
Durham E-Theses

Dynamic Integration of Evolving Distributed

Databases using Services

WENG, BIN

How to cite:

WENG, BIN (2010) Dynamic Integration of Evolving Distributed Databases using Services, Durham
theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/322/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/322/
 http://etheses.dur.ac.uk/322/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Dynamic Integration of Evolving Distributed

Databases using Services

Name: Bin Weng

 Supervisor: Prof. Keith Bennett

Ph.D. Thesis

School of Engineering

University of Durham

2009

Abstract

This thesis investigates the integration of many separate existing heterogeneous and

distributed databases which, due to organizational changes, must be merged and

appear as one database. A solution to some database evolution problems is presented.

It presents an Evolution Adaptive Service-Oriented Data Integration Architecture

(EA-SODIA) to dynamically integrate heterogeneous and distributed source databases,

aiming to minimize the cost of the maintenance caused by database evolution.

An algorithm, named Relational Schema Mapping by Views (RSMV), is designed to

integrate source databases that are exposed as services into a pre-designed global

schema that is in a data integrator service. Instead of producing hard-coded programs,

views are built using relational algebra operations to eliminate the heterogeneities

among the source databases. More importantly, the definitions of those views are

represented and stored in the meta-database with some constraints to test their validity.

Consequently, the method, called Evolution Detection, is then able to identify in the

meta-database the views affected by evolutions and then modify them automatically.

An evaluation is presented using case study. Firstly, it is shown that most types of

heterogeneity defined in this thesis can be eliminated by RSMV, except semantic

conflict. Secondly, it presents that few manual modification on the system is required

as long as the evolutions follow the rules. For only three types of database evolutions,

human intervention is required and some existing views are discarded. Thirdly, the

computational cost of the automatic modification shows a slow linear growth in the

number of source database. Other characteristics addressed include EA-SODIA’

scalability, domain independence, autonomy of source databases, and potential of

involving other data sources (e.g.XML). Finally, the descriptive comparison with

other data integration approaches is presented. It shows that although other

approaches may provide better performance of query processing in some

circumstances, the service-oriented architecture provide better autonomy, flexibility

and capability of evolution.

Acknowledgements

I would like to thank everyone who has helped me with my research. In particular, I

am very grateful to my supervisor, Professor Keith Bennett, whose advice, insight,

and encouragement have been invaluable throughout. I would like to thank Professor

Roger Crouch whose advice and encouragement during the final stage of my research

have been extremely helpful. My thanks also go to all the other people in the

department who have discussed my work with me, Mr. Chong Wang in particular.

I have thoroughly enjoyed my time as a Ph.D. student and much of this is due to the

people I have shared an office with over the years.

I would like to thank my parents, HanSheng Weng and JingQi Huang, and the rest of

my family who have provided encouragement, love, and support throughout. They

have listened to many explanations of my ideas and have always been happy to read

my work.

Finally, my greatest thanks go to my wife Jun Yang. Without Her unfailing love,

company, encouragement and confidence in me, the ups and downs of research would

have been a harder ride. Life wouldn’t be as much fun without her and the support she

has given me during this work has been immeasurable. This thesis is dedicated to her

with all my love.

Statement of Copyright

The copyright of this thesis rests with the author. No quotation from it should be

published without their prior written consent and information derived from it should

be acknowledged.

Declaration

The material presented in this thesis is the sole work of the author and has not been

previously submitted for a degree at this or any other university.

1

Contents

Chapter 1 Introduction .. 1

1.1 Context .. 1

1.2 Area of Interest ... 1

1.2.1 Terms and Notations .. 1

1.2.2 Major Characteristics of Distributed Databases 3

1.3 Discussion of Issues .. 12

1.3.1 Research Issues .. 12

1.3.2 Problem Boundaries .. 13

1.4 Research Aims and Criteria for Success ... 14

1.5 Evaluation Criteria .. 16

1.6 Contribution .. 16

1.7 Thesis Structure .. 17

1.8 Summary ... 19

Chapter 2 Background .. 20

2.1 Introduction .. 20

2.2 Current Approaches to Data Integration .. 20

2.2.1 Federated Database Systems .. 21

2.2.2 Mediated systems ... 22

2.2.3 Data Warehousing .. 23

2.2.4 Open Grid Services Architecture-Distributed Query Processor

(OGSA-DQP) ... 24

2.2.5 Comparison of the architectures .. 25

2.2.6 Support for Evolution Problems .. 26

2.3 Service-Oriented Concept and Techniques .. 27

2.3.1 Service-Oriented Architecture (SOA) .. 28

2.3.2 Web Services .. 29

2.4 Summary .. 32

Chapter 3 Evolution Adaptive Service-Oriented Data Integration Architecture 33

3.1 Introduction .. 33

3.2 Overview of Evolution Adaptive Service-Oriented Data Integration

Architecture... 33

3.3 Processes of Data Integration and Evolution ... 36

3.3.1 Schema reconciliation .. 36

3.3.2 Query Process .. 37

3.3.3 Schema Evolution Detection.. 39

3.4 Data Integrator Service ... 40

3.5 Data Services .. 41

3.6 Registry Service ... 43

3.7 Characteristics of Architecture ... 45

3.8 Summary .. 48

Chapter 4 Schema Reconciliation and Meta-database ... 49

2

4.1 Introduction .. 49

4.2 Overview of Schema Reconciliation and RSMV 50

4.3 Design of Global Schema ... 55

4.3.1 Global Schema ... 56

4.3.2 Organizational Structure of Source Databases 57

4.3.3 Global Attribute Domain.. 59

4.4 Eliminating Heterogeneities between Local Schema and Global Schema . 59

4.4.1 Relational Algebra Operators ... 61

4.4.2 Exporting views ... 61

4.4.3 Local as Views (LAV) .. 65

4.5 Meta-database ... 67

4.5.1 Meta-data Representation in Meta-database 67

4.5.2 Representation of the Meta-database ... 80

4.6 Summary .. 81

Chapter 5 Schema Evolution Detection ... 82

5.1 Introduction .. 82

5.2 Overview of Schema Evolution Detection ... 82

5.3 Identification of Affected Views... 84

5.3.1 Categorizations of Evolution ... 85

5.3.2 Schema Evolution .. 85

5.3.3 Evolution Impact on the Integrated System 88

5.3.4 Representation of Evolutions in Meta-database 89

5.3.5 Process of Identification of Affected Views 92

5.4 Automatic View Modification .. 94

5.4.1 Equality Rules .. 94

5.4.2 Discard Rules ... 95

5.4.3 Process of Automatic View Modification .. 96

5.5 Summary .. 108

Chapter 6 Query Process ... 110

6.1 Introduction .. 110

6.2 Query Processing .. 110

6.2.1 Query Reformulation ... 113

6.2.2 Query Decomposition .. 124

6.2.3 Query Transformation .. 125

6.3 Result Composition .. 127

6.3.1 General Process of Result Composition .. 128

6.3.2 Domain Conversion of Result Composition 129

6.4 Summary .. 130

Chapter 7 Services Design and Implementation ... 131

7.1 Introduction .. 131

7.2 Overview of the Service Incorporation .. 131

7.2.1 The Allocation of the Meta-database ... 131

7.2.2 Query Processing ... 133

7.2.3 Schema Evolution Detection.. 134

3

7.3 Service Design .. 135

7.3.1 Design of Data Integrator Service .. 135

7.3.2 Design of Data Service .. 137

7.4 Case Study .. 139

7.4.1 Context and Analysis Unit ... 139

7.4.2 Question and Hypothesis ... 140

7.4.3 Experimental Implementation .. 142

7.4.4 Test Data .. 153

7.4.5 Evaluation of Implementation.. 159

7.4.6 Test and Validation ... 161

7.5 Summary .. 161

Chapter 8 Evaluation ... 163

8.1 Introduction .. 163

8.2 Capability of Eliminating Heterogeneity ... 163

8.2.1 Hypothesis A .. 164

8.3 Capability of Solving Evolution Problems ... 178

8.3.1 Hypothesis B .. 180

8.3.2 Hypothesis C .. 187

8.3.3 Hypothesis D .. 188

8.3.4 Computational Cost ... 191

8.3.5 Hypothesis E .. 192

8.4 Scalability ... 195

8.5 Manual Work .. 199

8.6 Expandability .. 200

8.7 Domain Independence .. 201

8.8 Language Independence ... 202

8.9 Disadvantages ... 203

8.10 Conclusion .. 204

Chapter 9 Conclusion .. 205

9.1 Introduction ... 205

9.2 Review of Research .. 205

9.2.1 The Research Issues ... 205

9.2.2 Related Work and SOA.. 206

9.2.3 Evolution Adaptive Service-Oriented Data Integration Architecture

 206

9.2.4 Service Design ... 207

9.2.5 Case Study ... 207

9.3 Evaluation of the Research ... 208

9.4 Discussion ... 210

9.5 Further Work ... 212

9.5.1 Other Source Databases ... 212

9.5.2 Extending the SED .. 213

9.5.3 Query Based on the Organizational Structure before Evolution ... 214

9.5.4 Dynamic Tackling of Schema Evolution 215

4

9.6 Final Summary .. 216

Appendix ... 217

A.1 Relational Algebra Operators ... 217

A.1.1 Set Operators on Relations... 217

A.1.2 Cartesian Product ... 217

A.1.3 Common Join ... 218

A.1.1 Selection ... 218

A.1.4 Projection ... 219

A.1.5 Grouping .. 220

A.2 Expression Tree of a View .. 221

References ... 224

1

Chapter 1 Introduction

1.1 Context

Data integration aims to combine existing databases that are distributed,

heterogeneous and autonomously managed, providing the user with a unified view of

these data. Most of the time, each of the sources is independently designed for

autonomous operation long before the data integration system. Traditional data

integration approaches such as federated database systems [36] and data warehousing

[40,80] focus on resolving the heterogeneities of the source databases and building a

global view on which the user can raise queries.

However, the IBHIS project (Integration Broker for Heterogeneous Information

Sources) [06] shows that the source databases may evolve constantly to reflect the

business drivers. Traditional approaches fail to meet the requirements of the evolving

environment, as they require tremendous modification work on the data integration

system. Consequently, architectures and algorithms are required to provide solution to

evolution problems while resolving the heterogeneity issues.

1.2 Area of Interest

1.2.1 Terms and Notations

In order to avoid ambiguity, the terms and concepts used in this thesis need to be

precisely defined. As the primary focus is on integrating relational databases, the

terms and their notations (e.g. Semantic Modelling (Entity-Relationship (ER) Model)

and Relational Data Model) in this thesis follow those used by C.J Date [91], unless

explicitly indicated. In relational models, a relation instance can be denoted as r,

which consists of a schema and a body. The schema of r is defined as a set of

attributes, which are defined as ordered pairs <Ai, Ti> (i = 1, 2, …, n), denoted as

R{A1 T1, A2 T2, …, Ai Ti}, where Ai is an attributed name and Ti is a type name. The

value n is the degree or arity of r. For simplicity, we will use Ai to mean the attribute

2

whose name is Ai. The body of r is a set of tuples (denoted as t), all having the same

schema as r. Note that in this thesis by relation R we mean relation instance with a

schema R unless explicitly indicated.

A database schema is the set of all relation schemas that are involved in the database.

A local schema is the schema of a source database in the integration system.

In semantic modelling, ER model in this thesis, an entity type is denoted by E, which

represents a set of similar entities. A relationship, which is denoted as RS, is an

association among entities. Both relationships and entities have properties, denoted as

Pi. Entity type E1 is a subtype of entity E2 if and only if every entity of E1 is

necessarily an entity of E2.

In addition, distributed and autonomously managed databases are denoted as D0,

D1,…,Di located at sites S0, S1,…, Si, respectively.

Metadata is the auxiliary data describing the main data - is maintained in the

integrated systems to deal with the problems caused by the heterogeneity. It can

contain both technical information about the sources (such as query capabilities and

access methods), and also semantic information (such as the semantic connections

between the relations, the domain dictionary specification).

Middleware [91] is not a precisely defined term. Generally, it describes a piece of

software that connects two or more software applications, allowing them to exchange

data. This thesis is concerned with data access middleware (also known as

mediators).

3

1.2.2 Major Characteristics of Distributed Databases

The data sources considered in this thesis are mostly relational databases. As the source

databases are often designed for different purposes and owned by different

organizations, some of their characteristics make the design and modelling and

operation of a data integration system very difficult. The major characteristics

analyzed in most current researches [36] are distribution, heterogeneity and autonomy

of source databases, while in this thesis database evolution is the major focus.

1.2.2.1 Distribution of Data Sources

The individual source databases in an application domain are distributed across

different organizations and sites rather than situated on the same host. To illustrate

this precisely, assume we have databases D1, D2 … Dn which locate at

geographically different sites S1, S2 … Sn, respectively. A data integration system

may need to access some of the them (e.g. D2, D3 and D5) to answer a single user

query.

1.2.2.2 Autonomy of Data Sources

Usually data sources are created in advance of the integrated system and do not know

that they will be a part of the integrated system. They can make decisions

independently and they can not be forced to act in certain ways. In addition, their own

systems are running independently of the integrated system. As a consequence of this,

they can also change their data or functionality without any announcement to the

outside world. A database, which has all the above features, is called a

fully-autonomous database in this thesis.

1.2.2.3 Heterogeneity

In [36], the types of heterogeneities in the databases systems can be divided into those

due to the differences in Database Management Systems (DBMSs) and those due to

the differences in the semantics of data. The former includes differences in data

models (e.g. relational model or object-oriented model) and in query languages (e.g.

4

QUEL and SQL) and in system level support (e.g. concurrency control, commit and

recovery), while the latter one occurs when there is a disagreement about the meaning,

interpretation, or intended use of the same of related data. More importantly, the data

may be represented in different structures even if they are in the same data model (e.g.

relational model), as they are designed by individual organisations in their own ways.

This research is mostly focusing on the semantic heterogeneity of the databases,

although the architecture proposed in this thesis is capable of integrating data from

different DBMSs hiding low-level heterogeneities (e.g. hardware platforms, operating

systems, and networking protocols). As the data sources are autonomously managed,

they may represent the information about the same entity or relationship type in

various schemas due to the fact that the database designers may model the real-world

concepts in different ways even if they all use relational models. In [92], the ER

model is most relevant to the first three steps: requirements analysis, conceptual

database design, and logical database design, in sequence.

1) The requirements analysis process is concerned with understanding what data

is to be stored in the database; namely to find out what the users want from

the database.

2) The second step is to develop the semantic model of the data to be stored in

the database based on the information gathered in the requirements analysis

step.

3) The logical database design is to implement the database design by

converting the conceptual database design into a database schema in the

relational data model.

Although the differences may emerge at any step, they do not have much impact on

the heterogeneities in the final result. In order to describe those heterogeneities

precisely, we assume that they mostly arise at logical database design step, namely

converting the same ER model into the relational data model. We adopt the following

taxonomy of heterogeneities from [86] with some modification and describe them

more precisely as follows.

5

Naming Conflicts

Different schemas may use the same term to describe different concepts (homonyms)

or two different terms to describe the same concept (synonyms). Let E (or RS) be

either a set of entities (or a set of relationships) with a set of properties {P1, P2,…,

Pi}. Assume that E (or RS) is mapped into relation R0 defined over the set of

attributes A = {A0 T0, A1 T1,…, Ai Ti} in database D0, and to relation R1 defined

over the set of attributes B = {B0 T0, B1 T1,…, Bi Ti} in database D1. D0 and D1 are

said to have naming conflicts if one or both of the following conditions are true:

1) R0 and R1 have different names, denoted as Rname(R0) ≠ Rname(R1).

2) There exists an attribute Aj ∈ A and an attribute Bk ∈ B such that Aj

and Bk are mapped to the same property of E (or RS) and have different

names, denoted as Aj ≠ Bk.

Semantic Conflicts

Different schemas use different levels of abstraction to model the same entity. Let E

be an entity type which has two subtypes E1 and E2. Assume that we have two

databases D0 and D1. D0 and D1 are said to have semantic conflicts if E is mapped

into relations in D0 (or D1) with E1 and E2 indicated, while E is mapped into

relations in D1 (or D0) without E1 and E2. For example, one database might

distinguish between “cars” and “trucks”, whereas another database in the same

integrated system might simply model “automobiles” and fail to store the car/truck

distinction.

Structural Conflicts

Different schemas may represent the same information in different ways. Let RS be a

relationship type which includes a set of participant entity types E {E0, E1,…,Ei}(i =

0,1,…,n). Assume that we have two databases D0 and D1. RS and entity types in E are

mapped into a set of relations R0 {R01, R01,…, R0j}(j = 0,1,…,n) in D0 and a set of

relations R1 (R10, R11,…, R1k) (k = 0,1,…,n) in D1. D0 and D1 are said to have

6

structural conflicts if any of the following conditions take place:

Condition (1) RS is mapped into a subset R2 of R0 in D0 and another subset R3 of

R1 in D1 (namely RS can be mapped into a derived relation from a join operation

among all the relations either of R2 or of R3). Let x be the cardinality of R2 (x>0)

and y be the cardinality of R3 (y>0), then x ≠ y.

Condition (2) There is a subset E1 of E such that E1 is mapped into a subset R2 of

R0 in D0 and another subset R3 of R1 in D1 (namely the E1 can be mapped into a

derived relation from a join operation among all the relations either of R2 or of

R3). Let x be the cardinality of R2 (x>0) and y be the cardinality of R3 (y>0),

then x ≠ y.

Condition (3) There is a property P of Ei such that Ei ∈E, and P is mapped into a

single attribute A of a relation in one of D0 and D1, and is mapped into a

composite attribute A (A1, A2,…, An) in another database (e.g. Name (firstname,

middlename, lastname)).

Condition (4) There is a subset E1 of E such that E1 is mapped into a subset R2 of

R0 in D0 and another subset R3 of R1 in D1 (namely the E1 can be mapped into a

derived relation from a join operation among either the relations in R2 or the

relations in R3). Let x be the cardinality of R2 and y be the cardinality of R3, then

x = 0 when y > 0 or y = 0 when x > 0.

Condition (5) There is a set of properties P of Ei, such that Ei ∈E and the

cardinality of P is greater than 0, which are mapped into a set of attributes of a set

of relations in some databases and are not mapped into any attributes in other

databases.

Metadata Conflicts

A concept can be represented with the schema in one data source, but as regular

(non-schema) data in another data source. Let E be an entity type which has two

subtypes E1 and E2. Assume that we have two databases D0 and D1. D0 and D1 are

said to have metadata conflicts if:

1) In one database D0 (or D1), E is mapped into a single relation R and one of

7

the attributes Ai of R indicates whether a tuple in R0 represents an entity of

subtype E1 or E2.

2) And in anther database D1 (or D0), E is mapped into two relations R1 and R2

which represent E1 and E2 separately. Tuples in R1 represent the entities of

subtype E1, while tuples in R2 represent the entities of subtype E2.

For example, one data source may distinguish between cars and trucks by maintaining

two separate relations; one for cars and one for vans. Which relation a tuple appears in

specifies whether the vehicle is a car or a truck. Another data source may use a single

relation, but have an attribute in that relation that indicates whether or not a tuple in

the relation represents a car or a van.

Domain Conflicts

Different schemas use different simple values to represent data. Let E be an entity

type with a set of properties P {P0, P1,…, Pn}. Assume that we have two databases

D0 and D1. E is mapped into a relation R0 in D0 and mapped into a relation R1 in D1.

D0 and D1 are said to have domain conflicts if there exists attributes <A0 T0> in D0

and <A1 T1> in D1 which represent the same property in P, and T0 ≠ T1. For

example, one relation might store car price as an integer number, while another might

store a textual-rendition of the car's price in a text string.

1.2.2.4 Related Work

Most traditional approaches [63] to database integration combine data residing at

different sources databases that have the above characteristics, and provide the user

with a unified view of these data. Such a unified view is represented by the global

schema, and provides a reconciled view of all data, which can be queried by the user.

Generally, the current approaches can be categorized as follows [80]:

 Virtual View Approach: In this approach data is accessed from the sources

on-demand when a user submits a query to the integrated system. This is also

called a lazy approach.

8

 Materialized View (or Data Warehousing) approach: Some filtered information

from data sources is pre-stored (materialized) in a repository and can be queried

later by users. This method is also called an eager approach.

Table 1-1 illustrates four major approaches that are either a virtual view or

materialized view approach.

Table 1-1 Major approaches to data integration

Data

Integration

Approach

Categorization Explanation

Federated

Database

Systems

(FDBS)

Virtual View

Approach

These comprise an integrated collection of

distributed databases, in which the component

administrators maintain control over their local

system [36].

Mediated

System

Virtual View

Approach

These integrate heterogeneous data sources by

providing a global schema (virtual view) of all this

data. Users ask queries based on the global

schema without the need to know about the data

source location, schemas or access methods.

Open Grid

Service

Architecture-

Distributed

Query

Processing

(OGSA-DQP)

Virtual View

Approach

This is an approach to service-based distributed

query processing on the Grid [45]. It exposes the

schemas of source databases exposed by grid data

services, and allow users to build queries on those

schemas as if they are in a single database.

However, the users have to figure out all the

heterogeneity problems.

Data

Warehousing

Materialized

View Approach

A warehouse is a centralized repository of

information extracted from multiple data sources.

As all the approaches aim to provide a global schema (or view) for the users to raise

queries, one of the main tasks in a data integration approach is to establish the

mapping between the source databases and the global schema [63]. In this task, all the

heterogeneities must be resolved. In this research, this task is called Schema

Reconciliation. Three major approaches to integrating source databases involve

schema integration [36], Local as Views (LAV) and Global as Views (GAV) [63]. A

federated database system and a data warehousing often use the schema integration,

9

while a mediated system may use either LAV or GAV. Each approach to data

integration is further described in Chapter 2 with relevant approaches to schema

reconciliation.

In order to complete the schema reconciliation task, huge amounts of hard-coded

programs have to be produced. For example, in a federated system or data warehouse

or OGSA-DQP system, hard-coded programs are produced to hide the technical

details of connection to the source databases. Also, existing queries must explicitly

specify the source databases from which they intend to obtain results. Moreover, the

queries are also built in terms of the schemas of the source databases and require

hard-coded programs to tackle the heterogeneity among them. As for a mediated

system based approach, although the users are built in terms of global schemas, it

requires hard-coded programs for each source database to eliminate the

heterogeneities. These require that the participating source databases have to be

known in advance. These approaches are referred as static binding in the IBHIS

project [06]. Consequently, it is very hard to maintain those systems when database

evolutions occur constantly.

1.2.2.5 Database Evolution Problems

The IBHIS identifies two classifications of evolutions as following [06]:

 Internal changes (within the organisation) refer to the changes that occur

within organisations. Those changes are reflected in data resources, and

include: data, data structure, constraints, permissions or rules, data model and

semantics.

 External changes (outside the organisation) refer to changes made by third

party service providers.

We focus on the evolutions on the source databases that involve both internal changes

and external changes, and further classify them into three types: schema evolution,

system evolution and organization evolution. Table 2 shows these evolutions with

10

explanations and the difficulty caused by them in an integration system.

Table 1-2 Database Evolutions

Evolution Explanation Successive Difficulty

Schema

Evolution

This refers to the evolution in local

schemas of the source databases. This

involves:

 Adding or removing attributes into

or from a relation schema.

 Changing of the name or domain of

an attribute.

 Decomposing a single attribute into

more attributes.

 Adding or removing relation

schemas into or from a local

schema.

 Changing of the name of a relation

schema.

 Decomposing a single relation

schema into more relation schemas.

 New source databases coming in or

existing source databases become

available.

In the traditional

approaches introduced

above, all the hard-coded

programs that specify the

evolved schemas have to

be identified and modified.

These programs involve

the programs for dealing

with schema reconciliation,

existing user queries and

the programs to update the

information in warehouses

(for data warehousing

systems). The system

cannot work properly until

all the modifications are

complete.

System

Evolution

This refers to the evolution in the

descriptive information of the source

databases. For example, the name and

URL of a source database, which is

used for programs to access the source

database, may change.

This may result in

modifications on the

hard-coded programs

dealing with the connection

to the evolved source

databases.

Organization

Evolution

This refers to the evolution in the

organizational hierarchical structure of

the source databases. For example, the

definition of the region changes.

The existing queries that

analyse or summarize data

based on the old

organisation structure

cannot reflect the latest

situation.

Organization evolution is a slightly complicated evolution which may cause two

problems. Firstly, some existing queries, which intend to provide the latest analysis

11

and summarization of the data based on the organization structure, may no longer

provide the proper results. Therefore, the queries must be modified. Secondly, some

queries may need to compare and analyse the data over several years based on the

organization structure. However, during these years the organization structure may

have been changed several times. Consequently, both the old organization structures

and the new one have to be retained. Also, changes to the queries to involve the new

organization structure require huge work. The detailed description and the formal

representations of those database evolutions will be presented in Chapter 5, 6, and 7.

