
Durham E-Theses

Dynamic Integration of Evolving Distributed Databases

using Services

WENG, BIN

How t o cite:

WENG, BIN (2010) Dynamic Integration of Evolving Distributed Databases using Services , Durham theses,
Durham Unive rsity. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/322/

Use p olicy

The full-text may b e used and/or repro duced, and given to third parties in any format or medium, without prior p ermission or
charge, for p ersonal research or study, ed ucational, or not-for -pro�t purp os es provided that:

� a full bibliographic reference is made to the original source

� a link is made to the metadat a record in Durham E-Theses

� the full-text is not changed in any way

The full-text must not b e sold in any for mat or medium without the formal p ermission of the copyright holders.

Please consult the full Durham E-Theses p olicy for further details.

Academic Supp ort O�ce, Dur ham University, Univer sity O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http ://eth es es.d ur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/322/
 http://etheses.dur.ac.uk/322/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Dynamic Integration of Evolving Distributed

Databases using Services

Name: Bin Weng

 Supervisor: Prof. Keith Bennett

Ph.D. Thesis

School of Engineering
University of Durham

2009

Statement of Copyright
The copyright of this thesis rests with the author. No quotation from it should be

published without their prior written consent and information derived from it should

be acknowledged.

Declaration
The material presented in this thesis is the sole work of the author and has not been

previously submitted for a degree at this or any other university.

1

Contents

Chapter 1 Introduction .. 1

1.1 Context .. 1
1.2 Area of Interest ... 1

1.2.1 Terms and Notations .. 1
1.2.2 Major Characteristics of Distributed Databases 3

1.3 Discussion of Issues .. 12
1.3.1 Research Issues .. 12
1.3.2 Problem Boundaries .. 13

1.4 Research Aims and Criteria for Success ... 14
1.5 Evaluation Criteria .. 16
1.6 Contribution .. 16
1.7 Thesis Structure .. 17
1.8 Summary ... 19

Chapter 2 Background .. 20
2.1 Introduction .. 20
2.2 Current Approaches to Data Integration .. 20

2.2.1 Federated Database Systems .. 21
2.2.2 Mediated systems ... 22
2.2.3 Data Warehousing .. 23
2.2.4 Open Grid Services Architecture-Distributed Query Processor
(OGSA-DQP) ... 24
2.2.5 Comparison of the architectures .. 25
2.2.6 Support for Evolution Problems .. 26

2.3 Service-Oriented Concept and Techniques .. 27
2.3.1 Service-Oriented Architecture (SOA) .. 28
2.3.2 Web Services .. 29

2.4 Summary .. 32
Chapter 3 Evolution Adaptive Service-Oriented Data Integration Architecture 33

3.1 Introduction .. 33
3.2 Overview of Evolution Adaptive Service-Oriented Data Integration
Architecture... 33
3.3 Processes of Data Integration and Evolution ... 36

3.3.1 Schema reconciliation .. 36
3.3.2 Query Process .. 37
3.3.3 Schema Evolution Detection.. 39

3.4 Data Integrator Service ... 40
3.5 Data Services .. 41
3.6 Registry Service ... 43
3.7 Characteristics of Architecture ... 45
3.8 Summary .. 48

Chapter 4 Schema Reconciliation and Meta-database ... 49

2

4.1 Introduction .. 49
4.2 Overview of Schema Reconciliation and RSMV 50
4.3 Design of Global Schema ... 55

4.3.1 Global Schema ... 56
4.3.2 Organizational Structure of Source Databases 57
4.3.3 Global Attribute Domain.. 59

4.4 Eliminating Heterogeneities between Local Schema and Global Schema . 59
4.4.1 Relational Algebra Operators ... 61
4.4.2 Exporting views ... 61
4.4.3 Local as Views (LAV) .. 65

4.5 Meta-database ... 67
4.5.1 Meta-data Representation in Meta-database 67
4.5.2 Representation of the Meta-database ... 80

4.6 Summary .. 81
Chapter 5 Schema Evolution Detection ... 82

5.1 Introduction .. 82
5.2 Overview of Schema Evolution Detection ... 82
5.3 Identification of Affected Views... 84

5.3.1 Categorizations of Evolution ... 85
5.3.2 Schema Evolution .. 85
5.3.3 Evolution Impact on the Integrated System 88
5.3.4 Representation of Evolutions in Meta-database 89
5.3.5 Process of Identification of Affected Views 92

5.4 Automatic View Modification .. 94
5.4.1 Equality Rules .. 94
5.4.2 Discard Rules ... 95
5.4.3 Process of Automatic View Modification .. 96

5.5 Summary .. 108
Chapter 6 Query Process ... 110

6.1 Introduction .. 110
6.2 Query Processing .. 110

6.2.1 Query Reformulation ... 113
6.2.2 Query Decomposition .. 124
6.2.3 Query Transformation .. 125

6.3 Result Composition .. 127
6.3.1 General Process of Result Composition .. 128
6.3.2 Domain Conversion of Result Composition 129

6.4 Summary .. 130
Chapter 7 Services Design and Implementation ... 131

7.1 Introduction .. 131
7.2 Overview of the Service Incorporation .. 131

7.2.1 The Allocation of the Meta-database ... 131
7.2.2 Query Processing ... 133
7.2.3 Schema Evolution Detection.. 134

3

7.3 Service Design .. 135
7.3.1 Design of Data Integrator Service .. 135
7.3.2 Design of Data Service .. 137

7.4 Case Study .. 139
7.4.1 Context and Analysis Unit ... 139
7.4.2 Question and Hypothesis ... 140
7.4.3 Experimental Implementation .. 142
7.4.4 Test Data .. 153
7.4.5 Evaluation of Implementation.. 159
7.4.6 Test and Validation ... 161

7.5 Summary .. 161
Chapter 8 Evaluation ... 163

8.1 Introduction .. 163
8.2 Capability of Eliminating Heterogeneity ... 163

8.2.1 Hypothesis A .. 164
8.3 Capability of Solving Evolution Problems ... 178

8.3.1 Hypothesis B .. 180
8.3.2 Hypothesis C .. 187
8.3.3 Hypothesis D .. 188
8.3.4 Computational Cost ... 191
8.3.5 Hypothesis E .. 192

8.4 Scalability ... 195
8.5 Manual Work .. 199
8.6 Expandability .. 200
8.7 Domain Independence .. 201
8.8 Language Independence ... 202
8.9 Disadvantages ... 203
8.10 Conclusion .. 204

Chapter 9 Conclusion .. 205
9.1 Introduction ... 205
9.2 Review of Research .. 205

9.2.1 The Research Issues ... 205
9.2.2 Related Work and SOA.. 206
9.2.3 Evolution Adaptive Service-Oriented Data Integration Architecture
 206
9.2.4 Service Design ... 207
9.2.5 Case Study ... 207

9.3 Evaluation of the Research ... 208
9.4 Discussion ... 210
9.5 Further Work ... 212

9.5.1 Other Source Databases ... 212
9.5.2 Extending the SED .. 213
9.5.3 Query Based on the Organizational Structure before Evolution ... 214
9.5.4 Dynamic Tackling of Schema Evolution 215

4

9.6 Final Summary .. 216
Appendix ... 217

A.1 Relational Algebra Operators ... 217
A.1.1 Set Operators on Relations... 217
A.1.2 Cartesian Product ... 217
A.1.3 Common Join ... 218
A.1.1 Selection ... 218
A.1.4 Projection ... 219
A.1.5 Grouping .. 220

A.2 Expression Tree of a View .. 221
References ... 224

4

QUEL and SQL) and in system level support (e.g. concurrency control, commit and

recovery), while the latter one occurs when there is a disagreement about the meaning,

interpretation, or intended use of the same of related data. More importantly, the data

may be represented in different structures even if they are in the same data model (e.g.

relational model), as they are designed by individual organisations in their own ways.

This research is mostly focusing on the semantic heterogeneity of the databases,

although the architecture proposed in this thesis is capable of integrating data from

different DBMSs hiding low-level heterogeneities (e.g. hardware platforms, operating

systems, and networking protocols). As the data sources are autonomously managed,

they may represent the information about the same entity or relationship type in

various schemas due to the fact that the database designers may model the real-world

concepts in different ways even if they all use relational models. In [92], the ER

model is most relevant to the first three steps: requirements analysis, conceptual

database design, and logical database design, in sequence.

1) The requirements analysis process is concerned with understanding what data

is to be stored in the database; namely to find out what the users want from

the database.

2) The second step is to develop the semantic model of the data to be stored in

the database based on the information gathered in the requirements analysis

step.

3) The logical database design is to implement the database design by

converting the conceptual database design into a database schema in the

relational data model.

Although the differences may emerge at any step, they do not have much impact on

the heterogeneities in the final result. In order to describe those heterogeneities

precisely, we assume that they mostly arise at logical database design step, namely

converting the same ER model into the relational data model. We adopt the following

taxonomy of heterogeneities from [86] with some modification and describe them

more precisely as follows.

13

classify an entity if there is no extra attribute to indicate. For example, a query using

relational language cannot find an automobile that is a van if there is not an attribute

to represent this property. Also, the nature of dynamic binding is to find the latest

source databases and produce latest results by combining them. Therefore, the second

organization evolution problem in which both the old organization structure and the

new one have to be retained cannot be resolved by the dynamic binding directly.

However, future research may involve this problem based on our architecture using

the method such as storing different versions or domain ontology in the meta-database.

The complete discussion of this architecture is presented in Chapter 8 (Evaluation).

1.3.2 Problem Boundaries

The architecture and approaches in this thesis have been presented with the

assumption of certain problem boundaries.

1) In general, the data sources involved in the architecture are currently assumed to

be relational databases due to their dominating position in the industry, although

they can be managed by various DBMSs. Each database provider has

responsibility for publishing its database as a service, and for building the

mapping between the local schema and the global schema.

2) It is also assumed that every relation schema in the system has to be in at least

first normal form by which we mean that the attributes of relations need to be

atomic. For the time being, although the schema of source databases can be

defined using different terms, ontology problems on the contents of the relations

and security problems are beyond the scope of this thesis. They require further

research based on our approach because they are also inevitable.

3) In addition, redundancy is not a problem considered in our research. As our

objective is to provide an architecture and approach to building an evolvable data

integration system, query optimization is not a key problem and is simply

described as a small part of query decomposition.

4) Finally, the changes mentioned in this thesis are those occurring in local schemas

and their organizational hierarchy. We assume that the global schema on which

15

The heterogeneity and database evolution problems introduced previously have to be

solved and some experimental implementations are constructed to demonstrate the

feasibility of the architecture. The criteria for success are formally defined as follows.

1) The heterogeneities defined in Chapter 1 can be eliminated using the RSMV

approach and the query processor.

2) The RSMV approach and meta-database can reduce the cost of modification

work caused by schema evolutions, and the query processor can reduce the

number of the queries which require modification when any organizational

evolution occurs.

3) If any schema evolution occurs in one source database, the views of other

source databases do not require modification so that the system can still work

properly.

