 model agree with the individual values observed at z . 7, α ≈ −1.7.

It was previously argued that a steep low-luminosity end of α . −1.6 is needed for low

luminosity galaxies to be capable of reionizing the Universe (Lehnert & Bremer, 2003;

Beckwith et al., 2006; Stark et al., 2007). This is true in the Baugh05 model as well, as the

majority of ionizing photons is coming from the low-luminosity end of the LF (see top
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panels of Fig. 4.17. Note, however, that the value of α in our fits strongly depends on the

luminosity range over which we performed the fit. A look at the left panel of Fig. 4.21

shows that the slope of the low-luminosity end of GALFORM LFs is not a simple power-

law. More precisely, there is a flat “plateau” around M1500,AB ≈ (−14) − (−15) which

separates two power-law like slopes. This feature is caused by the presence of starbursts,

that only boost the number densities of galaxies with M1500,AB . −14. It is therefore

clear that the value of α we obtain in our fits may significantly change if we restrict the

luminosity range to better match the current observations, which are generally limited

to M1500,AB . −17.

The effects of reionization on the LBG luminosity function

As a final point, it may be interesting to see whether the Lyman-dropout LFs can be

used to constraint the reionization in some way. For that purpose, in the left panel of

Fig. 4.22 we compare the observed UV LF at z = 6 with Baugh05 variants with different

photo-ionization feedback parameters, zcut and Vcut. In the original Baugh05 (red lines),

zcut = 6, which means that it is not affected by any photo-ionization feedback at z = 6.

If the redshift of reionization is assumed to be earlier, zcut = 10 or 12, there is clear ev-

idence of the suppression of the power-law slope resulting in an underestimate of the

observed LF at MAB,1500 & −20. Note that this suppression decreases the importance of

less luminous galaxies in the LC emissivity (top panel). If we were sure that Vcut = 60

km/s, then this would certainly suggest reionization at z ≈ 6. However, as we discussed

earlier, this value of Vcut is probably an overestimate, with a more probable value being

Vcut ≈ 30 km/s. In that case, the observed LF is consistent with a redshift of reionization

of z ≈ 10, the value suggested by the CMB polarisation data (Komatsu et al., 2009). In

terms of the Schechter fit slope (right panel), the default model (red line) and zcut = 10,

Vcut = 30 km/s show approximately the same evolution with redshift. Note that the

suppression of α is significantly delayed with respect to the assumed reionization red-

shift, e.g. when zcut = 12 (green line), the slope does not start to diverge from the default

until z ≈ 8. This is yet another feature caused by the photo-ionization feedback pre-

scription in GALFORM, that, as we will argue in Chapter 5 makes source suppression

generally unimportant for the progress of reionization. We cannot argue that these re-

sults provide any strong constraints on the reionization process. However, we can claim
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Figure 4.22: Left: UV LF at z = 6 with respect to varying photo-

ionization feedback parameters in the Baugh05 model. Earlier reion-

ization (blue and green solid lines) may depress the low-luminosity LF

away from the observed values if Vcut = 60 km/s. When Vcut = 30 km/s,

the earlier reionization (blue dashed line) does not have a strong effect

and the result generally agrees with the default Baugh05 result (red

solid line) and observations (circles). Right: Evolution of the Schechter

slope parameter α with redshift in the same models. The default

Baugh05 and zcut = 10, Vcut = 30 km/s models evolve similarly. The

effect of suppression on the low-luminosity end slope is significantly

delayed: zcut = 12, Vcut = 60 km/s does not start to significantly di-

verge from the default model until z ≈ 8.

that the comparison with the galaxy LFs can provide yet another avenue for constraining

the reionization process when a more detailed models of the relevant physics becomes

available.

4.5 Comparison of merger tree generating techniques

Throughout all the previous discussion in this chapter, we have exclusively used merger

trees generated with the Monte-Carlo algorithm described in Section 4.2.1. The relatively
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small computational cost of this technique allowed us to explore global average photon

production in a complete halo sample over the full relevant mass range. On the other

hand, for the inhomogeneous reionization simulations that include radiative transfer

that we will discuss in Chapter 5, we use the other technique described in Section 4.2.1,

which generates the merger trees from the outputs of N-body simulations. This must

be done to create the merger trees that are consistent with the density field used for a

specific RT run, i.e. to obtain the correct positions for sources.

The use of N-body simulations, due to a much higher computational cost in compar-

ison to the MC technique, results in more strict limitations on mass and time resolution

for the merger trees. Indeed, the need to resolve halos of M ≈ 108 M�/h in simulation

boxes of & 100 Mpc/h is one of the key technical problems in numerical simulations of

reionization. These conditions have been reached only recently (Trac & Cen, 2007; Iliev

et al., 2008; Shin et al., 2008). An alternative used by some authors (e.g. McQuinn et al.,

2007; Zahn et al., 2007; McQuinn et al., 2009) is to put the unresolved small halos in by

hand, following the analytic prescriptions similar to the ones used to generate the MC

merger trees. This is a promising technique when simple source prescriptions that do

not require halo merger histories are used. For use with GALFORM, we would need

the added halos to be attached to the existing N-body merger trees but, unfortunately,

a technique that accomplishes this efficiently has still not been developed. As we will

demonstrate in this section, none of the N-body simulations we use in the full RT sim-

ulations of Chapter 5 provides a complete sample of the LC emissivity. Keeping this

in mind, in Section 4.5.1 we will compare the emissivity obtained from N-body merger

trees with the ones obtained from MC trees to estimate the fraction of the LC photon

production we will be missing. This, as we will demonstrate, does not simply depend

on the mass resolution of the N-body runs, but also on the parameters of the GALFORM

model used. Finally, in Section 4.5.2 we test the time resolution of the merger trees that

is necessary to produce a converged emissivity.

4.5.1 LC emissivity from N-body merger trees

To test the effects of box size and mass resolution of N-body simulations on the LC emis-

sivities predicted by GALFORM we use a set of simulations obtained with the “lean”

version of Gadget-2 (Springel, 2005a). We give the parameters of the simulations in Ta-
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Simulation Lbox NDM mDM Mhalo,min

[Mpc/h] [105 M�/h] [108 M�/h]

L10N1024 10 10243 0.65 0.013

L20N512 20 5123 41.35 0.83

L20N1024 20 10243 5.17 0.1

L50N1024 50 10243 80.78 1.62

L140N1024 140 10243 1773.23 35.47

Table 4.1: Parameters of the cosmological N-body runs discussed in

Chapters 4 and 5. The labelling scheme was introduced in Chapter 3.

The given values are as follows: size of the computational box, Lbox;

number of dark matter particles, NDM ; mass of dark matter particles,

mDM; minimum halo mass, Mhalo,min ≡ 20×mDM, given by the chosen

minimum FOF group size of 20 particles. The Cosmological parameters

[Ω0, ΩΛ, Ωbaryon, σ8, ns, h] used for all runs are [0.25, 0.75, 0.045, 0.9, 1,

0.73].

ble 4.1. Some of these runs have been used in Chapter 3 (Table 3.1), where we introduced

the labelling scheme.

The number of halos at some redshift is commonly expressed in the form of a differ-

ential halo mass function (MF), like the one shown in Fig. 4.23. The halo mass function

dn/dlog10M , is defined as the number of halos of mass M per unit volume per log10

unit mass interval. An analytical form of this function can be, to a first approximation,

derived using the Press-Schechter formalism (see Eq. (1.9)). Many improved analytic

descriptions have been developed since (e.g. Sheth & Tormen, 1999; Jenkins et al., 2001;

Sheth & Tormen, 2002; Warren et al., 2006; Reed et al., 2006). In Fig. 4.23, we compare the

halo MFs of our N-body runs to that of Jenkins et al. (2001), who proposed a “universal”

form of the halo mass function obtained by fitting N-body simulations and showed it to

agree well with the Sheth & Tormen (1999) analytic function up to z ≈ 5. Later work
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Figure 4.23: Number of halos per halo mass (halo mass function) of

three N-body simulations, L20N1024 (blue squares), L50N1024 (red cir-

cles) and L140N1024 (green triangles) at redshifts 5 and 10. The results

are compared to the Jenkins et al. (2001) mass functions (black solid

and dashed lines) used to predict the number of halos at each redshift

in the GALFORM run. The vertical thin lines mark the minimum halo

mass necessary for atomic line cooling in the halo. In the fully resolved

ranges, all the N-body runs agree well among themselves and with the

Jenkins et al. predictions.

further improved on their results, especially at higher redshifts (Reed et al., 2006). Still,

here we use the form proposed by Jenkins et al. (2001) because this is the mass func-

tion we employ when generating the merger trees with the Monte-Carlo technique in
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GALFORM.

The smallest halo that can be found in an N-body simulation is given by the mass

resolution, i.e. the mass of a single particle, and by the properties of the group finder.

For all the simulations of this thesis we use the friends-of-friends group finder (FOF

Davis et al., 1985) with the linking length of b = 0.2 and we consider a group to be a halo

if it has≥ 20 particles. The particle masses and corresponding minimum halo masses for

individual simulations are shown in the last two columns of Table 4.1. The 20 particles

criterion per halo is chosen to extract as many halos as possible from the N-body data

and may be somewhat optimistic, as evidenced by the large deviations of the smallest

halo mass bins from the theoretical expectation in Fig. 4.23 (when high confidence of

halo detection is needed, a higher group size is used, e.g. ≥ 100 in Reed et al., 2006). The

number of high mass halos is dictated by the box size, since the halo mass function can

also be interpreted as a probability of finding a halo of a given mass in unit volume. The

effect of the box size is clear when comparing L50N1024 and L140N1024 at z = 10 in Fig.

4.23. Finally, the halo counts from each N-body simulation will differ from theoretical

predictions due to finite box size which limits the maximum wavelength in the power

spectrum of density fluctuations (e.g. Sirko, 2005; Bagla & Prasad, 2006; Power & Knebe,

2006).

When a simple mass-luminosity relation is used to obtain the ionizing emissivity

from the N-body data, such as the linear relation of Iliev et al. (2006a), the halo mass

function provides all the necessary data to model photon production. In that case, the

fraction of total emissivity resolved by a single N-body run is completely defined by the

minimum and maximum halo mass range on the halo mass function. The same is not

true in the GALFORM model, as can be seen in the left panel of Fig. 4.24 which compares

the emissivity of the default Baugh05 model obtained using the N-body trees from three

different simulations with the trees computed using the Monte-Carlo technique. For

example, the minimum halo mass in the L50N1024 simulation is 1.62× 108M�/h (Table

4.1) but, in the left panel of Fig. 4.24, it does not match the emissivity of the L20N1024

run (which has Mhalo,min = 107M�/h) until M ≈ 109M�/h, even though the halo mass

functions agree very well between the two simulations in that mass range (see Fig. 4.23).

This discrepancy shows that the emissivity depends on more than the simple number of

halos at any given redshift: in this case, it depends strongly on the starbursts triggered



4. GALFORM: modelling the galaxies that reionize the Universe 202

Figure 4.24: The LC emissivity as a function of halo mass in the default

Baugh05 (left panel) and Baugh05 without starbursts (right panel) mod-

els at z = 10 for three N-body runs and an MC tree run. The N-body

runs are shown with the same styles as in Fig. 4.23. In the default model

(left), the N-body runs resolve different ranges in the emissivity, but the

ranges do not correspond directly to the minimum and maximum halo

masses resolved by each simulation (Fig. 4.23). The reason for this is

the importance of galaxy mergers in triggering starbursts, as evidenced

by the model without them (right panel). The discrepancy between the

Monte-Carlo and N-body runs is also probably due to different merger

rates from the two techniques.

by galaxy mergers. The last claim is backed up by the right panel of Fig. 4.24 which

shows the results using the same merger trees as in the left panel but in a Baugh05 model

variant without any starbursts. Here, the mass ranges where the emissivity is properly

resolved correspond to the fully resolved halo mass function ranges of each simulation.

The left panel of Fig. 4.24 also shows a discrepancy between the results of N-body

and MC tree runs. Some comparisons of the two techniques have been done before, (e.g.

Helly et al., 2003; Harker et al., 2006), but the focus of those studies was on lower red-

shifts and on other properties of the galaxy populations (such as the optical or near-IR

luminosity functions), not the LC emissivity. When the starbursts are excluded from the
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Figure 4.25: The halo mass ranges relevant for LC photon production as

a function of redshift in the default Baugh05 (left panel) and Baugh05

without starbursts (right panel) models. The black solid curves mark

halo masses that account for a fraction, f , of the total emissivity pro-

duced at a given redshift z, M ≥ M(z, f); from top to bottom, the frac-

tions are f = (0.1, 0.3, 0.5, 0.7, 0.9). The dashed black line marks the

mass of halos with Tvir = 104K, the temperature necessary for atomic

line cooling, i.e. the minimum mass of halos capable of forming galax-

ies. The coloured lines mark the minimum resolved halo masses of

the three N-body simulations used (Table 4.1), same runs and colour

scheme as in Fig. 4.23. See text for further discussion.

Baugh05 model (right panel), the discrepancy between the two merger tree creation pro-

cedures disappears, pointing to the different halo merger rates in the two techniques as

the source of the problem. We will do a more detailed study of the merger tree properties

at high redshift and their effect on the galaxy formation in the future.