1.2.2.6 Service-based Architecture and Dynamic Binding

The concept “Software as a Service” (SaaS) was proposed by the Pennine Research

Group, in which services [07] are composed out of smaller ones (and so on

recursively), procured and (possibly) paid for on demand. This solution provides a

possible approach for organisations to share resources in a constantly changing

environment. The central technical issue for this solution is very late binding, at the

point of the execution of a system.

Based on the idea of SaaS and late (dynamic) binding [01,02], the IBHIS project

proposed a service-oriented data integration architecture (SODIA) to provide a

dynamically unified view of data on demand from various autonomous,

heterogeneous and distributed data sources [06]. It indicates that source databases are

published as services that are dynamically determined and bound at the time of

execution.

Our research aims to provide an Evolution Adaptive Service-Oriented Data

Integration Architecture (EA-SODIA) to dynamically integrate existing,

heterogeneous, autonomous databases in a constantly evolving environment. Each

source database is published as a data service into a data integrator service that is

responsible for dynamically identifying and combining relevant source databases. The

data integrator service is published into a registry service for the user to find. LAV is

12

used in this architecture to establish mapping between local schemas and the global

schema, as it provides a possible solution of dynamic binding of source databases.

1.3 Discussion of Issues

1.3.1 Research Issues

The integrated system based on our architecture is referred to as a virtual view

approach and needs to:

 provide an integrated view of data from autonomous heterogeneous data

sources.

 allow data sources to evolve independently.

Therefore, the major issues in this research are described as following:

 Schema Reconciliation: is to provide a global schema for users to raise

queries on it, and to integrate each source database to the global schema

using LAV. It is also to eliminate the heterogeneities between the local

schema and the global one, using relational algebra operations (it is referred

to as source description). The mappings and source description are stored in

a meta-database, ensuring that any evolutions from the source databases will

be managed within the meta-database.

 Query Process: is to dynamically determine the source databases to be

accessed when a user query is posed on the global schema. It is also to

decompose the user query into queries that are in terms of each local schema

based on the mapping in the meta-database.

 Schema Evolution Detection: is to identify the impact of a schema

evolution on the mappings in the meta-database and automatically modify

them, in order to further reduce the manual maintenance.

This approach is able to cover most heterogeneities defined previously, except the

semantic conflict. It is because LAV and the relational language are unable to further

13

classify an entity if there is no extra attribute to indicate. For example, a query using

relational language cannot find an automobile that is a van if there is not an attribute

to represent this property. Also, the nature of dynamic binding is to find the latest

source databases and produce latest results by combining them. Therefore, the second

organization evolution problem in which both the old organization structure and the

new one have to be retained cannot be resolved by the dynamic binding directly.

However, future research may involve this problem based on our architecture using

the method such as storing different versions or domain ontology in the meta-database.

The complete discussion of this architecture is presented in Chapter 8 (Evaluation).

1.3.2 Problem Boundaries

The architecture and approaches in this thesis have been presented with the

assumption of certain problem boundaries.

1) In general, the data sources involved in the architecture are currently assumed to

be relational databases due to their dominating position in the industry, although

they can be managed by various DBMSs. Each database provider has

responsibility for publishing its database as a service, and for building the

mapping between the local schema and the global schema.

2) It is also assumed that every relation schema in the system has to be in at least

first normal form by which we mean that the attributes of relations need to be

atomic. For the time being, although the schema of source databases can be

defined using different terms, ontology problems on the contents of the relations

and security problems are beyond the scope of this thesis. They require further

research based on our approach because they are also inevitable.

3) In addition, redundancy is not a problem considered in our research. As our

objective is to provide an architecture and approach to building an evolvable data

integration system, query optimization is not a key problem and is simply

described as a small part of query decomposition.

4) Finally, the changes mentioned in this thesis are those occurring in local schemas

and their organizational hierarchy. We assume that the global schema on which

14

user queries are raised basically remain unchanged. As this approach is currently

referred as a virtual view approach, the solution to maintaining views in a

materialized approach when database evolutions occur is left for further research.

In summary, the thesis aims to provide a virtual view approach to solve some database

evolution problems while combining heterogeneous, autonomous and distributed

databases. The heterogeneities considered in this research only exist among the

schemas of source databases, rather than among the contents. The evolutions that are

in question are primarily the evolutions of source databases (their schema and

connection information) and of the organization structure. Moreover, our approach

intends to make the system work properly on the current source databases (after the

evolution), and cannot reflect the data before the evolution. However, our architecture

has the potential to incorporate these problems if further research is carried out.

1.4 Research Aims and Criteria for Success

Many aspects of both the problem and solution are covered by the aims of this

research and the criteria for success. A case study [93,94,95] is required to examine

whether the approach fulfills the aims of this research. The case study method is

chosen for the following reasons:

 The evolutions in the system cannot be fully controlled and be predicted. Some

evolutions may occur constantly, while others may never occur in a real project.

Therefore, a formal experiment [93] is not possible to conduct as it requires full

control on the evaluation variables. A case study is more suitable to test over

some typical evolutions.

 Formal experiment and survey requires multiple projects, while a case study can

investigate a single large-scale project. Although, formal experiments are easier

to be generalized to every possible situation, this research is focusing on a typical

situation (changing environment).

A case study is further described and discussed in chapter 8.

15

The heterogeneity and database evolution problems introduced previously have to be

solved and some experimental implementations are constructed to demonstrate the

feasibility of the architecture. The criteria for success are formally defined as follows.

1) The heterogeneities defined in Chapter 1 can be eliminated using the RSMV

approach and the query processor.

2) The RSMV approach and meta-database can reduce the cost of modification

work caused by schema evolutions, and the query processor can reduce the

number of the queries which require modification when any organizational

evolution occurs.

3) If any schema evolution occurs in one source database, the views of other

source databases do not require modification so that the system can still work

properly.

4) The SED can reduce the cost of modification work caused by schema

evolutions.

5) SOA and web services can help reduce the cost caused by the database

evolutions and system evolutions because they provide high reusability,

autonomy and discoverability.

As a consequence of all above criteria, the cost of maintenance resulting from

database evolution can be largely reduced. In Chapter 7 and 8, the success of the

architecture and the approaches are discussed with reference to the above criteria

through a case study. The case study methodology itself will be introduced and further

discussed as well. We will discuss the performance of the approach in different

situations. However, the security and the data transportation efficiency of the system

based on our approach are not considered as criteria of success, because they are not

the focus of this research.

16

1.5 Evaluation Criteria

In addition to reaching the criteria of success listed in the previous section, the

architecture should be capable of handling real-world applications. Again, the

architecture is extensively evaluated in chapter 8; where the extent to which it can

help in a real application (and its strengths and weakness) is explored. The evaluation

is based on following criteria:

 Cost of modifying views

 Scalability

 Domain independence

 Language independence

 DBMS independence

 Expandability

These criteria cover various aspects and can help in figuring out where the

architecture can be applied.

1.6 Contribution

This research proposes a service-oriented architecture, based on the concept of SaaS

[07] and late binding [07], for dynamic integration of existing, distributed,

heterogeneous and autonomous databases in an evolving environment. The primary

contributions are the schema reconciliation algorithm using both LAV and extended

relational algebra operations, and a meta-database to store all the data resulted from

the schema reconciliation algorithm. Also, the data service is different from that of

other service-based architectures. A data service explores only the reconciled schema

of the underlying database, rather than the local schema. It receives the whole query

as a parameter and then translates it into the query in terms of the local schema, based

on the data in the meta-database. Finally, the schema evolution detection algorithm is

provided to conduct automatic modification of the data in the meta-database when

evolutions occur. The following research issues within data dynamic data integration

17

systems are addressed:

 Schema Reconciliation: A combined and extended approach of LAV and

relational algebra is used to achieve this goal. Also, the meta-database

ensures that any database evolutions from the source databases will be

managed within the meta-database.

 Query Process: relevant source databases (services) are determined and

combined, making sure that no hard-coded queries specific to individual

databases exist until run-time.

 Evolution Detection: The ruled-based algorithm is used to reason about

what views are affected by the changes and how they can be modified.

The approach provided in this research is suitable for information integration systems

which are in a changing environment. They produce constraints and rules for

databases to be integrated into the system and their schemas accommodated into a

global schema. They also define rules for evolution detection programs to figure out

what views are affected and to modify the views automatically. The approach is

compared to other data integration methods throughout this thesis and extensive

evaluation of it is presented.

1.7 Thesis Structure

This thesis is divided into ten chapters

Chapter 1 introduces the motivation and context for the research, discusses the

problem to be solved, and sets out the research aims and criteria for success.

Chapter 2 introduces the main approaches to data integration with the support of

database evolution problems. The Service-Oriented concept is introduced with the

main techniques.

18

Chapter 3 presents an overview of the service-oriented architecture in this research

with a brief introduction to its components. Each process is generally introduced.

Chapter 4 presents the approach to building global schema and establishing mapping

between the local schema and the global schema. The approach to representing

mappings in a meta-database is also depicted. Rules and constraints based on set

theory and logics are defined.

Chapter 5 describes evolution detection methods based on rules. Various types of

database evolutions are described and represented in the meta-database. The processes

of identifying the affected mappings and automatically modifying them are presented.

Chapter 6 introduces the algorithm of decomposing queries over the global schema

into subqueries that refer to source databases and translating subqueries into queries

that are directly over the schema of the source databases.

Chapter 7 presents the design of the services in the architecture. A case study

including an experimental implementation using web services is also presented.

Chapter 8 discusses the results of case study evaluation of the architecture and

approaches proposed in this research with reference to the criteria of success and

evaluation presented in sections 1.4 and 1.5. The methodology, called case study, is

used to evaluate the approach.

Chapter 9 concludes the research by giving a general discussion and summary of the

work accomplished. The success of the research is considered in terms of the criteria

presented in section 1.4. The ideas for further work are also suggested.

19

1.8 Summary

This chapter has given an introduction to the work presented in this thesis. Some basic

terms that are used throughout the thesis are explained. The motivation and context of

the research have been explained with reference to other research achievements in the

field. The two main characteristics of distributed databases, making data integration

difficult, have been introduced: heterogeneity and data evolution. The major research

issues have also been identified: schema reconciliation, query processing, building

meta-database, and evolution detection. Evaluation criteria have been presented and

the structure of the thesis is explained.

20

Chapter 2 Background

2.1 Introduction

Chapter 1 introduced the context and motivation of the work in this thesis. Various

characteristics of heterogeneous and distributed databases were presented and the

research problem was defined with several issues. Criteria for success and for

evaluating both the approach and the research were presented.

This chapter further examines some current approaches to data integration and

discusses the basic process of them. Major approaches to mapping the data sources to

global schema are described and compared. Their support for database evolution

problems is then discussed. An introduction to the concepts of Software as a Service

(SaaS) and late binding [01,02] is then presented. Finally, service-oriented

architecture (SOA) and Web services are presented with relevant techniques and

standards.

2.2 Current Approaches to Data Integration

As mentioned in the previous section, two common approaches to data integration are

the Virtual View Approach and the Materialized View Approach [80]. Each of them

includes one or more architectures. The Virtual View Approach is also called a lazy

approach to data integration. This approach is based on the following very general

two-step process [80]:

1. In this case the data is accessed from the sources on-demand when a user submits

a query to the information system. That is why it is also referred to as a lazy

approach. Three architectures involved in a virtual view approach are described

later in this section: federated database systems, mediated systems and distributed

query processing (DQP).

2. The Materialized View Approach is also referred to as data warehousing or an

eager approach to data integration. Information from each source that may be of

21

interest is extracted in advance, translated and filtered as appropriate, merged

with relevant information from other sources, and stored in a (logically)

centralized repository. When a query is posed, the query is evaluated directly at

the repository, without accessing the original information sources.

2.2.1 Federated Database Systems

A Federated Database System (FDBS) consists of semi-autonomous components

(database systems) that participate in a federation to partially share data with each

other [36]. The databases cannot be called fully-autonomous because each database is

modified by adding an interface that allows communication with all other databases in

the federation. In a federated architecture, a federated DBMS serves as a middleware

providing transparent access to a number of heterogeneous, distributed data sources.

Each source in the federation can also operate independently from the others and the

federation. FDBSs [36] can be categorized as loosely coupled or tightly coupled based

on who manages the federation and how the components are integrated. A tightly

coupled federation has one or unified schemas which are built by federation DBAs,

while a loosely coupled federation has no unified schema and it is the end user’s

responsibility to create and maintain the federation.

A tightly coupled federation is static and usually difficult to evolve, because creating a

federated schema is like database schema integration which does not allow adding or

removing components easily. The key limitation of this approach is that applications

have to explicitly specify the data sources in a federated query [47]. This means that

the applications must be changed when new data sources are added. Each data source

must also be explicitly registered to the federated DBMS. Also, it is very costly if

organizations change the data sources.

Loosely coupled FDBSs are dynamic, as their federated schema may be managed on

the fly (created, changed, dropped easily) by a user. Requested data comes from the

exporter of this data itself and each component can decide how it will view all the

22

accessible data in the federation. However, humans must still resolve all semantic

heterogeneities. The most naive way to achieve interoperability in the loosely coupled

federation is to map each source’s schema to all others’ schemas, so-called pair-wise

mapping. However, it requires n* (n − 1) schema translation and becomes too tedious

when the number of components becomes very large.

2.2.2 Mediated systems

A mediated system integrates heterogeneous data sources, which can be databases,

legacy systems, filed systems, web sources, etc, by providing virtual views of all this

data. End users who raise queries on the mediated system do not have to know

anything about data source location, schemas or access methods, because such a

system presents one global schema to the users so that they ask queries in terms of it.

Although a mediation architecture is, to some extent, likely to be similar to a tightly

federated system, it is different in the following ways [36]:

 A mediated architecture may have non-database components.

 The query capabilities of sources in a mediator-based system can be

restricted and the sources do not have to support SQL-querying at all.

 Access to the sources in a mediator-based system is usually read-only as

opposed to read-write access in a FDBS (due to the fact that the sources in

the mediator-based system are more autonomous).

 Sources in a mediator-based approach have complete autonomy which means

it is easy to add or remove new data sources.

The main components of a mediated system are the mediator and one wrapper per

data source. The mediator receives user queries on the global schema, and

decomposes them into subqueries to local individual sources based on source

descriptions, and then sends them to the wrappers of individual sources. A wrapper

executes the subquery, hiding technical and data model detail of the data source from

the mediator. Usually, there are some specific programs dealing with the

23

transformation from a global schema to a local schema. We will talk through this

problem in more detail later in the thesis.

Two basic approaches have been used to specify the mapping between the sources and

the global schema [86].

 Global-as-view (GAV): It requires that the global schema is expressed in terms

of the data sources. In turn, the global schema are defined as views over the

global schema

 Local-as-view (LAV): It requires that the global schema is specified

independently from the sources. In turn, the sources are defined as views over the

global schema.

Two typical example systems implementing mediator-based architecture are:

TSIMMIS (The Stanford-IBM Manager of Multiple Information Sources) [96] that is

based on GAV, and Information Manifold [97] that is based on LAV. IM makes it

quite convenient to add new sources. One must write a wrapper for the sources and

define its views and constraints in terms of the global schema. However, no change to

the query processing algorithm is needed. The new views will be used whenever they

are appropriate for the query. In contrast, new Tsimmis sources not only must be

wrapped, but the mediators that use them have to be redefined and their definitions

recompiled. The administrator of the system must figure out whether and how to use

the new sources. A complete comparison of the approaches is reported in [98].

2.2.3 Data Warehousing

Data warehousing [37] (materialized views) offers higher availability and better query

performance as all information can be retrieved from a single location, and thus is a

suitable choice when high-performance query processing and data analysis is critical.

In a data warehousing approach, data from various sources is integrated by providing

a unified view (or unified schema) of this data, like in a virtual view approach, but

here this filtered data is actually stored in a single repository (called a data

warehouse).

24

The wrapper component is responsible for translating information from the native

format of the source into the format and data model used by the data warehousing

system, while the monitor component is responsible for automatically detecting

changes of interest in the source data and reporting them to the integrator.

Another component in the architecture, the integrator, is responsible for installing the

information in the warehouse, which may include filtering the information,

summarizing it, or merging it with information from other sources. In order to

properly integrate new information into the warehouse, it may be necessary for the

integrator to obtain further information from the same or different information sources.

The warehouse may be also implemented as a distributed database system. In the data

warehousing system, the sources that are integrated always retain their autonomy.

2.2.4 Open Grid Services Architecture-Distributed Query Processor

(OGSA-DQP)

Distributed query processing (DQP) has been widely used in data intensive

applications where data of relevance to users is stored at multiple locations [49, 44].

DQP is found in several contexts such as distributed database systems, federated

database systems and query-based middlewares.

OGSA-DQP [45] is an approach to service-based distributed query processing on the

Grid. It is an example of a high level data integration framework. In the framework,

each source database is exposed as a grid data service (GDS) which accepts and

executes queries hiding technical details such as the type of DBMSs from the external

users or applications. OGSA-DQP exposes the schemas of source databases exposed

by GDSs, and allow users to build queries on those schemas exposed as if in a single

database.

Although OGSA-DQP provides an approach to integrating existing distributed and

25

autonomous databases on the Grid, it does not directly address some of the problems

mentioned previously. For example, there are no algorithms for schema integration or

unified schema that are requested for dealing with heterogeneity. Therefore, users

need to raise queries on the local schema directly so that they have to understand all

the individual schemas requested very well and have to explicitly specify the data

sources in a federated query. It means that the system can not provide a unified view

for users and needs expertise to build queries. In addition, the system based

OGSA-DQP may have difficulties when adding or removing data sources, because the

queries are written in hard-code based on their local conceptual schemas. This

requires that some middlewares are placed over DQP to more complete functions to

above problems. The Service-Oriented Architecture and relevant techniques such as

web services and grid services are discussed in further detail in the next chapter.

2.2.5 Comparison of the architectures

In general, the virtual view approach to data integration is preferable for information

that changes rapidly, for clients with unpredictable needs, and for queries that operate

over vast amounts of data from very large numbers of information sources. However,

the virtual view approach may incur inefficiency and delay in query processing,

especially when queries are raised multiple times, when information sources are slow,

expensive to access, or periodically unavailable, and when significant processing is

required for the translation, filtering, and merging steps.

If, however, sources are permanent, and do not get upgraded too often and the

designers of the integrated system know what kind of queries are going to be asked

most often, answers to these queries can be materialized. A data warehousing

approach might be chosen to improve the performance if some sources are physically

located far away from the mediator leading to delay in response time. However, a

Data Warehousing system does not provide very up to date information and is not

appropriate in above mentioned circumstances where the virtual approach is

preferable.

26

Among the architectures based on the virtual view approach (primarily federation and

mediation), the mediated approach is chosen more often. As for the federation, the

systems with this architecture are not very common nowadays due to the large

number of interfaces that need to be written for each source to communicate with all

the others.

2.2.6 Support for Evolution Problems

Generally, the currently approaches introduced above fail to meet the requirements of

constant database evolutions.

 The tightly coupled federation is mostly based on manual and static schema

integration at the design time. The federated DBMS has to contain all the

technical details of the source databases and their wrappers. Applications on the

federated DBMS have to explicitly specify the data sources in a federated query.

It is not appropriate in a dynamic environment where the source databases are

constantly evolving, because huge amount of changes on the system are required.

 The loosely coupled federation requires a huge amount of work on translating

queries-based schema matching, which is expected to be done by users.

Consequently, when a source database evolves, all the components accessing the

evolved source database require modification. It is also not realistic that all the

relevant components can be notified when an evolution occurs.

 As the Data Warehouse is centralized and static, it cannot meet the requirements

of the changing data resource such as data structure changes and emerging new

data resources.

 The mediation based on GAV is hard to evolve, because new sources not only

must be wrapped, but the mediators that use them have to be redefined and their

definitions recompiled. The primary reason for the redefinition of the mediators is

that the global views of the mediators specify explicitly the relationships between

source databases. Consequently, all the relevant global views must be changed

when a source database evolves.

27

 The mediation based on LAV, to the contrary, provides a unified virtual view to

users and allows adding and removing more easily. However, evolutions in the

underlying sources may cause changes to the wrappers and the global view.

Adding a data source also requires that a new wrapper for the new data be

defined.

 DQP is most likely to be a query process tool on which a data integration system

can be built. The integrated system based on DQP requires much modification

following the database evolutions too.

To conclude, none of above current approaches provides a solution to schema

evolution problems which are the focus of this thesis. All the above approaches are

further compared with the architecture proposed by this thesis in Chapter 3

2.3 Service-Oriented Concept and Techniques

Evolutions are inevitable, expensive and very hard to undertake. Both Bennett [06,02]

and Ghezzi [99] suggest that traditional static bound (early bound) supply-side

systems cannot meet the needs of continually changing environments. Therefore, the

concept “Software as a Service” (SaaS) was proposed by the Pennine Research Group,

in which services [06] are composed out of smaller ones (and so on recursively),

procured and (possibly) paid for on demand. This solution provides a possible

approach for organisations to share resources in a constantly changing environment.

The central technical issue for this solution is very late binding, at the point of the

execution of a system.

Based on the idea of SaaS and late (dynamic) binding [01,02], the IBHIS project

proposed a service-oriented data integration architecture (SODIA) to provide a

dynamically unified view of data on demand from various autonomous,

heterogeneous and distributed data sources [06]. It indicates that data sources are

published as services that are dynamically determined and bound at the time of

28

execution. Aligned with Web services, Service-Oriented Architecture (SOA) provides

some technical support for the above concept and architecture.

2.3.1 Service-Oriented Architecture (SOA)

A SOA (Service-Oriented Architecture) is a component model that inter-relates the

different functional units of an application, called services, through well-defined

interfaces and contracts between these services [19]. The interface is defined in a

neutral manner that should be independent of the hardware platform, the operating

system, and the programming language the service is implemented in. It is typically

characterized by the following properties [19]:

 Logical view: The service is an abstracted, logical view of actual programs,

databases, business processes, etc., defined in terms of what it does, typically

carrying out a business-level operation.

 Message orientation: The service is formally defined in terms of the messages

exchanged between provider agents and requester agents, and not the

properties of the agents themselves. The internal structure of an agent,

including features such as its implementation language, process structure and

even database structure, are deliberately abstracted away in the SOA: using the

SOA discipline one does not and should not need to know how an agent

implementing a service is constructed. A key benefit of this concerns so-called

legacy systems. By avoiding any knowledge of the internal structure of an

agent, one can incorporate any software component or application that can be

"wrapped" in message handling code that allows it to adhere to the formal

service definition.

 Description orientation: A service is described by machine-processable meta

data. The description supports the public nature of the SOA: only those details

that are exposed to the public and important for the use of the service should

be included in the description. The semantics of a service should be

documented, either directly or indirectly, by its description.

29

 Granularity: Services tend to use a small number of operations with relatively

large and complex messages.

 Network orientation: Services tend to be oriented toward use over a network,

though this is not an absolute requirement.

 Platform neutral: Messages are sent in a platform-neutral, standardized format

delivered through the interfaces. XML [14] is the most obvious format that

meets this constraint.

Although SOA is a conceptual model independent of technologies, it is often coupled

with Web services technology due to the fact that no one technology advancement has

been so suitable and successful in manifesting SOA than Web services [90]. Web

services specifications define the details needed to implement services and interact

with them.

2.3.2 Web Services

The Web Services architecture is based upon the interactions between three roles:

service provider, service registry and service requestor. The interactions involve

publish, find and bind operations. Typically, a service provider hosts an

implementation of the web service, and defines a service description for the web

service and publishes it to a service requestor or service registry. The service

requestor can then discover the service description locally or from the service registry

and uses the service description to bind with the service provider and invoke the Web

service implementation. The information exchange between services is based on

messaging [90]. Figure 2-1 [13] shows the architecture of web services.

30

Figure 2-1. [13] Web Services roles, operations and artifacts

The roles and operations in the above architecture are listed in Table 2-1 and Table

2-2 respectively.

Table 2-1 Roles in a Web Services Architecture [13]

Role Description

Service provider From a business perspective, this is the

owner of the service. From an

architectural perspective, this is the

platform that hosts access to the service.

Service requestor From a business perspective, this is the

business that requires certain functions to

be satisfied. From an architectural

perspective, this is the application that is

looking for and invoking or initiating an

interaction with a service.

Service registry This is a searchable registry of service

descriptions where service providers

publish their service descriptions.

Table 2-2 Operations in a Web Service Architecture [13]

Operation Description

Publish To be accessible, a service description

needs to be published so that the service

requestor can find it.

Find or Discover (discussed later) In the find operation, the service

requestor retrieves a service description

directly or queries the service registry for

31

the type of service required

Bind Eventually, a service needs to be invoked.

In the bind operation the service

requestor invokes or initiates an

interaction with the service at runtime

using the binding details in the service

description to locate, contact and invoke

the service.

Three basic web services standards fulfilled the model shown in Figure 2-1 as

follows:

 Simple Object Access Protocol (SOAP): This is a lightweight protocol intended

for exchanging structured information in a decentralized, distributed environment.