4) The SED can reduce the cost of modification work caused by schema

evolutions.

5) SOA and web services can help reduce the cost caused by the database

evolutions and system evolutions because they provide high reusability,

autonomy and discoverability.

As a consequence of all above criteria, the cost of maintenance resulting from

database evolution can be largely reduced. In Chapter 7 and 8, the success of the

architecture and the approaches are discussed with reference to the above criteria

through a case study. The case study methodology itself will be introduced and further

discussed as well. We will discuss the performance of the approach in different

situations. However, the security and the data transportation efficiency of the system

based on our approach are not considered as criteria of success, because they are not

the focus of this research.

18

Chapter 3 presents an overview of the service-oriented architecture in this research

with a brief introduction to its components. Each process is generally introduced.

Chapter 4 presents the approach to building global schema and establishing mapping

between the local schema and the global schema. The approach to representing

mappings in a meta-database is also depicted. Rules and constraints based on set

theory and logics are defined.

Chapter 5 describes evolution detection methods based on rules. Various types of

database evolutions are described and represented in the meta-database. The processes

of identifying the affected mappings and automatically modifying them are presented.

Chapter 6 introduces the algorithm of decomposing queries over the global schema

into subqueries that refer to source databases and translating subqueries into queries

that are directly over the schema of the source databases.

Chapter 7 presents the design of the services in the architecture. A case study

including an experimental implementation using web services is also presented.

Chapter 8 discusses the results of case study evaluation of the architecture and

approaches proposed in this research with reference to the criteria of success and

evaluation presented in sections 1.4 and 1.5. The methodology, called case study, is

used to evaluate the approach.

Chapter 9 concludes the research by giving a general discussion and summary of the

work accomplished. The success of the research is considered in terms of the criteria

presented in section 1.4. The ideas for further work are also suggested.

19

1.8 Summary

This chapter has given an introduction to the work presented in this thesis. Some basic

terms that are used throughout the thesis are explained. The motivation and context of

the research have been explained with reference to other research achievements in the

field. The two main characteristics of distributed databases, making data integration

difficult , have been introduced: heterogeneity and data evolution. The major research

issues have also been identified: schema reconciliation, query processing, building

meta-database, and evolution detection. Evaluation criteria have been presented and

the structure of the thesis is explained.

20

Chapter 2 Background

2.1 Introduction

Chapter 1 introduced the context and motivation of the work in this thesis. Various

characteristics of heterogeneous and distributed databases were presented and the

research problem was defined with several issues. Criteria for success and for

evaluating both the approach and the research were presented.

This chapter further examines some current approaches to data integration and

discusses the basic process of them. Major approaches to mapping the data sources to

global schema are described and compared. Their support for database evolution

problems is then discussed. An introduction to the concepts of Software as a Service

(SaaS) and late binding [01,02] is then presented. Finally, service-oriented

architecture (SOA) and Web services are presented with relevant techniques and

standards.

2.2 Current Approaches to Data Integration

As mentioned in the previous section, two common approaches to data integration are

the Virtual View Approach and the Materialized View Approach [80]. Each of them

includes one or more architectures. The Virtual View Approach is also called a lazy

approach to data integration. This approach is based on the following very general

two-step process [80]:

1. In this case the data is accessed from the sources on-demand when a user submits

a query to the information system. That is why it is also referred to as a lazy

approach. Three architectures involved in a virtual view approach are described

later in this section: federated database systems, mediated systems and distributed

query processing (DQP).

2. The Materialized View Approach is also referred to as data warehousing or an

eager approach to data integration. Information from each source that may be of

24

The wrapper component is responsible for translating information from the native

format of the source into the format and data model used by the data warehousing

system, while the monitor component is responsible for automatically detecting

changes of interest in the source data and reporting them to the integrator.

Another component in the architecture, the integrator, is responsible for installing the

information in the warehouse, which may include filtering the information,

summarizing it, or merging it with information from other sources. In order to

properly integrate new information into the warehouse, it may be necessary for the

integrator to obtain further information from the same or different information sources.

The warehouse may be also implemented as a distributed database system. In the data

warehousing system, the sources that are integrated always retain their autonomy.

2.2.4 Open Grid Services Architecture-Distributed Query Processor

(OGSA-DQP)

Distributed query processing (DQP) has been widely used in data intensive

applications where data of relevance to users is stored at multiple locations [49, 44].

DQP is found in several contexts such as distributed database systems, federated

database systems and query-based middlewares.

OGSA-DQP [45] is an approach to service-based distributed query processing on the

Grid. It is an example of a high level data integration framework. In the framework,

each source database is exposed as a grid data service (GDS) which accepts and

executes queries hiding technical details such as the type of DBMSs from the external

users or applications. OGSA-DQP exposes the schemas of source databases exposed

by GDSs, and allow users to build queries on those schemas exposed as if in a single

database.

Although OGSA-DQP provides an approach to integrating existing distributed and

25

autonomous databases on the Grid, it does not directly address some of the problems

mentioned previously. For example, there are no algorithms for schema integration or

unified schema that are requested for dealing with heterogeneity. Therefore, users

need to raise queries on the local schema directly so that they have to understand all

the individual schemas requested very well and have to explicitly specify the data

sources in a federated query. It means that the system can not provide a unified view

for users and needs expertise to build queries. In addition, the system based

OGSA-DQP may have difficulties when adding or removing data sources, because the

queries are written in hard-code based on their local conceptual schemas. This

requires that some middlewares are placed over DQP to more complete functions to

above problems. The Service-Oriented Architecture and relevant techniques such as

web services and grid services are discussed in further detail in the next chapter.

2.2.5 Comparison of the architectures

In general, the virtual view approach to data integration is preferable for information

that changes rapidly, for clients with unpredictable needs, and for queries that operate

over vast amounts of data from very large numbers of information sources. However,

the virtual view approach may incur inefficiency and delay in query processing,

especially when queries are raised multiple times, when information sources are slow,

expensive to access, or periodically unavailable, and when significant processing is

required for the translation, filtering, and merging steps.

If, however, sources are permanent, and do not get upgraded too often and the

designers of the integrated system know what kind of queries are going to be asked

most often, answers to these queries can be materialized. A data warehousing

approach might be chosen to improve the performance if some sources are physically

located far away from the mediator leading to delay in response time. However, a

Data Warehousing system does not provide very up to date information and is not

appropriate in above mentioned circumstances where the virtual approach is

preferable.

30

Figure 2-1. [13] Web Services roles, operations and artifacts

The roles and operations in the above architecture are listed in Table 2-1 and Table

2-2 respectively.

Table 2-1 Roles in a Web Services Architecture [13]

Role Description
Service provider From a business perspective, this is the

owner of the service. From an
architectural perspective, this is the
platform that hosts access to the service.

Service requestor From a business perspective, this is the
business that requires certain functions to
be satisfied. From an architectural
perspective, this is the application that is
looking for and invoking or initiating an
interaction with a service.

Service registry This is a searchable registry of service
descriptions where service providers
publish their service descriptions.

Table 2-2 Operations in a Web Service Architecture [13]

Operation Description
Publish To be accessible, a service description

needs to be published so that the service
requestor can find it.

Find or Discover (discussed later) In the find operation, the service
requestor retrieves a service description
directly or queries the service registry for

32

service?), metadata of services (e.g. what business is it? what products or services is it

providing? and what is the key words to find this service?) and Quality of Services.

These higher level aspects of services, which are especially important in

data-intensive services, require additional service description documents, which

complement the WSDL documents.

UDDI lacks support to metadata of the service such as the detailed description of the

service (e.g. what products and services does the service provider produce?). The

metadata of service is especially required in data-intensive service to describe the

heterogeneous databases autonomously managed and provided by the owner, as not

only does the application need to discover the data service, but composes the query on

databases at run-time according to the metadata. Thus, we propose a meta-database

that complements the UDDI and WSDL with the meaningful description of the

database structure. The meta-database will be described formally in Chapter 4.

2.4 Summary

This chapter discussed some current approaches to integration of existing autonomous,

distributed, and heterogeneous databases. It concluded that none of the current

approaches are appropriate in a dynamic environment where the source databases are

constantly evolving. The concepts of SaaS and late binding provide a possible

approach for organisations to share resources in a constantly changing environment.

The IBHIS project also suggested a Service-Oriented Data Integration Architecture in

which data sources are published as services that will be dynamically bound on

demand.

35

Data Service n Data Service2

Data Integrator Service

Query Decomposer Query Delivery and
Result Compositon

Schema Evolution
Detector (SED)

Query Translator

Meta-database
(MDB)

Query Optimizer

Data Service1

End User

Client
(Web-based)

. . .

UDDI Registry

Client
(Application)

MDB MDB MDB

Source Database n Source Database2 Source Database1

SED SED SED

End User

Figure 3-1 The general architecture of EA-SODIA

This architecture, to some extent, can be considered as a mediated system based on a

service-oriented architecture where mediators are performing the same functions as

those of DIS and wrappers are working in a similar way to DSs. However, it is more

flexible than a traditional mediation approach due to the reusability and the

accessibility provided by SOA. More importantly, a system based on EA-SODIA is

expected to be relatively more maintainable as the creation of the schema integration

in EA-SODIA needs no hard-coded programs. Therefore, no programs need to be

modified when the schema of source databases change. In addition, there is no need to

provide a hard-coded wrapper for a newly incoming source database. These will be

evaluated by the case study in Chapter 7 and 8.

45

3.7 Characteristics of Architecture
This section discusses various characteristics of EA-SODIA by comparing it with

current approaches such as data warehousing, federated databases and data mediation

which have been described in chapter 1. The characteristics examined are the

flexibility and the scalability of the approaches, the complexity of creation and

maintenance of the system based on those approaches and the performance and the

completeness of the result produced. By complete result we mean that a result of a

query is referred to as a complete result if the result has all the tuples which can result

from all the databases in the integrated system when applying the query to each of the

databases. Namely, the integrated system can find an answer to a query as long as

such an answer exists.

Table 3-1 shows some simple results of comparison on the above characteristics

between EA-SODIA and current major architectures.

 Flexibility Scalability Complexity
of Creation

Complexity
of
Maintenance

Performance Complete
-ness of
result

Data
Warehousing

Low Low High High High Complete

Tightly
Coupled
Data
Federation

Low Low High High Low Complete

Loosely
Coupled
Data
Federation

Medium Medium High High Low Complete

Mediation High High Medium Medium Medium Incomplet
e

EA-SODIA High High Low Low Medium Incomplet
e

Table 3-1 Comparison of characteristics among major approaches

Data warehousing aims at integrating data from various sources by providing a

unified view of them. It also aims at providing summarized and analytical information

requested by users in relatively short response-time. This goal is archived by

pre-storing the filtered data of the unified view in a single repository so that end users

can query on this repository instead of accessing a large set of databases. Therefore, it

may produce the best performance when end users ask queries on the unified view.

