WENG, BIN (2010) Dynamic Integration of Evolving Distributed Databases using Services. Doctoral thesis, Durham University.
| PDF 4Mb |
Abstract
This thesis investigates the integration of many separate existing heterogeneous and distributed databases which, due to organizational changes, must be merged and appear as one database. A solution to some database evolution problems is presented. It presents an Evolution Adaptive Service-Oriented Data Integration Architecture (EA-SODIA) to dynamically integrate heterogeneous and distributed source databases, aiming to minimize the cost of the maintenance caused by database evolution.
An algorithm, named Relational Schema Mapping by Views (RSMV), is designed to integrate source databases that are exposed as services into a pre-designed global schema that is in a data integrator service. Instead of producing hard-coded programs, views are built using relational algebra operations to eliminate the heterogeneities among the source databases. More importantly, the definitions of those views are represented and stored in the meta-database with some constraints to test their validity. Consequently, the method, called Evolution Detection, is then able to identify in the meta-database the views affected by evolutions and then modify them automatically.
An evaluation is presented using case study. Firstly, it is shown that most types of heterogeneity defined in this thesis can be eliminated by RSMV, except semantic conflict. Secondly, it presents that few manual modification on the system is required as long as the evolutions follow the rules. For only three types of database evolutions, human intervention is required and some existing views are discarded. Thirdly, the computational cost of the automatic modification shows a slow linear growth in the number of source database. Other characteristics addressed include EA-SODIA’ scalability, domain independence, autonomy of source databases, and potential of involving other data sources (e.g.XML). Finally, the descriptive comparison with other data integration approaches is presented. It shows that although other approaches may provide better performance of query processing in some circumstances, the service-oriented architecture provide better autonomy, flexibility and capability of evolution.
Item Type: | Thesis (Doctoral) |
---|---|
Award: | Doctor of Philosophy |
Faculty and Department: | Faculty of Science > Engineering and Computing Science, School of (2008-2017) |
Thesis Date: | 2010 |
Copyright: | Copyright of this thesis is held by the author |
Deposited On: | 11 Jun 2010 15:09 |