SOAP uses XML technologies to define an extensible messaging framework,

which provides a message construct that can be exchanged over a variety of

underlying protocols. The framework has been designed to be independent of any

particular programming model and other implementation specific semantics. [20]

 Web Services Description Language (WSDL): This is the de facto standard for

XML-based service description. WSDL is an XML-based language for describing

Web services and how to access them [13]. This is the minimum standard service

description necessary to support interoperable Web Services. WSDL defines the

interface and mechanics of service interaction.

 Universal Description, Discovery and Integration (UDDI): This is the central

technique in Web Service architecture, which defines a standard method for

publishing and discovering the network-based software components of a

service-oriented architecture (SOA) [32].

The service interface definition together with the service implementation definition

composes a complete WSDL definition of the service. They contain sufficient

information to describe to the service requestor how to invoke and interact with the

Web service. However, WSDL does not describe some high level and semantic

information of services such as context of services (e.g. what business is hosting this

32

service?), metadata of services (e.g. what business is it? what products or services is it

providing? and what is the key words to find this service?) and Quality of Services.

These higher level aspects of services, which are especially important in

data-intensive services, require additional service description documents, which

complement the WSDL documents.

UDDI lacks support to metadata of the service such as the detailed description of the

service (e.g. what products and services does the service provider produce?). The

metadata of service is especially required in data-intensive service to describe the

heterogeneous databases autonomously managed and provided by the owner, as not

only does the application need to discover the data service, but composes the query on

databases at run-time according to the metadata. Thus, we propose a meta-database

that complements the UDDI and WSDL with the meaningful description of the

database structure. The meta-database will be described formally in Chapter 4.

2.4 Summary

This chapter discussed some current approaches to integration of existing autonomous,

distributed, and heterogeneous databases. It concluded that none of the current

approaches are appropriate in a dynamic environment where the source databases are

constantly evolving. The concepts of SaaS and late binding provide a possible

approach for organisations to share resources in a constantly changing environment.

The IBHIS project also suggested a Service-Oriented Data Integration Architecture in

which data sources are published as services that will be dynamically bound on

demand.

33

Chapter 3 Evolution Adaptive Service-Oriented Data Integration

Architecture

3.1 Introduction

Chapter 2 introduced, in detail, some current approaches to integrating databases, and

discussed service-oriented architecture and relevant techniques. This chapter outlines

the service-oriented data integration architecture which is easier to maintain when any

changes of databases occur. It is termed EA-SODIA. The data integration approach

used in this architecture is similar to mediation.

The main processes of integrating database schemas and of maintaining the system in

response to changes of databases are briefly introduced. It is also described how

service-oriented architecture can help in these processes. The characteristics of the

architecture are then explained in comparison to other approaches to data integration.

3.2 Overview of Evolution Adaptive Service-Oriented Data

Integration Architecture

The approach proposed in this thesis is a service-oriented architecture in which both

the data integrator component and source databases are deployed and published as

services. As mentioned in chapter 2, this architecture is based on the concept of

Software as a Service (SaaS) [01,02] and late binding [06] aligned with

service-oriented architecture and web services technologies. The terms used to

describe the architecture follow [98].

The architecture is designed with two primary aspects:

 The ability to integrate distributed databases, dealing with the heterogeneities

among them.

 The ability to evolve easily without modification of hard-code programs, in

response to the evolution of the underlying databases.

The heterogeneities and the database evolution mentioned above are those defined in

chapter 1. Although another aspect, autonomy, is not the focus of this research, it can

34

be addressed within this architecture and will be discussed in this chapter.

Figure 3-1 shows the general architecture of EA-SODIA with its basic services. Three

types of basic service are involved as follows.

 Each source database, in the architecture, is exposed as a Data Service (DS) by its

provider which receives queries and returns results. A DS exposes its reconciled

schema (exporting views) and receives a standardized query which is on the

reconciled schema, and then converts it into queries which can be executed upon

the schema of its underlying database. The conversion of queries is based on the

specification of the mapping from the global schema to the local schema. This

specification, called meta-data, is stored and maintained in the meta-database

(MDB) at data source site by each data provider.

 Over those DSs is Data Integrator Service (DIS) which:

 receives a query from a user, and dynamically finds the source databases that

can provide data for this query.

 decomposes the query into subqueries referencing to each source database,

and then delivers the subqueries to corresponding DSs.

Again, the query decomposition is based on the metadata stored in the

meta-database (MDB) of DIS. The results produced by DSs are sent back to the

DIS which subsequently composes those results into a final one and sends it to

the user. Above the DIS are various client applications enabling end users to send

queries to DIS. The queries are those supported by the DIS. Client applications

are not parts of the architecture and will not be further described in this thesis.

 Registry Service: Both DIS and DSs are published into a registry service for other

software components or services to discover which services to access and how to

access. A registry service is based on UDDI that contains only the information

such as the location and the methods of a service.

Note that although there is only one DIS shown on the graph, more DISs can be added

performing the same function in order to enhance the performance of the architecture.

They all need to be registered in the registry. This is discussed further in Chapter 7.

35

Data Service n Data Service2

Data Integrator Service

Query Decomposer
Query Delivery and

Result Compositon

Schema Evolution

Detector (SED)

Query Translator

Meta-database

(MDB)
Query Optimizer

Data Service1

End User

Client

(Web-based)

. . .

UDDI Registry

Client

(Application)

MDB MDB MDB

Source Database n Source Database2 Source Database1

SED SED SED

End User

Figure 3-1 The general architecture of EA-SODIA

This architecture, to some extent, can be considered as a mediated system based on a

service-oriented architecture where mediators are performing the same functions as

those of DIS and wrappers are working in a similar way to DSs. However, it is more

flexible than a traditional mediation approach due to the reusability and the

accessibility provided by SOA. More importantly, a system based on EA-SODIA is

expected to be relatively more maintainable as the creation of the schema integration

in EA-SODIA needs no hard-coded programs. Therefore, no programs need to be

modified when the schema of source databases change. In addition, there is no need to

provide a hard-coded wrapper for a newly incoming source database. These will be

evaluated by the case study in Chapter 7 and 8.

36

3.3 Processes of Data Integration and Evolution

The following processes are involved in this research:

 Schema reconciliation: reconciles the schemas and the representation of

heterogeneous source databases, establishing mapping between the local

schemas and the global schema in the meta-database. This is accomplished

by two stages at DIS and DS sites. An algorithm for schema reconciliation,

named Relational Schema Mapping by Views (RSMV), is provided.

 Query Process: decomposes the queries built on the global schema into

subqueries that refer to each individual source database. These subqueries,

which are still in the global format, are then delivered to the relevant DS

where they are converted into queries which can be executed on the local

schema.

 Schema Evolution Detection: records the data evolution mentioned in

chapter1 conducted by individual database providers. It provides an

automatic check on which data (mappings) have been affected and provides a

semi-automatic tool to help service providers and global schema

administrator to modify the definition of the views in response to the schema

evolutions.

In general, two principles which must be followed when building a data integration

system based on EV-SODIA are that:

 No hard-coded programs are required for establishing mappings between the

local schemas and the global schema.

 Queries from end users are all built upon global schema, and therefore no

hard-coded queries refer directly to the local schemas.

3.3.1 Schema reconciliation

As introduced in chapter 1, various local schemas need to be reconciled to follow a

global schema in order to provide end users with a global schema on which users can

raise queries. Fundamentally, the following targets need to be achieved for reconciling

database schema.

 Modeling Global Schema: builds a global schema which models real-world

concepts. It is the schema on which end users raise queries. The global

37

schema can be built because we assume that all the databases involved

represent the concepts in the same application area, and therefore the

concepts being modeled present similar attributes. It is supposed to be

accomplished at the DIS site.

 Building Exporting Views: gets rid of the heterogeneities between the global

schema and each local schema by building views, termed Exporting View, on

the local schema. The exporting views are in the format of the global schema

and represent the information that a source database is going to present to

external applications. Each source database needs to provide exporting views

and maintain the definitions of those views in a meta-database of its own site.

Exporting views are defined with a set of extended relational algebra

operations.

 Building Importing Views: maps the exporting views of a source database

(DS) to the global schema. LAV is applied to identify the relationship

between the global schema and exporting views representing the source

databases. Exporting views of each source database are imported as

importing views. Subsequently, the importing views are defined as views

over the global schema.

 Representing Data in the Meta-database: creates a repository to store the

local schema, global schema, and the definitions of the views. The

Meta-database is a conceptual single database that in practice can be

distributed databases. In this architecture, both DIS and DS have their

meta-databases. The DIS creates and maintains a meta-database where the

description of the source databases and definition of importing views are

stored, while each DS creates and maintains a meta-database where the

definition of the exporting views are stored.

Schema reconciliation is further described with its algorithm, language and functions

in later chapter 4.

3.3.2 Query Process

Once the schema reconciliation is complete, a user is able to raise a query on the

global schema. In theory, the user queries can be in any query language which is a

higher level language. As higher level query language is not the focus of this research,

38

however, we currently use an extended version of the Datalog query language as user

query language. Figure 3-2 shows how the queries raised by end users are processed.

 The user query needs to be decomposed into subqueries which are in terms of the

importing views representing source databases. In LAV, the importing views are

defined on the global schema using Datalog [96]. As the user query is also built

in terms of the global schema, the query containment test [96] is adopted to

dynamically find the importing views that can produce data for the user query.

Consequently, the source databases providing the importing views are also

determined. A DIS conducts this process and sends the subqueries to the relevant

source databases (DSs).

 As the schema of an importing view is the same as its corresponding exporting

view, those subqueries that are in terms of importing views are also in terms of

exporting views. At each DS, the subqueries must be rewritten into queries that

are directly in terms of the local schema, based on the definitions of the exporting

views in the meta-database. In this thesis, the relational algebra operations are

assumed to be the local queries as they can easily be translated into any SQL

supported by various dominating DBMSs.

Semantic Query

Query on Global Schema

Subqueries on Importing Views

(Exporting Views)

Subqueries on Local Schema

Figure 3-2 The general workflow of query process

Query decomposition is further described with relevant algorithms in chapter 6.

39

3.3.3 Schema Evolution Detection

The EA-SODIA is designed to build a data integration system which is easier to

maintain when any database evolutions occur. As no hard-coded queries exist in the

system, the maintenance brought by the database evolution is primarily on the view

definitions in the meta-database. This thesis presents a method, called Schema

Evolution Detection, which automatically modifies the views in the meta-database

when a schema evolution occurs. The method works closely together with the

approach RSMV as the latter is the prerequisite of the former. Automatic tools for

modifying view definitions can be provided based on this method.

Data Integrator Service

Views Definitions

Schema Evolution Detection

Rules

Data Service

Views Definitions

Schema Evolution Detection

Rules

Registry

Figure 3-3 Schema Evolution Detection in EA-SODIA

Figure 3-3 illustrates how the relevant components of evolution detection are

deployed in the EA-SODIA. The schema evolution detection function exists in both

DIS and DS. The schema evolution detection in the DS modifies the exporting views

in DS’s meta-database, while the schema evolution detection in DIS modifies the

corresponding importing views of those exporting views in DIS’s meta-database.

They work together to detect which view definitions at DIS and DS are affected by

the data evolved, and to modify the affected views based on pre-defined roles. For

example, when a schema evolution occurs in a DS, the data provider triggers the

40

schema evolution detection of the DS. The schema evolution detection checks and

modifies the exporting view definitions in the meta-database of the DS corresponding

to the schema evolution. The schema evolution detection then checks whether the

importing view definitions in the DIS require modification. If it does, the schema

evolution detection of the DS calls the schema evolution detection of the DIS which

checks and modifies the importing views relevant to the changed DS. A registry

service is designed to record basic information about all the DISs, such as the location

and the name of a service. The schema evolution detection of a DS can find all the

DISs in the registry service. This may considerably reduce the cost of maintenance

brought by the database evolution. The algorithms and the roles of evolution detection

are further described in chapter 6.

3.4 Data Integrator Service

Data Integrator Service (DIS) is the service that exposes the global schema to users

and can receive a query from a user. It involves the following components to

undertake different processes:

 The Query Translator receives queries from users, and translates those queries to

Datalog queries in terms of global schema. The queries sent by end users may be

higher level queries which are not Datalog queries required by the DIS to

undertake the containment test. However, translating higher level queries to

Datalog queries is not our focus in this research. For simplicity, we assume that

the end users send the queries which are in an extended version of Datalog

language.

 The Query Decomposer decomposes the query into subqueries that are in terms of

importing views which represent source databases based on view definitions

stored in the meta-database.

 The Query Optimizer is a common component of a data integration system or a

distributed databases systems, which optimizes queries and then improves the

performance of the system. However, it will not be described in this thesis since

Query Optimization is beyond the scope of this research.

 The Query Delivery and Result Composition: further divides the subqueries into

smaller pieces each of which is relevant to a single source database. It then sends

those queries to corresponding DSs which will return the results back to DIS. The

41

DIS acts the same way as the mediator in a mediated data integration approach.

 Meta-database (MDB) is a database where metadata of both the global schema

and the importing views of each source database. This is the most important

component in this architecture as most processes involved in this architecture are

based on the information in the meta-database. The schema evolution detection

particularly relies on the view definitions in the meta-database.

 Schema Evolution Detection is another important component which is invoked by

the DS where changes in the local database schema occur. It aims at checking

which importing views of that DS are affected by the changes. It then modifies

the affected views probably with human intervention.

The dashed rectangles in the DIS shown in Figure 3-1 represent the components and

processes which are not involved in this research and are therefore not described in

further detail. In general, the function which is usually accessed by users is the Query

Translator, while Evolution Detection is mostly invoked by DSs.

Although there is only one DIS in the architecture illustrated in Figure 3-1, more DISs

that are replications of each other can be used in order to improve the performance.

Every DIS is registered into the registry so that users and DSs and other applications

are able to find the correct DIS. For example, the name of a relation schema in one of

the source databases changed. In order for user queries to run properly, the exporting

views involving that relation schema have to be modified correspondingly.

Consequently, the corresponding importing views at DIS site may need to be modified

in order to keep the consistency with relevant exporting views. Therefore, the DS

needs to search the registry to find all relevant DISs and invoke the evolution

detections of the DISs to keep the importing views up to date.

3.5 Data Services

DSs are the services which accept the queries sent by a DIS and then translate those

queries which are the exporting views into queries over the local schema. A DS

exposes the exporting views as its schema for external applications (e.g. integrator

services). Each database provider needs to expose their database as a DS which can be

accessed by DIS and other external applications via a SOAP message which involves

42

the name of the method and the query which can be processed by that method. The

queries transferred within SOAP messages are in a standard query language agreed by

all the DISs and DSs involved in the system, conjunctive query is used in this

research.

Query Convertor

Query Executor

Schema Evolution Detection

Meta-database

(View Definitions)

Data Integrator Service

Registry

Figure 3-4 The Structure of Data Service

Figure 3-4 shows the components of a DS and how they work cooperatively. Four

components are involved in a DS as follows:

 Query Converter: accepts the Datalog queries sent from the DIS and then convert

those queries into the queries in the query language which can be understood by

this DS and is used to build the exporting views on the underlying source

database. In this research, every DS builds its exporting views using relational

algebra. Therefore, the translated query is still on the exporting views, but

expressed in terms of relational algebra operators.

 Query Executor: decomposes the translated query based on the definitions of the

exporting views and produce subqueries on the underlying local database schema.

It then executes these subqueries on the local database and composes the results

which will be returned to the query converter. As the decomposed subqueries are

still in relational algebra, the query executor is also responsible for converting

those subqueries into queries in a query language (e.g. SQL) which can be

43

executed in the local database management system.

 Schema Evolution Detection: is responsible for detecting any changes in the

schema of the local database and examining whether the changes have affected

the definitions of the exporting views. If this is the case, it then applies

modifications automatically to the views definitions. This component works

together with the evolution detector of the DIS to keep the consistency between

the exporting views at the DS site and the importing views at the DIS site.

 Meta-database: is the database where the local schema and the exporting views of

the source database (DS) are stored. It also enables the evolution detector to

detect changes on local schema and modify the affected exporting views simply

by retrieving and updating the meta-database.

Each database provider needs to publish its database as a DS. Therefore, the DS and

the source database have a one-to-one relationship, meaning that a DS uniquely

represents a source database in this research. The database exposed by a single DS is

usually a database which is managed by a single DBMS (e.g. MySQL, Oracle or

DB2), although in practice it can be another distributed database which has a global

schema and is able to accept and execute queries on it. In the latter case, the query

executor needs to invoke an extra component which can convert the queries in

relational algebra into queries in the query language which can be understood by the

distributed database management system. Even if the exposed database is a single

database, the query executor has to convert the subqueries into queries in the language

which is supported by the local DBMS. For the time being, we focus on the case

where the underlying databases are all single databases and the query language

supported by all of the databases is standard SQL, as the conversion between the

relational algebra and other languages is beyond the scope of this research. In addition,

how to involve distributed databases as local databases is another problem which is

left for future work and is further discussed in a later chapter.

3.6 Registry Service

In SOA and web service architecture, registry service is a central component to enable

dynamic service discovery. However, the current UDDI specifications fail to provide

such information as quality of service and semantic information for an external

44

application to not only understand how to access the service but also examine which

one is providing better service suitable for the external application. As such, in this

research, it was initially designed that the registry should store the metadata of all the

databases involved so that DISs can compose queries on the fly based on information

in the registry. However, a replication of the meta-database in each DIS is eventually

proposed for the following reasons:

 Current specifications of the registry in both SOA and web service architecture

fail to provide the metadata of the source database of a DS.

 Although the registry can be extended to describe the semantic information of

databases, the access to the registry can be extremely intensive when there are a

large amount of DISs. Building a meta-database in each integrator service may

avoid more interaction across the network and increase the performance of the

integrator services.

Therefore, the registry in this architecture is rather a simple service which aims at

enabling DSs to find how to access all the DISs when the schema of the database in a

DS has changed. A DS needs to access the registry to obtain information of the DISs

only when the importing views stored in the DISs require modification. In this

architecture, a DIS does not access the registry to gain the information of a DS when a

user raises a query.

Consequently, the registry service records only some basic information of DISs shown

as follows:

 Names and URIs of all the DISs involved in the integrated system.

 The name of the schema evolution detection function of every DIS which can be

accessed by a DS.

As each DS must record the location and the access method of the registry, every DS

requires modification if the registry changes. However, it is assumed in this research

that the registry is managed by the administrators of the integrated system and

therefore does not change frequently. Although the access to the registry may increase

when DSs change frequent, we assume that the user queries come more frequently

than the evolution of the DSs.

45

3.7 Characteristics of Architecture

This section discusses various characteristics of EA-SODIA by comparing it with

current approaches such as data warehousing, federated databases and data mediation

which have been described in chapter 1. The characteristics examined are the

flexibility and the scalability of the approaches, the complexity of creation and

maintenance of the system based on those approaches and the performance and the

completeness of the result produced. By complete result we mean that a result of a

query is referred to as a complete result if the result has all the tuples which can result

from all the databases in the integrated system when applying the query to each of the

databases. Namely, the integrated system can find an answer to a query as long as

such an answer exists.

Table 3-1 shows some simple results of comparison on the above characteristics

between EA-SODIA and current major architectures.

 Flexibility Scalability Complexity

of Creation

Complexity

of

Maintenance

Performance Complete

-ness of

result

Data

Warehousing

Low Low High High High Complete

Tightly

Coupled

Data

Federation

Low Low High High Low Complete

Loosely

Coupled

Data

Federation

Medium Medium High High Low Complete

Mediation High High Medium Medium Medium Incomplet

e

EA-SODIA High High Low Low Medium Incomplet

e

Table 3-1 Comparison of characteristics among major approaches

Data warehousing aims at integrating data from various sources by providing a

unified view of them. It also aims at providing summarized and analytical information

requested by users in relatively short response-time. This goal is archived by

pre-storing the filtered data of the unified view in a single repository so that end users

can query on this repository instead of accessing a large set of databases. Therefore, it

may produce the best performance when end users ask queries on the unified view.

46

Because each involved database is integrated and accessed to produce the virtual view

as long as it has the data requested, a data warehousing system can produce a

complete result to the end user. However, data warehousing may provide lower

flexibility and scalability in some environments. It becomes difficult to build a data

warehousing system when the number of data sources becomes very large. It is not

flexible enough because it can not ask the queries which were not expected when

building the system.

In addition, the cost of creation and maintenance can be extremely high when the

number of databases is very large and/or the sources are likely to be updated

frequently. This is due to the fact that each database requires a wrapper to load and

pre-process its data and an efficient approach to refreshing the data warehouse when

the data in data sources has been updated. Data evolution, the major focus of our

research, is currently an unsolved problem in maintenance of the system. As the data

of the unified view is pre-stored and refreshed periodically, data warehousing does not

allow changes in data sources and in their schema.

Data federation provides semi-autonomy for each component (database system)

involved. The source database can not be called “fully-autonomous” because each

database is modified by adding an interface that allows communication with other

databases in the federation. A tightly coupled federated database system is static and

inflexible, as it does not allow adding or removing databases easily. It produces

relatively lower scalability due to the large number of interfaces that need to be

written for each source database to communicate with all the others. A loosely

coupled federated database system has similar problems. Although it makes the source

databases more autonomous, it requires a huge amount of work for the schema

translations and becomes too tedious with a large number of databases in a federation.

Consequently, creation of a data federation is a complex and time-consuming work.

Similar to data warehousing, a federated database system is hard to maintain and

evolve. When compared with data warehousing, it provides lower performance, but

provides updated and complete results each time.

Comparing with the above architectures, a mediated system is more flexible and more

scalable. The involved source databases have complete autonomy which means it is

47

easier to add or remove source databases. Instead of writing interfaces for each

database to communicate with all the others, wrappers need to be built for each

database to make its own data accessible to the mediator. Consequently, less work is

required to create and maintain a mediated system. A mediated system, which adopts

LAV as the approach to integrating source databases and creating the global view, is

able to remove or add a source database more easily. LAV is also able to produce a

better performance than a federated database system does when the number of source

databases is very large. However, as the query process of LAV is based on query

containment test, a mediated system is more likely to provide incomplete result. The

discussion of finding complete result for a query using LAV can be found in [68].

Again, data evolution is still a problem.

EA-SODIA is to some degree similar to the mediation approach, providing better

flexibility and scalability. It is more flexible and scalable than a mediated system

because service-oriented architecture is adopted which exposes source databases as

DSs instead of building wrappers for each database. Moreover, RSMV makes an

EA-SODIA system more flexible and feasible, as it tackles schema reconciliation at

each source database by creating views in the meta-database instead of writing

hard-coded programs. It also reduces the cost of creation and maintenance of the

system. The most important feature, the focus in this research, is that data evolution is

handled much easier in an EA-SODIA because there are no hard-coded queries and

programs for schema reconciliation. As LAV is used to populate the global view, the

results may be incomplete.

To sum up, data warehousing is preferable when source databases are permanent, do

not get upgraded too often and it is easy to predict what kind of queries the users will

ask. It provides better performance than the others. However, data evolution may be a

nightmare for the maintainers of a data warehouse system. Among the two traditional

architectures based on the virtual view approach, the mediated approach is chosen

more often, as creating and maintaining federated systems are costly and

time-consuming. In the environment where source databases are evolving frequently,

however, EA-SODIA may be preferable to the others above.

48

3.8 Summary

This chapter presents an overview of the Evolution Adaptive Service-Oriented Data

Integration Architecture (EA-SODIA). Each service in the architecture is introduced

with its functionality. The DIS dynamically binds the DSs based on the algorithm,

RSMV. The RSMV also eliminates the heterogeneities between the local schemas and

the global schema by building views. Both the DIS and the DSs maintain a

meta-database that store the metadata of the local schemas and the global schema and

mappings (importing views and exporting views). The function, schema evolution

detection, is provided at both DIS and DS to work together to tackle the schema

evolution problem. The algorithms, RSMV and schema evolution detection and query

decompositions, are introduced in detail in chapter 4, 5 and 6, respectively.

49

Chapter 4 Schema Reconciliation and Meta-database

4.1 Introduction

Chapter 3 presents an overview of the Evolution Adaptive Service-Oriented Data

Integration Architecture (EA-SODIA) which is easier to maintain when the databases

integrated evolve. Each component in the architecture is introduced. This chapter

describes, in detail, how the schemas of various databases to be integrated are

reconciled by constructing mappings from each local database schema to the global

schema using the algorithm Relational Schema Mapping by Views (RSMV) in order

for the architecture to be maintained more easily when changes of the databases occur.

More importantly, representing view definitions resulting from RSMV in the

meta-database is a crucial part of the research which prepares the integrated database

system for evolution detection and automatic view modification.