47

easier to add or remove source databases. Instead of writing interfaces for each

database to communicate with all the others, wrappers need to be built for each

database to make its own data accessible to the mediator. Consequently, less work is

required to create and maintain a mediated system. A mediated system, which adopts

LAV as the approach to integrating source databases and creating the global view, is

able to remove or add a source database more easily. LAV is also able to produce a

better performance than a federated database system does when the number of source

databases is very large. However, as the query process of LAV is based on query

containment test, a mediated system is more likely to provide incomplete result. The

discussion of finding complete result for a query using LAV can be found in [68].

Again, data evolution is still a problem.

EA-SODIA is to some degree similar to the mediation approach, providing better

flexibility and scalability. It is more flexible and scalable than a mediated system

because service-oriented architecture is adopted which exposes source databases as

DSs instead of building wrappers for each database. Moreover, RSMV makes an

EA-SODIA system more flexible and feasible, as it tackles schema reconciliation at

each source database by creating views in the meta-database instead of writing

hard-coded programs. It also reduces the cost of creation and maintenance of the

system. The most important feature, the focus in this research, is that data evolution is

handled much easier in an EA-SODIA because there are no hard-coded queries and

programs for schema reconciliation. As LAV is used to populate the global view, the

results may be incomplete.

To sum up, data warehousing is preferable when source databases are permanent, do

not get upgraded too often and it is easy to predict what kind of queries the users will

ask. It provides better performance than the others. However, data evolution may be a

nightmare for the maintainers of a data warehouse system. Among the two traditional

architectures based on the virtual view approach, the mediated approach is chosen

more often, as creating and maintaining federated systems are costly and

time-consuming. In the environment where source databases are evolving frequently,

however, EA-SODIA may be preferable to the others above.

48

3.8 Summary
This chapter presents an overview of the Evolution Adaptive Service-Oriented Data

Integration Architecture (EA-SODIA). Each service in the architecture is introduced

with its functionality. The DIS dynamically binds the DSs based on the algorithm,

RSMV. The RSMV also eliminates the heterogeneities between the local schemas and

the global schema by building views. Both the DIS and the DSs maintain a

meta-database that store the metadata of the local schemas and the global schema and

mappings (importing views and exporting views). The function, schema evolution

detection, is provided at both DIS and DS to work together to tackle the schema

evolution problem. The algorithms, RSMV and schema evolution detection and query

decompositions, are introduced in detail in chapter 4, 5 and 6, respectively.

49

Chapter 4 Schema Reconciliation and Meta-database

4.1 Introduction

Chapter 3 presents an overview of the Evolution Adaptive Service-Oriented Data

Integration Architecture (EA-SODIA) which is easier to maintain when the databases

integrated evolve. Each component in the architecture is introduced. This chapter

describes, in detail, how the schemas of various databases to be integrated are

reconciled by constructing mappings from each local database schema to the global

schema using the algorithm Relational Schema Mapping by Views (RSMV) in order

for the architecture to be maintained more easily when changes of the databases occur.

More importantly, representing view definitions resulting from RSMV in the

meta-database is a crucial part of the research which prepares the integrated database

system for evolution detection and automatic view modification.

An overview of schema reconciliation with its three basic steps to integrate various

source databases is presented, followed by a detailed and formal description of each

step. The three steps are Design of Global Schema, Integrating Source Databases and

Conversion from Local Schema to Global Schema, respectively. The latter two

comprise RSMV. The rules and functions that are required to complete those steps are

defined throughout each section. The results of RSMV, view definitions (mappings),

are defined by set theory instead of hard-coded programs and stored in a

meta-database. It is explained in detail how relations and views and relational algebra

operators are represented as set. The case study produced in chapter 7 is used to

demonstrate how schema reconciliation can be achieved.

50

4.2 Overview of Schema Reconciliation and RSMV

One of the goals of the architecture in this research is to provide end users with a

unified view over the data in various underlying databases as if they were a single

database. In this work, a global schema which comprises of virtual views is designed

on which users can raise queries as if the global database is materialized (data are

physically stored). However, the real data are actually stored in underling source

databases which are in fact the ones users intend to access. Therefore, one of the roles

of the integrated system is to accept a query over global schema from a user and

access the corresponding source databases individually for data and then combine

those data to produce a final answer to the user. The schema of a source database is

called Local Schema in this research. Obviously, one of the main tasks in the design

of a data integration system is to establish the mapping between global schema and

the source databases, in order for the system to understand which source databases to

access and how to access them. In this work, the task is called Schema Reconciliation.

We propose an approach to achieving Schema Reconciliation by establishing

mappings between local schemas to the global schema. The approach is called

Relational Schema Mapping by Views (RSMV) which adopts some concepts from

both Schema Mapping and Local as View (LAV). It builds a mapping between each

local schema and the global schema individually. Figure 4-1 shows the general

process of Schema Reconciliation using RSMV.

53

comply with the global schema by building exporting views at its own site, the

exporting views are then ready to be integrated with the global schema.

Integrating with the global schema aims to build a relationship between the global

schema and the local schema, indicating what information a source database is

providing. Therefore, the Query Composer can find which source databases

contain the information required by an end user when the end user raises a query

on the global schema. LAV is used in this step to define exporting views

representing a source database as importing views over the global schema.

The results of the above two steps are exporting views over the local schema and

importing views over the global schema, respectively. The importing views and the

exporting views are associated with each other to constitute the mapping between the

local schema and the global schema. The process of RSMV can be further illustrated

in Figure 4-2.

54

Eliminating Heterogeneity

Integrating Source
Databases

Global Schema Local Schema

{ (Importing View, Exporting View)}

Figure 4-2 The Process of RSMV with Its Two Steps

In fact, the relationship between importing views and exporting views is a one-to-one

relationship. That is, for each importing view, there is an exporting view such that

they have the same schema (same name and attributes). The difference between them

is their definition. The importing view is defined over the global schema, while the

exporting view is defined in terms of the local schema. Consequently, the relationship

between the global schema and the local schema is indirectly established.

Having introduced the importing views and the exporting views resulting from the

above two steps, we can now formally define the mapping M. Let {ImVi} be a set of

importing views defined in terms of the global schema GS, and {ExVi} be a set of

exporting views defined in terms of the local schema LS of a source database D , the

mapping from LS to GS is a set of pair (ImVi, ExVi), denoted as:

61

Although it is called Eliminating Heterogeneities, this step does not aim at eliminating

all the heterogeneities and gaining a set of relations which are exactly identical to the

relations in the global schema. It aims at building a set of exporting views which are

homogeneous to the global schema so that they can be defined as views in terms of

the global schema. The entire process of eliminating all the heterogeneities relies on

not only this step but also the next step and query processing.

4.4.1 Relational Algebra Operators

Eliminating heterogeneities, in this work, relies on a set of relational algebra operators

which is a basic query language. An algebra, in general, consists of operators and

atomic operands. Relational algebra is a special algebra whose atomic operands are:

1. Variables that stand for relations.

2. Constants, which are finite relations.

Generally, relational algebra consists of some simple but powerful ways to construct

new relations from given relations. When the given relations are stored data, then the

constructed relations can be answers to queries about this data.[84,98]

A set of extended algebra operators is used to construct exporting views in terms of

the local schema. Those operators have been slightly modified to fulfil the needs in

this work. The complete description of the algebra operators used in this work can be

found in section A.1 of Appendix.

4.4.2 Exporting views

4.4.2.1 Expression Tree of a View

Writing single algebra operations on one or two relations as queries does not show the

power that the relational algebra has. However, the algebra operations take relations

as operands and the result of an operation is still a relation. Therefore, it is allowed to

form an expression of arbitrary complexity by applying operations to the result of

other operations. Consequently, more complex queries can then be constructed by

64

4.4.2.4 Integration of Source Databases

4.4.2.5 Importing Views

So far, the approach to eliminating the heterogeneity between local schemas and

global schema has been introduced. The local schema can then become homogeneous

to the global schema by building exporting views. However, the source databases still

have not been associated with the global schema so that a query raised on the global

schema can be decomposed and delivered to the relevant source databases. The

process of constructing relations between the global schema and local schemas is

called integration of source databases.

The exporting views built on a local schema represent the information that is provided

by that local schema. Therefore, integration of source databases can be referred to as

integration of exporting views and the global schema. In order to integrate the

exporting views to the global schema in this research, the set of importing views

corresponding to the exporting views are presented. Each importing view and its

corresponding exporting view have an identical set of attributes, although they can

have different names. Thus, building a relationship between importing views and the

global schema is the way the source databases are integrated. The approach, called

LAV, is adopted to integrate source databases. Figure 4-5 shows the integration of a

source database and the global schema.

65

Mediator

Importing
View 1

Importing
View 2

. . .

Importing
View n

G
lobal Schem

a

Single Source Database

External
View 1

External
View 2

External
View n

Local Schem
a

. . .

Figure 4-5 The integration of a source database and the global schema

In Figure 4-5, it is illustrated that the importing views and the exporting views have a

one-to-one identical relationship. A related pair of an importing view and an exporting

view has an identical set of attributes. The only difference between them is that the

algebraic expression of an exporting view is defined over the local schema, while the

expression of an importing view is defined over the global schema. Therefore, we can

describe the relationship between a local schema and the global schema. Let ExV be

an exporting view on LS and ImV be the corresponding importing view of ExV on GS,

if Q is a query, the relationship between LS and GS is represented as:

Q(ExV) Q(ImV)

It means that the query Q on ExV provides a subset of answer to Q on ImV. In this

way, the local schema is associated with the global schema.

4.4.3 Local as Views (LAV)

LAV is an approach to connecting sources with a global schema. In the local-as-view

approach, the relation schemas in the global schema are referred to as global

predicates. In order to avoid confusion, we still use the term global schema. The

importing views representing the source database are defined as views in terms of the

67

4.5 Meta-database

The aim of this work is to construct an architecture for database integration systems

which is easy to maintain when evolution of the source database occurs. In order to

maintain a system more easily, hard-coded programs of queries for integrating source

databases need to be avoided as much as possible. The maintenance of hard-coded

programs is very complex and time-consuming, as they are difficult to comprehend.

In this architecture, however, all the queries are stored as structured data in a

meta-database which are easy for evolution detectors or humans to comprehend and

modify. We choose relational algebra as the language to define exporting views as it is

easily stored as structured data instead of hard-coded programs. This section

introduces one of the core concepts of the research, Meta-database. The meta-database

is a conceptual database in which we store all the data required to conduct RSMV.

4.5.1 Meta-data Representation in Meta-database

In order to describe the schema evolution detection clearly, the data that are stored in

the meta-database need to be represented and termed formally together with their

relevant concepts such as attributes and relational algebra. Metadata is the data that

describes other data. Therefore, the information we store in the meta-database is all

descriptive information (i.e. relation schema and expression description), not the

content of the relations or the results of the expressions themselves.

4.5.1.1 Attributes and Relations Representation

In the relational model, an attribute has two properties: name and domain. Therefore,

an attribute is a pair A (A, T) where A is the name and T is the type or domain of the

attribute.