Regardless of the differences between N-body and MC tree emissivities in the Baugh05

model, the shape of the emissivity’s dependence on halo mass is approximately the

same. This allows us to discuss the importance of halos of a certain mass to LC photon

production in relative terms. In Fig. 4.25, we show the fraction of the total LC emissivity

produced in halos with mass smaller than M as a function of redshift (we were previ-
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ously showing the fractions at a single redshift in the top panels of the emissivity plots in

Section 4.3). For a halo to be capable of cooling efficiently enough to form galaxies, it has

to have Tvir & 104K. The halo mass that corresponds to that virial temperature, given by

Eq. (1.7), is shown with the dashed line in both panels of Fig. 4.25. The solid lines mark

the halo masses up above which a specified fraction, f , of LC photons is produced at red-

shift z, M(z, f). For example, halos in the mass range bounded by the dashed and the

bottom solid line account for the first 10% of the photons produced. Comparing M(z, f)

ranges with the minimum halo mass resolved by an N-body simulation, and ignoring

for the moment the importance of galaxy mergers in the default Baugh05 model, we can

see what fraction of LC emissivity is missed by each N-body simulation due to its limited

mass resolution. The horizontal coloured lines mark the mass limit of the simulations

we are discussing. The limiting halo mass of the L20N1024 run (blue line) is well below

the M(z, Tvir = 104K) halo mass limit, suggesting that the low mass halo contribution

to the total emissivity is completely resolved at all redshifts - this is indeed the case, as

seen in Fig. 4.24. By comparison, L50N1024 run (red line) resolves the limiting halo mass

only at z = 5, while L140N1024 (green line) resolves practically nothing in terms of LC

photon production at z = 14 and > 50% of the photons only for z . 7 in the default

Baugh05 model (left panel).

Comparison of the two panels of Fig. 4.25 shows how the relevant mass range

changes with respect to the GALFORM model employed. A model with significant con-

tribution from merger-induced starbursts (left panel) produces the majority of the pho-

tons (e.g. 80%, produced in the mass range defined by the top and bottom solid lines) in

a smaller halo mass range than the one without them (right panel). Also, in the former

case, the small mass halos, M ≤ 108M�/h, contribute a negligible amount of photons

to the total emissivity regardless of their high numbers (as seen in Fig. 4.23), as the pro-

genitors of these halos are not capable of forming galaxies (Tvir < 104K) resulting in no

galaxy mergers that could trigger starbursts. When the bursts are ignored (right panel),

the contribution of M . 108M�/h halos becomes much more relevant: they produce

≈ 50% of the total emissivity at z = 14 and ≈ 20% at z = 10.

The ratio M(z, f)/M(z, Tvir = 104K) also holds some useful information. As seen

in Fig. 4.23, with decreasing redshift the number of high mass halos grows significantly

faster than the number of small mass ones, a feature of the hierarchical buildup of struc-
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ture. Keeping this in mind, if the increase of emissivity is dominated by the growth of

structure, then the ratio M(z, f)/M(z, Tvir = 104K) would increase with time, possibly

more so for high than for low f . This is indeed the case in the no starbursts model (right

panel), where the solid lines clearly diverge from the dashed one with decreasing red-

shift. On the other hand, in the default model (left panel), the same ratio increases much

more slowly, suggesting that the evolution of emissivity does not directly correlate with

that of the halo MF. Note that the ratio changes discontinuously at z = 6 in both mod-

els: this is the choice of zcut in the default Baugh05 model for the redshift at which the

photo-ionization feedback is turned on (see Section 4.3.8).

Finally, we ask the question of how much does the limited resolved emissivity range

in the N-body runs affect the progress of reionization. Figure 4.26 shows number of LC

photons produced per H atom up to some redshift by the default Baugh05 model using

full mass range MC trees (black solid line) and N-body trees from the previously used

simulations (coloured lines). The very limited mass resolution of L140N1024, as seen

in Fig. 4.25, causes a severe delay in the resulting ionization of the Universe: this run

produces a single photon per hydrogen atom ∆z ≈ 3.7 later than the MC tree run, and

10 photons per atom ∆z ≈ 3 later. Clearly, the production of photons speeds up at lower

redshifts for the L140N1024 trees, as more sources are being resolved as seen in Fig.

4.25. The other two N-body tree runs obtain results much closer to the MC tree ones. An

interesting feature is the cross-over of photon buildup between L20N1024 and L50N1024.

This is, of course, due to the increasing contribution to emissivity from larger mass halos.

At early times (z & 12), low mass halos (M . 109M�/h) dominate the emissivity and

the L20N1024 simulation, which fully resolves that halo mass range, almost matching

the results of the MC tree run. The small box size of the L20N1024 run means that

more massive halos are not found in that simulation and the photon production quickly

starts to diverge from the desired result with decreasing redshift. An opposite scenario

takes place in the L50N1024 simulation: while the low mass halos are not resolved, the

larger ones that become increasingly important are, and the result gradually converges

on the desired one (MC tree) at lower redshifts. Note that we showed in the left panel

of Fig. 4.24 that the use of MC merger trees in the default Baugh05 model results in

slightly higher emissivities than the ones obtained using N-body trees, therefore a perfect

agreement in the total number of LC photons produced is not expected.
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Figure 4.26: The number of LC photons produced per H atom by red-

shift z using the default Baugh05 model with different merger trees.

The Monte Carlo merger trees (black line) resolve the full halo mass

range relevant for LC emissivity, while the three N-body trees (coloured

lines) resolve different sections of the mass range, as seen in Fig. 4.24.

The small box run (L20N1024, blue line) resolves the small halo mass

range which is dominant during the early stages of the reionization pro-

cess (z & 12), but does not resolve higher mass halos that become rele-

vant at later times. The medium range box (L50N1024, blue line) misses

some of the smallest halos at early times, but makes up for it by resolv-

ing more massive ones later on.

Coincidentally, the L20N1024 and L50N1024 runs produce 10 photons per H atom at

about the same time. This means that we cannot choose the optimal run out of the two
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on the reionization redshift alone. What is clear, though, is that the limits in the resolved

emissivity of both runs leads to a significant delay in the redshift of reionization, ∆z ≈ 1,

when compared to the results of the MC tree run. Still, this difference is not larger than

what is obtained by varying some of the more important GALFORM model features, as

we have shown in Section 4.3. This leads us to conclude that the limited resolution of

our N-body simulations will not prevent us from obtaining relevant results in the full RT

simulations we perform in Chapter 5.

4.5.2 Time convergence of N-body merger trees

Thus far, we have focused solely on the issues connected to the resolving of the halo MF.

Another aspect of the source model is the time resolution of the merger trees: how many

steps of the tree, Nsteps mentioned in Section 4.2.1, must be used to obtain a converged

estimate of the production of LC photons during reionization. When using Monte Carlo

trees, the computational cost of increasing the time resolution of merger trees used in

GALFORM is small (remember that a very fine merger tree is always created when using

this technique). On the other hand, the time resolution of the N-body merger trees is de-

fined by the available outputs of the parent simulation. This becomes an issue especially

when one wishes to employ very large simulations (in terms of particle numbers), when

the limit to Nsteps becomes dependent on having available disk space. As we intend to

employ one such simulation in our future work, the Millennium-II run (Boylan-Kolchin

et al., 2009), we need to determine the minimum number of outputs that the N-body

trees must have to provide a reasonably converged estimate of LC emissivity.

To find the answer to this question, we use the L20N512 simulation (Table 4.1). This

simulation has approximately the same mass resolution as L50N1024, but in a smaller

box, therefore it is not adequate for resolving the full halo mass range discussed in the

previous section. Here, we are not interested in what fraction of emissivity is properly

resolved, but only in obtaining a converged result from an individual simulation. The

L20N512 run is adequate for this purpose.

The L20N512 run produced 100 snapshots between z = 5 and z = 26.71, equally

spaced in log10a, ∆log10a ≈ 0.007. This spacing is similar to the one employed in the

Millennium simulations at lower redshifts (Springel et al., 2005b; Boylan-Kolchin et al.,

2009). In physical time, the longest time step is ∆t ≈ 27 Myr at z = 5, while ∆t ≈ 11
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Myr at z ≈ 10, which is somewhat shorter than time steps used in other reionization

numerical models (e.g. Iliev et al., 2006a; McQuinn et al., 2007). To test the effect of time

resolution, we create more than one set of merger trees from this simulation: one that

uses halos found in every snapshot and three others which use every second, fourth and

eight snapshot.

Figure 4.27 shows the cumulative production of LC photons of the default Baugh05

GALFORM scheme employing these 4 sets of merger trees. The majority of the differ-

ence in the photon production seen in this figure is due to the decreasing frequency of

galaxy merger-triggered starbursts, which we showed to be crucial for the LC emissivity

(Section 4.3.3). This effect is more pronounced at early redshifts13 where the galaxies,

and therefore their mergers, are much less frequent. The convergence trend with the

increasing number of steps is clear. The difference between the highest and lowest time

resolution runs (12 and 100 steps, green and black lines respectively) is substantial, re-

sulting in ∆z ≈ 1.5 delay in reionization redshift for the coarser one. On the other hand,

using every second snapshot to construct the merger trees (red line in Fig. 4.27) has a

very small effect, with only ≈ 20% less photons produced and resulting in a modest

∆z ≈ 0.1 delay when compared to the highest time resolution tree.

The difference in results of the two highest time resolution runs in Fig. 4.27 is much

smaller than what may result due to changes of GALFORM model parameters (as dis-

cussed in Section 4.3) or due to cosmic variance in the N-body runs themselves. We

therefore conclude that ≈ 50 N-body merger tree steps, equally spaced in log10a, is

adequate for resolving the evolution of emissivity in the 5 . z . 25 redshift range,

∆log10a ≈ 0.013. We have employed this time resolution in all of the N-body GAL-

FORM runs throughout this thesis. Note that we have also checked the dependence

of the ionized fraction in the cosmologically expanding density field on the number of

discrete snapshots used to represent it (both in the Stromgren sphere test described in

Section 3.5 and in a number of previously mentioned N-body runs). We find that the

number of snapshots needed to obtain a converged result from a coupled scheme with

GALFORM and RT depends completely on the convergence in GALFORM alone, i.e. the

number of snapshots needed for RT is much lower.

13z > 15, not shown in Fig. 4.27.
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Figure 4.27: The number of LC photons per hydrogen atom produced

up to redshift z by the default Baugh05 model employing merger trees

constructed using different numbers of L20N512 simulation snapshots.

The snapshots are spaced equally in log10a between z = 5 and z = 26.7.

The production of LC photons converges with increasing number of

tree steps over this redshift range. The difference between the highest

time resolution run (100 snapshots in z range, black line) and one with

two times longer steps (50 snapshots, red line) is no more than ≈ 20%

in the plotted redshift range, resulting in a ∆z ≈ 0.1 difference in reion-

ization redshift. This result suggest that 50 tree steps provide sufficient

time resolution for LC emissivity in our redshift range of interest.

4.6 Conclusions

This chapter presented the LC emissivity generated by galaxies during the presumed

reionization period (6 . z . 15), as predicted by the GALFORM semi-analytic galaxy
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formation and evolution model. The Monte Carlo merger tree generation technique that

is a part of the GALFORM scheme allowed us to explore the effects of various model

parameters on LC emissivity without the limitations introduced by the resolution issues

in N-body simulations. We chose to focus on one of the standard Durham GALFORM

models, developed by Baugh et al. (2005). We showed that the other fiducial model, by

Bower et al. (2006), does not produce enough ionizing photons to finish reionization by

z ≈ 6.

The key element of the Baugh05 model is the assumed top-heavy IMF during bursts

of star formation, triggered by galaxy mergers or disc instabilities. The use of the top-

heavy IMF instead of the single, Kennicutt (1983) IMF in bursts introduces a ∆ ≈ 2.5 shift

in the reionization redshift, the largest difference caused by a single model parameter

(see Fig. 4.4). The top-heavy IMF is therefore crucial for achieving reionization by z ≈ 10,

the redshift suggested by the CMB τe data (Komatsu et al., 2009; Dunkley et al., 2009). We

must emphasise that the top-heavy IMF was not originally included to produce enough

LC photons during reionization, but to provide a match with observed sub-mm galaxies.

The case is further strengthened by Nagashima et al. (2005a,b), who found that the use

of the top-heavy rather than the solar neighbourhood IMF in bursts results in much

better agreement to the observed metallicities in intracluster gas in clusters and stars in

elliptical galaxies. The Baugh05 model was also shown to provide a good match for the

Lyα-emitters in z ∼ 3 − 9 range (Delliou et al., 2005, 2006; Orsi et al., 2008), Lyman-

break galaxies in z ∼ 3 − 10 (Baugh et al., 2005; Gonzalez et al., 2009, see Section 4.4)

and infrared Spitzer14 observations (Lacey et al., 2008). The large importance of the

top-heavy IMF suggests that the reionization is practically completely driven by bursts,

thus making reionization sources more luminous and less frequent (see Fig. 4.6). This

scenario is different from the ones commonly examined by numerical RT simulations

(e.g. Ciardi et al., 2003; Sokasian et al., 2003; Iliev et al., 2006a; McQuinn et al., 2007; Trac

& Cen, 2007) and may introduce a specific imprint on the morphology of HII regions

during reionization, which we discuss in Chapter 5.

Supernova feedback is also an important regulator of LC emissivity. Figure 4.7 shows

that stronger SN feedback parameters (close to the ones employed by Bower06) intro-

duces a ∆z ≈ 2 delay in reionization redshift, nearly as much as the top-heavy IMF.

14http://www.spitzer.caltech.edu/
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A weaker SN feedback has a significantly smaller effect (∆z ≈ 0.5 earlier reionization),

which suggests that the SN feedback used in Baugh05 are quite modest in suppressing

the LC emissivity. The largest boost in the production of LC photons is found in models

that include disc instabilities (∆z ≈ 2 earlier than default for the strong disc instability

model, see Fig. 4.15). The disc instabilities are more effective in triggering bursts than

galaxy mergers, which results in more star formation occurring in the burst mode with

the top-heavy IMF.

We compared the predictions of the Baugh05 model with the recently published

Lyman-break galaxy LFs reaching z ∼ 6− 10 (Bouwens et al., 2008a, 2009a,b). We found

that the model provides a good match for the observed LBGs in this redshift range.