An overview of schema reconciliation with its three basic steps to integrate various

source databases is presented, followed by a detailed and formal description of each

step. The three steps are Design of Global Schema, Integrating Source Databases and

Conversion from Local Schema to Global Schema, respectively. The latter two

comprise RSMV. The rules and functions that are required to complete those steps are

defined throughout each section. The results of RSMV, view definitions (mappings),

are defined by set theory instead of hard-coded programs and stored in a

meta-database. It is explained in detail how relations and views and relational algebra

operators are represented as set. The case study produced in chapter 7 is used to

demonstrate how schema reconciliation can be achieved.

50

4.2 Overview of Schema Reconciliation and RSMV

One of the goals of the architecture in this research is to provide end users with a

unified view over the data in various underlying databases as if they were a single

database. In this work, a global schema which comprises of virtual views is designed

on which users can raise queries as if the global database is materialized (data are

physically stored). However, the real data are actually stored in underling source

databases which are in fact the ones users intend to access. Therefore, one of the roles

of the integrated system is to accept a query over global schema from a user and

access the corresponding source databases individually for data and then combine

those data to produce a final answer to the user. The schema of a source database is

called Local Schema in this research. Obviously, one of the main tasks in the design

of a data integration system is to establish the mapping between global schema and

the source databases, in order for the system to understand which source databases to

access and how to access them. In this work, the task is called Schema Reconciliation.

We propose an approach to achieving Schema Reconciliation by establishing

mappings between local schemas to the global schema. The approach is called

Relational Schema Mapping by Views (RSMV) which adopts some concepts from

both Schema Mapping and Local as View (LAV). It builds a mapping between each

local schema and the global schema individually. Figure 4-1 shows the general

process of Schema Reconciliation using RSMV.

51

Global Schema A Local Schema

Schema Reconciliation by RSMV

Mapping

Figure 4-1 Process of Schema Reconciliation by RSMV

It can be seen from Figure 4-1 that the input of RSMV are the global schema and a

local schema and the output is the mapping between them. Each source database,

which is to be involved in the integrated system, needs to go through the above

process using RSMV.

In order to describe the approach formally, let {R1, R2,…,Rn} be the set of relation

schemas in the global schema, we denote the global schema as GS{Ri} (i = N) which

is the set of all relation schemas in the global schema. Let {S1, S2,…,Sn} be the set of

relation schemas in a source database D, a local schema of a source database is

defined as a set LS
D
(Si) (i=N) which is the set of all relation schemas in D. The

mapping between the global schema GS and a local schema LS
D
 is denoted as M.

Therefore, the process Schema Reconciliation by RSMV is defined as a function:

RSMV: (GS, LS
D
) M

The function means that given a pair of a local schema and the global schema, the

52

RSMV produces a mapping between them. Namely, for each source database

participating in the integrated system, there is a mapping between the global schema

and its local schema. Therefore, let the set {D1, D2,…Dn} be the set of all source

databases participating in the integrated system, the integration of those databases can

be defined as:

I {(GS, LS
Di

, Mi)} (i=n)

It is a set of triples each of which denotes the integration from a local schema to the

global schema. We will define the mapping M in more detail later.

Designing the global schema may be the first step of constructing the integrated

system, as all the local schemas are to be integrated into the system by establishing

mappings between the global schema and them. Therefore, the schema reconciliation

can be conducted on the premise that the global schema already exists. Schema

reconciliation by RSMV involves two basic steps to integrate various source

databases, which are described as follows:

 Eliminating Heterogeneities between Local Schema and Global Schema: this

step is to map each local database schema to the global schema by defining

exporting views over the local database, in order to eliminate heterogeneity. Most

types of heterogeneity will be tackled through this step. Therefore, the exporting

views built on local database schema are homogeneous to the global schema (It

will be formally defined how the views can be homogeneous to the global schema

in a later section). Relational algebra operations are used to define the exporting

views, because in this research the source databases are all relational databases

and the relational algebra is easily translated into other languages. The exporting

views are then ready to use in the next step.

 Integrating Source Databases: once each database schema has been converted to

53

comply with the global schema by building exporting views at its own site, the

exporting views are then ready to be integrated with the global schema.

Integrating with the global schema aims to build a relationship between the global

schema and the local schema, indicating what information a source database is

providing. Therefore, the Query Composer can find which source databases

contain the information required by an end user when the end user raises a query

on the global schema. LAV is used in this step to define exporting views

representing a source database as importing views over the global schema.

The results of the above two steps are exporting views over the local schema and

importing views over the global schema, respectively. The importing views and the

exporting views are associated with each other to constitute the mapping between the

local schema and the global schema. The process of RSMV can be further illustrated

in Figure 4-2.

54

Eliminating Heterogeneity

Integrating Source

Databases

Global Schema Local Schema

{(Importing View, Exporting View)}

Figure 4-2 The Process of RSMV with Its Two Steps

In fact, the relationship between importing views and exporting views is a one-to-one

relationship. That is, for each importing view, there is an exporting view such that

they have the same schema (same name and attributes). The difference between them

is their definition. The importing view is defined over the global schema, while the

exporting view is defined in terms of the local schema. Consequently, the relationship

between the global schema and the local schema is indirectly established.

Having introduced the importing views and the exporting views resulting from the

above two steps, we can now formally define the mapping M. Let {ImVi} be a set of

importing views defined in terms of the global schema GS, and {ExVi} be a set of

exporting views defined in terms of the local schema LS of a source database D , the

mapping from LS to GS is a set of pair (ImVi, ExVi), denoted as:

55

M
LSGS

{(ImVi, ExVi)}

The function RSMV can then be denoted as:

RSMV: (GS, LS
D
) M

LSGS
{(ImVi, ExVi)}

We will describe importing views and exporting views formally in more detail in later

sections.

The most important thing in this research is that the exporting views and importing

views are stored in a meta-database along with the global schema and all local

schemas and other information about the source databases and their DS. It turns out

that integrating a source database requires no hard-coded programs or queries so that

the automatic maintenance can be undertaken when a source database evolves. The

meta-database is described in detail in a later section of this chapter and in Chapter 6.

4.3 Design of Global Schema

In order for the integration system to provide end users with a unified view of various

distributed databases, a global schema needs to be created on which end users can

raise queries as if there is only one database. Although different database designers

may model real-world concepts in different ways, in one application area there must

be similarity in those databases because they model the same concepts. The global

schema should be derived from the requirements of the integration system.

Although there are a couple of models to semantically represent a global schema, in

this work, for simplicity, the global schema is designed in a relational model.

However, our approach has the potential to work together with other approaches

which focus on other issues of database integration. The results of this step are:

 GS {Ri}: a set of relation schemas representing real-world concepts to be

56

modelled in the integrated system. These relation schemas are the schemas to

which all local schemas are supposed to map.

 Organizational structure of all data providers: a hierarchical structure of all

database providers which are involved in the integrated systems. This is

represented as a tree in this work.

 AG: a set of all attributes which appear in relations in the global schema, called

Global Attribute Domain. The formal and more detailed definition is given

shortly.

4.3.1 Global Schema

In [82], it is explained that the name of a relation and the set of attributes for a relation

is called the schema for that relation. In the relation model, a database consists of one

or more relations. The set of schemas for the relations of a database is called a

relational database schema, or just a database schema.

In this work, the global schema can be referred to as a relational database schema, as

the integrated system makes users feel that they are accessing a single database with

the global schema. Therefore, as defined in the previous section, a global schema is a

database schema which consists of relation schemas. Usually, a relation schema is

represented as:

R (A1, A2,…,An)

Where (A1,A2,…,An) is a set of all attributes of the relation R. In a later section

introducing the meta-database, we will try to represent and store the relation schema

in the meta-database.

The third normal form of database may not need to be considered very much when

designing the global schema because the integrated database system is not

materialized. However, there are still a few rules for designing the global schema in

order for schema reconciliation to be conducted easily.

 Every relation in the global schema must be in at least first normal form.

57

 No composite attributes exist in any relation in the global schema. For example,

the property Name should be designed as a single attribute “Name” instead of

three attributes “FirstName”,” MidName” and “LastName”.

However, the design of the global schema relies on, to a large degree, experience and

expertise on both domain knowledge and database design. It also needs to refer to

existing distributed databases to be integrated. To sum up, an effective global schema

should be well designed to fulfil the requirements of queries on the integrated system

as well as be easy to associate with various local database schemas.

4.3.2 Organizational Structure of Source Databases

The organizational structure of databases categorizes the local databases (more

precisely database providers) by their various properties, such as location and

business type. Take the example introduced in Chapter 3, a database provider (an

enterprise) may be located in Newcastle, while another may be in Durham which

further belongs to County Durham. Users should be able to raise a query asking for a

computer from a store in Newcastle. Thus, the integrated system should be able to

access only the databases held in Newcastle and examine if there is one required

computer in stock.

The organizational structure of source databases is not an essential part of building the

integrated system from a technical perspective. The goal of it is to facilitate various

queries to narrow the search space or analyze and summarize the data. However, most

database application systems and database integration systems require querying by

various characteristics. It is taken into account in this research because in previous

projects, where the queries were written in hard-coded programs, the evolution of the

organizational structure gave rise to a large amount of maintenance work. This was

mentioned in Chapter 1.

Database providers can be categorized by several properties. One categorization can

58

be represented as a tree. For example, given a set of locations L {a, b, c, d, e, f} and a

set of databases D {D1, D2, D3, D4, D5}, the organizational structure is shown in

Figure 4-3.

a

b

d e

c

f

D1 D2 D3 D4 D5

Figure 4-3 A Tree of Organizational Structure of Source Databases

It is illustrated in Figure 4-3 that each node of the tree represents a database or a

location. A parent-child relation between two nodes represents a Locates-At

relationship between the elements on the nodes. For example, the relation “D1 is a

child of the parent d” indicates the relationship “D1 locates at d”. All parent-child

relations can be defined as a set P{(a, b), (a, c), (b, d), (b, e), (c, f), (d, D1), (d, D2), (e,

D3), (e, D4), (f, D5)}, which is a 2-place relation over L ∪ D. It is shown apparently

in Figure 4-3 that the leaves on the tree are all databases and vice versa. Such

properties as locations are called Categorization Property (CP) in this work.

We can then define an organizational structure tree formally. Let D be a set of source

databases and P is a set of CPs, the organizational structure tree is a pair (T, R) where

T is the union of D and P (D ∪ P) and R is a 2-place relation over T such that for

each element a, a ∈ T, if a has a parent x, x ∈ T, then (x, a) ∈ R.

Having given the formal definition, the organizational structure tree of the above

example can be then represented as:

({a,b,c,d,e,f,D1,D2,D3,D4,D5}, {(a, b), (a, c), (b, d), (b, e), (c, f), (d, D1), (d, D2), (e,

59

D3), (e, D4), (f, D5)})

4.3.3 Global Attribute Domain

Global attribute domain is in fact a ramification of the global schema because it is

derived from the global schema GS. However, it is described explicitly as a separate

set in this research as it is one of the criteria to examine the effectiveness of

eliminating the heterogeneity between the global schema and the local schema.

Assume that we have designed a global schema GS which is a set of relation schema

{Ri}(i≤n), we can define the global attribute domain. Let Ai be a set of all attributes

of Ri, Ri ∈ GS, the global attribute domain of GS is DGA = ∪i≤n{Ai} such that for

each Ri, Ri ∈ GS, if Ai is a set of all attributes of Ri then Ai ∈DGA.

It is called global attribute domain because the attributes of all the relation schemas of

the global schema are in it. It will be used to examine if an exporting view over a

local schema is effective and homogeneous to the global schema. This will be

introduced shortly in the next section.

4.4 Eliminating Heterogeneities between Local Schema and

Global Schema

Having explained how to design a global schema, this section introduces the first step

of RSMV to map each local database schema to the global schema by defining

exporting views on the local database. The aim of this step is to eliminate

heterogeneities between the local schemas and the global schema. More rigorously, it

is aimed at eliminating heterogeneity among the local schema. Therefore, the

existence of the global schema is not only for providing the unified view to users, but

also for providing a standard schema in order for the local schemas to be integrated. It

only needs to be considered how to map from a local schema to the global schema

when integrating a source database, instead of taking all other local schemas into

account.

60

The various types of heterogeneity existing among database schemas have been

formally defined in Chapter 1. Most of them need to be tackled in this step. As

mentioned above, in this research, each local schema is mapped to the global schema

individually. In order to eliminate the heterogeneities, the local schema needs to be

reconciled so that it is homogeneous to the global schema. This is achieved by

building views in terms of the local schema using a set of extended relational algebra

operators. The resulted set of views, called Exporting views, must be homogeneous to

the global schema.

A view is referred to as a derived virtual relation resulting from a query in terms of

one or more relations which should then have a name and a set of attributes as its

schema. Therefore, we can now formally define the term Homogeneous. Let R be a

relation schema and S{S1, S2,…, Sn} be a set of relation schemas, and DS is the

global attribute domain of S, R is homogeneous to S, denoted as Homo (R, S)

TRUE, if:

 Let A be the set of all attributes of R, then A DS.

 There is a set P{S1, S2…, Sm}, P S, such that R can be defined as a view in

terms of P.

Consequently, Let R {R1, R2,…, Rn} and S{S1, S2,…, Sn} be two sets of relation

schemas, and DS is the global attribute domain of S, R is homogeneous to S, denoted

as Homo (R, S) TRUE, if for each Ri, Ri ∈ R, Homo (Ri, S) TRUE

Subsequently, we can describe the process of eliminating heterogeneities formally. Let

GS be the global schema and LS be the local schema, the process of eliminating

heterogeneities is described as a function:

EH: LS ExV

where ExV is a set of views {ExVi} such that Homo (ExV, GS) TRUE.

61

Although it is called Eliminating Heterogeneities, this step does not aim at eliminating

all the heterogeneities and gaining a set of relations which are exactly identical to the

relations in the global schema. It aims at building a set of exporting views which are

homogeneous to the global schema so that they can be defined as views in terms of

the global schema. The entire process of eliminating all the heterogeneities relies on

not only this step but also the next step and query processing.

4.4.1 Relational Algebra Operators

Eliminating heterogeneities, in this work, relies on a set of relational algebra operators

which is a basic query language. An algebra, in general, consists of operators and

atomic operands. Relational algebra is a special algebra whose atomic operands are:

1. Variables that stand for relations.

2. Constants, which are finite relations.

Generally, relational algebra consists of some simple but powerful ways to construct

new relations from given relations. When the given relations are stored data, then the

constructed relations can be answers to queries about this data.[84,98]

A set of extended algebra operators is used to construct exporting views in terms of

the local schema. Those operators have been slightly modified to fulfil the needs in

this work. The complete description of the algebra operators used in this work can be

found in section A.1 of Appendix.

4.4.2 Exporting views

4.4.2.1 Expression Tree of a View

Writing single algebra operations on one or two relations as queries does not show the

power that the relational algebra has. However, the algebra operations take relations

as operands and the result of an operation is still a relation. Therefore, it is allowed to

form an expression of arbitrary complexity by applying operations to the result of

other operations. Consequently, more complex queries can then be constructed by

62

forming complex expressions. An expression can be represented as an expression tree.

The introduction and an example can be found in section A.2 of Appendix. The

explanation of an atomic view is also presented in section A.2 of Appendix.

4.4.2.2 Representation of an Exporting view

An exporting view in this work is in fact a resulting virtual relation of a query that is

constructed by an expression of relational algebra over relation schemas in a local

schema. As the expression can be represented as an expression tree with a sequence of

temporary views, for each exporting view, there is a tree structure to describe it

formally. Let R {R1, R2, …, Rn} be a set of relation schemas in a local schema LS, if

ExVi is an exporting view defined over R and V {V1, V2, .., Vn} is a set of all atomic

views on the expression tree such that R ∩ V = Ø, then ExVi is represented as a triple:

ExVi (V, Vi, R)

where Vi is an atomic view on the root of the expression tree, Vi ∈ V, and V is a set

of all atomic views on the tree and R is a set of all the relation schemas on all the

leaves.

If the expression tree shown in Figure 4-4 defines an exporting view, the exporting

view is represented as ExVi ({V01, V02, V03, V04, ExVi}, ExVi, {R, S}).

Although an exporting view is actually a normal view which is introduced in most

database texts, we represent it differently as a tree, for the reason that it is easy for the

evolution detection to search and modify an exporting view automatically.

4.4.2.3 Rules of Building Exporting views

In this research, in order to represent the views in the meta-database, several rules

need to be followed when constructing exporting views. Let ExV be a set of all

exporting views of a local schema LS, ExVi (V, Vi, R) be an exporting view, ExVi

∈ExV, then:

1. The schema of the exporting view is the schema of the view on the root Vi.

63

2. For each Ri, Ri ∈R, Ri must be a base relation schema in the local schema LS.

3. For each Vj, Vj ∈V, Vj must be an atomic view.

4. For each view Vj, Vj ∈ V, the attributes of Vj must be identical to the attributes

of the resulting relation of Vj’s expression. For example, V is a view derived from

the expression R (a, b, c) ∩ S (a, b, c). The attributes of the resulting relation are

(a, b, c), then the schema of V must be V (a, b, c).

5. Let ExVj be another exporting view, ExVj ∈ExV, and let B(B1, …, Bm) be a set

of all attributes of ExVj, if A is a set of all attribute of ExVi, then for each Bk, Bk

∈B, Bk ∉ A. (Namely, there is no another exporting view in ExV such that there

is one or more attributes that are also identical to the attributes of ExVi).

There is also another rule to follow in order for the evolution detection to modify the

views more efficiently afterwards. The rule dictates that for each relation in R, a view

must be built at first on the relation applying the projection operator on every attribute

of the relation. This rule is to make sure that all the attributes of every relation in an

exporting view must be renamed or combined to produce new attributes. Applying the

projection operation is divided into three cases:

1. If an attribute of the relation is not chosen as an attribute in the root view, then

this attribute is given a new name which is the same as its current name.

2. If an attribute of the relation is chosen as an attribute in the root view, then this

attribute is given a new attribute name which is the same as the name of the

corresponding attribute in the global attribute domain.

3. If two or more attributes of the relation are combined into a single attribute that

will appear in the root view, then these attributes are combined into a single

attribute that is given a new name which is same as the name of the

corresponding attribute in the global attribute domain.

Having applied this rule, each relation will only be taken as an operand by a

projection operator of an atomic view, in order to give each attribute of the relation a

new name, it does not matter if the new name is the same to the current name.

64

4.4.2.4 Integration of Source Databases

4.4.2.5 Importing Views

So far, the approach to eliminating the heterogeneity between local schemas and

global schema has been introduced. The local schema can then become homogeneous

to the global schema by building exporting views. However, the source databases still

have not been associated with the global schema so that a query raised on the global

schema can be decomposed and delivered to the relevant source databases. The

process of constructing relations between the global schema and local schemas is

called integration of source databases.

The exporting views built on a local schema represent the information that is provided

by that local schema. Therefore, integration of source databases can be referred to as

integration of exporting views and the global schema. In order to integrate the

exporting views to the global schema in this research, the set of importing views

corresponding to the exporting views are presented. Each importing view and its

corresponding exporting view have an identical set of attributes, although they can

have different names. Thus, building a relationship between importing views and the

global schema is the way the source databases are integrated. The approach, called

LAV, is adopted to integrate source databases. Figure 4-5 shows the integration of a

source database and the global schema.

65

Mediator

Importing

View 1

Importing

View 2

. . .

Importing

View n

G
lo

b
al S

ch
em

a

Single Source Database

External

View 1

External

View 2

External

View n

L
o

cal S
ch

em
a

. . .

Figure 4-5 The integration of a source database and the global schema

In Figure 4-5, it is illustrated that the importing views and the exporting views have a

one-to-one identical relationship. A related pair of an importing view and an exporting

view has an identical set of attributes. The only difference between them is that the

algebraic expression of an exporting view is defined over the local schema, while the

expression of an importing view is defined over the global schema. Therefore, we can

describe the relationship between a local schema and the global schema. Let ExV be

an exporting view on LS and ImV be the corresponding importing view of ExV on GS,

if Q is a query, the relationship between LS and GS is represented as:

Q(ExV) Q(ImV)

It means that the query Q on ExV provides a subset of answer to Q on ImV. In this

way, the local schema is associated with the global schema.

4.4.3 Local as Views (LAV)

LAV is an approach to connecting sources with a global schema. In the local-as-view

approach, the relation schemas in the global schema are referred to as global

predicates. In order to avoid confusion, we still use the term global schema. The

importing views representing the source database are defined as views in terms of the

66

global schema using an expression consisting of Datalog rules. A query that is a single

Datalog rule is often called a conjunctive query. The query to define the importing

view as a view over the global schema is a conjunctive query and we will use this

term in the remaining chapters.

Assume that there are two relation schemas R (a, b, c, d) and S (a, e) in the global

schema, and an importing view ImV (a, b, c, e) of a local schema, the query to define

the importing view can be represented as:

ImV (a, b, c, e) ← R (a, b, c, d), S (a, e), d > 100

where ← is regarded as “if”.

In LAV, we do not define the schema mapping as views over source databases. Rather,

for each source database, one or more importing views are defined over the global

schema. However, a user still raises queries over the global schema. These queries are

answered by discovering all possible ways to construct the query using the views

provided by the sources. This process relies on the approach, called containment test

of conjunctive query. It will be described in the next chapter.

A conjunctive query can be translated into a query using relational algebra. For

instance take the above query, the relational algebra query of it can be:

ImV (a, b, c, e) :- πa,b,c,e (σd>100 (R a S))

Conjunctive queries and relational algebra have identical powers of describing queries.

However, in LAV, the former is chosen because of its containment test which needs to

be applied. LAV and how to build queries using conjunctive query language are not

the focus of this research. We introduce it because the importing views defined by

conjunctive queries need to be represented in the meta-database that is introduced in

the next section.

67

4.5 Meta-database

The aim of this work is to construct an architecture for database integration systems

which is easy to maintain when evolution of the source database occurs. In order to

maintain a system more easily, hard-coded programs of queries for integrating source

databases need to be avoided as much as possible. The maintenance of hard-coded

programs is very complex and time-consuming, as they are difficult to comprehend.

In this architecture, however, all the queries are stored as structured data in a

meta-database which are easy for evolution detectors or humans to comprehend and

modify. We choose relational algebra as the language to define exporting views as it is

easily stored as structured data instead of hard-coded programs. This section

introduces one of the core concepts of the research, Meta-database. The meta-database

is a conceptual database in which we store all the data required to conduct RSMV.

4.5.1 Meta-data Representation in Meta-database

In order to describe the schema evolution detection clearly, the data that are stored in

the meta-database need to be represented and termed formally together with their

relevant concepts such as attributes and relational algebra. Metadata is the data that

describes other data. Therefore, the information we store in the meta-database is all

descriptive information (i.e. relation schema and expression description), not the

content of the relations or the results of the expressions themselves.

4.5.1.1 Attributes and Relations Representation

In the relational model, an attribute has two properties: name and domain. Therefore,

an attribute is a pair A (A, T) where A is the name and T is the type or domain of the

attribute.

In the meta-database, the name and the type are represented as string:

Name: String

Type: String

68

An attribute can then be regarded as a pair:

Attribute: (name: String, type: String)

A relation may be a base relation or a view in the meta-database. In fact, both a base

relation and a view in the actual local database schema are referred to as a base

relation in the meta-database, because they are created by the local database

administrators independently of the integrated system. A view in the meta-database is

the atomic view described previously, derived from other relations or views. In the

meta-database, base relation and view are both represented as relation schema

involving three properties: name and relation type and attribute list. The name is a

string that identifies the relation schema. The relation type is also a string that

indicates whether the schema is a relation schema or a view schema. The attribute list

is the list of attributes of the relation schema. Therefore, a relation schema

representing a relation or a view can then be represented as a triple:

Relation Schema: (n: Name, t: Relation Type, list: {A| A: Attribute})

The Relation Type of a relation is:

Relation Type: String

∀X: Relation Type, X ∈ {“Relation”, “View” }

If a relation schema represents a view, it also has an algebraic operator expression

which will be represented in a subsequent section.

4.5.1.2 Relational Algebra Operation Representation

As a view involves an expression of a relational algebra operation, a relational algebra

operation needs to be defined formally. An operation is one of the following relation

algebra operations:

Operation: Join | Selection | Projection | Grouping | Union | Difference |

Cartesian Product | Intersection

69

Each operation has a different representation of the expression and is defined

individually. A view expression of a view is an expression that consists of one of the

above operations. A view expression has two properties: operation type and operation.

The operation type is a string that indicates which one of the operations is used in the

view expression. The operation is the actual operation consisting of the view

expression. Therefore, view expression can be regarded as a pair:

VE: (t: Operation Type, o: Operation)

The Operation Type is defined as a string:

Operation Type: String

∀X: Operation Type, X ∈ {“Join”, “Selection”, “Projection”,

“Grouping”, “Union”, “Difference”, “Cartesian Product”,

“Intersection”}

.

4.5.1.2.1 Common Join

The operation common join can be regarded as a triple:

Join: (r1: Relation Schema, r2: Relation Schema, {C| C: Attribute})

The first two properties are two relation schemas participating in the operation,

termed operand relation schema, while the third is a list (termed common attribute list)

of attributes (termed common attribute) on which these relations are joined. Each

operation listed above has one or two operand relation schemas. Two constraints must

be followed by join operation:

1) The common attributes must be the attributes of both operand relation

schemas.