In the meta-database, the name and the type are represented as string:

Name: String

Type: String

81

the data defined above:

MD: { lsl: LSL , gs: GS, domain: GAD, m: MPS, org: Organization List}

It can be seen that the meta-database consists of a local schema list and the global

schema and the global attribute domain and more importantly the entire mapping list

and organization list. The meta-database will be extended to store other information

in the remaining chapters of this thesis.

4.6 Summary

To sum up, this chapter introduces the algorithm, called RSMV, to integrate local

schemas to the global schema. It makes each local schema homogeneous to the global

schema by building views on it. It then integrates the local schema to the global

schema by building a mapping between importing views over the global schema and

the exporting views over the local schema. As such, the query processing can be

conducted based on the mappings. More importantly, all the schemas of relations and

views together with the expressions of the views are represented and stored in a

meta-database which is a conceptual database. Consequently, there is no hard-coded

program of queries to deal with the schema integration. This allows tools to search

and modify the mappings automatically with little human intervention so that the cost

of maintenance caused by the evolution of the database schema is minimized as much

as possible. The query processing and the approach to modifying the mappings are

introduced in subsequent chapters. Moreover, some other descriptive data such as

URLs of a database service may be added into the meta-database in practice, which

will be discussed in chapter 7.

82

Chapter 5 Schema Evolution Detection

5.1 Introduction

Chapter 4 introduced the approach to integrating source databases into the global

schema with heterogeneity eliminated and representation of the data in the

meta-database. The algorithm introduced in chapter 4 can be thought of as the

preparation for the algorithm presented in this chapter. This chapter introduces the

algorithm which identifies the affected views by evolution in the source databases,

and then automatically maintains the system by modifying the view definitions stored

in the meta-database.

Firstly it is explained how each database evolution can affect views. Rules are then

introduced to identify and modify the affected views. Based on the rules, two

processes of Schema Evolution Detection, Identification of Affected Views and

Automatic View Modification, are described in detail. It is also shown that sometimes

the views must be discarded following certain types of evolution.

5.2 Overview of Schema Evolution Detection

In a traditional software lifecycle, software maintenance is an important part

accounting for at least 50 percent of the total lifetime cost of a software system [101].

Among the seven phases of software maintenance process defined by IEEE [102],

design and implementation together with software comprehension require much more

effort from maintenance programmers; understanding and modifying the existing

programs is complex and time-consuming work.

A database integration system requires even more maintenance, because there is an

additional factor leading to the maintenance of the system: database evolution. In a

traditional integrated database system, a large amount of hard-coded queries over the

local schemas exist in order to both integrate source databases and provide results to

83

users. Therefore, a change in a source database may lead to a large amount of work in

modifying existing queries. Consequently, the system may become impossible to

maintain if the number of the source databases involved become huge.

In our architecture, as there are no hard-coded queries directly over local schemas, the

work caused by database evolutions is to understand and modify the data stored in

meta-database. As the view definitions are represented as structured data in the

meta-database, they are easier to understand by both humans and machines. Thus, a

software tool or a function can be produced to help maintenance programmers to

modify the existing views. Schema Evolution Detection is an algorithm that can be

used by a software tool to modify the existing views based on some rules. There are

two general processes that are undertaken in Schema Evolution Detection:

1) Identification of Affected Views: This process searches all views relevant to the

evolved source database in order to find all the views affected by the evolution

and therefore requiring modifications.

2) Modification of Views: This process modifies the affected views based on

previously defined rules. In some cases, this process may require human

interventions.

These two processes are actually stimulating the real activities taken by maintenance

programmers when maintaining the system manually. When an evolution occurs,

programmers need to find which programs are affected by the evolution based on

their knowledge. Having found the affected views, the programmers are then able to

modify these views in order for the system to work properly. This is again based on

their knowledge. Although the knowledge is held by individual programmers, most of

it is common knowledge and can therefore be defined as rules. The human activities

of maintaining the system can then be undertaken by software tools.

84

5.3 Identification of Affected Views

This section introduces the algorithm of identifying affected views by database

evolution based on rules. When an evolution occurs, either a programmer or a

software tool needs to find which parts of the system are affected and require

modification. In this research, as an evolution defined previously only has some

impacts on the data stored meta-database, all the programmer or a software tool needs

to do is to search in the meta-database. Figure 5-1 shows the process of Identification

of Affected Views.

Identification of Affected Views

Schema Evolution Meta-database

Affected Data

Rules

Figure 5-1 Identification of Affected Views

As shown in Figure 5-1, when a schema evolution occurs, the process of

Identification of Affected Views takes the evolution and the meta-database as its

inputs and produces a result which is a set of the affected exporting and importing

views based on the pre-defined rules. The evolution and the rules and the affected data

will be described in detail in the following sections.

90

Attribute Domain Change | Attribute Decomposition | Relation Removal

| Relation Rename | Relation Decomposition | Database Removal

The representation of each schema evolution operation is described as follows:

1) Attribute Remove: This is represented as:

Attribute Remove: (r: Relation, a: Attribute)

It has two properties: original relation schema and original attribute. The first

property, original relation schema, is the relation schema whose attribute is

removed, while the second property, original attribute, is the attribute that is

removed.

2) Attribute Rename: This is represented as:

Attribute Rename: (r: Relation, original: Attribute, evolved: Attribute)

In addition to original relation schema and original attribute, it has the third

property, evolved attribute, which is the resulting attribute. The original attribute

is renamed to become the evolved attribute.

3) Attribute Domain Change: This has the same properties to attribute rename

evolution. It is represented as:

Attribute Domain Change: (r: Relation, original: Attribute, evolved:

Attribute)

The domain of original attribute is changed to the domain of the evolved

attribute.

4) Attribute Decomposition: This is represented as:

Attribute Decomposition: (r: Relation, original: Attribute, list: {Bi | Bi:

Attribute}, operator: Operator)

It also has an original relation schema and an original attribute as the first and

the second properties. The third property of attribute decomposition is a list of

evolved attributes that is derived from the decomposition of the original attribute,

94

5.4 Automatic View Modif ication

Having obtained the affected map list, the automatic modification of the affected

views can be undertaken. In this research, each schema evolution must be tackled

individually and immediately before the next schema evolution takes place. The

automatic view modification can be referred to as an operation to modify the affected

map list according to the schema evolution:

AVM: (SE, Affected Map List)

Although it is not presented in the operation, the modification is still based on some

rules. Generally, the aim of the automatic modification of the affected views is to

make the relation schemas and the attributes in the affected views consistent again

with their corresponding relation schemas and the attributes in the local schema in the

meta-database. By doing so, the affected views can become valid and work properly

again. The views that cannot become valid any more must be discarded by the process

so that they are not considered by the integrated system any more.

Assumption

There are three assumptions made as follows:

1. Before the schema evolution, all the views (exporting views and importing views)

are all syntactically valid and can work properly.

2. Modifying the affected map list will result in the update of the corresponding data

in the meta-database immediately.

3. When a schema evolution occurs, the corresponding relation schema or local

schema in the local schema list in the meta-database has been changed by the

evolution before Schema Evolution Detection.

5.4.1 Equality Rules

In order to describe the algorithm precisely, some rules must be defined to describe

the equality between two attributes and two relations. In addition, the association

96

this operation are followed. An atomic view is said to be a valid atomic view if the

operation of its view expression is valid. An exporting view is valid if all the

constraints on the exporting view are followed.

5.4.2.2 Discard Rules for Atomic Views

An atomic view Vi (relation, view expression) should be discarded if one of the

following rules is true:

a) If the operation of the view expression of the atomic view Vi is not valid

(invalid).

5.4.2.3 Discard Rule for Exporting Views

An exporting view ExVi (atomic view list, root, leaf list) should be discarded if one of

the following conditions is true:

a) The exporting is not valid (invalid).

5.4.3 Process of Automatic View Modification

Generally, the process of the automatic view modification is firstly to apply the

schema evolution, which was applied on local schema, on corresponding atomic

views of an exporting view in order to keep the relation schema and its attributes in

the atomic views consistent with the actual relation schema in the local schema, and

then examine whether the atomic views should be discarded. If the atomic views are

not discarded, it means that the atomic views can work properly. Once all

corresponding atomic views are processed, it examines whether the exporting view

should be discarded. If so, the corresponding importing view should be discarded as

well as the map in the affected list.

Once a schema evolution has been applied and the affected map list has been output

by the process of Identification of Affected Views, the automatic view modification

takes the following steps to modify the affected map list. Let se be the schema

evolution and AML be the affected mapping list.

109

to make them work properly. In addition, adding relation schemas and attributes and

local schema require no automatic modification on data in the meta-database. These

will be further discussed in the evaluation chapter.

111

Figure 6-1 shows the query processing of this research. It illustrates that the input of

Query Reformulation is an extended conjunctive query over the global schema. The

conjunctive query is then decomposed into subqueries over exporting views that refer

to particular data sources, by reformulation techniques for LAV approach. These

queries over exporting views are still in a conjunctive query language and over the

global schema. Therefore, the queries need to be transformed into queries directly

over local schemas based on the definitions of exporting views. As the exporting

views are defined using the relation algebra query language, there is another step

between query reformulation and query transformation, called query translation.

Query translation is to translate queries in a language into queries in another query

language. Once queries have been translated into queries over local schemas, the

queries then need to be translated into queries that are in the query language supported

by the source databases.

In fact, a user query may be a high-level query such as Relational Calculus before it is

translated into a conjunctive query. In this research, an extended conjunctive query is

used as the user query language. The extended conjunctive query is simply the

conjunctive query with an additional property, Organizational Scope. The aim of this

property is to narrow down the scope of source databases that will be searched by the

query processing. Therefore, the user query can be further represented as following:

User Query: (Q(GS), OS: (Org:String, OP:Stirng))

The first property of the user query is a conjunctive query on the global schema, while

the second property is the organizational scope that is a pair. The first property is the

organization name indicating the organization in which the query processing will

search for the source databases, while the second property is an organizational

property name indicating the node on the tree, the children of which will be accessed.

This user query is defined in order to illustrate how the query processing works to

tackle organizational evolution.

112

Queries over global schema
 (conjunctive query)

Query Reformulation
(containment test)

Queries on Importing Views
(conjunctive query)

Importing Views

Exporting Views

Query Translation

Subqueries on Single External
Views (relational algebra)

Queries on Local Schemas
(relational algebra)

Query Transformation

Query Translation

Queries on Local Schemas
(Local query language)

Query Decomposition

Subqueries on Single External
Views (conjunctive query)

Figure 6-1 Query Processing

114

6.2.1.1.1 Organizational Evolution and Its Representation in Meta-database

Recall that in Chapter 4, an organizational structure is represented as a tree structure.

Organizational evolution represents the changes in the organizational structure.