The differences between GALFORM models, e.g. Baugh05 and Bower06 in Fig. 4.1, are

not as clear as when comparing LC photon production. This is because the observed

magnitude range covers only the high-luminosity end of the LF. At redshifts z & 7, the

observed LF accounts for less than 20% of the total photon production in the default

Baugh05 model (see e.g. top panels in Fig. 4.17). This suggests that the LC emissiv-

ity predictions derived from the Schechter fits of the observed data (e.g. Bouwens et al.,

2008a) may be significantly off, i.e. low-luminosity LF slope parameter α is not well

constrained. However, the Schechter fits through our GALFORM data are in general

agreement with the current observations (Fig. 4.21), so those estimates may not be too

wrong.

The Baugh05 model LC emissivities suggest (if one is willing to allow the use of a

top-heavy IMF in bursts) that reionization can easily be achieved with Population II-type

sources alone. However, some reasonable variations of the model (e.g. the solar neigh-

bourhood IMF in bursts) may indeed result in such a scenario. Of course, the emissivities

alone do not determine reionization, as the inclusion of photon sinks (recombinations,

minihalos, Lyman-limit systems) will have a strong effect on the process. A full model

may therefore be much more photon starved and maybe even require the inclusion of

sources currently thought to be sub-dominant, such as Pop III stars or mini-quasars, in

order to complete reionization within the redshift range suggested by observations.



4. GALFORM: modelling the galaxies that reionize the Universe 212



Chapter 5
Inhomogeneous

reionization with

SimpleX and

GALFORM

5.1 Introduction

In Chapter 4, we discussed in some detail the issue of modeling high redshift galax-

ies, which are thought to be the most likely sources of ionizing radiation that causes

reionization (e.g. Madau, 1999; Barkana & Loeb, 2002; Loeb, 2006; Trac & Gnedin, 2009).

Discussion of the ionizing emissivity forms a general basis of analytic and semi-analytic

models of the reionization process (e.g. Haiman & Loeb, 1997; Miralda-Escude et al.,

2000; Haiman & Holder, 2003; Wyithe & Loeb, 2003; Furlanetto et al., 2004; Benson et al.,

2006). What these models usually miss is the spatially inhomogeneous nature of the

reionization process, which can only be accurately captured using numerical RT simula-

tions. Reionization is characterised by two distinct stages, as discussed by e.g. Gnedin

(2000b). First, individual HII regions are formed around the early sources of ionizing

radiation. As more sources are formed and the emissivity increases, the HII regions

grow and begin to overlap, exposing the remaining neutral gas to even more intense

radiation. The final overlaps mark the end of reionization, after which any region in

space can “see” ionizing radiation from a large number1 of sources, i.e. one can begin

discussing a more uniform photo-ionization background (e.g. Haardt & Madau, 1996;

1After reionization, the mean free path of ionizing radiation is governed by the number density of

Lyman-limit systems (e.g. Miralda-Escude, 2003).

213
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Mesinger & Furlanetto, 2009). This process cannot be modelled properly without the

inclusion of radiative transfer. First, RT is necessary to accurately compute the efficiency

of recombinations and other ionizing photon sinks in the cosmological density field we

previously discussed in Section 3.4.1 This is crucial for finding out how many ionizing

photons are actually necessary to complete reionization, a number we were choosing

fiducially in Chapter 4. More importantly, RT is crucial in modeling the evolution of

galactic HII regions that are going to be directly observed by future hydrogen 21cm line

observations by telescopes such as LOFAR2, PAPER3 or SKA4. The exact way the HII

regions propagate during reionization also affects the process itself: the photo-ionizing

radiation feedback may suppress the formation and emissivity of sources found in ion-

ized regions, creating a self-regulating loop (Iliev et al., 2007).

The current lack of constraints on many components of the reionization process, most

notably on the nature of the high-z galaxies and other ionizing radiation sources, re-

quires any model to be highly computationally efficient in order to allow the exploration

of the vast parameter space. In this chapter, we discuss one such model we created by

coupling the GALFORM galaxy formation scheme (Chapter 4) with the SimpleX RT code

(Chapter 3). GALFORM provides us with a much more detailed model of ionizing ra-

diation sources than the ones commonly used in the literature (e.g. Gnedin, 2000b; Iliev

et al., 2006a; McQuinn et al., 2007; Trac & Cen, 2007), while the computational efficiency

of SimpleX allows the production of many realisations of the reionization process in a

relatively short time. The concurrent running of the two components allows for the time

and space-varying photo-ionization feedback to be included in the model. Our use of

a semi-analytic galaxy formation model to provide ionizing radiation sources is simi-

lar to the scheme by Ciardi et al. (2003). In contrast to that work, our model includes

the previously mentioned suppression of sources by photo-ionizing feedback and has a

much higher spatial resolution due to the adaptive nature of the SimpleX Voronoi grid

(discussed in Chapter 3). It is also significantly faster due to both the computational

efficiency of our RT technique and the parallelization of our code. The adaptive com-

putational grid is also a major improvement over many other models (Iliev et al., 2006a;

McQuinn et al., 2007; Trac & Cen, 2007), but a more important distinction from those

2http://www.lofar.org/
3http://astro.berkeley.edu/ dbacker/eor/
4http://www.skatelescope.org/
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works is the detailed model of the relevant galaxy population provided by GALFORM.

This chapter is organised as follows. In Section 5.2, we discuss the numerical im-

plementation of our method. The issues stemming from the spatial resolution of the RT

grid are discussed in Section 5.3. In Section 5.4 we present some early results obtained

with the model. We discuss the topological progression of reionization in our model (i.e.

which overdensity regions are ionized first) and the role of the density field in Section

5.4.1. In Section 5.4.2, we show how our choice of the source model affects the typical

sizes of HII regions during reionization. Finally, in Section 5.4.3 we gauge the importance

of source suppression on the evolution of the mean ionized fraction in our model.

5.2 Method

The link between the source population (computed by GALFORM) and the propagation

of ionizing radiation (modelled using SimpleX) is the cosmological density field. We

represent the continuous evolution of the density field with a series of snapshots from

dark matter-only N-body simulations, as is commonly done in reionization simulations

(e.g. Ciardi et al., 2000; Iliev et al., 2006a; McQuinn et al., 2007). The baryons are assumed

to trace the dark matter, as discussed in Section 3.4.1. We also exclude all the particles

with overdensities ∆ > 100 from the density field, as a way of removing dark matter

halos for reasons also discussed in Section 3.4.1. The N-body data is used to construct

halo merger trees for use with GALFORM, as discussed in Section 4.2.1. The number

and time spacing of snapshots needed to obtain a converged result is dictated by the

necessary time resolution of the merger trees, discussed in Section 4.5.2. The use of static

N-body snapshots significantly reduces the cost of a single model run, as it allows for

the density field to be computed only once and reused for the RT runs. Note, however,

that some authors chose a more consistent approach by evolving the density and ion-

ization fields concurrently (e.g. Trac & Cen, 2007). For all the simulations we use in this

chapter, we produce ≈ 50 snapshots between redshifts ≈ 25 and 5, with output times

corresponding to an equal spacing on the log10 a scale, ∆ log10 a ≈ 0.013.

The key element of the model is the “communication” between the two components

(GALFORM and SimpleX), added to model space and time-dependent photo-ionization

feedback. The algorithm of the method is as follows (see the diagram in Fig. 5.1). First,
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Figure 5.1: A diagram explaining the GALFORM and SimpleX coupling

algorithm. The right-hand side arrow connecting the third step to the

first signifies that the ionization state information from the end of step

i is used when estimating galaxies at step i+ 1.

we determine the redshift (and its corresponding snapshot) on the merger trees where

the first galaxies appear. In practise, we do this by running GALFORM alone for each

model once, until the first galaxies appear in the output. This provides us with the
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starting snapshot for the subsequent runs using the same GALFORM model and N-body

trees. Next, for every following snapshot i, we take the following steps:

1. Run the GALFORM model and output the galaxy population at the redshift of

snapshot i.

2. Extract positions and LC luminosities of these galaxies to use as sources for the RT

calculation.

3. Using an intermediate code (based around a parallelized octree search routine),

setup the initial conditions for RT at snapshot i:

• Load the positions and masses of N-body particles representing the density

field of snapshot i (this can be either all particles from the original N-body

run or a sub-selection to which we assign leftover masses5, as discussed in

3.3. These particles provide nuclei and masses of the Voronoi grid cells repre-

senting the density field.

• Copy the ionization state in each N-body particle from the previous snapshot

SimpleX output. We use the same particles of each snapshot, identified by

their IDs stored in the Gadget output. Using these IDs, we copy the ionized

fraction from the previous snapshot’s SimpleX output to the current snapshot

initial conditions. Note that this procedure may result in the number of ion-

ized atoms not being conserved between snapshots, due to the change of mass

assigned to individual particle i.e. Voronoi cell. This issue has no effect on the

evolution of the global ionized fraction and only marginally affects the red-

shift at which the earliest halos are found to be ionized. We checked this by

implementing an alternative scheme which explicitly conserves the number

of ionized atoms at the expense of performance.

• For each GALFORM galaxy, find the nearest N-body particle representing the

density field and assign its LC luminosity to it. We remind the reader that this

procedure is equivalent to finding in which Voronoi cell a given galaxy lies.

5When we use a sub-selection of particles as Voronoi nuclei, the mass of unused particles is assigned to

the nearest selected ones and a new N-body file is produced with these modifications.
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4. Using the initial conditions set-up in the previously described fashion, we con-

struct the SimpleX Voronoi grid and evolve the ionization field from snapshot i to

i+ 1. The density field is assumed to be static and the LC luminosity of sources is

assumed to be constant over this period.

5. Using the SimpleX output file produced in step 4, find which halos are in the ion-

ized regions at the redshift of snapshot i + 1. This is done again by using the

octree-based neighbour search. The halo is marked as ionized if it is found in a

Voronoi cell with ionized fraction xHII ≥ 0.7. This value is chosen fiducially and

the exact choice from the range ξ = 0.5− 1 does not affect our results6. The ioniza-

tion state of individual halos is then added to the halo merger tree data and used

by GALFORM to determine which halos are affected by photo-ionization feedback

in the next step.

6. If i + 1 is not the last snapshot and the box is not completely ionized, repeat the

procedure starting by running GALFORM up to snapshot i+ 1.

The key for coupling the two codes is step 5, when the ionization state of each halo is

determined. At the moment, this is only a boolean value which tells whether the halo is

in the ionized region or not at that redshift. The end product is therefore the ionization

history for every merger tree, a cartoon of which is shown in Fig. 5.2. Note that a halo

that is found to be ionized at redshift i may become neutral at some later time, both due

to recombinations reducing the host cell’s ionized fraction and the halo itself moving to

a less ionized neighbouring cell. This information is used to replace the single redshift

of reionization, zcut, used in the GALFORM scheme and introduced in Section 4.2.7.

Instead, we cut the cooling only in halos that are marked as ionized at a given redshift.

This allows for the inhomogeneous nature of the reionization process to be taken into

account in the formation and evolution of GALFORM galaxies.

The previously described procedure is automated with a Python script. The input

to the scheme consists of the choice of GALFORM parameters and the N-body data to

be used. The outputs are galaxy populations and ionization fields for each snapshot, as

well as the reionization history of each halo found in the merger trees.

6The results remain unaffected in the large boxes, where the I-front is not resolved by more than one cell

as is the case in the runs we discuss in this chapter (see Section 5.4.1)
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Figure 5.2: A cartoon showing the ionization history of a single merger

tree. All halos (circles) on the tree are either in an ionized (blue) or

neutral (red circles) region. The halo can be in a neutral region, even

though all of its progenitors are found to be in an ionized region (see

e.g. right hand side branch). The size of the circle indicates halo mass.

As reionization progresses, more halos are found in ionized regions,

finally all being ionized after the final overlap.
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5.3 Numerical convergence of the coupled scheme

We have previously discussed potential numerical issues for both major components of

the scheme we are presenting in this Chapter. In this section we will discuss differences

arising in the final coupled scheme due to the choice of the RT grid resolution. In Section

5.3.1 we will revisit the use of the local clumping factor as a tool for eliminating the

effect of the RT grid on the evolution of the mean ionized fraction in our simulation

boxes, which is related to the speed of I-fronts during a reionization run. Section 5.3.2

examines how the redshift of reionization of individual halos depends on the RT grid

resolution. This dependence is a consequence of the way we choose when a halo is seen

as ionized which we presented in the previous section. This may in turn have an effect

on the efficiency of source suppression.

5.3.1 Local clumping factor in reionization runs

In this section, we return to the use of a locally computed clumping factor in order to

include all available information about the density field from a given N-body simulation

into the RT grid used. The RT grids we use in practise have a much lower resolution

(in terms of the number of particles/Voronoi nuclei used) than the N-body simulations

from which we extract the density field information. In Section 3.4.2 we introduced the

clumping factor computed in individual RT cells and how it affects the global evolu-

tion of ionized fraction on static density fields. Now, we show how important it is in a

reionization run using the method we described in Section 5.2.

We performed several coupled code runs based on the L20N512 N-body simulation

(see Table 4.1). This is the same simulation which supplied the snapshot used in Chapter

3 tests, Figs. 3.16 and 3.17. There, we used only a single output at z = 5 as the static

density field and used an arbitrarily chosen simulation time of ∆t = 1 Myr. The runs we

are presenting here include the evolving density field (i.e. the ionization field is evolved

using more than a single snapshot as explained in 5.2) and the simulation time is given

by the time corresponding to the snapshot redshifts for our chosen cosmology7. We

use ≈ 50 snapshots between z ≈ 25− 5, motivated by our findings in Section 4.5.2. The

7Again, we use the same cosmology as the Millennium simulation (Springel et al., 2005b): Ωm = 0.25,

ΩΛ = 0.75, Ωb = 0.045, h = 0.73, ns = 1.0 and σ8 = 0.9.
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Figure 5.3: The mean mass-weighted ionized fraction as a function of

redshift with respect to the RT grid resolution (number of Voronoi cells)

and the use of the local clumping factor. We assume fesc = 1 (left pan-

els) or 0.1 (right panels). The RT grids compared have 643 (red dashed

lines) and 1283 cells (blue solid lines). The runs which include local

clumping factor are marked with circles (and C in legend). Bottom

panels give ratios of xHII,m on 643 and 1283 grids for: runs with C (solid

line with circles), without C (solid line) and 643 without and 1283 with

C (dotted line). See text for details and discussion.