2) A join operation must have two operand relation schemas.

3) There must be at least one common attribute in the common attribute list.

The representation can be extended to capture the constraint.

70

Join: (r1(a, b, A): Relation, r2(c, d, B): Relatoin, C:{Ci | Ci: Attribute) |

C A ˄ C B ˄ C is not Ø

4.5.1.2.2 Selection

The operator selection has one operand relation schema and a condition, and can be

regarded as a pair:

Selection: (r: Relation Schema, c: Condition)

The first property is the operand relation schema. A condition is the condition under

which the tuples of the operand relation will be evaluated. The condition consists of

two operands and a predicate operator:

Condition: (a: Operand, p: Predicate, b: Operand)

An operand is either an attribute or a constant which is taken by the predicate operator.

An operand consists of two properties: class and content. The class refers to an

attribute or a constant. The content is the actual value written in the expression, which

is either an attribute or the value of the constant. The class and operand are formally

defined as:

Class: String

∀X: Class, X ∈ {“Attribute”, “Constant”}

Operand: (c: Class, x: Content)

The content, which is the actual value of the operand, is either an attribute when the

class is “Attribute” or a constant when the class is “Constant”. The content is defined

as:

 Content: Attribute | Constant

The constant consists of a value and a type. The value is a string which is the actual

value of the constant, while the type is same as the type of an attribute. The constant

71

is represented as:

Constant: (v: String, t: Type)

The predicate is a string representing the predicate operator applied to the condition.

Predicate: String

∀X: Predicate, X ∈ {“>”, “<”,“≤”,“≥”,“=”}

The set of operators can certainly be extended to involve other operators, in practice.

There are two constraints on the condition:

1) If the class of an operand is “Attribute”, then the content that is an attribute must

be an attribute of the relation r of the selection.

2) The domains of the two operands must be the same.

3) A condition must have two operands.

The type of an attribute or a constant can be denoted as: T(a), a ∈ {Attribute,

Constant}. Therefore the representation of selection is extended as:

Selection: ((n, t, A): Relation, ((c, a): Operand, p: Predicate, (d, b):

Operand): Condition) | (c = “Attribute”→ a∈A), (d = “Attribute”→

b∈A), T(a) = T(b)

4.5.1.2.3 Set Operators

The operations Union and Difference and Intersection have the similar formats and

therefore are described together. These operations all have two operand relation

schemas. They are represented as:

Union: ((n, t, A): Relation, (n, p, B): Relation) | A = B

Difference: ((n, t, A): Relation, (n, p, B): Relation) | A = B

Intersection: ((n, t, A): Relation, (n, p, B): Relation) | A = B

One constraint is defined from the above three operations:

72

Two operand relation schemas must have an identical set of attributes.

4.5.1.2.4 Cartesian Product

The operation Cartesian Product is represented as:

Cartesian Product: (r1: Relation, r2: Relation)

One constraint is defined for this operation:

A Cartesian Product operation must have two operand relation schemas.

4.5.1.2.5 Projection

The projection operator, consisting of a relation and a projection list, is represented

as:

Projection: (r: relation, L: Projection List)

As introduced previously, the projection list is a set of projection elements that can be

represented as:

Projection List: {element | element: (s: Source, a: Attribute)}

The projection element that is a pair of the list is an expression which combines or

calculates attributes or constants, and assigns the result to a new attribute. The second

property of the projection element, termed output attribute, which is an attribute, is

the new attribute that accepts the result. The first property, termed source, refers to the

attribute or constant or expression that produces a result for a new attribute.

The source has two properties: source type and source value. The source type is a

string that indicates the type of the source that may be “Attribute”, “Constant” and

“Expression”. The source value is the actual attribute or constant or expression.

Source: (t: Source Type, v: Source Value)

The Source Type is defined as a string as follows.

Source Type: String

73

∀X: Source Type, X ∈ {“Attribute”,“Constant”,“Expression”}

The Source Value is represented as:

Source Value: Attribute | Constant | Expression

An expression consists of operand list and an operator. The operand list is a list of

operands that were defined previously. The operator is an arithmetic or string operator

and is represented as:

Operator: String

∀X: Operator, X ∈ {“+”, “-”, “*”, “/”, “||”}

The set of operators can be extended in practice.

The expression is then represented as:

Expression: (o: Operator, operand list: {a| a: Operand})

There are three constraints on the above projection operator:

1) If the source is an attribute, then it must be an attribute of operand relation

schema r and the domain of it must be identical to the domain of the output

attribute. It is formally represented as:

Projection: (r (n, t, A): Relation, {((“Attribute”, v): Source, a:

Attribute)}: List) | v ∈A, T(a) = T(v)

2) If the source is a constant, then the domain of the constant must be identical to the

domain of the output attribute a to which the constant is assigned. It is formally

represented as:

Projection: (r (n, t, A): Relation, {((“Constant”, v): Source, a:

Attribute)}: List) | T(a) = T(v)

3) If the source is an expression, then all the operands that are attributes in the

operand list expression must be attributes of the operand relation schema r and

the domains of attributes and the constants must be identical to each other and to

74

the type of the corresponding output attributes.

Projection: (r (n, t, A): Relation, {((“Expression”, (o, {(Ci, Ei)}:l):

Source, a: Attribute)}: List) | Ci = “Attribute” → Ei ∈A, T(E1) =

T(E2) =…= T(En)

Description: if there is an operand in the operand list whose type is e, then for all the

operands in the list, the domains of them must be e.

4.5.1.2.6 Grouping

The grouping operation can be regarded as:

Grouping: (r: relation, g: {Ai | Ai: Attribute}, l: {e | e: (a: Aggregation, b:

Attribute)})

As introduced in Chapter 3, the operand relation schema indicates the relation on

which the grouping operation is applied. The second property is a list (termed

grouping attribute list) of attributes (termed grouping attribute) by which the relation

will be grouped. The third property of the grouping operation is a list of pairs, called

Aggregation List, to average or aggregate an attribute and put a new attribute name on

the result. The pairs in the list are termed aggregation element. The aggregation of an

aggregation element in the aggregation list represents aggregation operator to

aggregate an attribute, while the second element of the aggregation element is termed

resulting attribute accepting the result of the aggregation operator.

The aggregation can be represented as:

Aggregation: (ao: Aggregation Operator, a: Attribute)

The aggregation operator refers to the type of the operator applied in this aggregation.

The second property that is an attribute, termed operand attribute, refers to the

attribute on which the operator is applied. The aggregation operator is represented as:

Aggregation Operator: String

75

∀X: Aggregation Operator, X ∈ {“MIN”, “MAX”, “SUM”, “COUNT”,

“AVG”}

There are two constraints on the grouping operation:

1) In the grouping operation, every attribute that appears in the grouping attribute

list g and appears in an aggregation must be an attribute of the operand relation

schema r.

2) In each aggregation element of the aggregation list, the domain of the aggregation

operand of the aggregation element must be identical to the domain of the

resulting attribute paired to it.

The grouping operator is then extended as:

Grouping: ((n, t, A): relation, g: {Ai | Ai: Attribute}, l: {e | e: ((a, c):

Aggregation, b: Attribute)}) | (∀Ai, Ai ∈g, Ai ∈A), (∀e ((a,c), b), e ∈l, c

∈A), T(c) = T(a)

4.5.1.3 Exporting views

An exporting view consists of a tree of atomic view schemas and relation schemas.

The schema of an atomic view has been defined previously. However, a complete

atomic view also has a view expression of relational algebra operations to define it.

The view expression has been defined previously:

VE: (t: Operation Type, o: Operation)

Thus, the entire temporary view is regarded as a pair:

Atomic View: ((n, t, A): Relation, v: VE) | t = “View”

The first property is the view schema to be taken by another atomic view, while the

second property is the view expression. However, there is as yet no relationship

between the attributes of the schema of the atomic view and the attributes of operand

relation schemas in the expression. Therefore, the following rules are defined in order

76

to establish matching between the schema of the view and the output relation schema

of the expression. Let V (r(n, rt, A), v(ot, o)) be an atomic view,

1) If the operation type ot is “Join” and o is represented as o(r1, r2, C), let B be a set

of all attributes of r1 and D be a set of all attributes of r2, then the attributes A of

the view schema r of the atomic view V is the union of B and D, denoted A = B

∪ D.

2) If the operator type ot is “Selection” and o is represented as o(r1, C), let B be a

set of all attributes of r1, then A is equivalent to B, denoted A = B.

3) If the operator type ot is “Union” or “Difference” or “Intersection” and o is

represented as o(r1, r2, {m | m: (Ai, Bi)}), Let B be a set of all attributes of r1 and

C be a set of all attributes of r2, then A is equivalent to B and C, denoted A = B =

C.

4) If the operator type ot is “Cartesian Product” and o is represented as o(r1, r2),

Let B be a set of all attributes of r1 and C be a set of all attributes of r2, then A is

the union of B and C, denoted A = B ∪ D.

5) If the operator type ot is “Projection” and o is represented as o(r, L{(Si, Bi)}),

Let C be a set of attributes such that for each (Si, Bi), (Si, Bi)∈L, Bi ∈C and for

each Ci, Ci ∈ C, there is a (Si, Bi), (Si, Bi)∈L and Bi = Ci, then A is equivalent

to C, denoted A = C.

6) If the operator type ot is “Grouping” and o is represented as o(r1, B, L{(Ai, Ci)}),

Let D be a set of attributes such that for each (Ai, Ci), (Ai, Ci)∈L, Ci ∈D and

for each Di, Di ∈ D, there is a (Ai, Ci), (Ai, Ci)∈L and Ci = Di, then A is union

of B and D.

The above rules need to be followed not only to represent atomic views in the

meta-database but also to conduct the automatic view modification that will be

introduced in Chapter 6.

Recall that an exporting view was defined as tree. The exporting view tree is now

extended to represent an exporting view in the meta-database as:

77

Exporting View: (v: {t | t: Atomic View}, r: Atomic View, l: {(n, t, A) | (n,

p, A): Relation}) | p = “Relation” | r ∈v

The first property is a list of all atomic views, termed atomic view list, involving the

atomic view that is the final answer. The second property is the atomic view that is the

final answer (the root of the tree), termed root view. The third property is the set of all

base relation schemas which is in the Local Schema, termed leaf list. The relation

schemas in the leaf list are termed leaf relation schema.

The constraints of the representation of an exporting view are:

1) There must be at least one leaf relation schema in the leaf list of ExVi. (leaf

list is not Ø)

2) The root atomic view must be also in the atomic view list.

3) There is an atomic view V in the atomic view list of ExVi such that the

operation type of view expression is not “Projection” and there is an operand

relation schema R of V such that the relation type of R is “Relation”.

4) An atomic view in the atomic view list of ExVi has two parent atomic views

in the atomic view list of ExVi. Namely, there are two parent views such that

they have the same atomic view as one of their operand relation schemas.

4.5.1.4 Importing Views

Recall that the conjunctive query of an importing view is:

ImV (a, b, c, e) ← R (a, b, c, d), S (a, e), d > 100

As with an exporting view, an importing view has a view schema that is shown on the

left side of the “if” symbol and an expression on the right side of the “if” symbol. The

expression consists of one or more subgoal relation schemas and one or more

conditions. The importing view is then represented as:

ImportingView: ((n, t, A): Relation, relations: {(r, c, B) | (r, c, B):

Relation}, conditions: {c | c: Condition)} | (1) t = “View”, (2) (∀x(r, c, B), x

78

∈relations, c = “Relation”), (3) (∀y((a, b), o, (e, f)): Condition, y

∈conditions, a = “Relation”→ (∃z(g, h, C):Relation, z ∈ relations, b

∈C), e = “Relation”→ (∃z(g, h, C):Relation, z ∈ relations, f ∈C)), (4)

T(b) = T(f)

The four constraints on the importing view are:

1) The type t of the view schema (n, t, A) of the importing view must be “View”.

2) For each subgoal relation schema x (r, c, B), x ∈ relations list, the c of x must be

“Relation”. Namely, each subgoal relation schema in the subgoal relation schema

list must be a base relation that is in the Global Schema.

3) For each condition y((a, b), o, (e, f)), y ∈conditions, if the class a of the first

operand (a, b) is “Attribute”, then there must be a subgoal relation schema z (g,

h, C), z ∈ relations, such that b ∈ C, and for each condition y((a, b), o, (e, f)), y

∈conditions, if the class e of the second operand (e, f) is “Attribute”, then

there must be a subgoal relation schema z (g, h, C), z ∈ relations, such that f ∈

C. Namely, for each operand of the condition, if the operand is an attribute, then it

must appear in one or more subgoal relation schemas in the subgoal relation

schema list.

4) The domains for the attributes or constants of the two operands of a condition

must be identical.

4.5.1.5 Global and Local Schema

The global schema can be regarded as a set of all relation schemas in it:

GS: {Ri | Ri: Relation}

The global attribute domain is then represented as:

GAD: {Ai | Ai: Attribute}

The local schema can be regarded as a pair, its name that is a string and a set of all

relation schemas in it:

LS: (name: String, r: {Ri | Ri: Relation})

As an integration system can have more than one local schema, the set of all local

79

schemas of it termed local schema list that is represented as:

LSL: {LSi | LSi : LS}

4.5.1.6 Mappings

The mapping from a local schema to the global schema is represented as:

Mapping: (name: String, list: {(ExVi: ExportingView, ImVi:

ImportingView)}

The mapping has two properties: name and map list. The name is a string that

indicates which local schema is integrated into the global schema by the mapping.

The name of the mapping is the same as the name of the local schema from which it

maps to the global schema. The map list is a list of pairs of exporting views and

importing views which represent the relationship between the local schema and the

global schema. A pair of exporting views and importing views is termed a map.

The mappings from all local schemas to the global schema are termed entire mapping

list and are then represented as:

MPS: {m | m: Mapping}

Note that for each local schema in the local schema list, there is only one mapping in

the entire mapping list such that the name of the mapping is identical to the name of

that local schema.

4.5.1.7 Organizational Structure

As introduced previously, the local databases may be grouped into a hierarchical

structure by categorization properties (CP). In order to store the organizational

structure tree in a meta-database, the new entity, called organizational property, is

defined as:

Organizational Property: (name: String, type: String) | type ∈

{“Categorization Property”, “Local Schema”}

80

The organizational property consists of a name and a type which are both strings. The

name of it is the name of the property, while the type indicates if the property

represents a local schema or a property. If a property represents a local database, the

name is the name of the local schema that must be in LSL. An organizational structure

tree by a property of the local database (i.e. Location) is represented as:

Organization: (n: Name, t: Tree)

Tree: (nodes: {(n, t) | (n, t): Organizational Property }, root:

Organizational Property, r: {a | a: Parent}) | ∀x (n, t): Organizational

Property, x ∈nodes ∧ t = “Local Database” → (∃y (a, r): LS, y ∈LSS,

n = a)

Parent: (a: Property, b: Property)

The name of the organization refers to which kind of property (i.e. “Location”) the

local databases are grouped. The tree refers to the organizational tree. The first

property of the tree is a set of all organizational properties on the nodes of tree, termed

node list. The organizational property on the root, termed root property, is referred to

as the second property of the tree. The third property is a list of the pairs, called

parent relation, which refers to the parent-child relationship between two

organizational properties on the tree. In the parent relation, the first property is

referred as to the parent (termed parent property) of the second property (termed child

property).

The list of all organizational structure trees is termed organization list and is

represented as:

Organization List: {o | o: Organization}

4.5.2 Representation of the Meta-database

After the representations of all the data are presented, the formal representation of the

meta-database itself can be presented. The meta-database is represented as a set of all

81

the data defined above:

MD: {lsl: LSL, gs: GS, domain: GAD, m: MPS, org: Organization List}

It can be seen that the meta-database consists of a local schema list and the global

schema and the global attribute domain and more importantly the entire mapping list

and organization list. The meta-database will be extended to store other information

in the remaining chapters of this thesis.

4.6 Summary

To sum up, this chapter introduces the algorithm, called RSMV, to integrate local

schemas to the global schema. It makes each local schema homogeneous to the global

schema by building views on it. It then integrates the local schema to the global

schema by building a mapping between importing views over the global schema and

the exporting views over the local schema. As such, the query processing can be

conducted based on the mappings. More importantly, all the schemas of relations and

views together with the expressions of the views are represented and stored in a

meta-database which is a conceptual database. Consequently, there is no hard-coded

program of queries to deal with the schema integration. This allows tools to search

and modify the mappings automatically with little human intervention so that the cost

of maintenance caused by the evolution of the database schema is minimized as much

as possible. The query processing and the approach to modifying the mappings are

introduced in subsequent chapters. Moreover, some other descriptive data such as

URLs of a database service may be added into the meta-database in practice, which

will be discussed in chapter 7.

82

Chapter 5 Schema Evolution Detection

5.1 Introduction

Chapter 4 introduced the approach to integrating source databases into the global

schema with heterogeneity eliminated and representation of the data in the

meta-database. The algorithm introduced in chapter 4 can be thought of as the

preparation for the algorithm presented in this chapter. This chapter introduces the

algorithm which identifies the affected views by evolution in the source databases,

and then automatically maintains the system by modifying the view definitions stored

in the meta-database.

Firstly it is explained how each database evolution can affect views. Rules are then

introduced to identify and modify the affected views. Based on the rules, two

processes of Schema Evolution Detection, Identification of Affected Views and

Automatic View Modification, are described in detail. It is also shown that sometimes

the views must be discarded following certain types of evolution.

5.2 Overview of Schema Evolution Detection

In a traditional software lifecycle, software maintenance is an important part

accounting for at least 50 percent of the total lifetime cost of a software system [101].

Among the seven phases of software maintenance process defined by IEEE [102],

design and implementation together with software comprehension require much more

effort from maintenance programmers; understanding and modifying the existing

programs is complex and time-consuming work.

A database integration system requires even more maintenance, because there is an

additional factor leading to the maintenance of the system: database evolution. In a

traditional integrated database system, a large amount of hard-coded queries over the

local schemas exist in order to both integrate source databases and provide results to

83

users. Therefore, a change in a source database may lead to a large amount of work in

modifying existing queries. Consequently, the system may become impossible to

maintain if the number of the source databases involved become huge.

In our architecture, as there are no hard-coded queries directly over local schemas, the

work caused by database evolutions is to understand and modify the data stored in

meta-database. As the view definitions are represented as structured data in the

meta-database, they are easier to understand by both humans and machines. Thus, a

software tool or a function can be produced to help maintenance programmers to

modify the existing views. Schema Evolution Detection is an algorithm that can be

used by a software tool to modify the existing views based on some rules. There are

two general processes that are undertaken in Schema Evolution Detection:

1) Identification of Affected Views: This process searches all views relevant to the

evolved source database in order to find all the views affected by the evolution

and therefore requiring modifications.

2) Modification of Views: This process modifies the affected views based on

previously defined rules. In some cases, this process may require human

interventions.

These two processes are actually stimulating the real activities taken by maintenance

programmers when maintaining the system manually. When an evolution occurs,

programmers need to find which programs are affected by the evolution based on

their knowledge. Having found the affected views, the programmers are then able to

modify these views in order for the system to work properly. This is again based on

their knowledge. Although the knowledge is held by individual programmers, most of

it is common knowledge and can therefore be defined as rules. The human activities

of maintaining the system can then be undertaken by software tools.

84

5.3 Identification of Affected Views

This section introduces the algorithm of identifying affected views by database

evolution based on rules. When an evolution occurs, either a programmer or a

software tool needs to find which parts of the system are affected and require

modification. In this research, as an evolution defined previously only has some

impacts on the data stored meta-database, all the programmer or a software tool needs

to do is to search in the meta-database. Figure 5-1 shows the process of Identification

of Affected Views.

Identification of Affected Views

Schema Evolution Meta-database

Affected Data

Rules

Figure 5-1 Identification of Affected Views

As shown in Figure 5-1, when a schema evolution occurs, the process of

Identification of Affected Views takes the evolution and the meta-database as its

inputs and produces a result which is a set of the affected exporting and importing

views based on the pre-defined rules. The evolution and the rules and the affected data

will be described in detail in the following sections.

85

5.3.1 Categorizations of Evolution

The evolution considered in this work can be generally categorized into three types:

 Schema Evolution: This refers to the evolution in local schemas of the

source databases. The schema of relations and the schema of the source

databases themselves may evolve over time.

 Organizational Evolution: This refers to the evolution in the organizational

hierarchical structure of the source databases.

 System Evolution: This refers to the evolution in the descriptive information

of the source databases or the services. For example, the name and URL of a

source database, which is used for programs to access the source database,

may change.

Schema evolution and organizational evolution have caused more maintenance costs

in previous data integration projects and are the central issues tackled by RSMV and

meta-database and Schema Evolution Detection. However, organizational evolutions

do not have any impact on the view definitions in the meta-database. The impact of

organizational evolutions is mainly on queries raised by end users. Therefore, the aim

of Schema Evolution Detection in this chapter is to automatically tackle schema

evolution. Therefore, the schema evolution is formally described in this chapter, the

algorithm of resolving organizational evolution will be described in the next chapter

introducing query processing.

System evolution can only lead to a tiny amount of work in our architecture due to the

flexibility of the service-oriented architecture. Therefore, system evolution is not

tackled by Schema Evolution Detection described in this chapter and will be

described together with the solution to tackle it in chapter 7.

5.3.2 Schema Evolution

Schema evolution occurs frequently and brings a large amount of work on

modification of hard-coded programs in traditional database integration systems. In

86

this work, the impact of schema evolution is on view definitions represented in a

meta-database, as there are no hard-coded queries. Each evolution can be referred to

as an operation applied on a source database. There is no material presenting detailed

illustration of possible evolution for the time being. This working defines the possible

evolution by extending the set manipulations provided for database administrators by

relational database management systems. This section presents a descriptive definition

of various schema evolution, while they are formally described using the data

representation in the meta-database. The schema evolution can be further divided into

three levels in this research:

 Attribute Level Evolution: This involves the changes in attributes. It means

that an attribute of a relation may be added, removed, or given a new name.

Moreover, the domain of an attribute may be changed.

 Relation Level Evolution: This involves the changes in relations. It means

that a relation schema in the local schema may be added, removed or given a

new name. This type of evolution is even more complex because a relation

schema may also be decomposed into two or more relation schemas while

two or more relation schemas may be merged into one relation.

 Database Level Evolution: This involves the changes in databases. It means

that a new source database may be integrated into the system while an

existing one may become unavailable.

5.3.2.1 Attribute Level Evolution

The following five evolutions are involved at this level:

1) Attribute Addition: A new attribute is added into a relation schema.

2) Attribute Removal: An existing attribute is removed from a relation schema.

3) Attribute Rename: The name of an attribute of a relation schema has changed.

4) Attribute Domain Change: The domain of an attribute of a relation has changed.

5) Attribute Decomposition: An attribute is partitioned into two or more attributes.

87

5.3.2.2 Relation Level Evolution

The following four evolutions are involved at this level:

6) Relation Addition: A new relation is added into a local schema.

7) Relation Removal: An existing relation is removed from a local schema.

8) Relation Rename: The name of a relation of a local schema has changed.

9) Relation Decomposition: A relation is partitioned into two or more relations.

In fact, relation decomposition is the combination of removal and addition of relations.

It consists of two operations that are:

1. Removing a relation from a local schema and then

2. Adding one or more relations into the local schema.

However, relation decomposition is described explicitly in this work for the following

reasons:

 It usually happens that a relation is removed because the database

maintainer is going to decompose the relation so that the database can be

in higher normal form.

 Removing a relation may lead to discarding some views.

 Adding new relations in local schema and building views on them have

to be done manually.

 Replacing a relation with other relations in a view definition can be done

automatically by software tools in this work.

Therefore, we believe that tackling this evolution automatically can reduce the work

of system maintenance.

5.3.2.3 Database Level Evolution

The following two evolutions are involved at this level:

10) Database Addition: A new local schema becomes available to be integrated into

the integrated system.

88

11) Database Removal: An existing relation is removed from a local schema.

The rename of a source database is referred to as a system evolution and therefore is

described in chapter 7.

5.3.3 Evolution Impact on the Integrated System

Although various schema evolutions have been listed in the last section, some of them

may have little or no impact on the integrated system so that they require no

automatic maintenance of the existing system. Some of them can be tackled manually

by a human requiring little work. This section discusses the impact of this evolution

on the integrated system. It also indicates which schema evolutions require automatic

maintenance by software processors.

5.3.3.1 Schema Evolution Having No Impact

Three evolutions are referred as to this type:

 Attribute Addition

 Relation Addition

 Database Addition

Adding new attributes, relations or source databases does not have any impact on the

existing system, because they did not exist when building the system and the data in

the meta-database. It does not require any automatic modification by a software

processor. Therefore, human maintenance programmers need to integrate them into

the integrated system manually. In the evaluation chapter, it will be shown that these

manual works are not complex in the architecture of this work.