Although this type of evolution does not have an impact on the view definitions, it has

some impact on existing user queries. Two types of evolution are considered in this

research:

1) Organizational Property Removal: An organizational property of the tree of an

organization may be removed. It can be represented as a pair in the

meta-database:

OPRemoval (Org: Organization, original: Organizational Property)

It consists of two properties: original organization and original organizational

property. The first, original organization, represents the organization whose OP

has been removed. The second, original organizational property, is the OP that

has been removed by the evolution.

2) Organizational Property Rename: The name of an organizational property of

the tree of an organization may change. It can be represented as a triple in the

meta-database:

OPRename (Org: Organization, original: Organizational Property,

 evolved: Organizational Property)

It consists of two properties: original organization and original organizational

property and evolved organizational property. The first, original organization,

represents the organization in which OP has changed. The second, original

organizational property, is the OP before the change. The third, evolved

organizational property, is the OP with the new name after the change.

3) Organization Removal: An organization itself may be removed. It can be

represented as the following in the meta-database:

115

Organization Removal (Org: Organization)

It has one property, original organization, which is the organization removed by
this evolution.

4) Organization Rename: The name of an organization itself may change. It can be

represented as a pair in the meta-database:

Organization Rename (Org: Organization, evolved: Organization)

It has two properties: original organization and evolved organization. The

original organization is the organization before the change, while the evolved

organization is the organization with the new name after the change.

5) Parent Change: The parent property of an organizational property (a CP or a

source database) of the tree of an organization may change.

6) Organization Addition : A new organization is added into the organization list of

the meta-database.

7) Organizational Property Addition : A new organizational property is added into

an existing organization.

Since the last three types of evolution have no impact on the user queries, they are not

considered and formally represented in the meta-database. This is one of the

advantages of the design of the organizational structure tree in the meta-database. It

will be discussed in the evaluation chapter.

In order to store the organizational evolution into the meta-database, a data type that

represents the organizational evolution is defined as follows:

Organizational Evolution Operation: OPRemoval | OPRename |

Organization Removal | Organization Rename

An organizational evolution can then be represented as:

123

not be contained in Q. In terms of completeness and complexity, [68] mentions that

the Bucket Algorithm is guaranteed to find maximally-contained rewriting of a query

if the query does not contain arithmetic comparison predicates. However, the second

phase may take exponentially long.

There are some alternative approaches to answering queries using views, such as the

Inverse-Rules Algorithm [68], the MiniCon Algorithm [103] and the

Shared-Variable-Bucket Algorithm [104]. The Inverse-Rules Algorithm is completely

different from the Bucket Algorithm. The key idea underlying the algorithm is to

construct a set of rules that invert the view definitions, i.e., rules that show how to

compute tuples for the database relations [68]. It has a significant drawback for our

research, since it attempts to recomputed the extensions of the database relations.

Namely, the tuples in the relations need to be accessed before the rewritings of a

query are found. Hence, it significantly increases the access to the source databases

and therefore is not suitable of our research.

The MiniCon Algorithm and the Shared-Variable-Bucket Algorithm are both

improved algorithms based on the idea of the Bucket Algorithm, providing extra steps

in order to reduce the number of views to be considered for the rewriting step. The

Bucket Algorithm was chosen is this research, because it is a basic algorithm which is

easier to implement in the case study. The extra steps in the MiniCon Algorithm and

the Shared-Variable-Bucket Algorithm require much more complex design and

programming for implementation, and cannot help in the major problem in this

research which is evolution.

6.2.1.2.4 Summary

To sum up, a query in terms of the global schema raised by a user in a conjunctive

query language is reformulated into a query that refers to the importing views

representing the source databases. The query reformulation techniques for LAV

approach are used, which is not straightforward and is one of the applications of an

129

Q (over global schema)

Union

Q1 Qm

Importing Views of
Qm

. . .

Importing Views of
Q1

External Views

. . .

. . . External Views

Figure 6-2 The process of result composition

6.3.2 Domain Conversion of Result Composition

One heterogeneity that needs to be tackled during result composition is domain

conflicts. During result composition, the importing views are evaluated and are

assigned results from the corresponding exporting views. However, the attributes of

the results from different source databases may have the same names but different

domains (or types). Consequently, the results cannot be combined because the

attributes with different domains cannot be taken as operands by some operators (i.e.

join and algebraic operators) so that the query cannot be further evaluated.

In order to tackle domain conflicts, the process called Domain Conversion is added to

the process of assigning results of exporting views to importing views. It means that

the attributes of the exporting views need to be converted into attributes which have

the same domains as those of the attributes of the importing views. To describe the

131

Chapter 7 Services Design and Implementation

7.1 Introduction

Chapter 6 presented the query process step in EA-SODIA and therefore completed the

description of EA-SODIA and all the algorithms. This section describes the design of

each service in this architecture. It also presents a case study including an

experimental implementation for evaluating EA-SODIA and its algorithms.

Firstly a combined design method of each service is described. Then, the case study

method is discussed, followed by the research questions and its hypotheses. The

experimental implementation is presented with a short evaluation. The test data for

the case study is also shown.

7.2 Overview of the Service Incorporation

This section illustrates how the services incorporate to conduct the processes

introduced in chapter 4, 5, and 6. It is explicitly indicated which steps of a process are

taken by an integrator service or a data service.

7.2.1 The Allocation of the Meta-database

Chapter 4 introduces the algorithm, RSMV, to establish mapping between the local

schemas and the global schema. The result is the data in the meta-database that is

regarded as a central conceptual database. In this architecture, the meta-database is

allocated to both the integrator service and each DS. Figure 7-1 shows how the

meta-database is managed by the services.

In a DIS, the meta-database contains the global schema (GS), the importing views, the

global attribute domain (GAD), the organization list, and the organizational evolution

list (OEL) that are defined formally in chapter 4. The importing views involve the

importing views of all the DSs. Therefore, each DS needs to register its importing

132

views into each integrator service.

Data Service 1

MDB(Local Schema, Exporting Views)

Data Integrator Service

MDB(Global Schema, Importing Views,
Global Attribute Domain, Organization

List, Organizational Evolution List)

Data Service 2

MDB(Local Schema, Exporting Views)

Registry Service

Service Description

Figure 7-1 Allocation of the Meta-database

The meta-database in each DS stores its own local schema (LS) and exporting views

that are also defined in chapter 4. The exporting views refer to the importing views of

the DS in the meta-database at the DIS site.

This is slightly different from the conceptual meta-database defined in chapter 4, as

each DS contains its own local schema and exporting views. Therefore, the local

schema list (LSL) in the conceptual meta-database is in fact the union of the local

schemas of all the DSs. In addition, the mapping and the entire mapping list (MPS)

are also segmented. The mapping of a local schema can be composed by the

importing views that are stored at the DIS and the exporting views that are stored at

the DS. In order to indicate the relationship between the importing view and the local

schema, the definition importing view is extended to have another property: name

which is a string. The name represents the DS to which the importing view belongs.

The MPS is apparently the union of the mappings of all the DSs.

The registry service contains the service description of each service based on WSDL,

http://www.w3.org/2001/XMLSchema
http://www.xmltc.com/dur/di/schema/dis/

http://java.sun.com/xml/ns/jdbc/webrowset.xsd

http://www.w3.org/2001/XMLSchema
http://www.xmltc.com/dur/di/schema/ds/

141

number of the queries which require modification when any organizational

evolution occurs.

C. If any schema evolution occurs in one source database, the views of other

source databases do not require modification so that the system can still work

properly.

D. The SED can reduce the cost of modification work caused by schema

evolution.

E. SOA and web services can help reduce the cost caused by database

evolutions and system evolution because they provide high reusability,

autonomy and discoverability.

By setting the hypotheses, some response variables are also listed in Table 7-3

Table 7-3 Response Variable

Response Variable Description

Number of user queries explicitly

designating source databases

The number of user queries in which the

actual names of particular local schemas

are included

Number of user queries involving local

schema

The number of user queries in which the

actual relations and attributes of

particular schemas are designated

Correctness of the data retrieved by a user

query

The correctness of the results of a user

query

Number of the affected user queries Number of the existing user queries

which are affected by a schema evolution.

Human invention Whether an automatic view modification

process require human invention

Number of hard-coded queries The number of queries which are used to

integrate local schemas and to eliminate

heterogeneity

142

Number of views requiring modification Number of exporting views and

importing views which require

modification when a schema evolution

occurs

Number of source database considered Number of source databases which need

to be considered when a single schema

evolution occurs

The work of identifying the affected

views

The effort to find the views affected by a

schema evolution.

The work of identifying the affected DISs The effort to find the DISs which require

modification when a schema evolution

occurs

The work of modification on the views The effort to modification the views

affected by a schema evolution

In general, the case study will focus on answering the above research questions and

demonstrate the above hypotheses. Therefore, if the hypotheses are well supported by

the results of the case study, EA-SODIA and the approaches proposed in this thesis

are generally considered to be successful and the aim of this research has been

achieved. However, in order for the evaluation to be more complete, other aspects of

the system such as performance and scalability and reliability will also be examined

and discussed in Chapter 8.

7.4.3 Experimental Implementation

As mentioned in previous sections, the experimental implementation system

(EA-SODIAS) implements EA-SODIA to integrate various source databases in an

automobile trade domain. EA-SODIAS implements the software components of the

DIS and the DS and the registry. This section introduces the development

environment and the design of EA-SODIAS in detail.

145

+ContainmentTest()
+ResultComposition()

-Head
-subGoals
-Predicates

Query

+QueryDecomposition()
+ResultComposition()

-Head
-subGoals
-Predicates

SubQuery

+getResult()

-Head
-subGoal
-Predicates

SingleQuery+Retreive()
+Update()
+Discard()
+DeleteAtrribute()
+GetDataServiceName()
+GetDataServiceLocation()

-subGoals
-Predicates

Impor tingView

+SchemaEvolutionDetection()

SchemaEvolutionDetector

+Execute()
+toSQL()

-Head
-subGoal
-Predicates

Query

+Retreive()
+Update()
+AutoViewModification()
+CreateAutomicView()
+DeleteAutomicView()
+getParent()
+createSQLViews()

-Root
-AtomicViews
-RelationSchemas

Expor tingView

+SchemaEvolutionDetection()

SchemaEvolutionDetector

+Discard()
+AutoViewModication()

-ViewSchema
-Operation

AtomicView

Data Integrator Service

Meta-
database

Data Service

Meta-
database

Local
Database

Registry

Service
Locations

Client (JSP page)

Figure 7-3 Architecture of EA-SODIAS, Showing the Classes of each service and the

Databases

This architecture reflects the design of the services in EA-SODIA. In the DIS, the

Query and ImportingView and SubQuery and SingleQuery classes encapsulate the

query reformulation step and query decomposition and result composition, while the

SchemaEvolutionDetector class and ImportingView encapsulate the schema evolution

detection in the DIS. In the DS, the Query class encapsulates query transformation

step and also executes the reformulated query on the local database, while the

SchemaEvolutionDetector and ExportingView and AtomicView classes encapsulate

the schema evolution detection step performed in the DS.