L20N512 simulation has approximately the same mass resolution as L50N1024 (see Table

4.1) that we will use for the discussion in later parts of this chapter. The latter run is 1/8th

volume and the same mass resolution as the Millennium-II run (Boylan-Kolchin et al.,

2009) that we will use in our future work. We expect that the effects of the RT resolution

we find in L20N512 runs to be a good representation of the behaviour in larger boxes

just mentioned. The source model assumed is the default Baugh05. Finally, in order to

isolate the RT grid resolution effects, source suppression is not included.

Figure 5.3 shows the evolution of mean mass-weighted ionized fraction in runs with

varying RT grid resolution and use of the local clumping factor. We compare the runs

that assume that every photon produced by galaxies escapes to the IGM (fesc = 1) and a

more realistic escape fraction of fesc = 0.1 (as assumed in Chapter 4). The main difference
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between the two values is the duration of the reionization process, which correlates with

the relative importance of recombinations. The differences between runs are subtle, but

measurable and are best seen in a direct comparison between different runs. The bottom

panels give the ratios of two different resolution runs, ratio(z) = xHII,643(z)/xHII,1283(z):

lines with circles compare runs with local C, solid lines runs without local C and dotted

lines give the full difference due to the representation of the density field by comparing

643 run without with a 1283 one with local C. For fesc = 1 (left panels), different grid

resolution runs that employ the local clumping factor have practically identical evolution

of xHII,m, resulting in the same redshift of reionization (which we define here as redshift

at which xHII,m = 0.9, marked by vertical lines). Without C, the 643 resolution grid has

about 10% faster I-fronts than the 1283 one, which results in ∆z ≈ 0.1 earlier reionization

as we defined it here (compare blue solid and red dashed vertical lines). When a more

realistic fesc = 0.1 is used (right panel), the differences between different RT resolution

runs are only slightly larger. First, the runs with local C show a modest difference, with

643 run being ≈ 5% slower than the 1283 one. Without C, the ratio goes in the opposite

direction meaning that the low resolution run is a few percent faster relative to high

resolution one than when fesc = 1. The relative difference in the redshift of reionization

between pairs of different RT grid resolution runs also remains unaffected. Note also the

clear extension of reionization when assuming lower fesc. For fesc = 1, xHII,m goes from

10−3 to 1 from z ∼ 16 − 10, which for the assumed cosmology corresponds to ∆t ≈ 230

Myr. By comparison, for fesc = 0.1, the redshift range is z ∼ 15 − 8 leading to ∆t ≈ 380

Myr, i.e. a ≈ 60% longer duration of reionization.

In this instance, extending the process of reionization (by using a lower fesc) did not

clearly expose the RT grid issues. This result points to the relatively small importance of

recombinations in the current setup. To test this assumption we modify the runs by in-

cluding all N-body particles in the estimate of both the cell densities and local clumping

factors (i.e. setting ∆thresh = ∞, see Section 3.4.2). This results in a significant increase

in the number of recombinations in the high density regions where dark matter halos

reside. Figure 5.4 shows how this change affects the previously discussed runs. Again,

the use of local C clearly improves convergence in the evolution of xHII,m with respect to

RT grid resolution. While the run with fesc = 1 (left panels) shows more or less the same

ratios as seen in Fig. 5.3, the run with fesc = 0.1 (right panels) shows more significant
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Figure 5.4: Same as Fig. 5.3, but with all particles used to compute local

clumping factors (∆thresh =∞, see Section 3.4.2). The much stronger re-

combination rates expose the effect of RT resolution more clearly. Even

in this extreme case, the use of local C significantly improves conver-

gence (compare ratios of runs with (line with circles) and without (solid

line) C in bottom right panel).

differences. Again, the use of local C results in somewhat overestimated recombination

rates on the 643 grid, as evidenced by ≈ 15% lower fractions when compared to the 1283

run (line with circles in the bottom panel). This results in a more noticeable difference

in redshift of reionization between the two runs, ∆z ≈ 0.25. While not perfect, this re-

lation is still better than when the clumping factor is not used: the low resolution run

has ≈ 50% higher fractions resulting in ∆z ≈ 0.5 earlier reionization than in the higher

resolution case.

To back up our previous claim that the representation of the density field becomes

more important for more extended reionization scenarios, we must quantify the relative

importance of recombinations. This can be done by comparing the number of LC pho-

tons produced per hydrogen atom up to some redshift (a value we used extensively in

Chapter 4), with the redshift of reionization obtained from a full RT reionization run. As

we stated in Chapter 4, if no photon sinks were present, the IGM would be fully ionized

when one photon per H atom reaches the IGM. In the runs we are currently discussing,
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Figure 5.5: The importance of recombinations with respect to the es-

cape fraction and density field representation. Lines give the number

of LC photons per H atom emitted into the IGM by redshift z using

the Baugh05 model in the L20N512 box for fesc = 1 (solid line) and 0.1

(dashed line). The symbols mark the number of LC photons produced

by the redshift of reionization (xHII,m = 0.9) of the 1283 runs with local

C presented in Figs. 5.3 and 5.4 (blue lines with circles in those figures):

red circles mark runs that include all N-body particles in the density

field (∆thresh =∞) and blue crosses the ones that exclude halo particles

(∆thresh = 100). See text for discussion.

recombinations are the only photon sinks. As all the runs have the same emissivities

(since we do not include source suppression), we can gauge the importance of recom-

binations for a given run by seeing how many LC photons have been produced by the

redshift of reionization for that run. This is what we present in Fig. 5.5. Here, we show
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how many ionizing photons were produced by GALFORM galaxies by the redshift of

reionization of 1283 runs with local C presented in Figs. 5.3 and 5.4 (blue lines with cir-

cles). Our default setup, which excludes halo particles by assuming ∆thresh = 100, (blue

crosses in Fig. 5.5) requires not even a whole extra photon beyond the first to finish reion-

ization: if fesc = 1 (solid line) reionization is completed when ≈ 1.5 photons per H atom

are produced, while for fesc = 0.1, ≈ 1.7 photons are needed. As nothing else except

fesc is different between the two runs, the importance of recombinations increases with a

more extended time of reionization. This is seen much more clearly when including halo

particles in the density field (∆thresh = ∞, red circles): for fesc = 1, ≈ 2.5 photons per

atom are needed while for fesc = 0.1 the ratio must be ≈ 5.5 to complete reionization.

Obviously, the effect of the IGM “clumpiness” on the number of recombinations during

reionization is enhanced by the duration of the reionization era. This result may seem

counter-intuitive as the mean recombination rate in the Universe is expected to decrease

with time8. One would therefore expect that the number of photons per H atom needed

to complete reionization to stay, in the worst case, constant. The opposite behaviour, as

seen in Fig. 5.5, is caused by the lower speed of I-fronts in more extended reionization

scenarios: slower I-fronts remain longer in the high density regions where the recombi-

nations are most effective therefore increasing their importance. This feature cannot be

captured in analytical models that obtain the recombination rate from a universal mean

value (e.g. Benson et al., 2006), as RT calculations are necessary to compute the correct

I-front speeds in the cosmological density field.

We have shown that the use of the local clumping factor introduced in Section 3.4.2

provides a simple method for reducing the dependence of xHII,m evolution on the grid

cell size. The next section will deal with another issue for our reionization modeling

scheme related to the RT grid resolution: the redshift (or time) at which halos are found

to be in ionized regions.

8The recombination rate is∝ C〈nH〉2, where C is the clumping factor of the Universe and 〈nH〉 the mean

density of hydrogen. The mean density depends on redshift as∝ (1+z)3 i.e. it decreases with decreasing z.

On the other hand,C increases with decreasing redshift (due to the growth of structure), but not as strongly:

C(z) ∝ (1 + z)−1.5 for the global value of C in Fig. 3.10. As the recombination rate depends on the square

of the density, it should clearly decrease with decreasing redshift.
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5.3.2 When are halos found in ionized regions?

As we stated in Section 5.2, a halo is considered to be “ionized” (found to be in an ionized

region for applying photo-ionization feedback rules of Section 4.2.7) when it is found

to be in a Voronoi RT cell with xHII ≥ 0.7 at the redshift corresponding to a snapshot

output (sources are static during the RT step that evolves the ionization field between

snapshots i and i+ 1). The results obtained with this criterion clearly depend on the RT

grid resolution, i.e. the volumes of individual cells. As an example, consider a galaxy-

hosting halo found somewhere in a Voronoi cell of some volume V and number density

nH, both of which we assume to be constant. Let us further assume that there is no

incoming LC flux, i.e. that the galaxies in the said halo ionize the cell by themselves.

This is indeed what is happening to the earliest galaxies as we will discuss in more

detail shortly. If the galaxy has a constant LC luminosity L, then it will be marked as

ionized after ∆t = 0.7nHV/L, i.e. the time from when the source is first turned on

to when it ionizes 70% of its host cell. Now assume the spatial resolution of the RT

grid is increased by splitting each grid cell into 8 equal volume cells, V ′ = V/8. If we

take the mass to be uniformly distributed within volume V then the finer resolution cell

will have the same number density, nH
′ = nH. The luminosity of the galaxy hosted by

the halo is independent from the RT grid and remains L. On the new grid, the time it

would take for the galaxy to sufficiently ionize its host cell to be marked as ionized is

∆t′ = 0.7nHV
′/L = ∆t/8, i.e. it will be marked as ionized 8 times faster. The argument

is identical if one assumes that the cell is ionized by external flux or a combination of

internal and external sources. This issue is unavoidable unless one employs some kind

of a sub-cell prescription to ensure that the time ∆t remains constant with respect to RT

grid resolution changes. We are therefore interested in measuring how big of an effect

the change of RT grid resolution may have on the redshifts of reionization of individual

halos and whether this will have any effect on photo-ionization feedback.

We compare two runs presented in the previous section: the L20N512 N-body sim-

ulation with halo particles removed (∆thresh = 100), with the local clumping factor in-

cluded and fesc = 1, default Baugh05 GALFORM model and with RT grid resolution of

643 and 1283 grid cells, respectively. These two runs have already been presented in the

left panel of Fig. 5.3 (red and blue lines with circles, respectively). There we have shown

that the evolution of xHII,m in those two runs is in excellent agreement, which guarantees
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Figure 5.6: Top panels: Halo mass function of neutral halos at z =13.7

(left), 11.2 (centre) and 10.5 (right). The redshifts were chosen to corre-

spond to different stages of the reionization process, where the mean

mass-weighted ionized fraction is xHII,m ≈ 0.03 (left), 0.32 (centre)

and 0.65 (right). Black solid line marks the MF of all halos, while the

coloured symbols give the MF of halos marked as neutral using 643 (red

pluses) and 1283 (blue crosses) RT grids. Bottom panels: The LC emis-

sivity as a function of halo mass at the same redshifts as the top panels.

The solid line gives the value of the run without source suppression,

while coloured symbols give the values with source suppression on the

643 and 1283 RT grids (colour and symbol style the same as in top pan-

els). See text for discussion.

that any differences in ionization times between the runs we find are not caused by the

difference in the global ionized fraction.

Figure 5.6 shows when halos of different masses become subject to photo-ionizing

feedback. The top panels plot the halo mass function (MF) of neutral halos, the ones not

found to be in ionized regions. This MF is compared to the MF of all halos, either marked
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as neutral or ionized. The bottom panels show the LC emissivity that corresponds to

those halos and how it is affected by the photo-ionization feedback applied to ionized

halos (VH ≤ Vcut as discussed in Section 4.2.7). The vertical dashed lines mark the halo

mass corresponding to Vcut at the given redshift. At earlier redshifts when only a small

fraction of the simulation box is ionized (xm ≈ 0.03, left panels), we see that only some

of the most massive halos are located in ionized regions. These are the halos whose

progenitors hosted the first galaxies at z & 20, that produced the first HII regions thus

ionizing their own surroundings. Smaller, more recently formed halos remain unaffected

by ionizing radiation, either due to not forming their own HII regions or because HII

regions around more massive halos are not large enough to significantly ionize their

neighbours. The emissivity at this redshift (bottom left panel) is quite noisy due to the

small number of halos found in the box. At these redshifts, the MF evolves quickly, e.g.

the number density of halos grows tenfold between z =13.7 and 11.2 (corresponding to

∆t ≈ 100 Myr). As the mean ionized fraction grows (centre and right top panels), some

of the smallest halos are found in ionized regions, though the emphasis is still on more

massive halos. By z = 10.5, practically all halos with massM & 3×109M�/h are marked

as ionized, while about 1 in 10 halos withM . 109M�/h remains neutral. The difference

between the two RT grid resolutions is mostly noticeable in the high mass halo range,

where the higher resolution grid results in more halos being marked as ionized. This

is a good example of the problem that we described at the beginning of this section, as

the finer RT grid resolution allows halos to be found to be ionized earlier than if the

lower resolution one were used. Still, we note that the largest discrepancy between the

two RT grid resolution runs is in the highest mass range, where VH > Vcut. Those halos

are unaffected by photo-ionizing feedback, thus we expect the emissivity from that halo

mass range to remain unaffected irrespective of how early they were ionized. This is

indeed seen in the bottom panels of Fig. 5.6, which shows the LC emissivity to be almost

completely unaffected by source suppression due to the ionized regions. The only effect

is seen at z = 10.5 (bottom right panel), where there is evidence for some suppression

of the smallest halos, M . 108M�/h. Note that the percieved suppression in the high

mass, in the M ≈ 1010M�/h bin in the bottom right panel of Fig. 5.6, is caused by

the small number of halos in that range, i.e. a single halo can significantly skew the

result. This relatively weak effect of photo-ionizing feedback is a feature introduced by
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Figure 5.7: The distributions of redshifts of reionization, zreion, for halos

of different masses at z = 5 as a function of RT grid resolution. For

each halo, we define zreion as the redshift at which the main branch first

becomes ionized. The considered halo masses increase from the top to

bottom and left to right (see mass ranges in panels; mass is quoted in

M�/h units). The choice of RT grid resolution (solid lines for 643 and

dashed lines for 1283) does not affect the scatter or peaks in zreion i.e.

does not change the general conclusion about individual halo reioniza-

tion histories.

the delayed suppression as it is implemented in GALFORM, which we discuss in more

detail in Section 5.4.3.