5.3.3.2 Schema Evolution Having Impact

Eight evolutions are referred as to this type:

 Attribute Removal

 Relation Removal

 Attribute Rename

89

 Attribute Domain Change

 Relation Rename

 Attribute Decomposition

 Relation Decomposition

 Database Removal

As views are all defined in terms of relations and attributes, removal and change of

attributes and relations will have an impact on all the views whose definitions involve

the removed attributes or relations. When a schema evolution occurs, it means that the

relation schema in the local schema has changed. However, the existing views are

defined on the relation schemas before the evolution. Namely, the relation schemas

and the attributes in the view definition become inconsistent with the corresponding

relation schemas and attributes in the local schema. Consequently, these views

become invalid and cannot work properly so that the queries on these views cannot

work properly any more. The removal of a source database has an impact on all its

exporting and importing views as well as the organizational structure trees.

5.3.4 Representation of Evolutions in Meta-database

Various schema evolution has been described in the last section. Although the

representations of this evolution are easy to understand by humans, they still need to

be understood by software processors. This section represents this evolution further as

structured data in the meta-database. As the aim of representing the schema evolution

is for software tools to modify existing views, only the schema evolution having

impact are represented formally in the meta-database.

A schema evolution can be referred to as an operation which applies on the schema in

the meta-database. In order to indicate that an evolution must be of one of the schema

evolutions introduced previously, a new data type is defined which is Schema

Evolution Operation:

Schema Evolution Operation: Attribute Remove | Attribute Rename |

90

Attribute Domain Change | Attribute Decomposition | Relation Removal

| Relation Rename | Relation Decomposition | Database Removal

The representation of each schema evolution operation is described as follows:

1) Attribute Remove: This is represented as:

Attribute Remove: (r: Relation, a: Attribute)

It has two properties: original relation schema and original attribute. The first

property, original relation schema, is the relation schema whose attribute is

removed, while the second property, original attribute, is the attribute that is

removed.

2) Attribute Rename: This is represented as:

Attribute Rename: (r: Relation, original: Attribute, evolved: Attribute)

In addition to original relation schema and original attribute, it has the third

property, evolved attribute, which is the resulting attribute. The original attribute

is renamed to become the evolved attribute.

3) Attribute Domain Change: This has the same properties to attribute rename

evolution. It is represented as:

Attribute Domain Change: (r: Relation, original: Attribute, evolved:

Attribute)

The domain of original attribute is changed to the domain of the evolved

attribute.

4) Attribute Decomposition: This is represented as:

Attribute Decomposition: (r: Relation, original: Attribute, list: {Bi | Bi:

Attribute}, operator: Operator)

It also has an original relation schema and an original attribute as the first and

the second properties. The third property of attribute decomposition is a list of

evolved attributes that is derived from the decomposition of the original attribute,

91

termed evolved attribute list. The fourth property is an operator by which the

attributes in the evolved attribute list can be composed to produce the original

attribute. Any attribute decomposition that cannot be composed by an operator to

produce the original attribute is not considered as attribute decomposition in this

research.

5) Relation Removal: This is represented as:

Relation Removal: (r: Relation)

It only has one property: original relation schema that is the relation schema

removed.

6) Relation Rename: This is represented as:

Relation Rename: (r: Relation, r’: Relation)

The first relation is the original relation schema before the change. The second

relation is the evolved relation after change.

7) Relation Decomposition: This is represented as:

Relation Decomposition: (r: Relation, relations: {Ri | Ri: Relation}, list:

{Ai | Ai: Attribute})

The first element is the original relation schema to be decomposed. The second

element is a list of evolved relation schemas, termed the evolved relation schema

list. The evolved relation schemas are derived from the decomposition of the

original relation schema. The third element is a list of common attributes, termed

common attribute list. All the evolved relation schemas can be composed by a

join operation on these common attributes.

8) Database Removal: This is represented as:

Database Removal: (original: LS)

Database removal has one element that is the local schema (original local schema)

that has been removed in this evolution.

92

Note that each schema evolution operation has one and only one original relation

schema.

A schema evolution can then be represented as:

Schema Evolution: (ls-name: String, type: SchemaEvolutionType, evolution:

Schema Evolution Operation)

The first property is local schema name, a string, which indicates the local schema

where the evolution occurred. The second property is schema evolution type, a string,

which indicates which schema evolution operation applied.

SchemaEvolutionType: String

∀X: SchemaEvolutionType, X ∈ {“Attribute Remove”, “Attribute Rename”,

“Attribute Domain Change”, “Attribute Decomposition”, “Attribute

Composition”, “Relation Removal”,“Relation Rename”, “Relation

Decomposition”, “Database Removal”}

The third element of schema evolution is the schema evolution operation defined

above.

All the schema evolution can then be represented as a schema evolution list,

represented as:

SEL: {se: Schema Evolution}

5.3.5 Process of Identification of Affected Views

Having represented the schema evolution, the process of Identification of Affected

Views of a schema evolution can be described as a function:

IAW: (SE, MPS) Affected Map List

 Affected Map List: {(ExVi: ExportingView, ImVi: ImportingView)}

93

The process takes a schema evolution and the entire mapping list as its inputs, and

produces a map list that involves the maps in which the exporting view (termed

affected view) is affected by the schema evolution. The map is then termed affected

map.

5.3.5.1 Affection Rule

In order to conduct the Identification of Affected Views, the rule to define an affected

view is defined as follows:

 Given a schema evolution se on local schema ls, if the type of se is not

“Database Removal”, let ExVi be an exporting view of a map M of ls and R

be the leaf list of ExVi and r be the original relation schema of se, then ExVi

is an affected view of se if r ∈ R.

The map that has an affected view is called an affected map. The affected map list is

then a list of affected maps of a local schema. The above rule does not consider the

schema evolution database removal, as database removal require the complete

mapping of the local schema to be removed, and therefore does not undertake the

process of identification of affected views.

5.3.5.2 Process of Identification of Affected Views

When a schema evolution is applied in a local schema, the following steps are taken

as the process of identifying the affected views:

1) Let se be the schema evolution and r be the original relation schema of se, within

the entire mapping list MPS, find the mapping M whose name is the same as the

local schema name of se.

2) For each map mi of the map list of M, if there is a leaf relation schema Ri of the

exporting view such that r = Ri, then store mi into the affected map list AML.

94

5.4 Automatic View Modification

Having obtained the affected map list, the automatic modification of the affected

views can be undertaken. In this research, each schema evolution must be tackled

individually and immediately before the next schema evolution takes place. The

automatic view modification can be referred to as an operation to modify the affected

map list according to the schema evolution:

AVM: (SE, Affected Map List)

Although it is not presented in the operation, the modification is still based on some

rules. Generally, the aim of the automatic modification of the affected views is to

make the relation schemas and the attributes in the affected views consistent again

with their corresponding relation schemas and the attributes in the local schema in the

meta-database. By doing so, the affected views can become valid and work properly

again. The views that cannot become valid any more must be discarded by the process

so that they are not considered by the integrated system any more.

Assumption

There are three assumptions made as follows:

1. Before the schema evolution, all the views (exporting views and importing views)

are all syntactically valid and can work properly.

2. Modifying the affected map list will result in the update of the corresponding data

in the meta-database immediately.

3. When a schema evolution occurs, the corresponding relation schema or local

schema in the local schema list in the meta-database has been changed by the

evolution before Schema Evolution Detection.

5.4.1 Equality Rules

In order to describe the algorithm precisely, some rules must be defined to describe

the equality between two attributes and two relations. In addition, the association

95

between the local schema and its mapping is defined.

Attribute Equality: Two attributes are said to be equivalent if they have the same

name and the same type. Let A(a, t1) and B(b, t2) be two attributes, A equals B,

denoted A = B, if a = b and t1 = t2.

Relation Equality: Two relation schemas are said to be equivalent if they have the

same name and the same type and the same set of attributes. Let R(r, t1, A) and S(s, t2,

B) be two relation schemas, R equals S, denoted R = S, r = s and t1 = t2 and A = B.

Association between local schema and its mapping: A mapping is said to be the

mapping of a local schema if the name of the mapping is the same as the name of the

local schema. Let LS (n1, R) be a local schema and M (n2, list) is a mapping, M is the

mapping of LS or M is LS’s mapping, if n1 = n2.

5.4.2 Discard Rules

In some cases, the exporting views cannot be automatically modified and may need to

be discarded, because the removal of some of an attribute or a relation schema can

lead to the loss of semantic meaning of the views. By discard it means that the views

are removed from the meta-database and then will not be used by the integrated

system. We use the term discard rather than remove, because in practice a view may

not have to be removed from the meta-database. It is just made unavailable so that the

query processor and other software components in this architecture will not consider it

until it is modified and made available again. The discard rules are defined, in this

research, to examine in which cases the exporting views need to be discarded.

5.4.2.1 Validation Rules

The term valid atomic view must be defined before defining the discard rules. Recall

that, in section 4.6, some constraints are defined for each operation of the view

expression of an atomic view. An operation is said to be valid if all the constraints on

96

this operation are followed. An atomic view is said to be a valid atomic view if the

operation of its view expression is valid. An exporting view is valid if all the

constraints on the exporting view are followed.

5.4.2.2 Discard Rules for Atomic Views

An atomic view Vi (relation, view expression) should be discarded if one of the

following rules is true:

a) If the operation of the view expression of the atomic view Vi is not valid

(invalid).

5.4.2.3 Discard Rule for Exporting Views

An exporting view ExVi (atomic view list, root, leaf list) should be discarded if one of

the following conditions is true:

a) The exporting is not valid (invalid).

5.4.3 Process of Automatic View Modification

Generally, the process of the automatic view modification is firstly to apply the

schema evolution, which was applied on local schema, on corresponding atomic

views of an exporting view in order to keep the relation schema and its attributes in

the atomic views consistent with the actual relation schema in the local schema, and

then examine whether the atomic views should be discarded. If the atomic views are

not discarded, it means that the atomic views can work properly. Once all

corresponding atomic views are processed, it examines whether the exporting view

should be discarded. If so, the corresponding importing view should be discarded as

well as the map in the affected list.

Once a schema evolution has been applied and the affected map list has been output

by the process of Identification of Affected Views, the automatic view modification

takes the following steps to modify the affected map list. Let se be the schema

evolution and AML be the affected mapping list.

97

5.4.3.1 Process Tackling Attribute Rename

If the schema evolution type of se is “Attribute Rename”, let r be the original relation

schema of se and A1 be the original attribute and A2 be the evolved attribute, then for

each map Mi in AML,

1) In the leaf list of the exporting view of Mi, attempt to find a leaf relation

schema r’ such that r’ = r. If r’ is found, then attempt to find the attribute A’ in

the attribute list of r’ such that A’ = A1, if A’ is found, then substitute A2 for

A’.

2) In the atomic view list of the exporting view of Mi, attempt to find the atomic

view v such that r is identical to one of the operand relation schemas of the

operation of the view expression of v. If v is found, then attempt to find the

attribute A’ in the attribute list of the operand relation schema of the view

expression of v such that A’ = A1, if A’ is found, then substitute A2 for A’.

3) For each element in the projection list of the operation of the view expression

of v: if the source type of the source of is “Attribute” and the source value is

identical to A1, then substitute A2 for the source value; otherwise if the

source type is “Expression”, then for each operand of the source value, if the

operand is an attribute and the content of the operand is identical to A1, then

substitute A2 for the content of the operand.

4) Check whether the exporting view of Mi should be discarded based on

discard rules. If any rule is true, discard Mi and repeat 1 for next map.

The attribute rename evolution only has an impact on the atomic view that has the

original relation schema as its operand schema, because as defined in chapter 4, the

atomic view that is defined on a base relation schema must be the atomic view using

the projection operation. Therefore, other atomic views of the exporting view will use

this atomic view and its attribute instead of the base relation schema itself. Therefore,

the process first modifies the leaf relation schema in the leaf list of the exporting view

to keep it consistent with the actual relation schema. The process then modifies the

atomic view with the projection operation to keep the operand relation schema

98

consistent with the actual relation schema in the local schema. Next, if the renamed

attribute is used by the projection operation in its projection list change it to keep it

consistent. Finally, the process checks if the view becomes valid. This process does

not require human intervention and requires no change in the importing views.

5.4.3.2 Process Tackling Relation Rename

If the schema evolution type of se is “Relation Rename”, let r1 be the original relation

schema and r2 be the evolved relation schema, then for each map Mi in AML,

1) In the leaf list of the exporting view of Mi, attempt to find a leaf relation

schema r’ such that r’ = r1. If r’ is found, then substitute r2 for r’.

2) In the atomic view list of the exporting view of Mi, find the atomic view v

such that r is identical to one of the operand relation schemas of the operation

of the view expression of v. If v is found, substitute r’ for the operand relation

schema of v.

3) Check whether the exporting view of Mi should be discarded based on

discard rules. If any rule is true, discard Mi and repeat 1 for next map.

Similar to the attribute rename, this process only needs to change the name of the

corresponding relation schema in the affected views. The affected views are those

which have a projection operation. This process does not require human intervention

and requires no change in the importing views.

5.4.3.3 Process Tackling Relation Removal

If the schema evolution type of se is “Relation Removal”, let r be the original relation

schema, then for each map Mi in AML,

1) In the leaf list of the exporting view of Mi, attempt to find a leaf relation

schema r’ such that r’ = r. If r’ is found, then remove r’.

2) If there is no leaf relation schema in the leaf list of the exporting view of Mi,

then discard Mi and repeat from 1 for next map.

3) In the atomic view list of the exporting view of Mi, find the atomic view v

99

such that r is identical to one of the operand relation schemas of the operation

of the view expression of v. If v is found, discard v and let s be the relation

schema of v.

4) In the atomic view list of the exporting view of Mi, find the atomic view v’

such that s is identical to one of the operand relation schemas of the operation

of the view expression of v’. If v’ is found, then:

If the operation type of the view expression of v’ is not “Union”,

discard v’ and let s be the relation schema of v’ and repeat from 4:

otherwise remove the operand relation schema that is identical to s.

5) Check whether the exporting view of Mi should be discarded based on

discard rules. If any rule is true, discard Mi and repeat 1 for next map.

This process firstly removes the original relation schema from the affected atomic

view and then checks whether it is still valid. If not, it discards the atomic view. If the

atomic view is discarded, it must affect its parent view. Therefore, the process

removes it from its parent atomic view, and then checks if the parent view is valid. By

doing the above steps recursively, the complete exporting view will be modified to

work properly or be discarded. If the exporting view is discarded, the importing view

and the map will be discarded as well.

5.4.3.4 Process Tackling Attribute Decomposition

If the schema evolution type of se is “Attribute Decomposition”, let r be the original

relation schema of se and A be the original attribute and L{Bi,…,Bn} be the evolved

attribute of se, and op be the operator of se, then for each map Mi in AML,

1) In the leaf list of the exporting view of Mi, attempt to find a leaf relation

schema r’ such that r’ = r. If r’ is found, then attempt to find the attribute A’ in

the attribute list of r’ such that A’ = A, if A’ is found, then remove A’ and add

all the evolved attributes in L into the attribute list of r’.

2) In the atomic view list of the exporting view of Mi, attempt to find the atomic

view v such that r is identical to one of the operand relation schemas of the

100

operation of the view expression of v. If v is found, then attempt to find the

attribute A’ in the attribute list of the operand relation schema of the view

expression of v such that A’ = A1, if A’ is found, then remove A’ and add all

the evolved attributes in L into the attribute list of the operand relation

schema of the view expression of v.

3) Create a new source sc(type, value) such that the type is “Expression” and the

value is (op’, L’) where op’ = op and L’ = L.

4) For each projection element in the projection list of v, if the source type of

the source of the current element is “Expression” and there is one operand in

the operand list of the source value such that the content of the operand is

identical to A, then discard v and let s be the relation schema of v and go to 5;

otherwise if the source type of the source of the current element is

“Attribute” and the source value is identical to A, then substitute the new

source sc for the current source. Go to 6.

5) In the atomic view list of the exporting view of Mi, find the atomic view v’

such that s is identical to one of the operand relation schemas of the operation

of the view expression of v’. If v’ is found, then:

If the operation type of the view expression of v’ is not “Union”,

discard v’ and let s be the relation schema of v’ and repeat from 5;

otherwise remove the operand relation schema that is identical to s.

6) Check whether the exporting view of Mi should be discarded based on

discard rules. If any rule is true, discard Mi and repeat 1 for next map.

This process firstly finds the original attribute in the projection list of the atomic view.

It then changes the source that is the original attribute into an expression that

composes all the evolved attributes. This recomposes the original attribute. The output

attribute will not be changed and the value of it is the result of the expression that is

the same as the original attribute. This process does not require human intervention

and requires no change in the importing views.

101

5.4.3.5 Process Tackling Relation Decomposition

If the schema evolution type of se is “Relation Decomposition”, let r be the original

relation schema of se, and L{R1,…,Rn} be the evolved relation schema list of se, and

AL be the common attribute list of se, then for each map Mi in AML,

1) In the leaf list of the exporting view of Mi, attempt to find a leaf relation

schema r’ such that r’ = r. If r’ is found, then remove r’ and add all the

evolved relation schemas in L into the leaf list.

2) For an evolved relation schema in L:

i. Create a view schema vs such that the attribute list of vs is identical

to the attribute list of the current evolved relation schema and the

type of view schema is “View”.

ii. Create an empty projection list PL.

iii. For each attribute of the attribute list of the current evolved relation

schema, create a project element pe(s, a) such that the source type of

the source of s is “Attribute” and the source value of s is the

identical to the current attribute and the output element a is also

identical to the current attribute, store pe in PL.

iv. Create a projection operation op(Ri, PL) where Ri is the current

evolved relation schema in L.

v. Create a view expression ve(type, op) where type = “Projection”.

vi. Create an atomic view Vi(vs, ve); store Vi into an atomic view list F.

3) Let vs’ be the view schema of the first atomic view of F. For each atomic

view in F:

i. If the current atomic view is not the first one in F, then create an

atomic view AVi(vs, ve) such that:

a) the attribute list of vs is the union of the attribute list of vs’

and the attribute list of the current atomic view,

b) and the type of vs is “View” and the operation type of ve is

“Join”,

c) and the two operand relation schemas of the operation of ve

102

are vs’ and the view schema of the current atomic view,

d) and the common attribute list of the operation of ve is AL.

ii. If the current atomic view is not the first one in F, then store AVi in

list G and let vs’ be the view schema vs of AVi.

4) In the atomic view list of the exporting view of Mi, find the atomic view v

such that r is identical to one of the operand relation schemas of the operation

of the view expression of v. If v is found, then substitute vs’ for the operand

relation schema of v (at this stage, vs’ is the view schema of the last atomic

view in G).

5) Add all the atomic views in list F into the atomic list of exporting views of

Mi.

6) Add all the atomic views in list G into the atomic list of exporting views of

Mi.

7) Check whether the exporting view of Mi should be discarded based on

discard rules. If any rule is true, discard Mi and repeat 1 for next map.

This process first finds the atomic view that performs a projection operation on the

original relation schema. It then creates a new atomic view of each evolved relation

schema such that the new atomic view performs projection operation on the evolved

relation schema. The output attributes of the new atomic view are the same as that of

the evolved relation schema. After that, the process joins these atomic views

recursively by creating new atomic views that perform joins on the atomic views that

perform projection. Consequently, there is an atomic view that is the result of joining

all the projection atomic views. Substitute this atomic view for the original relation

schema in the atomic view found at the beginning. This process can be considered as

building a new exporting view joining those evolved views, and then substituting the

root atomic view of the new exporting view for the leaf relation schema that is the

original schema of the schema evolution. This process does not require human

intervention and requires no change in the importing views.

103

5.4.3.6 Process Tackling Attribute Removal

If the schema evolution type of se is “Attribute Removal”, let r be the original relation

schema of se and A be the original attribute, then for each map Mi in AML,

1) In the leaf list of the exporting view of Mi, attempt to find a leaf relation

schema r’ such that r’ = r. If r’ is found, then attempt to find the attribute A’ in

the attribute list of r’ such that A’ = A, if A’ is found, remove A’. Let vs be r.

2) In the atomic view list of the exporting views of Mi, attempt to find the

atomic view v such that vs is identical to one of the operand relation schemas

of the operation of the view expression of v. If v is found, then continue;

otherwise go to 9.

3) If the operation type of the view expression of v is “Projection”, then attempt

to find the attribute A’ in the attribute list of the operand relation schema of

the view expression of v such that A’ = A, if A’ is found, then remove A’. For

each projection element in the projection list of v:

i. If the source type of the source of the current element is

“Expression” and there is one operand in the operand list of the

source value such that the content of the operand is identical to

A, then discard Mi and go to 10.

ii. Otherwise if the source type of the source of the current element

is “Attribute” and the source value is identical to A, then let B

be the output attribute of the current element and vs be the view

schema of v and remove the current projection element and

remove the attribute that is identical to B from the attribute list

of the view schema of v. repeat from 2 for the parent view.

4) If the operation type of the view expression of v is “Join”, then attempt to

find the operand relation schema R’ of the operation of the view expression

of v such that R’ = vs, if R’ is found, attempt to find the attribute B’ in the

attribute list of R’ such that B’ = B; if B’ is found, then remove B’. Attempt to

find the attribute B’ in the common list of the operations of the view

expression of v such that B’ = B, if B’ is found, then remove B’ and go to 10;

104

otherwise, attempt to find the attribute B’ in the attribute list of the view

schema of v such that B’ = B, if B’ is found, then let vs be the view schema of

v and remove B’ and repeat from 2 for the parent view.

5) If the operation type of the view expression of v is “Selection”, then attempt

to find the attribute B’ in the attribute list of the operand relation schema of

the operation of the view expression of v such that B’ = B, If B’ is found,

then remove B’. Attempt to find an operand in the condition list of the

operation of the view expression of v such that the content of the operand is

identical to B. If one such operand is found, discard Mi and go to 10. Attempt

to find the attribute B’ in the attribute list of the view schema of v such that

B’ = B, if B’ is found, then let vs be the view schema of v and remove B’ and

repeat from 2 for the parent view.

6) If the operation type of the view expression of v is “Cartesian Product”, then

attempt to find the operand relation schema R’ of the operation of the view

expression of v such that R’ = vs, if R’ is found, then attempt to find the

attribute B’ in the attribute list of R’ such that B’ = B, if B’ is found, then

remove B’. Attempt to find the attribute B’ in the attribute list of the view

schema of v such that B’ = B, if B’ is found, then let vs be the view schema of

v and remove B’. Go to 10.

7) If the operation type of the view expression of v is “Union”or “Difference”or

“Intersection”, then discard Mi and go to 10.

8) If the operation type of the view expression of v is “Grouping”, then discard

Mi and go to10.

9) Compare vs with the view schema vsi of the importing view to check if vs

and vsi have the same name and type. If they have, then attempt to find an

attribute B’ in the attribute list of vsi such that the name of the B’ is identical

to the name of B. If B’ is found, then remove B’.

10) Check whether the exporting view of Mi should be discarded based on

discard rules. If any rule is true, discard Mi and repeat 1 for next map.

105

This process removes the original attribute from the atomic view that involves the

original relation schema and checks whether is still a valid view. If it is not, then

discard the entire map. If it is a valid view, the process will find its parent view and

remove the corresponding original attribute from the parent view. By performing the

above three steps recursively, the complete exporting view is modified and discarded.

If the attribute is removed from the root atomic view, the corresponding attribute in

the importing view will be removed. Note that in this process, when an attribute is

removed from an grouping operation, the exporting view is discarded because we

consider it may have changed the semantic meaning of the exporting view and require

manual modification.

5.4.3.7 Process Tackling Attribute Domain Change

If the schema evolution type of se is “Attribute Domain Change”, let r be the original

relation schema of se and A1 be the original attribute and A2 be the evolved attribute,

then for each map Mi in AML,

1) In the leaf list of the exporting view of Mi, attempt to find a leaf relation

schema r’ such that r’ = r. If r’ is found, then attempt to find the attribute A’ in

the attribute list of r’ such that A’ = A1, if A’ is found, then substitute A2 for

A’. Let vs be r.

2) In the atomic view list of the exporting view of Mi, attempt to find the atomic

view v such that vs is identical to one of the operand relation schemas of the

operation of the view expression of v. If v is found, then attempt to find the

attribute A’ in the attribute list of the operand relation schema of the view

expression of v such that A’ = A1, if A’ is found, then substitute A2 for A’.

3) If the operation type of the view expression of v is “Projection”, then for

each projection element in the projection list of v:

i. If the source type of the source of the current element is

“Expression” and there is one operand in the operand list of the

source value such that the content of the operand is identical to A1,

then discard Mi and go to 9.

106

ii. Otherwise, if the source type of the source of the current element is

“Attribute” and the source value is identical to A1, then let B be the

output attribute of the current element and vs be the view schema of

v and substitute A2 for the source value and for the output attribute

of the current projection element and for the attribute that is

identical to B from the attribute list of the view schema of v. repeat

from 2 for the parent view.