147

Global-Schema

PK Relation-Name

 Attribute
 Domain

Importing-View-Head

PK,FK1,FK2 Data-Service-Name
PK,FK1,FK2 Impor ting-View-Name

 Attribute
 Domain

Importing-View-Subgoal

PK Data-Service-Name
PK Impor ting-View-Name

 Relation-Name

Importing-View-Condition

PK,FK1 Data-Service-Name
PK,FK1 Impor ting-View-Name
PK,FK1 Condition-Seq

 Predicate

ImV-Condition-Operand

PK Data-Service-Name
PK Impor ting-View-Name
PK Condition-Seq

 Content
 Class
 Domain
 Sequence

Data-Service

PK,FK1,FK2,FK3,FK4 Data-Service-Name

 Description

Organization

PK,FK1,FK2 Organization-Name

 Description

Organization-Property

PK,FK1 Organization-Name

 OP-Name
 OP-Type
 isRoot

Organization-Parent

PK Organization-Name

 OP-Name
 Parent

OPRemoval

PK OE-Seq

 Organization-Name
 OP-Name

OE

PK,FK1,FK2,FK3,FK4 OE-Seq

 OE-Type

OPRename

PK OE-Seq

 Organization-Name
 OP-Name
 Evolved-Name

ORGRemoval

PK OE-Seq

 Organization-Name

ORGRename

PK OE-Seq

 Organization-Name
 Evolved-Name

Figure 7-4 The Structure of the meta-database of Data Integrator Service

Although it is not shown in Figure 7-3, a small software tool called the Metadata

Creator is provided in order for the investigator to build exporting views and

importing views. One of the advantages of the RSMV is that views are easier to

manipulate than hard-coded programs. Without the software tool, novice maintainers

have to understand the structure of the meta-database in order to store the view

definition manual. The software tool is not aiming to automatically build the views

based on the local schema. It is more like an editor and compiler of the views,

accepting the view definitions from a maintainer and storing them in the

meta-database properly. A maintainer can enter all the atomic views of an exporting

view or the subgoals of an importing view on the interface of the Metadata Creator

148

which sequentially stores them in the meta-database. The validity of the views has to

be checked manually.

Atomic-View-Relation

PK,FK1 Expor ting-View-Name
PK,FK1 Atomic-View-Name

 Relation-Type
 Attribute-Name
 Attribute-Domain
 isRoot

Join

PK,FK1 Expor ting-View-Name
PK,FK1 Atomic-View-Name

 Relation-1
 Relation-2

Join-Common-Attribute

PK Expor ting-View-Name
PK Atomic-View-Name

 Attribute-Name

Selection

PK,FK1 Expor ting-View-Name
PK,FK1 Atomic-View-Name

 Relation
 isConditional

Selection-Condition

PK,FK1 Expor ting-View-Name
PK,FK1 Atomic-View-Name

 Predicate

Selection-Condition-Operand

PK Expor ting-View-Name
PK Atomic-View-Name

 Content
 Class
 Domain
 Sequence

Set-Operator

PK Expor ting-View-Name
PK Atomic-View-Name

 Operation-Type
 Relation-1
 Relation-2

Projection

PK,FK1 Expor ting-View-Name
PK,FK1 Atomic-View-Name

 Relation

Projection-Element

PK,FK1,FK2 Expor ting-View-Name
PK,FK1,FK2 Atomic-View-Name

FK1,FK2 Source-Seq
 Source-Type
 Output-Attribute

Projection-Element-Source

PK Expor ting-View-Name
PK Atomic-View-Name

 Source-Seq
 Source-Value
 Source-Domain

Projection-Element-Expression

PK Expor ting-View-Name
PK Atomic-View-Name

 Source-Seq
 Operator
 Operand-Class
 Operand-Domain
 Operand-Content

Grouping

PK,FK1,FK2 Expor ting-View-Name
PK,FK1,FK2 Atomic-View-Name

 Relation

Grouping-Group-List

PK Expor ting-View-Name
PK Atomic-View-Name

 Attribute

Grouping-Aggregation-List

PK Expor ting-View-Name
PK Atomic-View-Name

 Operator
 Attribute
 Resusting-Attribute

Exporting-View

PK,FK1 Expor ting-View-Name

 Description

View-Expression

PK,FK1,FK2,FK3,FK4,FK5Expor ting-View-Name
PK,FK1,FK2,FK3,FK4,FK5Atomic-View-Name

 Operation-Type

Figure 7-5 The Structure of the meta-database of Data Service

Although the Metadata Creator can help build a new exporting view or a new

importing view for the first time, the meta-database is managed manually using

MySQL Administrator. If the system was released for large-scale use this would need

to be rectified, however the current situation is acceptable for case study research.

156

Automobile

Model

Registration

Trader

Owner-
Automobile

Vin

Vin

Name

Registration
Number

Model

Year

Type

Name

Vin

Status

Vin

Status Brand

Owner

1

1
Automobile-

Model

1

1

1

Automobile-
Sells 1

Registration-
Automobile

1

1

Colour

Price

Figure 7-6 E-R Model for EA-SODIAS

Automobile

BrandVin Colour

Van Car

Capability

Year

Figure 7-7 Subclasses of Automobile Entity

It is shown in Figure 7-6 that the information regarding an automobile may involve its

model, registration, traders and previous owners (for a used car). This information is

represented by five entities and four relationships in this E-R model. Therefore, the

157

E-R model indicates that an automobile of a brand may have a vehicle identification

number which uniquely identifies the automobile. An automobile may also be new or

used, and be an automatic or manual one represented by the model entity. In addition,

either a new or a used automobile can be sold by a dealer or a person, represented by

the trader entity. A used automobile also has registration information, represented by

the registration entity. Finally, Figure 7-7 shows that the automobile has two

subclasses, indicating that an automobile can be either a van or a car. A van has a

attribute capability which is not a attribute of a car. Apparently, this E-R model is

simple and only includes some of information which is to be managed in practice.

However, this is enough for a case study to evaluate a research, because it is enough

to involve various heterogeneities.

Global schema

A global schema can be designed as follows, mapping the above E-R model.

AUTO (vin, status, brand, type)

VAN (vin, capability)

MODEL (vin, model, year, colour)

SELLS (name, type, vin, price)

Registration (vin, registration-number)

OWNER (vin, owner, status)

This design follows the rule introduced in Chapter 4 that the global schema is in a

higher normal form and has no composite attributes.

Local schema

The same E-R model may be mapped into different relational models by different

organizations. Therefore, this case study designs the following possible local schemas

to cover all heterogeneities defined in Chapter 1.

1) VEHICLE (vin, status, brand, type, cap, model, year)

SALE(name, type, vin, price)

159

7.4.5 Evaluation of Implementation

This section discusses some of the issues arising from the implementation of

EA-SODIA in EA-SODIAS. The EA-SODIA and methods themselves are evaluated

in the next chapter.

7.4.5.1 Design Evaluation

7.4.5.1.1 Combined Design Approach

The design approach combining Object-Oriented and Service-Oriented methods has

proved effective and the system architecture has not been changed for any version of

EA-SODIA, although some of the methods of the classes have been changed over

time. Using the service-oriented method can help to define the operations and the

messages of the services correctly and reduce the modifications on them afterwards.

The object-oriented method helped to design the internal process of each service

clearly. As the system is developed using Java which is an object-oriented

programming language, the object-oriented design method also made the

programming easier. In addition, combining these two methods also helped to expand

the system with minimal effort.

There were some disadvantages, in particular, the query processing. Both query

reformulation step and result composition steps consider little optimization. The query

reformulation step creates as many subqueries objects as the resulting conjunctions of

the Bucket Algorithm, which may waste computing resources. However, it made the

program elegant and easy to test. Also, all the relevant DSs were accessed and the

results were stored in the temporary relations in the meta-database of the DIS. It may

to some extent increase the cost of communication across network and the

communication with DBMSs, when the number of source databases becomes very

large or the amount of data in individual databases becomes huge. However, in this

case study, it is not necessary to make the number of DSs extremely large, because we

are not focussing on performance. Therefore, this method actually increased the

performance, as it reduced the times of communicating with DSs.

160

The DSs were accessed in sequence, therefore, the parallel query processing problem

was not considered. Java threads offer better performance of query processes, but the

current method works satisfactorily for the case study. Moreover, no validation check

on input data is provided. Therefore, it places responsibility on the investigator to

make the input data valid. However, it was not a problem after a complete set of test

data is produced.

7.4.5.1.2 Third -Party Software

There were good reasons for using the OGSA-DAI provided by the OGSA-DAI team,

the most important being that the code can be trusted as correct (see section 7.5.3.4

and section 7.5.3.5 for research citing use of the OGSA-DAI). In addition, a

substantial amount of time was saved by not handling the management of the

underlying database, nor providing tools to publish DSs.

Another crucial reason is that the OGSA-DAI provides a method of converting a Java

resultset into a Webrowset. It also provides a method to encapsulate the webrowset

into a SOAP document. It certainly provides methods to convert repeatedly and to

manipulate the results easily. This is complex and time-consuming work for a research

with one researcher.

The OGSA-DAI provides good extendibility by allowing users to add new activities

which are Java classes. This allows us to add our programs into it by simply

modifying one of its activities and adding our Java classes into the package. Therefore,

it also makes the EA-SODIAS extendible.

The main disadvantage of the OGSA-DAI is that it lacks documents for developers.

Although it provides useful guidance for a user to install it and publish a DS, there are

few documents showing the internal Java classes.

162

Chapter 8 presents an extensive evaluation of EA-SODIA, and the RSMV and the

SED algorithms using the results of the case studies. The main focus is on the

capability of solving the heterogeneity and the evolution problems, although various

basic characteristics of EA-SODIA are also examined.

163

Chapter 8 Evaluation

8.1 Introduction

Chapter 7 described the design rationale of the services in EA-SODIA and a case

study including an experimental implementation called EA-SODIAS.

Having shown the integration method RSMV and the schema evolution detection and

the query processing in EA-SODIA, this chapter presents an extensive evaluation of

all the methods introduced. It also shows how the service-based architecture can help

with the evolution problems.

The evaluation begins with one of the most essential properties of EA-SODIA: the

capability of eliminating heterogeneity. EA-SODIA is intended to solve some

evolution problems on the premise of integrating distributed databases with

heterogeneity. Therefore, it is important that the system is able to eliminate various

heterogeneities defined in Chapter 1. The chapter then discusses the capability of

solving evolution problems, which is the focus of this research. The issues relating to

query processing are also discussed. These properties are examined by answering the

research questions and demonstrating the hypotheses defined in Chapter 7. Finally,

some general characteristics of EA-SODIA such as scalability and expandability and

domain independence and language independence are also discussed.

8.2 Capability of Eliminating Heterogeneity

Recall that the motivation of the research is to provide an evolvable integrated

database system to provide users with a unified view of various distributed databases.

Therefore, in advance of dealing with the evolution problems, the heterogeneity

problems must be solved.