A different way of looking at individual halo reionization histories is to ask the ques-
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tion when were the halos selected at a given time reionized as a function of their assem-

bly histories and environment. The main question is whether halos of a given mass were

reionized by their own, internal sources or by external ones (e.g. Weinmann et al., 2007;

Alvarez et al., 2009). This, in turn, may have important consequences on present day ob-

servables, such as the predicted number of satellites of our own galaxy (e.g. Busha et al.,

2009; Munoz et al., 2009). Our N-body simulations end at z = 5, so we discuss these

issues for halos selected at that redshift. Figure 5.7 shows the distribution of reionization

redshifts, zreion, of different mass halos found at z = 5 (the merger tree “roots”) with

respect to the resolution of the RT grid used to propagate the ionization field. We define

zreion as the redshift at which the main branch9 of the merger tree first becomes ionized

(we do not take into account that halos may become neutral again at some later time, as

previously mentioned). Alternative definitions are also possible, e.g. zreion may be the

redshift at which more than 50% of the mass in all progenitors is found to be ionized.

The exact choice of the zreion definition does not affect the conclusions of the discussion.

The first thing to notice is the position of the zreion peak for different mass ranges. Re-

member that, for these runs, reionization is globally complete (xHII,m ≈ 1) for z ≈ 10

(Fig. 5.3). Practically all halos that at z = 5 have mass between 108 and 109M�/h have

been marked as ionized after the end of reionization. This is because the low mass halos

at z = 5 have been formed (i.e. have the earliest progenitors) after z ≈ 10. Clearly, the

halo formation time bias is a factor in the discussion of zreion. Regardless, two features

are clear: halos more massive at the final time have earlier zreion on average, and the

scatter in zreion, while large for all mass ranges, also grows with the mass of the final

halo. More than 50% of halos more massive than 1011M�/h (bottom right panel) have

been ionized before xHII,m = 0.5, with ≈ 10% of halos being ionized before xHII,m = 0.01

(z & 15), which strongly implies that these halos were reionized by internal sources. We

will discuss the physical implications of this result in our future work - for now, we are

interested in how the zreion distribution is affected by the resolution of the RT grid used

to follow the ionizing radiation. As Fig. 5.7 demonstrates, it has a small effect on both

9The main branch of the merger tree is defined by following the main progenitor of the root halo to its

formation redshift. The main progenitor of a halo is usually the most massive direct progenitor (halo “A”).

The exception is made in the case of a less massive direct progenitor (“B”) that in turn has a direct progenitor

(“C”) that is more massive than “A”. Then “B” is selected as the main progenitor and followed further (see

e.g. Genel et al., 2009).
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the position of the zreion peaks and the scatter. As these two are the most important val-

ues for the statistical description of halo reionization redshifts, we can conclude that our

future discussion of this issue will not be strongly affected by the resolution of the RT

grids.

For an even closer look, we directly compare zreion for each halo at z = 5 found using

643 and 1283 RT grids in Fig. 5.8. We find that the majority of the final redshift halos are

found to be ionized at the same redshift on both RT grids, as evidenced by the median

value (thick dashed line) and the small 50% range of values (red error bars). For the

minority of halos that do have different zreion, they tend to be ionized earlier on higher

resolution grids, as we expected from the earlier description of the problem. Note that

the effect of the grid resolution was largest for the most massive halos in Fig. 5.7, which

are the ones that are reionized earliest. Figure 5.8 allows us to conclude that the choice

of RT resolution does not severely affect the reionization histories of halos.

5.4 Results

In this section, we discuss some of the preliminary results we obtained with the coupled

scheme. The discussion will be focused on a run that makes use of the L50N1024 N-body

density field (see Table 4.1) with the source model assumed to be the default Baugh05,

but without a global zcut. The gas is assumed to trace the dark matter and to be composed

of hydrogen only. All the photons are at the Lyman limit frequency. The temperature

of the ionized gas is automatically set to 104 K when estimating recombinations. The

simulation box is periodic, so the photon packets that leave the box return on the other

side as an approxiamtion of the external flux. The limitations of the density field make

our results incomplete: first, the mass resolution is not sufficient to resolve all of the

relevant ionizing radiation sources (see discussion in Section 4.5.1; see red line in Fig.

4.25) and, second, the density field does not provide the correct representation of the

IGM, lacking the effects of the gas pressure and the presence of minihalos and Lyman-

limit systems (see Section 3.4.1). While these limitations mean that we cannot claim to

have a complete representation of the reionization process, we can still discuss general

trends. In Section 5.4.1 we will take a closer look at the topology of reionization in our

scheme and at how the ionized fraction evolves as a function of local overdensity. In
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Figure 5.8: The value of zreion found for each L20N512 halo at z = 5 as a

function of RT grid resolution. If the RT grid had no effect on zreion, the

value found on both 643 (y-axis) and 1283 (x-axis) grids would be the

same (thin dashed line). In practise, we find that zreion for the majority

of the halos is the same on both grid resolutions (median, thick dashed

line and 50% range of values, red error bars). The halos that do have

significantly different zreion, are more likely to be ionized earlier in the

high resolution grid, especially at z & 14 (mean, thick solid line and

90% range of values, dashed blue error bars).

Section 5.4.2, we discuss the distribution of HII region sizes in more quantitative terms

and compare the results from the Baugh05 sources (which, we remind the reader, are

characterised by large LC photon production during starbursts) with other prescriptions
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previously used in the literature. Finally, in Section 5.4.3 we discuss the effect of source

suppression on the course of the reionization process. Table 5.4 gives details about the

different runs we employ during the following discussion and introduces shorthand

labels for each.

5.4.1 Topology of reionization

We begin the discussion by showing the general progression of reionization in Fig. 5.9.

The figure shows slices through the hydrogen density (grey-scale background) and ion-

ization field (colour contours) in 4 steps of evolving global volume-weighted ionized

fraction, as well as the positions of sources at the same redshifts (coloured circles). To

give an idea of where the most luminous sources are, we mark the top 10% luminous ha-

los with lime green circles, the rest are white. The density field on the uniform grid was

constructed using nearest grid point interpolation from the N-body data. The ionization

field is mapped directly from the Voronoi tessellation to a higher resolution uniform grid

(2563 cell in this case) by finding in which Voronoi cell a uniform grid cell resides and

assigning it the ionized fraction of that Voronoi cell. In this way we preserve the ex-

act volume distribution of the ionization field as represented by the Voronoi grid. Note

that the chosen uniform grid resolution in this procedure is not sufficient to resolve the

smallest Voronoi cells located in highest density regions, but such small scales are not

important once the HII regions grow to include more than a single cell.

Figure 5.9 shows the general progression of reionization in all our runs. Early on

(xHII,V = 0.1, top left panel), the ionization field consists of individual HII regions

around the highest density regions that host the radiation sources. As the number of

sources grows, so do the HII regions. Eventually, they begin to overlap (top right and

bottom left panels), resulting in almost all of the simulation box being covered by a sin-

gle HII region (bottom right panel) before it becomes completely ionized. Notice that

the I-front thickness (given by the difference between red and blue contours) is almost

always about one Voronoi cell (average Voronoi cell length scale is ∆l ≈ 0.4 Mpc/h),

suggesting that the recombination rate correction10 we introduced in Section 3.5 is gen-

erally applicable. The insides of HII regions are highly ionized (xHII > 0.9), although

10We remind the reader that the correction entails interpreting the ionized fraction of the cell as the frac-

tion of the cell volume that is fully ionized.
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Run N-body∗ fesc Suppress Details

D L50N1024 1 no default simulation setup

D1 L50N1024 1 no same as D, except no local C in recombinations

D2 L50N1024 1 no same as D, except densities and local C

computed assuming ∆thresh =∞

ML1 L50N1024 1 no source model as in Eq. (5.4),

normalised to give same ε as Baugh05 at z = 10.13

ML1f L50N1024 0.1 no

ML2 L50N1024 1 no source model as in Eq. (5.5),

normalised to give same ε as Baugh05 at z = 10.13

DS L50N1024 1 no same as D, but no scatter in

mass-luminosity relation; see text

S L20N1024 1 no default simulation setup

S1 L20N1024 1 yes same as S, but with GALFORM suppression

S2 L20N1024 1 yes same as S, but with extreme suppression (see text)

Sf L20N1024 0.1 no

S1f L20N1024 0.1 yes

S2f L20N1024 0.1 yes extreme suppression

Table 5.1: Coupled SimpleX-GALFORM reionization runs discussed in

Chapter 5. First column gives a shorthand label for the run, second the

label of the N-body run used to construct the RT density field and halo

merger trees (see Table 4.1 for details of N-body runs), third gives the

assumed escape fraction of LC photons, fourth states whether source

suppression is considered and last column gives distinguishing details

of each run. All runs use 1283 Voronoi cells for RT, constructed over a

random subset of N-body particles (see Section 3.3). All runs assume

the default Baugh05 model for source LC luminosities (without global

zcut), except where stated otherwise.

∗ All density fields are constructed with assumed ∆thresh = 100 and the local clumping

factor is used when evaluating recombinations (see Section 3.4.2) unless stated otherwise

in the simulation details.
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Figure 5.9: Topology of the HII regions during reionization in run D at

4 stages of reionization (xHII,V ≈ 0.1, 0.3, 0.5 and 0.7, top to bottom left

to right). The grey-scale background is a slice through the middle of the

gas overdensity field (log10∆) with thickness ∆l = 0.4 Mpc/h. Coloured

contours mark the boundaries of regions with volume-weighted ion-

ized fractions larger than 0.9 (blue) and 0.1 (red). Coloured circles mark

the positions of sources in the slice, lime green for the top 10% most lu-

minous sources and white for the other sources. See text for discussion.

there are a few “islands” of lower ionization in some high density regions. The ionized

fraction in the highly ionized regions (the trace neutral gas, xHI . 10−3) is also generally

uniform, which is a feature of the SimpleX implementation we use, specifically of the
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numerical diffusion caused by the violation of radiation isotropy mentioned in Section

3.2.2. If the isotropy is enforced as in the improvement introduced by Paardekooper et al.

(2009), more structure in the ionization field within HII regions can be seen (i.e. some-

what higher neutral fractions in filaments), but this in no way affects the positions of the

I-fronts themselves (i.e. the transition over xHII = 0.5 remains in the same Voronoi cells,

even though their neutral fractions may change slightly).

The topology of reionization can be characterised by the ratio of the mass and volume-

weighted ionized fractions, xHII,m and xHII,V, within the simulation volume. To see why,

let us first remember how we define these fractions:

xHII,m ≡
∑
i

xHII,imi/
∑
i

mi (5.1)

xHII,V ≡
∑
i

xHII,iVi/
∑
i

Vi, (5.2)

where index i indicates individual Voronoi cells with volume Vi, mass mi and ionized

fraction xHII,i. The ratio xHII,m/xHII,V is then (e.g. Iliev et al., 2006a):

xHII,m/xHII,V =
∑

i xHII,imi/
∑

imi∑
i xHII,iVi/

∑
i Vi

=
Mionized/Mtotal

Vionized/Vtotal

=
1
〈ρ〉

Mionized

Vionized
, (5.3)

where Mtotal and Vtotal are the total mass and the volume of the simulation box, while

Mionized and Vionized are the mass and volume of all ionized gas in the box. Clearly, the

ratio xHII,m/xHII,V gives the mean density of ionized gas in units of the mean total gas

density 〈ρ〉 ≡Mtotal/Vtotal. Consequently, when xHII,m/xHII,V > 1, the overdense regions

(∆ > 1) are preferentially ionized before underdense ones (∆ < 1), pointing to the inside-

out nature of the reionization process. The opposite is true when xHII,m/xHII,V < 1,

suggesting outside-in reionization.

Figure 5.10 shows the evolution of xHII,V with redshift (left panel) and the corre-

sponding evolution of xHII,m/xHII,V. The issue of the reionization topology is rooted

in the role of recombinations in the evolution of the ionization field, so we compare

our default run D (blue solid lines) with two variations: D1 (black dash-dotted lines) is

the same as D, but does not include the local clumping factor (Section 3.4.2) in the re-

combination estimates and D2 (red dashed lines) uses all particles (∆thresh = ∞) in the
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Figure 5.10: Left: The evolution of the volume-weighted ionized frac-

tion xHII,V in D (blue solid line), D1(black dash-dotted line) and D2

(red dashed line) with redshift. Bottom panel shows ratios of xHII,V of

D1/D (black dash-dotted) and D2/D (red dashed line). Right: The ratio

xHII,m/xHII,V for the same runs, compared at equal xHII,V. The mass-

weighted ionized fraction is always higher than the volume-weighted

one, even for the D2 run which has a significantly higher recombina-

tion rates (as seen by the significant delay in the redshift of reionization,

∆z ≈ 0.5, in the left panel). We find that reionization proceeds strictly

inside-out.

computation of cell densities and local clumping factors. Both D1 and D2 use the same

sources and Voronoi nuclei (so the cell volumes are exactly the same) as D. The evolution

of xHII,V with redshift (left panel) is similar for the two runs, D and D1, as a result of the

relatively low values of the local clumping factors when the halo particles are excluded

from this N-body run. Including all particles in the density field makes recombinations

much stronger in the overdense regions that host halos. This in turn results in slower

I-fronts and a delay in the redshift of reionization, as evidenced by the results of the D2

run (∆z ≈ 0.5). Still, in all runs the mass-weighted ionized fraction remains higher than

the volume-weighted one (right panel), suggesting a strictly inside-out reionization re-

gardless of the way the density field is constructed. While not shown here, we find the
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Figure 5.11: The ionized fraction as a function of cell overdensity for

runs D (blue solid), D1 (black dash-dotted) and D2 (red dashed lines).