4) If the operation type of the view expression of v is “Join”, then attempt to

find the operand relation schema R’ of the operation of the view expression

of v such that R’ = vs, if R’ is found, attempt to find the attribute B’ in the

attribute list of R’ such that B’ = B; if B’ is found, substitute A2 for B’.

Attempt to find the attribute B’ in the common list of the operations of the

view expression of v such that B’ = B, if B’ is found, then discard Mi and go

to 9; otherwise, attempt to find the attribute B’ in the attribute list of the view

schema of v such that B’ = B, if A’ is found, then let vs be the view schema of

v and substitute A2 for B’’ and repeat from 2 for the parent view.

5) If the operation type of the view expression of v is “Selection”, then attempt

to find the attribute B’ in the attribute list of the operand relation schema of

the operation of the view expression of v such that B’ = B, If B’ is found,

then substitute A2 for B’. Attempt to find an operand in the condition list of

the operation of the view expression of v such that the content of the operand

is identical to B, if one such operand is found, discard Mi and go to 9.

Attempt to find the attribute B’ in the attribute list of the view schema of v

such that B’ = B, if B’ is found, then let vs be the view schema of v and

substitute A2 for B’ and repeat from 2 for the parent view.

6) If the operation type of the view expression of v is “Cartesian Product”, then

attempt to find the operand relation schema R’ of the operation of the view

expression of v such that R’ = vs, if R’ is found, then attempt to find the

attribute B’ in the attribute list of R’ such that B’ = B, if B’ is found, then

substitute A2 for B’. Attempt to find the attribute B’ in the attribute list of the

107

view schema of v such that B’ = B, if B’ is found, then let vs be the view

schema of v and substitute A2 for B’. Go to 9.

7) If the operation type of the view expression of v is “Union”or “Difference”or

“Intersection”, then discard Mi and go to 9.

8) If the operation type of the view expression of v is “Grouping”, then attempt

to find an aggregation in the aggregation list of the operation of the view

expression of v such that the operand attribute of the aggregation is identical

to B, if one such aggregation is found, discard Mi and go to 9; otherwise,

attempt to find the attribute B’ in the attribute list of the operand relation

schema of the operation of the view expression of v such that B’ = B, If B’ is

found, then substitute A2 for B’. Attempt to find the attribute B’ in the

grouping attribute list of the operation of the view expression of v such that

B’ = B, If B’ is found, then substitute A2 for B’. Attempt to find the attribute

B’ in the attribute list of the view schema of v such that B’ = B, if B’ is found,

then let vs be the view schema of v and substitute A2 for B’ and repeat from

2 for the parent view.

9) Check whether the exporting view of Mi should be discarded based on

discard rules. If any rule is true, discard Mi and repeat 1 for next map.

It is similar to the process tackling attribute removal described in 5.4.3.6. This process

changes the original attribute to the evolved attribute from the atomic view that

involves the original relation schema and checks whether it is still a valid view. If is

not, then discard the entire map. If it is a valid view, the process will find its parent

view and change the corresponding original attribute to the evolved attribute from the

parent view. By performing the above three steps recursively, the complete exporting

view is modified and discarded. The difference from the process described in section

5.4.3.6 is that this process will not modify the corresponding attribute in the importing

view.

108

5.4.3.8 Process Tackling Database Removal

This process is a special process that is different from the above seven processes.

Instead of modifying the affected views in the affected map list, this process finds the

mapping of the removed local schema from the entire mapping list and discards it.

Therefore, this process can be represented as:

AVM: (SE, MPS)

The following steps are taken by the process when the database is removed. Let se be

the schema evolution whose type is “Database Removal”, and ls-name be the local

schema name of the schema evolution, and MPS be the entire mapping list, then:

1) In the entire mapping list MPS, find a mapping M such that the name of M is

identical to ls-name. If M is found, then discard M.

Although there is only one step for the time being, the process will be extended to

modify the organizational structure tree and DSs in the meta-database in chapter 7.

5.5 Summary

This chapter introduces the algorithm to automatically modify the existing views in

the meta-database in response to the schema evolution. The general idea of the

algorithm is to modify the existing views based on the schema evolution and then

check if the views are still valid based on pre-defined rules. The views that become

invalid after the modification will be discarded so that the integrated system will no

longer consider them until they are effectively modified by human programmers and

made available again.

Different schema evolutions require different processes of automatic view

modification. It can be seen from this chapter that the processes 1, 2, 4, 5 and 8

require no human intervention and will not discard any views so that they require no

manual work afterwards. The processes 3, 6 and 7 may require human intervention

and discard views in some cases so that they may require further manual maintenance

109

to make them work properly. In addition, adding relation schemas and attributes and

local schema require no automatic modification on data in the meta-database. These

will be further discussed in the evaluation chapter.

110

Chapter 6 Query Process

6.1 Introduction

Chapter 5 presented the approach to automatically modify the views in the

meta-database. This chapter introduces the approach to processing user queries over

the global schema and composing the final results for users. Query processing in this

work basically involves four steps: Query Reformulation and Query Decomposition

and Query Transformation and Result Composition.

The process of identifying the source databases is the first step of query reformulation

to tackle organizational evolution. The problem of “Answering Queries Using Views”

is then introduced. One of the reformulation techniques, the Bucket Algorithm [68],

for the LAV approach of data integration is then described briefly. After the queries

are decomposed into queries which refer to data sources, a straightforward approach

to transforming those queries (which refer to a data source) into queries directly over

the local schema of that source is illustrated. The resulting composition is finally

described, taking into consideration domain conflicts. Although the query processing

and result composition are not the focus of this research, they need to be explained to

show how the entire approach works.

6.2 Query Processing

Query processing in an integrated database system involves many aspects such as (i)

query translation which translates a high-level and more semantic query into a

low-level query, (ii) query decomposition that decomposes a query written in terms of

the global schema into queries that refer to the data sources, (iii) query transformation

which transforms the queries to be executed by the source databases, and (iv) query

optimization which optimizes the query to gain a better response time. In this research,

however, the focus is on two steps of query processing, Query Reformulation and

Query Transformation.

111

Figure 6-1 shows the query processing of this research. It illustrates that the input of

Query Reformulation is an extended conjunctive query over the global schema. The

conjunctive query is then decomposed into subqueries over exporting views that refer

to particular data sources, by reformulation techniques for LAV approach. These

queries over exporting views are still in a conjunctive query language and over the

global schema. Therefore, the queries need to be transformed into queries directly

over local schemas based on the definitions of exporting views. As the exporting

views are defined using the relation algebra query language, there is another step

between query reformulation and query transformation, called query translation.

Query translation is to translate queries in a language into queries in another query

language. Once queries have been translated into queries over local schemas, the

queries then need to be translated into queries that are in the query language supported

by the source databases.

In fact, a user query may be a high-level query such as Relational Calculus before it is

translated into a conjunctive query. In this research, an extended conjunctive query is

used as the user query language. The extended conjunctive query is simply the

conjunctive query with an additional property, Organizational Scope. The aim of this

property is to narrow down the scope of source databases that will be searched by the

query processing. Therefore, the user query can be further represented as following:

User Query: (Q(GS), OS: (Org:String, OP:Stirng))

The first property of the user query is a conjunctive query on the global schema, while

the second property is the organizational scope that is a pair. The first property is the

organization name indicating the organization in which the query processing will

search for the source databases, while the second property is an organizational

property name indicating the node on the tree, the children of which will be accessed.

This user query is defined in order to illustrate how the query processing works to

tackle organizational evolution.

112

Queries over global schema

 (conjunctive query)

Query Reformulation

(containment test)

Queries on Importing Views

(conjunctive query)

Importing Views

Exporting Views

Query Translation

Subqueries on Single External

Views (relational algebra)

Queries on Local Schemas

(relational algebra)

Query Transformation

Query Translation

Queries on Local Schemas

(Local query language)

Query Decomposition

Subqueries on Single External

Views (conjunctive query)

Figure 6-1 Query Processing

113

The translation between two query languages is not a focus of this research and

therefore is not described.

6.2.1 Query Reformulation

Chapter 4 described how to associate each source database with the global schema by

building importing views that represent the local schema over the global schema.

Having built the association between the local schemas and the global schema, a user

is able to raise a query (conjunctive query in this work) in terms of the global schema

without knowing the underlying source database. The query reformulation is

responsible for reformulating the query into a query that refers to the source databases.

In this work, there is an additional process, Identifying Source Databases, which deals

with organizational evolution that is one of the central issues in this research.

6.2.1.1 Identifying Source Databases

Once a user query has been received by the query processing, the first step is to

identify the source databases that will be taken into account, according to the

organizational scope of the user query. Therefore the process of identifying source

databases can be regarded as a function:

ISD: (OS(Org, OP)) Source Database List

The function takes the organizational scope of the user query as input and the output

is a list of source database, termed Source Database List. As the organizational

structure trees have been pre-defined, it is simple to get all the source databases that

are the leaves of the branches under the given organizational property and the given

organization. However, the process of identifying source databases in this work takes

an additional step to tackle the organizational evolution that has been generally

introduced in Chapter 5. In order to describe the process, the organizational evolution

is first defined.

114

6.2.1.1.1 Organizational Evolution and Its Representation in Meta-database

Recall that in Chapter 4, an organizational structure is represented as a tree structure.

Organizational evolution represents the changes in the organizational structure.

Although this type of evolution does not have an impact on the view definitions, it has

some impact on existing user queries. Two types of evolution are considered in this

research:

1) Organizational Property Removal: An organizational property of the tree of an

organization may be removed. It can be represented as a pair in the

meta-database:

OPRemoval (Org: Organization, original: Organizational Property)

It consists of two properties: original organization and original organizational

property. The first, original organization, represents the organization whose OP

has been removed. The second, original organizational property, is the OP that

has been removed by the evolution.

2) Organizational Property Rename: The name of an organizational property of

the tree of an organization may change. It can be represented as a triple in the

meta-database:

OPRename (Org: Organization, original: Organizational Property,

 evolved: Organizational Property)

It consists of two properties: original organization and original organizational

property and evolved organizational property. The first, original organization,

represents the organization in which OP has changed. The second, original

organizational property, is the OP before the change. The third, evolved

organizational property, is the OP with the new name after the change.

3) Organization Removal: An organization itself may be removed. It can be

represented as the following in the meta-database:

115

Organization Removal (Org: Organization)

It has one property, original organization, which is the organization removed by

this evolution.

4) Organization Rename: The name of an organization itself may change. It can be

represented as a pair in the meta-database:

Organization Rename (Org: Organization, evolved: Organization)

It has two properties: original organization and evolved organization. The

original organization is the organization before the change, while the evolved

organization is the organization with the new name after the change.

5) Parent Change: The parent property of an organizational property (a CP or a

source database) of the tree of an organization may change.

6) Organization Addition: A new organization is added into the organization list of

the meta-database.

7) Organizational Property Addition: A new organizational property is added into

an existing organization.

Since the last three types of evolution have no impact on the user queries, they are not

considered and formally represented in the meta-database. This is one of the

advantages of the design of the organizational structure tree in the meta-database. It

will be discussed in the evaluation chapter.

In order to store the organizational evolution into the meta-database, a data type that

represents the organizational evolution is defined as follows:

Organizational Evolution Operation: OPRemoval | OPRename |

Organization Removal | Organization Rename

An organizational evolution can then be represented as:

116

Organizational Evolution: (type: OrganziationalEvolutionType, evolution:

Organizational Evolution Operation)

The first property is schema evolution type, a string which indicates which

organizational evolution operation applied.

OrganziationalEvolutionType: String

∀X: SchemaEvolutionType, X ∈ { “Organizational Property Removal”,

“Organizational Property Rename”, “Organization Removal”,

“Organization Rename” }

The second element of organizational evolution is the organizational evolution

operation defined above.

All organizational evolution can then be represented as an organizational evolution

list, represented as:

OEL: {oe: Organizational Evolution }

6.2.1.1.2 The Extended Meta-database

The meta-database is then extended to involve organizational evolution:

MD: {lsl: LSL, gs: GS, domain: GAD, m: MPS, org: Organization List,

oel: OEL}

6.2.1.1.3 Process of Identifying the Source Databases

Having defined and represented organizational evolution, the process of identifying

the source databases can be discussed. It has been realized that a user query will be

affected only when the organizational scope involves the organization or the

organizational property that has evolved. Namely, there is an organizational evolution

in the organizational evolution list of the meta-database such that the original

organization or the original organizational property of it is involved in the user query.

The general process of identifying the source databases is as follows:

117

1) Check if the organization or the organizational property required in the user query

has changed. If it has changed, change the user query to access the correct

organization and organizational property. It the organization or the organizational

property does not exist anymore, it means that the user query is not valid anymore

and cannot be answered.

2) Find all the source databases under this organizational property in the

organization required by the user query and output them for use for the next step

of query processing.

Therefore, when a user query UQ is received, the following steps are taken by the

process of identifying the source databases.

Let OS(org, op) be the organizational scope of the user query, where org is the

organization and op is the organizational property designated by the user query, then:

1) In the organizational evolution list, attempt to find an organizational evolution oe

such that the original organization org’ of the organizational evolution operation

of oe is identical to the organization org of OS. If org’ is found, then continue;

otherwise go to 6.

2) If the type of oe is “Organization Remove”, then reject the user query UQ and

stop the process.

3) If the type of oe is “Organization Rename”, then change org to the evolved

organization of the organizational evolution operation of oe and repeat from 1.

4) If the type of oe is “Organizational Property Rename”, then check if the

organizational property op is identical to the original organizational property of

the organizational evolution operation of oe. If identical, then change op to the

evolved organizational property of the organizational evolution operation of oe

and repeat from 1.

5) If the type of oe is “Organizational Property Removal”, then check if the

organizational property op is identical to the original organizational property of

the organizational evolution operation of oe. If identical, then reject the user

query UQ and stop the process.

118

6) Attempt to find org in the organization list of the meta-database. If found, attempt

to find op in the node list of the tree of org. If found, find all the organizational

properties that are source databases of the branches under op by recursively

traversing the parent relations in the parent relation list and store them into the list

F. output F.

Note that if the user query does not designate any organization, it means all the local

schemas in the local schema list of the meta-database will be considered. In this case,

the process of identifying the source database will not be taken

6.2.1.2 Query Reformulation

In this research, the resulting query of the query reformulation is over the exporting

views representing the source databases, and is still in a conjunctive query language.

There are two important criteria to be met in query reformulation [103]:

 Semantic correctness of the reformulation: The answers obtained from the

sources will be correct answers to the original query.

 Minimizing the source access: Sources that cannot contribute any answer or

partial answer to the query should not be accessed.

As the LAV approach is used to describe source databases, the query reformulation is

not straightforward and is one of the applications of an important problem called

“Answering Queries using Views”. In the next sections, the source databases being

considered are those outputted from the process of identifying the source databases in

cases where the user query designates a specific organization.

6.2.1.2.1 Answering Queries using Views

Informally, the problem is defined as follows: Giver a query Q over a database

schema, and a set of view definitions V1,…,Vn over the same schema, rewrite the

query using the views as Q’ such that the subgoals in Q’ refer only to view predicates.

If such a rewriting of Q into Q’ can be found, then to answer Q, it is enough that Q’ is

119

answered using the answers of the views [68].

In our architecture, the query reformulation means that by using the exporting views

describing the source databases in terms of the global schema, the integrated system

can answer a user query written in terms of the global schema by rewriting this query

as another query referring to the exporting views rather than the global schema itself.

Basically, the user query is decomposed into several subqueries each of which is

referring to a single source database.

The ideal rewriting we expect to find would be an “equivalent” rewriting. However,

this may not always be possible. Particularly in data integration systems, source

database incompleteness and limited source capability would lead to rewritings that

approximate the original query. Among the many possible approximate rewritings, the

“best” one needs to be found. The technical term for the best rewriting is

“maximally-contained” rewriting. These terms are formalized as following [68]:

Query Containment and Equivalence: A query Q’ is contained in another query Q if,

for all database D, Q’(D) is a subset of Q(D). A query Q is equivalent to another query

Q’ if Q’ and Q are contained in one another.

Equivalent Rewritings: Let Q be a query and V = V1,…, Vm be a set of view

definitions. The query Q’ is an equivalent rewriting of Q using V if:

 Q’ refers only to the views in V,

 Q’ is equivalent to Q.

Maximally-contained Rewritings: Let Q be a query and V = V1, …, Vm be a set of

view definitions in a query language L. The query Q’ is a maximally-contained

rewriting of Q using V with respect to L if:

 Q’ refers only to the views in V,

 Q’ is contained in Q, and

120

 there is no rewriting Q1 such that Q’ ⊆ Q1 ⊆ Q and Q1 is not equivalent to

Q’.

6.2.1.2.2 Completeness and Complexity of Finding Query Rewritings

Theoretical issues related to the problem of finding query rewritings using views

including completeness and complexity of the query rewriting algorithms, are now

considered. [68] discussed the issues in detail.

Completeness of a query rewriting algorithm is defined as follows in [68]: Given a set

of views V and a query Q, will the query rewriting algorithm always find a rewriting

of Q using V if there exists such a rewriting? The answer to this question also depends

on the query language used to express the query rewriting. Sometimes the limited

expressiveness of the language may prevent the algorithm from finding a query

rewriting although one exists. In the case where no equivalent query rewriting exists,

a maximally-contained rewriting need to be found. [68] also points out that sometimes

recursive Datalog rules need to be used to come up with a maximally-contained

rewriting. This exemplifies the dependence of the algorithms on the expressiveness of

the query language.

The complexity of the query rewriting algorithm can be discussed under different

language and modeling assumptions. In general, they are NP-Complex [68].

6.2.1.2.3 The Bucket Algorithm

Given a query Q and a set of views V1,…, Vn, to rewrite Q in terms of Vis, we have

to perform an exhaustive search among all possible conjunctions of m or fewer view

atoms where m is the number of subgoals in the query. In order to avoid the

exhaustive search, the Bucket Algorithm [68] is used in this work. The main idea

underlying the Bucket Algorithm is that the number of query rewritings that need to

be considered can be reduced if each subgoal in the query is considered separately to

determine which views may be relevant to each subgoal. Given a query Q, the Bucket

121

Algorithm finds a rewriting of Q in two steps:

1. The algorithm creates a bucket for each subgoal in Q which contains the views

(i.e., source databases) that are relevant to answering that particular subgoal.

2. The algorithm tries to find query rewritings that are conjunctive queries, each

consisting of one conjunct from every bucket. For each possible choice of element

from each bucket, the algorithm checks whether the resulting conjunction is

contained in the query Q or whether it can be made to be contained if additional

predicates are added to the rewriting. If so, the rewriting is added to the answer.

Hence, the result of the Bucket Algorithm is a union of conjunctive rewritings.

The following simple example shows how the algorithm works:

Assume that there are three sources databases S1, S2 and S3. S1 contains information

about cars produced after 1990. S2 contains cars sold by the dealer named “ACME”.

S3 contains car reviews. Assume that the global schema has the relations with the

following schemas:

CAR (vin, status)

MODEL (vin, model, year)

SELLS (dealer_name, vin, price)

Review (vin, review)

Furthermore, the importing views defined for the data sources are:

S1 (vin, status, model, year) ← CAR (vin, status),

MODEL (vin, model, year), year ≥ 1990

S2 (vin, status, model, price) ← CAR (vin, status), MODEL (vin, model, year), SELLS

(dealer_name, vin, price), dealer_name = “ACME”

S3 (vin, review) ← REVIEW (vin, review)

Assume that a user is looking for used cars produced before 1990, their reviews and

where they are sold. The following query is posed by the user to the global schema:

Q(vin, dealer, review) ← CAR(vin, status), MODEL(vin, model, year),

122

SELLS(dealer_name, vin, price), REVIEW(vin, review), year

< 1990, status = “used”

For ease of presentation, the initial letters of the attributes are used. The first step of

the Bucket Algorithm constructs the following buckets per subgoal in Q:

CAR(V, S) MODEL(V, M, Y) SELLS(D, V, P) REVIEW(V, R)

S2(V, S, M’, P’) S2(V, S’, M, P’) S2(V, S’, M’, P) S3(V, R)

Notice how views are mapped to each query subgoal by the buckets. It is important to

note that we did not insert S1 into buckets CAR(V, S) and MODEL(V, M, Y) because

of the constraint on the year attribute in the query. Since S1 contains cars which are

produced after 1990 and the query asks for the ones produced before 1990, S1 cannot

answer the query.

The second step of the algorithm chooses one view from each bucket and combines

them into a new query. Since for this simple example there is already one entry per

bucket, there will be one combination of views. In general, we would have to

construct one query per possible combination of the entries and we would test for

containment in the original query. Then the result would be the union of all the

contained queries.

The following new query is obtained written in terms of the importing views rather

than the relations schemas in the global schema:

Q’(vin, dealer, review) ← S2(vin, status, model, price), S3(vin, review),

year < 1990, status = “used”

Note that there are two redundant references to view S2 and we also added the extra

constraints on the year and status attributes since without these predicates, Q’ would

123

not be contained in Q. In terms of completeness and complexity, [68] mentions that

the Bucket Algorithm is guaranteed to find maximally-contained rewriting of a query

if the query does not contain arithmetic comparison predicates. However, the second

phase may take exponentially long.

There are some alternative approaches to answering queries using views, such as the

Inverse-Rules Algorithm [68], the MiniCon Algorithm [103] and the

Shared-Variable-Bucket Algorithm [104]. The Inverse-Rules Algorithm is completely

different from the Bucket Algorithm. The key idea underlying the algorithm is to

construct a set of rules that invert the view definitions, i.e., rules that show how to

compute tuples for the database relations [68]. It has a significant drawback for our

research, since it attempts to recomputed the extensions of the database relations.

Namely, the tuples in the relations need to be accessed before the rewritings of a

query are found. Hence, it significantly increases the access to the source databases

and therefore is not suitable of our research.

The MiniCon Algorithm and the Shared-Variable-Bucket Algorithm are both

improved algorithms based on the idea of the Bucket Algorithm, providing extra steps

in order to reduce the number of views to be considered for the rewriting step. The

Bucket Algorithm was chosen is this research, because it is a basic algorithm which is

easier to implement in the case study. The extra steps in the MiniCon Algorithm and

the Shared-Variable-Bucket Algorithm require much more complex design and

programming for implementation, and cannot help in the major problem in this

research which is evolution.

6.2.1.2.4 Summary

To sum up, a query in terms of the global schema raised by a user in a conjunctive

query language is reformulated into a query that refers to the importing views

representing the source databases. The query reformulation techniques for LAV

approach are used, which is not straightforward and is one of the applications of an

124

important problem called “Answering Queries using Views”. The Bucket Algorithm,

is used to conduct query containment tests and rewrite the query. The resulting query

consists of only the importing views that represent the data sources. These resulting

queries are ready to be sent to corresponding source databases where they are

transformed into queries that refer to the local schema directly. This is introduced in

the next section.

6.2.2 Query Decomposition

As mentioned in the previous section, the query over the global schema is

reformulated into several queries consisting of only the importing views. The union of

these queries together produces the final result for the original query. Each query

resulting from the query reformulation is then decomposed into subqueries each of

which contains only one importing view representing a single source database.

Namely, each subgoal of the conjunctive query, except the predicate subgoal, will

become a subquery. Take the car-dealer example used in the last section, the new

query is:

Q’(vin, dealer, review) ← S2(vin, status, model, price), S3(vin, review),

year < 1990, status = “used”

The query can be decomposed into two subqueries:

Q01 (vin, status, model, price) ← S2 (vin, status, model, price), status = “used”

Q02 (vin, review) ← S3(vin ,review)

Note that Q01 involves the predicate status = “used”, because S2 has the attribute

status so that putting this predicate can reduce the tuples transferred from the source

database. Furthermore, each subquery will be sent to a source database site where an

exporting view corresponding to the importing view is defined. As the exporting view

has the same set of attributes as that of the importing view, the above two queries can

be rewritten as the following queries if ExV2 and ExV3 are exporting views

corresponding to S2 and S3 respectively:

125

S2(vin, status, model, price) ← ExV2 (vin, status, model, price), status = “used”

S3(vin, review) ← ExV3 (vin, review)

The names of Q01 and Q02 are replaced by the names of importing views because it

is more straightforward to show how the results from the source databases will be

composed. The subqueries S2 and S3 are then sent to the source databases represented

by the importing views S2 and S3 where they will be transformed into queries that

refer directly to the local schemas.

6.2.3 Query Transformation

The subqueries that are sent to source databases to be executed consist of an exporting

view, which means they are still in the global schema because the exporting views are

defined in terms of the local schema but are homogeneous to the global schema. Thus,

those subqueries need to be further reformulated into queries that are over the local

schema, in order for them to be executed. This process is called query transformation.