The algorithm in this research dealing with the heterogeneity problems is called

167

Location GuangZhou Categorization Property N

Location D1 Local Schema N

Location D2 Local Schema N

Location D3 Local Schema N

Location D4 Local Schema N

Table 8-4 Organization-Parent Relation in the Meta-database of the Data

Integrator Service

Organization-Name OP-Name Parent

Location GuangDong China

Location Beijing China

Location GuangZhou GuangDong

Location D1 Beijing

Location D2 Beijing

Location D3 GuangZhou

Location D4 GuangZhou

The corresponding DSs of those databases, which are also represented as D1, D2, D3

and D4, were stored in the Data-Service relation.

The local schema of each source database is listed as follows:

1) Local schema of D1:

VEHICLE (vin: String, status: String, brand: String, type: String, cap: String,

model: String, year: String)

SALE(name: String, type: String, vin: String, price: Double)

CUR_OWNER (vin: String, owner: String)

2) Local schema of D2:

AUTOMOBILE (vi-n: String, status: String, brand: String, type: String)

168

VAN (vi-n: String, capability: Double)

MODEL (vi-n: String, transition: String, year: Integer, colour: String)

SELLS (trader_name: String, type: String, v-in: String, price: Double, discount:
Double)

3) Local schema of D3:

CAR (vi_number: String, status: String, brand: String)

VAN (vi_number: String, status: String, brand: String)

MODEL (vi_number: String, model: String, year: String, colour: String)

OWNER (vi_number: String, first_name: String, mid_name: String, last_name:

String, price: Double)

4) Local schema of D4:

AUTO (vin: String, status: String, brand: String, type: String, year: String)

Registration (vin: String, number: String)

OWNER (vin: String, owner_name: String, status: String)

Each local schema was created individually with a set of tuples in order to examine

whether the system is able to produce expected answers to pre-defined queries. In

order to evaluate the system later in this chapter, it is helpful to examine whether the

sample local schemas have covered all the types of heterogeneity defined in Chapter 1.

Table 8-5 lists all the heterogeneities and discusses how each one exists among four

sample local schemas.

Table 8-5 Heterogeneities among the Sample Source Databases

Heterogeneity Covered Explanation

Naming Conflicts Yes The local schemas use different relation names

and attribute names to represent the same entity.

For example, D1 uses relation VEHICLE to

represent automobiles, while D2 and D4 use

169

relation AUTOMOBILE and relation AUTO

respectively. Also, the attribute vin in D1 and the

attribute vi-n in D2 represent the same property.

Semantic Conflicts Yes D1, D2 and D3 provide an attribute to indicate

whether an automobile is an auto one or manual

one, while D4 does not.

Structural Conflicts Yes 1) D1 has one relation VEHICLE to include all

the basic information of an automobile,

while D2 has a separate relation MODEL to

provide information such as model, year and

colour of an automobile. It fulfil ls the

Condition (1) and (2).

2) Both D1 and D4 have one attribute to

represent the name of an owner, but D3 has

three attributes (first_name, mid_name and

last_name) to represent it. Also, the attribute

in D1 is composed of price and discount

(price * discount). It fulfil ls the Condition

(3).

3) D1, D3 and D4 have a relation to represent

owner information, while D2 does not. It

fulfil ls the Condition (4)

4) D1and D2 store the capability information of

vans, while D3 and D4 do not. It fulfi lls the

Condition (5)

Metadata Conflicts Yes In D1, D2 and D4, the subclasses Van and Car are

mapped into one relation with an attribute type to

indicate the classification; while in D3, they are

mapped into two relations.

176

Q7 2 2 4 4

Q8 1 1 1 1

Q9 2 2 2 2

Q10 2 2 1 1

For some of the user queries, the source databases found by the system were not

identical to the manually produced results; also, the number of the tuples produced by

the system was not identical to the number of manually produced tuples. However,

this is not surprising, because the manually found source databases which were not

found by the system are those which do not provide some attributes or relations

required by the user query. This is due to LAV and the Bucket Algorithm adopted in

this research. During the process of the Bucket Algorithm, if there are one or more

attributes of the user queries which are not provided by the importing views of a

source database, the source database will not be considered as relevant and will not be

accessed. Consequently, the tuples in this source database will not be obtained. This is

also the way in which the method deals with the missing information problem. The

manually produced results were then modified following the Bucket Algorithm

exactly and the results became the same as the system produced ones.

The local schema which has semantic conflicts may have to be excluded from a query

if the query puts any conditions on the attributes that it fails to provide. For example,

a query asks for a manual car, but D4 does not provide an attribute to distinguish

automatic cars and manual cars. Thus, D4 may not be accessed by the query. However,

the semantic conflicts can still be tackled if any other attributes can help to provide

this information indirectly.

As mentioned above, the structural conflicts and the semantic conflicts (referred to as

missing information) were addressed during the query process by not accessing the

source databases that have missing information when the missing information is

177

required by the user query. Therefore, the system can work without errors. In addition

to the missing information, domain conflicts are another type of heterogeneity which

is tackled during the query process. Although it is not shown in Table 8-7, the

intermediate results showed that the attributes returned from the source databases, if

not consistent, were converted to be in the domain of the attributes of the global

schema.

8.2.1.4 Summary

The results of the tests showed that most types of heterogeneity defined in Chapter 1

were addressed successfully by the RSMV (building exporting views and importing

views). Some of them were eliminated by the relational algebra operations directly,

while some of them were eliminated by building both exporting views and importing

views. There is no strict rule as to which views need to be built to tackle a particular

heterogeneity. It relies, to a large extent, on the experience of the database designers.

The structural conflicts which fulfill the Condition (4) and (5) and the domain

conflicts and the semantic conflicts were not eliminated by the views. The RSMV and

the query process in this research addressed the former by not taking the source

databases with these conflicts into account. Although this can make the system work

properly without errors, it means that the system may sometime only provide

incomplete results to a user query. However, this is due to the adoption of both the

LAV approach and the Bucket Algorithm. It is not the issue raised from building

views instead of hard-coded programs, because hard-coded programs cannot involve

the missing information as well. The possible solution is that the database provider

can add an extra attribute into the exporting views which has null values so that the

source database can be considered as relevant although it provide null values.

Therefore, the system built based on RSMV most suits the application where the user

query requires the latest information and the completeness of the information is vital.

Although the domain conflicts were eliminated, the method was still naive. It can be

178

improved by defining a set of domains which can be converted effectively to each

other so that the unrecognizable value after the conversion can be avoided.

Moreover, the exporting views and the importing views were successful stored into

the meta-database in which they were correctly retrieved. Therefore, hypothesis A is

well supported and the RSMV is proved effective and the EA-SODIA has the

capability of solving the heterogeneities defined in this thesis.

8.3 Capability of Solving Evolution Problems

Recall that the aim of the architecture and the algorithms involved is solving some

evolution problems. In Chapter 7, research questions and hypotheses were listed in

order to evaluate the architecture and the algorithms in terms of the capability of

solving evolution problems. This section presents the results to answer the relevant

questions and examines whether the hypotheses are supported. The hypotheses are

discussed following the result of each response variable listed in Chapter 7. Finally,

research questions are answered.

The research questions regarding the evolution problems are:

2) How and why the RSMV and the meta-database can help solve the evolution

problems defined in this thesis.

3) How and why SED can help solve the evolution problems defined in this

thesis.

4) How and why SOA can help solve the evolution problems defined in this

thesis.

The hypotheses defined for answering the above questions are:

B. The RSMV approach and meta-database can reduce the cost of modification

work caused by schema evolutions.

C. If any schema evolution occurs in one source database, the views of other

184

of source databases affected

In order to examine how EA-SODIAS can deal with evolution problems, a set of

evolutions were designed covering all the possible evolutions defined in Chapter 5.

Recall that there were three types of evolution defined in Chapter 5: schema evolution,

organizational evolution and system evolution. Some of the schema evolutions may

have an impact on the system, while other schema evolutions do not. Similarly, some

of the organizational evolutions have impact on existing user queries, while other

organizational evolutions do not. The system evolutions involved all have some

impact on the system, but they should be tackled easily. In order to demonstrate the

hypothesis in this thesis, all the evolutions were involved in the test data. The design

of the schema evolutions was more complex than that of others, because the same

schema evolution on a different attribute or relation may result in a different

automatic view modification process. Therefore, the schema evolutions were designed

to consider each possible route of the process. The results are shown in Table 8-10.

Table 8-10 the Results of Evolutions

Evolution Number of

Evolutions

Number of

the Affected

User Queries

Exporting

Views

Requiring

Modification

Importing

Views

Requiring

Modification

Attribute Addition 10 0 0 0

Attribute Removal 10 0 13 13

Attribute Rename 10 0 13 0

Attribute Domain

Change

5 0 6 0

Attribute Decomposition 2 0 2 0

Relation Addition 4 0 0 0

Relation Removal 5 0 6 5

185

Relation Rename 4 0 5 0

Relation Decomposition 1 0 5 0

Database Addition 1 0 0 0

Database Removal 1 0 0 2

Organizational Property

Removal

3 5 0 0

Organizational Property

Rename

3 0 0 0

Organization Removal 1 10 0 0

Organization Rename 1 0 0 0

Parent Change 1 0 0 0

Organization Addition 1 0 0 0

Organizational Property

Addition

1 0 0 0

Service Name Change 1 0 0 0

Database Name Change 1 0 0 0

Service URL Change 1 0 0 0

Total 67 15 50 20

Note that the evolutions in Table 8-10 were designed to cover every typical evolution

which has a different impact on the system. More evolutions were also designed and

randomly applied to the system in order to further examine whether the system can

produce correct results. The system was modified until no programming errors

occurred.

It can be seen from Table 8-10 that the user queries required no modification when

schema evolution and system evolution occurred. This is due to the adoption of the

LAV approach. The LAV ensures that the user queries do not involve local schemas so

that they will not be affected by schema evolution.

186

Table 8-10 also shows that the only type of evolution which may have an impact on

the user queries is organizational evolution. There were two types of organizational

evolution: organizational property removal and organization removal, which led to

some user queries being discarded. As a user query may designate an organizational

property in which the relevant source databases will be accessed, the user query may

become invalid when the exact organizational property is removed. Also, when a

whole organization is removed, all the user queries which designate that organization

will be invalid. Making the user queries valid again completely depends on the

manual work of system maintainers and users. However, these two types of

organizational evolution only account for a very small proportion. Other

organizational evolution will not require any modification on the user queries. This is

due to the query processor introduced in this research.

The main components of the system which will be affected by schema evolution are

the exporting views, because they involve all the local schemas which will be

accessed in order to eliminate heterogeneities. Having applied the evolutions, some of

the exporting views required automatic modification, while some of them were

discarded and required manual modification. How the automatic view modification

can help reduce the maintenance cost is discussed later in this chapter. It may be

realized that the number of affected exporting views was greater than the number of

evolutions when some schema evolutions were applied. This was because more than

one exporting view involved one attribute or relation which was changed.