Panels show the results at different values of the ionized fraction com-

puted over the whole box, xglobal
HII,V , corresponding to the slices shown in

Fig. 5.9. The thin dotted line shows the fraction of total mass found in

cells less overdense than log10∆. Different density fields result in very

different values of xHII,V in more overdense regions (log10∆ > 1), but

this does not affect the global mean because only a small fraction of

mass (. 5%) is found in those regions. See text for discussion.

same to be true if we extend reionization further by using fesc = 0.1.

A more detailed look at how the ionized fraction depends on overdensity is provided
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in Fig. 5.11. Note that the data range in the D and D1 runs extends beyond ∆ = 100,

even though that is the overdensity at which we truncated the N-body density field data.

This is due to the difference between SPH and Voronoi tessellation density estimations.

Still, the fraction of cells with log10∆ > 2 is very small, which is also the source of the

large scatter in the values of xHII in those overdensity bins. The D2 run density data

was not truncated before Voronoi grid construction, resulting in the highest overdensity

being log10∆ ∼ 3.5, but here we only show the overdensity range that is resolved by all

runs. The biggest difference between the density fields is due to the recombination rate

(a combination of density and clumping factor) in the overdense regions (∆ > 1), clearly

seen in Fig. 5.11. Not using local clumping factors in D1 results in slightly more ionized

overdense regions than in D, with the difference larger at low global ionized fractions

(top left panel) than at higher ones (bottom left panel), and eventually disappearing

when the ionized fraction approaches unity (e.g. bottom right panel). This is due to

the increase with time in the number of sources in these regions, which results in LC

intensities capable of overpowering recombinations. A rather different result is obtained

when halo particles are kept in the density field, as in D2 run. Even at early stages of

reionization (xglobal
HII,V ≈ 0.1, top left panel), the overdense regions are significantly less

ionized in D2 than in D. As the global ionized fraction increases, the difference between

the two increases further, especially in significantly overdense regions (log10∆ & 1).

This behaviour is also due to the growth of structure that we invoked to explain the

decreasing difference between D and D1. While the LC intensity rises in the overdense

regions in D2 in the same way as in D and D1, the growth of structure also results in

the increase of the recombination rate, which overpowers the former effect to keep the

most overdense regions mostly neutral. Note that we expected the cells hosting halos

to have extremely high recombination rates and used this fact as one of the arguments

against keeping halos in the density field estimate (Section 3.4.1). We therefore consider

the results of the D2 run to be caused by an incorrect density field representation, but

present them here none the less to illustrate the effect the recombination rate has on the

reionization topology.

Recombinations are responsible for the depression in xHII at log10∆ ≈ −0.5 seen

most prominently at earlier stages of reionization (top panels). Early on, the LC intensity

reaching the voids is low and time-variable. For example, the voids are first ionized by
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HII regions around starbursts which results in a sharp increase in the ionized fraction

due to a short “spike” of LC intensity. Once the starburst has ended, the recombination

rate is the only regulator of the ionized fraction, so its dependence on density produces

a depression such as the one seen in Fig. 5.11. At later stages of reionization (bottom

panels), the increase in the number of sources means that the low density regions are

exposed to more constant and stronger LC intensities resulting in a less pronounced

depression. These results are in general agreement with Choudhury et al. (2008), who

developed a semi-analytic method to explicitly study the issue of reionization topology.

The main distinction between our results and theirs is that they find that the low density

regions are fully ionized before the mean density ones, i.e. they find a more pronounced

depression located around ∆ ≈ 1. The cause of this difference may be their approximate

treatment of RT, which lacks the effects of shielding by higher density regions, as well

as the their simplified treatment of radiation sources. We will perform a more detailed

comparison between the two models in our future work.

Our finding that the reionization proceeds strictly inside-out is in agreement with

most recent numerical simulations of large-scale reionization (e.g. Iliev et al., 2006a; Mc-

Quinn et al., 2007; Zahn et al., 2007). However, there is still no consensus on this issue as

a number of semi-analytic (e.g. Miralda-Escude et al., 2000; Furlanetto et al., 2004) and

numerical simulations (e.g. Finlator et al., 2009a) report finding final parts of reionization

history proceeding in the outside-in fashion. The way the density field is represented dif-

fers greatly among these works, so it is still early in the development of the reionization

studies to claim any final answer.

5.4.2 Typical sizes of HII regions during reionization

While the discussion presented in the previous section provides a significant insight into

how the ionization field evolves, there is a need for a more detailed understanding of the

sizes of HII regions during reionization and their dependence on the various parameters

assumed in a model. The distribution of HII region sizes is an observable quantity of the

reionization process. Direct observations will require observatories still in development,

such as SKA, but the related 21cm power spectrum (e.g. Furlanetto et al., 2006; Mellema

et al., 2006) may become available in the next few years from telescopes such as LOFAR

and MWA. As our models are incomplete at this stage, we do not attempt to make pre-
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Figure 5.12: Left: The dependence of halo LC luminosity of on halo

mass Mhalo at z = 10.13 in D, ML1 (dashed line) and ML2 (dotted line)

runs. The solid and dot-dashed lines mark the mean and the median

value in the D run (default Baugh05 model). The red and blue shaded

areas mark the 50% and 90% ranges, respectively. Right: Evolution of

the mass-weighted mean ionized fraction with redshift in runs D (thick

solid), ML1 (dashed), ML2 (dotted) and DS (thin red line). Even though

the emissivities are equal between the runs (to within ≈ 1%), the evo-

lution of xHII,m still shows significant differences. The scatter in the

Lhalo − Mhalo relation in D is the most important factor. See text for

discussion.

dictions for the future 21cm observations. Nevertheless, we are interested to see whether

the detailed source model we employ here (default Baugh05) can be distinguished from

simpler models used in the literature. To this end, our comparison will be with the work

of McQuinn et al. (2007), who examined in detail the morphology of HII regions during

hydrogen reionization with respect to different components of the reionization model.

We compare the results of our default simulation, D, with two other runs that assume

simpler and less physically motivated source models. First, in ML1 run, we assume that

the LC luminosity of each halo, Lhalo, is directly proportional to the halo mass, Mhalo:

Lhalo = A1

(
Mhalo

M�/h

)
, (5.4)
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where A1 is a constant with dimensions of LC luminosity. This relation corresponds

to McQuinn et al. (2007) S1 simulation and is also used in Iliev et al. (2006a) and their

subsequent work (we used their relation in Chapter 3, see Eq. 3.15). The second model,

ML2 assumes a steeper slope of the mass-luminosity relation:

Lhalo = A2

(
Mhalo

M�/h

)1.7

, (5.5)

where A2 is a different constant with the same dimensions as A1. Ideally, the HII regions

in different models should be compared at the same redshift and the same ionized frac-

tion (e.g. Lidz et al., 2008) to minimise the effect of the underlying density field evolution

on the results. To achieve this, we chose constants A1 and A2 so that the total emissivity

in ML1 and ML2 is the same as the emissivity in D at z = 10.13. As the mean mass-

luminosity relation in the default Baugh05 does not significantly evolve (see Fig. 4.2),

this normalization should be appropriate for all redshifts. We compared the emissivities

between the runs at all redshifts and found them to differ by no more than a percent. We

could easily match the emissivity exactly by having time-dependent normalization co-

efficients, but chose to keep them constant to better match the models of McQuinn et al.

(2007). The minimum mass for atomic cooling in a halo, Mhalo(Tvir = 104K), is below the

mass resolution of the L50N1024 run (see Fig. 4.25), so we do not apply any low-mass

cutoffs.

The left panel of Fig. 5.12 shows the mass-luminosity relations in the D, ML1 and

ML2 runs. When compared to the mean value of Lhalo vs. Mhalo in D, both ML1 and

ML2 have higher luminosities in the low mass range, M . 109M�/h, with ML1 also

significantly higher than ML2. Consequently, ML2 has higher luminosities than ML1 in

halos with M & ×109M�/h, but still lower than D until M & 1010M�/h. Of course,

the Baugh05 values of Lhalo exhibit a large scatter for a given Mhalo (discussed in 4.3.3;

shown by the shaded areas in Fig. 5.12), meaning that a small fraction of halos produces

1-2 orders of magnitude more LC photons than their counterparts in ML1 and ML2. The

right panel gives a first glimpse of the importance of this scatter, by plotting the redshift

evolution of the mass-weighted mean ionized fraction in the three models. Even though

the total emissivities are almost exactly the same, the D run shows a large difference

when compared to the ML1 and ML2. While all runs complete reionization at approx-

imately the same time, the D run reaches lower ionized fractions much earlier than the
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other two. This is entirely due to the speed with which I-fronts leave the highest den-

sity regions (itself a function of source luminosity, Eq. (2.23)), as we argued earlier. The

same effect is seen, to a smaller extent, in the difference between the evolution in ML1

and ML2, with the latter being slightly faster. To make sure that the small number of

highly luminous sources (i.e. scatter due to starbursts) is responsible for different evolu-

tion of xHII,m in D, we performed another run, labelled DS, where all the halos of mass

Mhalo have an Lhalo that corresponds to the mean of the Baugh05 model (solid line in the

left panel), i.e. we removed the large scatter while preserving the mean emissivity and

shape of the mass-luminosity relation of D. The evolution of xHII,m in DS is shown with

a thin red line in the right panel of Fig. 5.12 and it matches the evolution of ML1 and

ML2 much more closely than D. We therefore expect the scatter in Lhalo to be the chief

distinguishing factor of the Baugh05 model in terms of the HII region morphology.

We compare the HII region morphologies visually in Fig. 5.13. The ionization fields

are compared at 4 values of xHII,V ≈ 0.1, 0.3, 0.5 and 0.7 presented in top to bottom rows,

respectively. The mean ionized fractions are not exactly the same due to the limited

number of outputs and different evolutions of xHII,V (right panel of Fig. 5.12), but the

differences between all models are in the ∆xHII,V ± 0.02 range around the value of the

D run. The ionization field maps were produced using the same procedure as for the

contours in Fig. 5.9 described in the previous section. For increased clarity, we divide the

ionization field into ionized (black) and neutral (white) regions. The boundary between

the two is set at xHII = 0.7, the same ionized fraction above which we apply source

suppression (see Section 5.2).

In all runs presented, the ionized bubbles generally trace the distribution of over-

density, which results in similar large scale features in all ionization fields. The main

difference is the number and sizes of the HII regions emanating from the smallest ha-

los. Halos with M . 109M�/h are most luminous in the ML1 run (Fig. 5.12), which

translates to the highest number of small ionized bubbles in that run (left column). The

mass-luminosity relation is steeper in ML2, which results in fewer small bubbles and

more pronounced larger ones. This trend is continued in D, where the ionization field at

lower xHII,V is dominated by a handful of large HII regions, with even fewer small ones.

A more quantitative comparison of HII bubble sizes is presented in Fig. 5.14. To

facilitate comparison, we adopted the McQuinn et al. (2007) technique for estimating
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Figure 5.13: Comparison of ionization fields from three simulations

with different source models: ML1 (left column), ML2 (middle column)

and D (right column). All panels show slices through the middle of the

box, with side length 50 Mpc/h. Black regions are ionized (xHII ≥ 0.7),

while white are neutral (xHII < 0.7). The redshifts corresponding to

each xHII,V are the same as in Fig. 5.9. The distinguishing difference

between the runs is the number of smallest HII regions, which is high-

est in ML1 (left column). On the other hand, such small HII regions are

almost non-existent in D (right column).
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Figure 5.14: The bubble radius PDFs of runs D (thick solid lines), ML1

(dashed lines), ML2 (dotted lines) and DS (thin red lines) at xHII,V ≈

0.1, 0.3, 0.5 and 0.7 (top to bottom, left to right panels). See text for

the definition of the bubble radius. Vertical lines give the value of the

distribution median for each run, which may be used as a quantifier

of the typical bubble size. Run ML1 clearly has smaller typical bubble

size than the rest. Starbursts in D do not produce larger HII bubbles,

but more of the large ones. Once scatter due to bursts is removed (DS

run), the Baugh05 model bubble sizes closely match those of ML2.

bubble sizes, who in turn introduced it in order to compare results with semi-analytic

models (Furlanetto et al., 2004). The procedure is as follows. For each pixel of the ion-

ization field, we find the largest sphere centred on that pixel which is on average 90%
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ionized. If such a sphere is found, the pixel is said to be in a bubble of that sphere’s

radius R. Otherwise, the pixel is assumed to be in a neutral region. The non-zero radii

of all pixels are then tabulated in equal log10R bins in order to estimate the probability

density function (PDF). This definition of the bubble size allows for a comparison inde-

pendent of their shapes or merging history. It was originally introduced for comparison

with semi-analytic models that define the bubble size in very similar manner (Furlanetto

et al., 2004). Note that alternative definitions exist, such as the friends-of-friends algorith

employed by Iliev et al. (2006a). The bubble size PDF provides information similar to

that provided by the ionized region power spectra. We chose to discuss only the former

method to ease the comparison with McQuinn et al. (2007).

The general evolution of the bubble radius PDF with xHII,V shows the same progres-

sion of the reionization process we discussed previously. Early on in the process (e.g.

xHII,V ≈ 0.1, top left panel), there is a large number of small individual HII regions.