The system has the advantage that the importing views which integrate source

databases were rarely affected by the evolutions. They required modification only

when three types of schema evolutions occurred. This means that the DISs will rarely

be modified.

Another advantage of EA-SODIA is that no system evolution has impact on the user

189

Recall that SED provided seven processes in order to automatically modify the

exporting views and the importing views. The aim of the SED is to reduce the manual

modification work. Therefore, in order to examine whether Hypothesis D is true, one

needs to determine how much manual modification work is still required. The case

study evaluated this aspect by applying the types of schema evolution listed in Table

8-10 and find out how many views cannot be automatically modified. The results are

shown in Table 8-11. The discarded exporting views and importing views are those

views which require manual modification.

Table 8-11 the Number of Discarded Views Resulted from Schema Evolutions

Evolution Number of

Evolutions

Number of

Discarded Views

Percentage (%)

Attribute Addition 10 0 0

Attribute Removal 10 2 20

Attribute Rename 10 0 0

Attribute Domain Change 5 1 20

Attribute Decomposition 2 1 50

Relation Addition 4 0 0

Relation Removal 5 6 120

Relation Rename 4 0 0

Relation Decomposition 1 0 0

Database Removal 1 2 150

Total 52 12 23

Table 8-11 shows that most of the schema evolutions (77%) did not require manual

modification on the views. The only schema evolutions which led to manual

modification were attribute removal, relation removal, attribute domain change and

attribute decomposition. This is due to the fact that a manual decision is required to

modify the views when the above schema evolutions occur. Among these four schema

191

the meta-database enables database providers to save views as structured data in a

relational database. Therefore, software components implementing SED can be

provided so that most of the manual work is saved. Hypothesis D is supported by this

response variable.

8.3.4 Computational Cost

It has been discussed that most of manual modification has been replaced by

automatic view modification provided by SED in EA-SODIA. Therefore, it is helpful

to look at the computational cost of the SED. The SED was run on each schema

evolution listed in Table 8-11 and calculated the average time for each type of schema

evolution. The schema evolutions which discarded the views were not considered.

The results are shown in Figure 8-1.

0

0.2

0.4

0.6

0.8

1

1.2

T
im

e(
s)

Schema Evolution

Figure 8-1 The Computational Time of SED

It can be seen from Figure 8-1 that all the average computational times of the SED

were all less than or equal to one second. The most economic processes were the

process tackling attribute removal and the process tackling relation removal. This is

due to the constraint defined in Chapter 5 that every relation and attribute of a local

schema must be renamed using a projection operation before it is taken by other

192

atomic views. Consequently, the SED only needs to check the atomic views which

involve a projection operation. It replaces the evolved attribute or relation with the

new one if the evolved relation or attribute is involved. Therefore, no other atomic

views were checked so that it took the least computational time.

The attribute removal and the database removal took more time because this involved

the communication cost between the DS and the DIS. The communication between

the DS and the DIS was required because the importing view required modification.

In addition, the relation decomposition and the attribute decomposition also took more

time because they needed to create new views so that more connections with the

DBMS were required.

Apparently, the automatic view modification takes much less time than the manual

work, because no manual work can be finished within a few seconds. Therefore, the

hypothesis D is further supported. The manual work on producing views will also be

discussed later in this chapter.

8.3.5 Hypothesis E

The hypothesis is:

SOA and web services can help reduce the cost caused by the database evolutions

and system evolutions because they provide high reusability, autonomy and

discoverability.

EA-SODIA is a service-based architecture. It is expected that the service-based

architecture and web services technologies can provide high reusability, autonomy

and discoverability. The case study examined each of the features.

Reusability

In order to examine the reusability provided by web service technologies, several new

databases were added into the system to see how the DS can be reused. The DS that

194

In addition, the information such as the name and URI of the database for connection

with the DBMS are stored in an XML file, rather than a hard-coded program.

Therefore, the system can be easily maintained when a system evolution occurs. In

the case study, the investigator used the tool of OGSA-DAI to change the name and

the URI of the database. This work was finished within two minutes. Therefore, it

further supports hypothesis E.

Autonomy

One of the issues of distributed databases, although not the focus of this research, is

autonomy. The database providers need to have complete control over their databases

and their applications must be operated independently. The case study showed that the

database providers can have complete control over information exposed to external

applications by building views. The external application was only able to identify and

access the exporting views, rather than the local schema. Also, database providers do

not provide the authority of accessing the database to external users. The password

and the user name are only used by the DS so that all the external applications (DISs

in this case) access the DS and do not have any authority information. The local

schema can be used by other applications normally. There are no rules on the design

of the local schemas and how they are managed. A database provider has the complete

decision when the database is added to and removed from the integrated system.

Therefore, EA-SODIA provides high autonomy due to the use of web services.

Discoverability

The case study showed that EA-SODIA provided high discoverability by using a

registry service. This is one of the most important characteristics provided by SOA

and web services. Although UDDI was not used, the registry service which was a DS

provided similar functionality. All the DSs were registered into the registry service

where the DIS can find the locations of all relevant DSs. The DISs were also

registered into the registry service so that the SED of the DSs were able to find all the

DISs where the importing views required modification. In addition to providing high

195

discoverability, the registry service provided much help with reducing the

maintenance work. The registry service stores and manages the information of all the

services centrally so that an application can find all the relevant services in this

system by maintaining only the location information of the registry service.

Consequently, when a system evolution (e.g. the name and the location of a service)

occurs, only the information stored in the registry service requires modification.

In a loosely coupled federated system, each database has to maintain the information

of all other databases. Consequently, all the databases require modification when a

system evolution occurs on one database. In a mediated system, each mediator

maintains the information of all the involved source databases. Therefore, when a

source database evolves, all the mediators must be modified in order to work properly.

However, the source databases do not keep the information of the mediators so that it

is difficult to locate all the mediators.

To conclude, the SOA and web service technology provide considerable help in

reducing the maintenance cost caused by evolutions by providing high reusability,

autonomy and discoverability. Hypothesis E is therefore supported.

8.4 Scalability

One of the reasons that the traditional integrated systems (e.g. the federated system

and the GAV mediated system) do not allow evolution is that the number of the source

databases may become very large. As the number of source databases becomes larger,

the system becomes dramatically more complex because it has to deal with all the

relationships among source databases at design-time. Therefore, another important

characteristic which is scalability was examined by the case study. The case study

examined scalability by replicating the four source databases which were designed at

the beginning. Then, increase the number of DISs. The case study still applied the

same pre-defined schema evolutions in Table 8-10 on the system. The main variables

197

remained stable indicated that the components of the system did not increase when

more source databases were added. Therefore, the EA-SODIAS provided good

scalability at this stage.

Figure 8-3 Growth of Computational Time when More Source Databases are

Added

Figure 8-3 shows that the computational time of the SED for most of the schema

evolutions remained similar. The computational time of the SED for the attribute

removal and the database removal had a slow linear increase because these two types

of schema evolution required the access to the registry service and the DIS where the

importing views needed to be modified. As more source databases were added, the

number of the importing views increased so that the computational time grew slightly.

Generally, the EA-SODIAS provides much better scalability at this stage compared

with traditional systems.

198

Figure 8-4 Growth of Computational Time when More Data Integrator Services

are added

Figure 8-4 shows similar results to that of Figure 8-3. The computational time of SED

for tackling attribute removal and database removal grew linearly, while others

remained similar. It may be seen that the increase in the computational time of these

types was more dramatic than that in Figure 8-3. This is because that the increased

data integrated services led to more communication between the DS and DISs. When

an attribute removal evolution or a database removal occurred, the DS needed to

access the register service to find all the DISs and then access each of the DISs in

order to modify the relevant importing views. However, the computational time was

at the same level which was counted in seconds. Also, most of the computational time

remained unchanged.

To sum up, the above results showed that the components of the system which

required modification and the computational time of SED caused by the schema

evolutions generally remained unchanged, when the number of source databases and

the DISs grew. Although, there were small increases in some computational time, they

stayed at a similar level. Therefore, EA-SODIA can provide good scalability.

199

8.5 Manual Work

Although most evolution can be automatically tackled by SED and the query

processor, there is still some manual work. Therefore, it is important to examine how

much work is required for integrating a source database into the system and how

much work is required to identify affected views and modify them when a schema

evolution occurs. As the investigator is also the designer of the system and the source

databases, the work of the investigator may not be representative. Therefore, a

colleague of the investigator who has knowledge in relational databases was asked to

undertake this work. The colleague integrated the pre-designed four databases into the

system and then modified the relevant views manually when the pre-designed schema

evolutions were applied. For the work of tackling schema evolutions, the average

estimated time was recorded. The results are shown in Figure 8-5 and 8-6,

respectively.

Figure 8-5 Time to Integrate New Source Databases

200

Figure 8-6 Time to Tackle Schema Evolutions

Note that the time for learning how to integrate a source database and tackle schema

evolutions was not counted. Figure 8-5 shows that the time of publishing dropped

from one hour to about fifteen minutes while the time of building views dropped from

two hours to about forty minutes, as the investigator became familiar with the method.

Therefore, it can be expected that a database administrator can integrate a database

into the system within about three hours, which is acceptable.

Figure 8-6 shows that database removal and relation rename evolutions took the least

time while attribute decomposition and relation decomposition evolutions took the

most time. All the average times were less than an hour which is acceptable. In

addition, schema evolutions which took the most maintenance work can be

automatically tackled by the SED so that it further proved that the SED is effective.

8.6 Expandability

This section discusses the ability of EA-SODIA to incorporate different type of source

databases.

201

As mentioned in Chapter 1, the source databases which can be integrated into the

system must be in the relational model. In addition, the exporting views are

constructed using relational algebra operations. As the relational algebra operations

are designed to manipulate the data in the relational model, the data which can be

directly integrated into the system are relations. Other data sources such as flat files

and legacy hard-coded queries and the object-oriented databases cannot be integrated

into the system by constructing exporting views. However, the system has the

mechanism for translating the relational algebra into the language which can obtain

actual data from a local database. Therefore, other data sources may be integrated into

the system as long as the corresponding programs are provided by the data providers

for obtaining the data and converting them into relations. Also, the DSs need to be

extended by providing the programs for translating relational algebra into the queries

which can invoke the programs provided by the data providers.

As the importing views are constructed using a conjunctive query language, they have

the ability to integrate other types of source databases (e.g. objective-oriented

database). Also, the OGSA-DAI support other data sources such as XML documents.

Therefore, it is concluded that EA-SODIA has the potential to integrate other types of

source databases by adding new components, although it does not have this ability at

this stage, In addition, it requires further research to deal with the evolution problems

brought by other types of data sources.

8.7 Domain Independence

The RSMV, the meta-database and SED are designed for data in the relational model

without being tailored to a particular domain. As discussed in Chapter 7, the

information can be modelled into data in a relational model independently of its

domain. The relational data can then be integrated into the system. Although the case

study is a single case study which did not provide a set of data for another domain, it

can seen from the case study there are no views which rely on the information specific