The different source models result in a marked differences in the typical bubble sizes,

represented in Fig. 5.14 with the median values (vertical lines, compare ML1 and ML2,

dashed and dotted lines respectively). As reionization progresses, the typical bubble size

increases and the distribution of sizes becomes more peaked. The latter effect is caused

by the overlap of HII regions, where more and more small bubbles merge into larger

ones. As we approach the final overlap (xHII,V ≈ 0.7, bottom right panel), the different

source models show closer agreement, which is expected when only a few large bubbles

are present in the ionization field. A bigger simulation volume is needed to properly

model the bubble sizes at this and higher xHII,V. However, even now we see that the

ML1 simulation has slightly more small bubbles, which in turn results in a lower peak at

typical bubble size. The bubble sizes in the DS run closely trace the ones in ML2, mean-

ing that the non-power-law shape of the mean Lhalo in the Baugh05 model (Fig. 5.12)

does not play a very significant role. Finally, the results of the D run show a somewhat

different behaviour: at xHII,V ≈ 0.1 (top left panel) D run produces the largest bubbles,

but also “more” of them (suggested by the width of the distribution) than in any of the

other runs. As reionization progresses, the ML2 and DS runs start producing somewhat

larger bubbles. On the other hand, the D run still exhibits the more strongly peaked PDF,

but the typical bubble size (vertical line) is now smaller than in the previous two runs,

yet still bigger than in the ML1 run (see top right and to a lesser extent bottom left panel).
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This behaviour suggests that the typical bubble sizes in D may not dependent only on

the growth of structure (i.e. the evolution of the halo mass function), as in the ML1 and

ML2 runs, but also on some other properties. One possible explanation may be that the

typical bubble size is given by the halo mass that produces most LC photons in merger-

induced starbursts. We find the basis for that claim in the result we presented in Fig. 4.5,

where we compared the default Baugh05 emissivity (black line) at z ≈ 10 with the same

model with no starbursts (red line). There, the increase in emissivity that the bursts in-

troduce has a clear peak, almost two orders of magnitude for halos of Mhalo ≈ 109M�/h.

We expect that the position of this peak is a combination of the number density of halos

with thatMhalo and the sufficiently common triggering of bursts by mergers occurring in

such halos. Note that the growth of structure with redshift “flattens” the distribution of

emissivity with a given mass, as seen in Fig 4.3, which removes to some extent a clearly

distinguishable peak. Still, at the redshifts we are considering here, the emissivity peak

is present and clearly not associated with the most massive halos present in the box. This

effect may lead to the HII bubble morphology we observed in Fig. 5.14.

These features in morphology of the D run may be partially skewed by the inade-

quate mass resolution of L50N1024, which results in a decreased number of bursts in

halos with M . 109M�/h, evidenced by a lower scatter in Lhalo in that mass range seen

in the left panel of Fig. 5.12. To check this, we repeated the runs used in the previous

discussion but now based them on the L20N1024 N-body density data. This run resolves

all the halos down to the cooling limit and below (see blue line in Fig. 4.25), but in an

approximately 15 times smaller simulation volume. The results of those runs, which we

do not present here, generally show the same behaviour as the runs in L50N1024. Unfor-

tunately, the box size in L20N1024 is too small to properly sample the bubble sizes since

the ionization field is practically dominated by a single HII region at even the moderate

ionized fractions, xHII,V . 0.5. Therefore, to properly examine the bubble morphology in

the models with starbursts we will require a simulation box with side≥ 100Mpc/h, with

the merger trees fully resolved down to the atomic cooling halo mass. The morphology

results we presented here are therefore not conclusive and we will explore them in more

detail in our future work.
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Dependence of morphology on emissivity

Before concluding the current discussion on ionization field morphology, we must exam-

ine in more detail whether there is any dependence of bubble sizes on the absolute value

of the LC emissivity. The runs which we employed in the previous section have been

explicitly set to the same emissivity to avoid any such effects. When comparing certain

assumptions in the source models, as we did in Chapter 4, the emissivity is necessarily

affected, often more so than the shape of the mass-luminosity relation. Therefore, if we

intend to compare morphologies of HII regions produced by different GALFORM mod-

els (e.g. changing the IMF in bursts in the Baugh05 model), we need to have an idea of

how much the difference in emissivities affects the bubble size distribution.

To that end, in Fig. 5.15 we compare the results of the ML1 run with a run with exactly

the same parameters except for a 10 times lower luminosity normalization: A′1 = A1/10.

We denote this run as ML1f, since the scaling down of the luminosities is equivalent to

assuming an escape fraction of fesc = 0.1. The results, compared at a given xHII,V value,

clearly show that the simple change of total emissivity produces a large difference in the

distribution of bubble sizes, with the ML1 run having a few Mpc/h larger characteristic

HII region radii than ML1f. This is the same order of difference as we found between

the source models i.e. between ML1 and ML2 in Fig. 5.14. This fact will clearly compli-

cate attempts to observationally distinguish source models. We note that McQuinn et al.

(2007) did not find this kind of dependence of bubble sizes on emissivity. They com-

pared morphologies for runs with the same emissivities at different redshifts, as well

as runs with differing emissivities at same redshifts (which is what we do here). The

possible explanation for this apparent discrepancy may be less resolved density field

in their runs: by default, their RT grid has a somewhat lower spatial resolution in the

highest density regions than ours, lower mass resolution of the underlying N-body sim-

ulation11 and no spatially dependent clumping factor to include the density field data

not resolved by the RT grid. All these effects combine to make their density fields signif-

icantly smoother than the ones we employ here. Since the representation of the density

field is the most probable cause of the different bubble sizes in ML1 and ML1f, this may

11They also use Gadget-2 to produce N-body runs with 10243 particles, but they use a somewhat larger

simulation box: 65.6 Mpc/h, as opposed to our 50 Mpc/h. The different volumes result in our particle mass

to be ≈ 2 times lower then theirs.
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Figure 5.15: The comparison of bubble radius PDFs at different xHII,V

(values correspond to colors, given in the legend) in ML1 (dashed lines)

and ML1f (solid lines) runs. The more extended reionization in ML1f

due to lower emissivity results in significantly smaller bubble sizes. The

importance of the absolute emissivity on bubble radii is comparable to

the effect of the source model, shown in Fig. 5.14.

explain why McQuinn et al. did not obtain the same result. As our own density field

is only a first approximation, we consider the result presented in Fig. 5.15 to be only

preliminary. However, we do not expect the result to be negated by the use of a more

detailed density field, as it will only introduce stronger spatially inhomogeneous photon

sinks (e.g. minihalos), not the opposite.
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5.4.3 Role of source suppression in the progression of reionization

The final effect we consider is the core feature of our coupled scheme: the suppression of

LC luminosity from sources caused by photo-ionization feedback by an inhomogeneous

ionization field. We have already introduced the method for including this effect in our

scheme in Section 5.2. Here, we explore how the inclusion of source suppression affects

the evolution of the mean ionized fraction. Previous large-scale numerical reionization

simulations that include this effect are a few: Iliev et al. (2007) used a simple model where

all halos with Mhalo < 109M�/h found in ionized regions are completely removed from

the list of sources at each redshift step. They found that this feature can significantly ex-

tend the reionization process, since the most numerous small halos that begin the reion-

ization process are subsequently suppressed and the final overlap is reached only when

a sufficient number of more massive halos (which are not affected by the suppression)

are formed. McQuinn et al. (2007) expanded slightly on Iliev et al. (2007) by testing the

effect of time dependent suppression of the LC luminosity of affected halos, which is

closer to the model we use here. They also found that source suppression can severely

delay the epoch of reionization - ∆t ≈ 200 Myr or ∆z ≈ 2, when assuming instanta-

neous source suppression, and ∆z ≈ 1 when the LC luminosity of suppressed sources

decreases exponentially over τSF = 100 Myr. They also found that the bubble size dis-

tribution remains unaffected by the source suppression. Note that both works assume a

linear mass-luminosity relation, such as the one given by Eq. (5.4).

To examine the effect of source suppression, we performed a series of coupled Sim-

pleX/GALFORM runs on the L20N1024 density field. We use a smaller box than in the

previous discussion (L50N1024) in order to properly resolve all the small halos that are

affected by the suppression. Simulation S denotes our reference simulation: it has ex-

actly the same parameters as the D simulation discussed earlier, except for the different

underlying N-body density and halo merger trees. The S run does not include suppres-

sion. On the other hand, S1 run differs from S by including GALFORM suppression i.e.

by turning off gas cooling in halos with mass M < M(z, Vcut) found to be in ionized re-

gions (regions with xHII > 0.7). For comparison with previous work, we include a run

(denoted S2) with “extreme” suppression: all the halos with massM < M(z, Vcut) found

in ionized regions are instantly removed from the list of sources (as in Iliev et al., 2007).

In suppressed runs, we assume Vcut = 60 km/s (as in the default Baugh05 model). This,



5. Inhomogeneous reionization with SimpleX and GALFORM 251

Figure 5.16: Evolution of xHII,m with redshift in runs with variable

source suppression prescriptions: S (solid black lines), S1 (dashed red

lines) and S2 (dotted green line). Two values of fesc are assumed: 1 (left

panel) and 0.1 (right panel). The “extreme” suppression delays reion-

ization ≈ 2 times more than the GALFORM prescription and affects

the evolution of xHII,m earlier on. Extending reionization by assuming

a lower escape fraction (right panel) results in a smaller effect of sup-

pression on xHII,m as the reionization is competed by halos with circular

velocities V > Vcut at lower redshifts.

for our choice of cosmological parameters, gives the following maximum mass affected

by photo-ionizing feedback:

M(z, Vcut) = 2.92× 109M�/h
(

1 + z

11

)−3/2( Vcut

60 km/s

)3

, (5.6)

where we assumed a matter-dominated Einstein-de Sitter Universe at high redshifts.

Figure 5.16 shows the evolution of xHII,m in the S (solid), S1 (red dashed) and S2

(green dotted) runs (left panel). We compare these runs to ones with the same setup but

fesc = 0.1 (labelled as Sf, S1f, S2f in Table 5.4; right panel of Fig. 5.16). At a first glance

at the left panel, the extreme suppression has a much more pronounced signature: not

only is the epoch of reionization delayed by ∆z ≈ 1 or ∆t ≈ 77 Myr (a two times longer

delay than the one produced by GALFORM suppression), but it also begins to affect the

evolution of xHII,m much earlier (at z ≈ 20 as opposed to z ≈ 17 for GALFORM sup-
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pression). At these early stages of reionization (with low xHII,m), the sources are almost

always self-ionized, so the latter effect is entirely caused by the previously discussed

delayed nature of source suppression in GALFORM (e.g. right panel of Fig. 4.22). The

same feature is responsible for the smaller delay in the epoch of reionization in the S1 run

compared to S2. When the emissivity is decreased by assuming a lower escape fraction

(right panel), the effect of suppression on the redshift evolution of xHII,m becomes even

less pronounced. Note, however, that in time units the epoch of reionization is actually

some 50% longer when fesc = 0.1 (S2f) compared to fesc = 1 (S2). The importance of

source suppression is decreased by the fact that, at lower redshifts, a larger fraction of

LC photons is produced in halos with mass larger than the cutoff mass given in Eq. (5.6).

When fesc = 1, xHII,m ≈ 0.5 at z ≈ 12, at which redshift more than 90% of LC photons

are produced in halos with M < M(z, Vcut). On the other hand, for fesc = 0.1 the same

xHII,m is reached at z ≈ 8.5 when only 65% photons is produced in suppressible halos.

Note that the effect of source suppression we found here will only be decreased if the

box size is increased, as this will increase the contribution of massive non-suppressible

halos that are not found in this volume. This means that, in general, we find a much more

modest effect of source suppression than Iliev et al. (2007) and McQuinn et al. (2007). The

explanation for the difference lies in the assumed slope of the mass-luminosity relation.

Both Iliev et al. and McQuinn et al. assumed a linear mass-luminosity relation, Eq. (5.4)

in their models, which makes the low mass halos much more efficient in the produc-

tion of LC photons than the relation predicted by Baugh05, as seen in Fig. 5.12. As a

lower fesc is more physically plausible, we expect the source suppression to have only

a small effect on the progression of reionization in our future models as well. Also, the

value Vcut = 60 km/s is almost certainly too high - a value of Vcut ≈ 30 km/s is currently

thought to be more appropriate based on gas dynamics simulations (e.g. Okamoto et al.,

2008). Equation (5.6) shows that this value will result in 8 times lower maximum sup-

pressible halo mass than we considered in this discussion, which will render the source

suppression practically irrelevant for the reionization process. This, of course, does not

mean that the inhomogeneous source suppression will not have any effect on lower red-

shift galaxy formation, which is a problem we will address in future work.
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5.5 Conclusions

In this chapter we presented a scheme for simulating inhomogeneous large-scale reion-

ization. The ionization field is evolved on precomputed N-body dark matter density

fields using the SimpleX RT code, with the sources of ionizing radiation provided by the

GALFORM semi-analytic galaxy formation model. At every discrete step of the density

field’s evolution (given by the number of N-body simulation outputs), the state of the

ionization field is communicated to the source model to include the spatially inhomo-

geneous photo-ionization feedback. The resulting scheme provides a computationally

efficient tool for investigating the role of reionization in the general picture of galaxy

formation, without sacrificing accuracy in the treatment of radiative transfer effects. The

most expensive reionization runs presented in this chapter took about 100 CPU hours to

complete, which is equivalent to one day running on a single quad-core machine.

The first half of the chapter (Section 5.3) was dedicated to examining the possible ef-

fects the numerical parameters may have on the results obtained by the coupling scheme,

building on similar discussions about both SimpleX and GALFORM individually, pre-

sented in Chapters 3 and 4 respectively. First, in Section 5.3.1, we showed that the dif-

ferences in the evolution of the mean ionized fraction due to the RT grid choice are gen-

erally much smaller than the differences caused by the uncertainties introduced by the

source model parameters which we explored in Chapter 4. The proper representation of

the available N-body data with the local clumping factor also has a smaller effect in the

reionization scenarios we explored here than in the single snapshot tests presented in

Section 3.4.2. This is no surprise, as the single snapshot tests were set up to be the worst

case scenario: we used the snapshot at z = 5 where matter clumping is much higher

than at redshifts we are discussing here, e.g. reionization being complete by z ≈ 8 (Fig.

5.3). However, even in these conditions the use of the local clumping factor improves

convergence of results with respect to RT resolution. As it is inexpensive to calculate

and apply, we cannot see any reason why not to use it.

The default run we examined was a 643 RT grid representing the L20N512 N-body

simulation (see Table 4.1 for run parameters). We have shown that this 643 Voronoi

adaptive grid is adequate for obtaining a converged evolution of xHII,m with respect to

the increase of RT grid resolution. For the L20N512, this number of grid cells results
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in typical cell length scale12 of ∆l ≈ 0.05 Mpc/h. The L20N512 run has approximately

the same mass resolution as the L50N1024 which we use for the majority of Section 5.4

and Millennium-II (Boylan-Kolchin et al., 2009) which we will use in our future work.

Therefore, we expect that the runs in those boxes will also give converged results if

the RT resolution approximately matches the 643 cells in the 20 Mpc/hbox: 1283 for 50

Mpc/h box side length of L50N1024 and 2563 for 100 Mpc/h of Millennium-II.

In Section 5.3.2, we discussed the differences the RT grid resolution may introduce in

finding the redshift of reionization for each halo, zreion. We found that while the change

in grid resolution can introduce significant scatter in zreion for the majority of halos this

value does not strongly depend on resolution in the ranges we considered here (see Fig.

5.8). Furthermore, as we discuss in Section 5.4.3, the source suppression has only a mod-

est effect on the reionization progression so the issue of imprecision in the determination

of zreion will be equally unimportant. Note that it may have a more important effect on

subsequent galaxy formation which we intend to examine in our future work.

In Section 5.4, we presented some preliminary results obtained with the coupled

codes scheme. In Section 5.4.1, we found that reionization in our models proceeds

strictly inside-out, from overdense to underdense regions, even in the more extreme den-

sity field construction scheme that include halos in the recombination rate. This finding

agrees with more recent large-scale reionization numerical simulations (e.g. Iliev et al.,

2006a; McQuinn et al., 2007; Iliev et al., 2007; Trac & Cen, 2007; Zahn et al., 2007). Figure

5.11 presented the distribution of the ionized fraction as a function of local overdensity.

We found similar complex features caused by inhomogeneous recombination rates as

found by Choudhury et al. (2008), who examined this issue using a semi-analytic model.

In Section 5.4.2, we have shown that the large scatter in LC luminosities for halos of a

given mass introduced by starbursts in the Baugh05 model (discussed in Section 4.3.3)

produces specific features in the HII bubble size distribution that distinguish it from

most models commonly used in the literature. We suggested that the origin of this fea-

ture may be that the source luminosity does not directly correlate with halo mass when

12The fact that the Voronoi grid cell volumes evolve together with the underlying N-body density makes

determining an absolute spatial resolution limit difficult. The typical cell size we quote is the side of a cube

with the volume Vscale, chosen so that ≈ 10% of Voronoi cells have volumes V < Vscale at z = 10. In

general, this volume corresponds to about 8 times smaller volume than a Cartesian uniform grid with the

same number of cells would have.
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starbursts are included. This claim will be examined more closely in following work.

We also noted that, contrary to previous finding by McQuinn et al. (2007), a change in

total LC emissivity may produce significant differences in the predicted HII region mor-

phologies and thus complicate the comparison between models that do not predict the

exact same evolution of ε. Finally, in Section 5.4.3, we have shown that, for our choice

of the source model, the role of photo-ionization suppression of star formation on the

progress of reionization is significantly smaller than what may be introduced by the

source model parameters. This is a caused by a combination of the delayed suppression

as implemented in GALFORM (suppressed halos only stop cooling, with no effect on

the luminosities of already formed galaxies) and the steep mass-luminosity relation that

predicts a smaller importance of low mass halos than what is assumed in other models

in the literature.

We have not so far attempted any comparison with the currently available observa-

tional constraints. The reason is that our models are not complete at this stage: we are

missing both an accurate representation of the IGM density field and the small mass

halos that contribute a significant fraction of ionizing photons (as discussed in 4.5.1.

However, even in these conditions, it is clear that the sources predicted by the Baugh05

model may indeed provide enough ionizing photons to reionize the Universe. The use

of a lower escape fraction may yield a complete reionization at a slightly later redshift

than the one derived from the CMB data assuming instanteneous reionization13 (Ko-

matsu et al., 2010). However, an argument can be made for assuming a higher escape

fraction during bursts and, as bursts are the main producers of ionizing photons that

would mean the ionization redshift will be much closer to what is obtained assuming

fesc = 1. This claim will be revisited in future work. More on the plans for the future use

of this scheme will be discussed in Chapter 6.

13A more accurate comparison between simulation results and those obtained from CMB observations is

not on reionization redshift, but on the Thompson scattering optical depth, τel. We will use this criterion in

future work.
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Chapter 6
Conclusions

6.1 Summary

The main aim of this thesis is to study the process of cosmological reionization, i.e. the

transition from before there were many galaxies and the Universe was mostly dark and

neutral, to the present state, in which galaxies are embedded in a highly ionised inter-

galactic medium. Observational constraints on how and when the Universe emerged from

these ‘Dark Ages’ and what caused the transition, are currently limited. What was its

effect on the galaxy population now and then? How does it affect the observability of

source during the transition?

This field of research is about to be revolutionised over the next few years by the

direct detection of reionization using radio telescopes such as LOFAR and SKA. Already

now the Hubble Space Telescope detects galaxies at the end of the Dark Ages, the next gen-

eration James Webb Telescope will probe even deeper. This thesis develops and tests a set

of numerical tools to study this epoch in detail and make testable predictions for the data

to come. We focus in detail on two important aspects of reionization models, namely the

nature of the sources of the ionizing photons, and how their ionizing radiation eventu-

ally fills the entire Universe.

Chapter 1 gives a brief overview of the basic premise of how galaxies and structure

grow, based on the paradigm of hierarchical galaxy formation in a ΛCDM universe. This

highly predictive cosmogony assumes that structures were seeded by quantum fluctua-

tions, and, after a period of rapid expansion termed inflation, grew due to gravitational

forces. Most of the matter is in an unknown form that does not interact with matter,

called cold dark matter (CDM), and the expansion at late times is affected by a cosmolog-

ical constant (Λ). Gas cools in dark matter halos to form galaxies.

Chapters 2 and Chapter 3 discuss two numerical models for how ionizing photons

propagate through a gas. Ionizing photons interact with gas in a variety of ways, affect-

257
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ing not just its ionisation state but also heating the gas, affecting its dynamics. This is

investigated in detail in Chapter 2, where a very accurate method for radiative transfer

called Hybrid characteristics (HC) is discussed. The original HC implementation in an

accurate hydrodynamics code (FLASH) is described, as are a number of important mod-

ifications made by us. In particular, we introduced a fully photon-conserving chemistry

solver, which allows the radiative transfer calculation to be performed orders of magni-

tude faster. We contributed results for a set of radiative hydrodynamics tests to a code

comparison project. Our improved implementation shows excellent agreement with the

other schemes that took part in the project. These results have appeared in Iliev et al.

(2009).

Chapter 3 describes another radiative transfer scheme, SimpleX which, unlike HC,

is able to efficiently handle a very large number of sources. The SimpleX algorithm is

based on the Voronoi tessellation of space. We improved the original scheme in a num-

ber of ways, in particular we discuss issues related to the sampling of the density field,

the accurate treatment of recombinations using a local clumping factor and the treatment

of cells with a large optical depth. This improves numerical convergence in the speed of

ionisation fronts, which is important for accurate modelling the expansion of cosmologi-

cal HII regions around sources during reionization. The parallel version of our code can

propagate ionizing photons from millions of sources at high resolution in of order a day

on a work station.

Chapter 4 describes GALFORM, the Durham semi-analytical model that describes

the formation and evolution of galaxies. We analyse the properties of the GALFORM

galaxies, and in particular investigate in detail their ionizing emissivities, and how these

depend on various parameters. We find that the Bower et al. (2006) model does not

produce a sufficient number of ionizing photons to reionize the Universe according to

current constraints, yet the Baugh et al. (2005) (Baugh05) model does. We show that mas-

sive stars formed in abundance because of the assumed top-heavy stellar initial mass

function (IMF) during starbursts in Baugh05, triggered by galaxy mergers, are the dom-

inant source of ionizing photons. If the escape fraction of ionizing photons in bursts

is not much less than 10 per cent, than the Baugh05 model can obtain reionization due

to normal galaxies by redshift ≈ 9, which may be consistent with current constraints.

In addition, the galaxy properties of Baugh05 are in excellent agreement with the ob-
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served luminosity functions of galaxies at all redshifts up to where galaxies have been

measured, z ≈ 10. In this chapter we performed the first comparison of the Baugh05

model with recently observed Lyman-break galaxies at z & 8. This makes the Baugh05

model a promising ingredient for a comprehensive model of how reionization proceeds.

It predicts that most ionizing photons are produced during a burst in faint galaxies, con-

sequently the currently detected galaxies at z > 8 are expected to contribute only a small

fraction of the total ionizing emissivity. A paper describing the results in this chapter is

in preparation (Raicevic et al. 2010).

Chapter 5 describes a scheme for simulating large-scale reionization by coupling the

improved SimpleX radiative transfer code with the GALFORM galaxy formation model.

This allows us to investigate how galaxy clustering leads to inhomogeneous reioniza-

tion. We discuss the evolution of the sizes and morphology of ionised regions, as well as

the effect of the suppression of galaxies overrun by an ionization front. The scheme pre-

sented is fast and accurate, making it an excellent tool for the numerical study of epoch

of reionization. This allows a careful exploration of the presently poorly constrained pa-

rameters of the model. A paper describing the results in this chapter is in preparation

(Raicevic et al. 2010).

6.2 Future work

The work presented in this thesis will be continued on two fronts, radiative hydrody-

namics with FLASH-HC and large scale reionization studies with SimpleX-GALFORM.

6.2.1 Hybrid Characteristics and FLASH

Method improvements

Apart from finding and fixing the problems seen in the results of Test 7 (Section 2.6.3)

we are planing to include two improvements to the HC method. First, in the procedure

for finding which blocks are cut by each ray (described in Section 2.3.2), we will replace

the global block map with a procedure that makes use of the FLASH AMR octree data

structure. This will significantly decrease the memory consumption of the scheme, al-

lowing the AMR grids to resolve an even higher dynamic range. Second, we will update

the chemistry solver to include the evolution of species beyond hydrogen, based on the
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scheme introduced by Anninos et al. (1997).

Metal enrichment by the first supernovae

Thus updated, we will use the FLASH-HC scheme to study the propagation of met-

als produces by Pop III supernovae. The initial conditions (of a first star forming in a

minihalo at z ∼ 20) will be imported from the Aquarius simulations, using the Gadget-

to-FLASH converter described in Section 2.7. In the next step, the highly detailed HII

region will be simulated using HC (similar to e.g. Whalen et al., 2004; Abel et al., 2007).

After the life time of the star (t ∼ 10 Myr), a supernova explosion will be set up. The

AMR grid will allow tracking of the low metal fluxes propagating away from the SN

blast with significantly higher precision than can be attained in SPH simulations of the

same process (Scannapieco et al., 2005; Kobayashi et al., 2007; Greif et al., 2007). We will

use the initial conditions of the Aquarius project, which have the advantage that they

lead to the formation of a Milky-Way like galaxy. Therefore we will be able to address to

what extent signatures of Pop III ejecta are expected in for example Milky Way satellites,

or the Milky Way’s bulge. This will be published as Creasy et al (2010).

6.2.2 Reionization with SimpleX and GALFORM

Method improvements

We intend to improve the scheme presented in this chapter in several ways, while pre-

serving the low computational cost that is its key feature. First, the density field must

be represented in more detail, as argued in Section 3.4.1. We will use the local clumping

factors we introduced in Section 3.4.2 calibrated from higher resolution SPH simulations

to include the effects of the gas pressure and temperature, as discussed by Pawlik et al.

(2009). Second, we intend to include minihalos and Lyman-limit systems as dense, self-

shielded absorbers (McQuinn et al., 2007). Finally, we will update the SimpleX chemistry

solver to include helium ionizations as well as to compute the gas temperature (the en-

ergy equation introduced in Chapter 2, Eq. (2.19)).

We also intend to expand the basic SimpleX algorithm to describe the propagation of

Lyman-α photons (Orsi et al, 2010).
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Observability of reionization and its effects on galaxy formation

We will perform reionization simulations using the ‘Millennium-II’ simulation (MSII,

Boylan-Kolchin et al., 2009), which evolves 21923 particles in a box of size 100 Mpc/h.

This will allow us to study in great detail the progression of reionization, including es-

timates of the 21-cm signal. Crucially, since this density field is evolved to the present

day, we can investigate the effects of inhomogeneous reionization on the z = 0 luminos-

ity function and other observables, for example the satellite luminosity function. This

work will be published as Raicevic et al (2010). In addition we will be able to simu-

late the buildup and possible inhomogeneities in the post-reionization UV-background

(e.g. Mesinger & Furlanetto, 2009). The combination of the superb statics provide by the

‘Millennium-II’ simulation, the realism of the sources provided by GALFORM, and the

accurate treatment of radiative transfer with SimpleX, will allow us to make a significant

contribution to studies of the Epoch of Reionization.
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