Before the transformation, there is one more step, query translation. As the subqueries

are still in a conjunctive query language and the exporting views are defined in a

relational algebra language, those subqueries need to be translated into a relational

algebra language. For example, query S2 can be translated into the following query:

S2(vin. Status, model, price) := σstatus=”used” (ExV2)

How to translate a query in one query language into an equivalent query in another

query language is not the focus of this work. Therefore, it will not be described in any

detail. However, it is expected that the translation in this architecture is very simple,

because each query only has one exporting view.

Sequentially, at a source database site, the resulting subqueries from the translation

need to be transformed into queries that are directly over the local schema. The query

transformation is based on the definitions of the exporting views and is very

126

straightforward when compared with the query reformulation.

In this research, the query transformation of a query on views can be described as:

Given a query Q over a set of views V1, …, Vn, the query transformation of Q is to

substitute the expressions of the views for the views themselves. This may be

recursive because a view may be defined over others views. Therefore, the views need

to be replaced recursively until the query becomes a query which consists of only base

relations.

Recall that in Chapter 4, an exporting view is described as an expression tree that has

a number of atomic views on its nodes. Each atomic view, in turn, has an expression

that only has one relational algebra operator. The subquery over an exporting view

can be represented as an expression tree as well with the exporting view being its leaf.

Therefore, to transform the subquery, the exporting view that is the leaf of the

expression of the subquery is simply substituted by the expression of the exporting

view. For example, we have two relation schemas R (a, b, c, d) and S (a, e, f,), an

exporting view can be:

ExV (a, b, e) := πa,b,e (σb>100 (R a S) ∩ σe=50 (R a S))

The linear representation of the expression tree of ExV is:

V01 (a, b, c, d, e, f) := R a S

V02 (a, b, c, d, e, f) := σb>100 (V01)

V03 (a, b, c, d, e, f) := σe=50 (V01)

V04 (a, b, c, d, e, f) := V02 ∩ V03

ExV (a, b, e) := πa,b,e(V04)

Assume that there is a query over ExV, Q (a, b, e):

Q (a, b, e) := πa,b,e (σb>150 (ExV))

Sequentially, in order to transform Q into a query that is directly over R and S, the

exporting view ExV is substituted by its expression. Consequently, the expression of

127

Q becomes:

Q (a, b, e) := πa,b,e (σb>150 (πa,b,e (σb>100 (R a S) ∩ σe=50 (R a S))))

Using this approach, the subquery is transformed into a query that refers directly to

the local schema. However, the query is still written in relational algebra and the

DBMS of the source database may support various query languages. Even if the

source databases are all relational databases, the DBMSs may support versions of

SQLs that are slightly different. Therefore, in order for the subquery to be recognized

as a valid query by the DBMS, it needs to be translated into a query that is in the

version of SQL supported by the DBMS. For example, the above query Q may be

translated into the following query:

Select a, b, e

From R, S

Where R.a = S.a and R.b > 150 and S.e = 50

As mentioned above, query translation is not the focus in our work and therefore will

not be discussed in more detail. Also, the query optimization, which chooses a better

query plan and rewrites the query, will not be introduced in this thesis, although it is

most important, forming the topic of much research elsewhere.

6.3 Result Composition

In practice, result composition is a parallel process to query processing, because the

result of each subquery is combined to produce the result for the preceding query. As

introduced above, the query over the global schema is reformulated into a set of

queries that are written in terms of the importing views representing data sources. The

result of the original query is the union of all the resulting queries from query

reformulation. Furthermore, each of the reformulated queries is decomposed into

subqueries each of which has only one importing view representing a single source

database. These subqueries are then sent to relevant source databases, respectively.

128

The result of each subquery is a set of tuples that can be referred to as a relation

instance whose schema is the same as the subquery. Once the results of all the

subqueries have been returned from source databases, the query is then able to be

evaluated. Those results that need to be combined to produce a result for the

preceding query are called intermediate results in this work.

6.3.1 General Process of Result Composition

The process of the result composition in our architecture is very similar to that of a

centralized DBMS. To describe the process formally, given a query Q in terms of the

global schema, let ImV(ImV1,…,ImVn) be a set of all importing views and

ExV(ExV1,…, ExVn) be a set of exporting views corresponding to the importing

views, Q is reformulated into a set of queries Q1,…,Qm that consist of only a set of

importing views, denoted ImV(Qi) ⊆ ImV. The result of a query is denoted Result (Q).

In order to obtain Result (Q), each result of Q1,…,Qm, denoted Result (Qi) 1 ≤ i

≤m, needs to be obtained by evaluating Q1,…Qm. In order to evaluate a query Qi,

each importing view ImVj, ImVj ∈ ImV(Qi), needs to be sent to each source

database where its relevant exporting view ExVj is evaluated. Having been evaluated,

the result of ExVj Result(ExVj) that is a relation instance is obtained and is then

assigned to ImVj. Once all the importing views ImV (Qi) of a query Qi are assigned a

result, Qi is able to be evaluated to obtain a result. The result of Q, Result(Q), is the

union of Result(Q1),…,Result(Qm). Figure 6-1 shows the bottom-up process of result

composition. The process of result composition in each source database is not

described in Figure 6-2, as it is no different from the process of a centralized DBMS.

129

Q (over global schema)

Union

Q1 Qm

Importing Views of

Qm

. . .

Importing Views of

Q1

External Views

. . .

. . . External Views

Figure 6-2 The process of result composition

6.3.2 Domain Conversion of Result Composition

One heterogeneity that needs to be tackled during result composition is domain

conflicts. During result composition, the importing views are evaluated and are

assigned results from the corresponding exporting views. However, the attributes of

the results from different source databases may have the same names but different

domains (or types). Consequently, the results cannot be combined because the

attributes with different domains cannot be taken as operands by some operators (i.e.

join and algebraic operators) so that the query cannot be further evaluated.

In order to tackle domain conflicts, the process called Domain Conversion is added to

the process of assigning results of exporting views to importing views. It means that

the attributes of the exporting views need to be converted into attributes which have

the same domains as those of the attributes of the importing views. To describe the

130

domain conversion more formally, let ExV be an exporting view that has a set of

attributes A(A1,…,An) and ImV be the corresponding importing view of ExV, ImV

has a set of attributes B(B1,…,Bn), let relation R(A1,…,An) be a result of ExV, when

assign R to ImV, the domain conversion is described as following:

 Compare each pair (Ai, Bi), Ai ∈ A and Bi ∈ B and 1 ≤ i ≤ n.

 If the domain of Ai is not identical to the domain of Bi, then convert the value of

Ai into a value with the same domain to Bi.

Therefore, the domain conversion applies for every exporting view when the result of

the exporting view needs to be assigned to an importing view.

6.4 Summary

To sum up, a query posed by a user in terms of the global schema is reformulated into

queries that only consist of importing views. These queries are further decomposed

into subqueries that refer to single source databases. The subqueries are sent to source

databases where they are transformed into queries that can be directly evaluated upon

the local schemas. Finally, the result composition that is a bottom up process

composes the results to produce the final result for the original query. Domain

conversion is applied during result conversion to convert the attributes of exporting

views into attributes that have the same domain as that of importing views, in case

they are different.

131

Chapter 7 Services Design and Implementation

7.1 Introduction

Chapter 6 presented the query process step in EA-SODIA and therefore completed the

description of EA-SODIA and all the algorithms. This section describes the design of

each service in this architecture. It also presents a case study including an

experimental implementation for evaluating EA-SODIA and its algorithms.

Firstly a combined design method of each service is described. Then, the case study

method is discussed, followed by the research questions and its hypotheses. The

experimental implementation is presented with a short evaluation. The test data for

the case study is also shown.

7.2 Overview of the Service Incorporation

This section illustrates how the services incorporate to conduct the processes

introduced in chapter 4, 5, and 6. It is explicitly indicated which steps of a process are

taken by an integrator service or a data service.

7.2.1 The Allocation of the Meta-database

Chapter 4 introduces the algorithm, RSMV, to establish mapping between the local

schemas and the global schema. The result is the data in the meta-database that is

regarded as a central conceptual database. In this architecture, the meta-database is

allocated to both the integrator service and each DS. Figure 7-1 shows how the

meta-database is managed by the services.

In a DIS, the meta-database contains the global schema (GS), the importing views, the

global attribute domain (GAD), the organization list, and the organizational evolution

list (OEL) that are defined formally in chapter 4. The importing views involve the

importing views of all the DSs. Therefore, each DS needs to register its importing

132

views into each integrator service.

Data Service 1

MDB(Local Schema, Exporting Views)

Data Integrator Service

MDB(Global Schema, Importing Views,

Global Attribute Domain, Organization

List, Organizational Evolution List)

Data Service 2

MDB(Local Schema, Exporting Views)

Registry Service

Service Description

Figure 7-1 Allocation of the Meta-database

The meta-database in each DS stores its own local schema (LS) and exporting views

that are also defined in chapter 4. The exporting views refer to the importing views of

the DS in the meta-database at the DIS site.

This is slightly different from the conceptual meta-database defined in chapter 4, as

each DS contains its own local schema and exporting views. Therefore, the local

schema list (LSL) in the conceptual meta-database is in fact the union of the local

schemas of all the DSs. In addition, the mapping and the entire mapping list (MPS)

are also segmented. The mapping of a local schema can be composed by the

importing views that are stored at the DIS and the exporting views that are stored at

the DS. In order to indicate the relationship between the importing view and the local

schema, the definition importing view is extended to have another property: name

which is a string. The name represents the DS to which the importing view belongs.

The MPS is apparently the union of the mappings of all the DSs.

The registry service contains the service description of each service based on WSDL,

133

including the information such as the name of the service, and URL. The source

database providers need to publish their DSs into the registry service.

7.2.2 Query Processing

Chapter 6 introduces the query processing that involves four steps: Query

Reformulation and Query Decomposition and Query Transformation and Result

Composition. Query processing is a major issue in distributed database system and

data integration, leading to much research. In this research, the focus rather is on

establishing a data integration architecture that is easy to evolve. Therefore, only the

parts relevant to the evolution purpose are addressed. Figure 7-2 shows how the

services cooperate to conduct the query processing introduced in chapter 6.

SOAP-Request

SOAP-Response

Registry

Data Service 1

Meta-database

Query Convertor

Query Executor

Data Integrator Service

Query Decomposer

Query Delivery and Result

Composition

Meta-database

Data Service 2

Meta-database

Query Convertor

Query Executor

SOAP-Response

SOAP-Request

Figure 7-2 Query processing by services

The DIS involves the following components:

 Query Decomposer: This takes the query reformulation step which identitfies the

scope of source databases (DSs), and finds the relevant DSs, and then

decomposes the query into subqueries that are in terms of importing views of the

DSs through the query containment test.

 Query Delivery and Result Composition: This takes the steps: Query

134

Decomposition and Result Composition. It further divides queries received from

the query decomposer into subqueries each of which contains only one importing

view representing a single source database (DS). Sequentially, it accesses the

registry service to obtain the information to access the relevant DSs, and delivers

those subqueries to the relevant DSs where the subqueries are further processed.

Finally, it composes the results sent back from each DS to produce the result for

the user.

The DS involves the following components:

 Query Convertor: This takes the Query Transformation step. Recall that the

subqueries which are sent to DSs to be executed, consist of an exporting view

(referred to as importing view at the DIS). Therefore, this step transforms the

subqueries sent from the DIS into queries that are in terms of the local schema.

 Query Executor: This executes the reformulated queries and produces a result that

is then sent back to the data integrator.

Although there are two DSs and one DIS in Figure 2 due to the space, in practice

there could be much more of them.

7.2.3 Schema Evolution Detection

It has been shown in Figure 4 in chapter 3 that both the DISs and the DSs have a

component, called Schema Evolution Detection. A system based on our architecture

performs as follows:

1) When the administrator of a source database changes the local schema, he or

she needs to invoke the schema evolution detection of the relevant DS.

2) The schema evolution detection of the DS changes the data (exporting views)

in its meta-database, and examines whether the relevant importing views

need to be changed as well. If it does, it accesses the registry service to find

all the DISs and invokes the schema evolution detection of them.

3) The schema evolution detection of each DIS changes the relevant importing

135

views based on the request from that DS.

To sum up, the schema evolution detection of a DS launches a schema evolution

detection activity. It changes the exporting views in the meta-database of the DS. The

schema evolution detection of a DIS changes the importing views if requested by the

DS. The administrator of the source service needs to change the local schema in the

meta-database as well to keep it consistent with the schema in the DBMS of the

source database. In future work, a software tool can be provided to change a local

schema and then trigger the schema evolution detection function of a DS.

7.3 Service Design

As the architecture of this research is service-oriented and aligned with Web services,

the service-oriented analysis and design method introduced in [90] is used to design

the system. The introduction to the services in both chapter 3 and the previous section

of this chapter so far describes the process steps (or application logic) of the services.

It is generally referred to as the analysis of service in the service-orientated method. A

service (service provider) in the system usually has one or more operations that have

input and output to communicate with service requestors. Therefore, during the design

stage, some processes are combined to become a single operation, considering the

general features of the services, such as autonomy and reusability. The result is the

abstract definition of the WSDL of each service in which the following parts are

formally defined:

 definition of all service operations

 definition of each operation’s input and output messages

 definition of associated XSD schema types used to represent message payloads

7.3.1 Design of Data Integrator Service

As described previously, a DIS involves three process steps which are query

decomposition, query delivery and result composition and schema evolution detection.

136

During the design stage, the query delivery and result composition is combined with

the query decomposition to produce an operation, called query perform. As the

communication between services is through SOAP, the data types of input and output

messages of each operation are defined based on XSD schema. Table 7-1 shows the

result of the design of a DIS.

Table 7-1 the result of the design of a data integrator service

Operation Input (Request Message) Output(Response Message)

Message

Name

Type Message

Name

Type

QueryPerform QueryRequest xsd:String QueryResult WebRowSet

SchemaEvolutionDetection SEDRequest xsd:complexType SEDResponse xsd:String

A DIS is designed to have three operations:

 QueryPerform: This is produced by combining the query decomposition and the

query delivery and result composition processes. By applying the principles of a

service which are mainly reusability and autonomy, it is observed that the query

delivery and result composition are dependent on the output of the query

decomposition. Therefore, other operations are not likely to access the query

delivery and result composition process individually. The input and output

messages of the QueryPerform are also defined in XSD schema. The input

message is an xsd:string, which is a primitive data type in XSD schema,

representing a conjunctive query raised by a user. The output message is a

WebRowSet that is an importing complex data type used to store the result of a

query. The WebRowSet will be introduced later in this section.

 SchemaEvolutionDetection: This operation is derived directly from the Schema

Evolution Detection process. The input message is a complex type in XSD

schema which is defined as following:

<xsd:schema xmlns:xsd=http://www.w3.org/2001/XMLSchema

 targetNamepace=http://www.xmltc.com/dur/di/schema/dis/>

http://www.w3.org/2001/XMLSchema
http://www.xmltc.com/dur/di/schema/dis/

137

 <xsd:element name=”SEDRequestType”>

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name=”ServiceName” type=”xsd:string”/>

 <xsd:element name=”ViewName” type=”xsd:string”/>

 <xsd:element name=”ModifyAction” type=”xsd:string”/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 </xsd:schema>

This input message is comprised of three elements: ServiceName, ViewName and

ModifyAction. The ServiceName indicates the DS whose importing view

requires modification. The ViewName indicates the import view that is to be

modified. The ModifyAction represents the modification to be applied to the

importing view. There are actions that can be recognized by the DIS:

1) “Discard”: means that the relevant importing view needs to be discarded.

2) “Delete <attribute name>”: means that the designated attribute needs to

be deleted from the importing view. The <attribute name> will be

replaced by the actual attribute name in practice.

The output message is also a string that represents the status of the execution of

this operation (e.g. “successful” or “fail”).

One of the problems of a data-intensive service is transmitting the result of the query

in SOAP between services. As the result of a query cannot be encapsulated into SOAP

directly, it requires transformation. Therefore, the result of a query is translated into

WebRowSet before being encapsulated in the body of SOAP message. The standard

WebRowSet XML schema definition is available at the following URI:

http://java.sun.com/xml/ns/jdbc/webrowset.xsd

7.3.2 Design of Data Service

A DS undertakes three processes: query transformation and query execution and

schema evolution detection. The query transformation and query execution are

combined to produce a single operation, QueryPerform. The reason for the

http://java.sun.com/xml/ns/jdbc/webrowset.xsd

138

combination is the same as that of the combination of the query decomposition and

the query delivery and result composition of the DIS. Table 7-2 shows the result of the

design of a DS.

Table 7-2 the result of the design of a data service

Operation Input (Request Message) Output(Response Message)

Message

Name

Type Message

Name

Type

QueryPerform QueryRequest xsd:String QueryResult WebRowSet

SchemaEvolutionDetection SEDRequest xsd:complexType SEDResponse xsd:String

 QueryPerform: This is similar to the QueryPerform operation of a DIS. The

difference is that the input message of a DS represents the subquery sent from a

DIS. The QueryPerform of a DS is most likely to be invoked by the

QueryPerform operation of a DIS, while the QueryPerform operation of a DIS is

usually invoked by a user.

 ScehmaEvolutionDetection: This modifies the exporting views in the

meta-database of a DS in response to a schema evolution. The input message is a

complex type that is defined in XSD schema as following:

<xsd:schema xmlns:xsd=http://www.w3.org/2001/XMLSchema

 targetNamepace=http://www.xmltc.com/dur/di/schema/ds/>

 <xsd:element name=”SEDRequestType”>

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name=”EvolutionType” type=”xsd:string”/>

 <xsd:element name=”SchemaEvolution” type=”xsd:string”/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 </xsd:schema>

The first element of the input message is a string representing the type of the

schema evolution (e.g. “Attribute Removal”), while the second element of the

input message is a string that represents the schema evolution operation (e.g. “(r1,

http://www.w3.org/2001/XMLSchema
http://www.xmltc.com/dur/di/schema/ds/

139

a)”). The output message is also a string that represents the status of the execution

of this operation (e.g. “successful” or “fail”).

7.4 Case Study

In order to evaluate EA-SODIA and the approaches in this research, a single case

study [93,94,95] has been conducted. The case study is one of the research methods

which has been commonly used in such application areas as psychology, sociology,

political science, anthropology, social work, business, education, nursing, and

community planning. Although there is little formal documentation available on how

to conduct a proper case study, [93] presents guidance on when and how to conduct a

case study to evaluate software methods or tools.

It is unrealistic to implement the complete data integration system based on

EA-SODIA in a single research by a single researcher, as it may involve several

research issues some of which are beyond the scope of this research, such as

translation between queries language and query optimization. Therefore, an

experimental implementation of EA-SODIA is carried out to undertake the case study

for evaluation of this work. The methods presented in previous sections are embodied

in the experimental system.

7.4.1 Context and Analysis Unit

The objective of the case study is to evaluate EA-SODIA and the approaches

described in previous chapters. It examines whether a system based on EA-SODIA is

able to solve the evolution problems defined in this thesis while eliminating the

heterogeneities among involved, distributed and autonomous databases. Therefore, we

developed an experimental system based on EA-SODIA in the automobile trade

application area. For convenience, the experimental system is called EA-SODIAS.

The case study assumes that, in the automobile trade application area, there are

various organizations which can provide partial information about an automobile

140

which is either new or used. Each organization publishes its database as a DS and

registers the DS into the DISs.

Thus, the context and analysis unit of the case study is as following:

 Context of the case study: automobile trade application area

 Unit of analysis: the experimental implementation system (EA-SODIAS).

It can be seen that this case study is a single project case study with a single analysis

unit. EA-SODIAS is described in detail later in this chapter.

7.4.2 Question and Hypothesis

In order for the case study to be effective, the research questions and the hypotheses

of the case study must be clearly defined in advance. Since it is proposed in this

research that EA-SODIA is able to dynamically integrate heterogeneous and

distributed source databases aiming to minimize the cost of the maintenance caused

by database evolution, the main research questions of the case study are:

1) How and why the RSMV approach can integrate distributed databases,

eliminating the heterogeneities defined in Chapter 1.

2) How and why the RSMV and the meta-database can help solve the evolution

problems defined in this thesis.

3) How and why SED can help solve the evolution problems defined in this

thesis.

4) How and why SOA can help solve the evolution problems defined in this

thesis.

The hypotheses of the case study are then:

A. The heterogeneities defined in Chapter 1 can be eliminated using the RSMV

approach and the query processor.

B. The RSMV approach and meta-database can reduce the cost of modification

work caused by schema evolution, and the query processor can reduce the

141

number of the queries which require modification when any organizational

evolution occurs.

C. If any schema evolution occurs in one source database, the views of other

source databases do not require modification so that the system can still work

properly.

D. The SED can reduce the cost of modification work caused by schema

evolution.

E. SOA and web services can help reduce the cost caused by database

evolutions and system evolution because they provide high reusability,

autonomy and discoverability.

By setting the hypotheses, some response variables are also listed in Table 7-3

Table 7-3 Response Variable

Response Variable Description

Number of user queries explicitly

designating source databases

The number of user queries in which the

actual names of particular local schemas

are included

Number of user queries involving local

schema

The number of user queries in which the

actual relations and attributes of

particular schemas are designated

Correctness of the data retrieved by a user

query

The correctness of the results of a user

query

Number of the affected user queries Number of the existing user queries

which are affected by a schema evolution.

Human invention Whether an automatic view modification

process require human invention

Number of hard-coded queries The number of queries which are used to

integrate local schemas and to eliminate

heterogeneity

142

Number of views requiring modification Number of exporting views and

importing views which require

modification when a schema evolution

occurs

Number of source database considered Number of source databases which need

to be considered when a single schema

evolution occurs

The work of identifying the affected

views

The effort to find the views affected by a

schema evolution.

The work of identifying the affected DISs The effort to find the DISs which require

modification when a schema evolution

occurs

The work of modification on the views The effort to modification the views

affected by a schema evolution

In general, the case study will focus on answering the above research questions and

demonstrate the above hypotheses. Therefore, if the hypotheses are well supported by

the results of the case study, EA-SODIA and the approaches proposed in this thesis

are generally considered to be successful and the aim of this research has been

achieved. However, in order for the evaluation to be more complete, other aspects of

the system such as performance and scalability and reliability will also be examined

and discussed in Chapter 8.

7.4.3 Experimental Implementation

As mentioned in previous sections, the experimental implementation system

(EA-SODIAS) implements EA-SODIA to integrate various source databases in an

automobile trade domain. EA-SODIAS implements the software components of the

DIS and the DS and the registry. This section introduces the development

environment and the design of EA-SODIAS in detail.

143

7.4.3.1 Development and Test Environment

The experimental system runs on Microsoft Windows XP operating system. The

development was undertaken in the following environment:

 Programming Platform: The Java 2 Platform, Enterprise Edition (J2EE)

 Development Tool: Java Studio 8.0

 Web Container: Apache Tomcat 5.0

 Web Service Toolkits: Apache Axis

 Database Management System: MySQL

The Java 2 Platform is a development and runtime environment based on the Java

programming language. The Java 2 Platform Enterprise Edition (J2EE) is built to

support large-scale, distributed solutions. The J2EE was chosen for several reasons:

 It is currently the major programming language supporting Web services,

providing the feature of platform independence.

 The J2EE is one of the two primary platforms currently being used to develop

enterprise solutions using Web services.

 The J2EE platform provides a development and runtime environment (APIs)

through which all primitive SOA characteristics (e.g. WSDL and SOAP) can be

realized.

 Much like the Web services specification landscape, the J2EE platform consists

of a series of technologies that are based on open standards. This allows vendors

to build proprietary tools and server platforms around a standardized foundation

(e.g. Tomcat and Axis).

 Database connectivity is very well supported.

 The integrated development environment, Java Studio 8.0, supports easy testing

and debugging.

Apache Axis is an implementation of the SOAP and has proven itself to be a reliable

and stable base on which to implement Java Web services. It was planned to use

Apache jUDDI to implement the registry service. Apache jUDDI is an open source

144

java implementation of the UDDI specification for Web services. The registry

published by jUDDI is itself a service, providing service requestors with some

technical information such as the URIs and the names of methods of service providers.

For the time being, the search for proper service providers and the binding between

services is still manual work. However, in this research, the access methods of the

DISs and the DSs are standard and unified. Therefore, each integrator knows how to

access the DS, while each DS knows how to access the DIS. Thus, the registry is only

used to record the URIs of the services. Instead of using Apache jUDDI, a simple

database is chosen as a registry to achieve our goal. The database is published as a DS

as well. This is further described in later sections.

In addition, the experimental system was tested under following hardware conditions:

 Number of Personal Computers (PCs): 2 (with same capacity).

 CPU: Pentium 4 (3.20 GHz).

 Memory: 1.5GB.

 Hard-Disk: 320GB.

These two PCs were connected through a local network which was an ethernet

running at 10 mega bits per second (10Mbps). One of the PCs was used to publish all

the DSs, while the other one was used to publish all the DISs and the registry service.

7.4.3.2 Experimental System Architecture

In previous sections, the service-oriented design of the system was introduced.

However, in practice, the object-oriented design method [90] is usually used to design

the internal components and process of a web service. Figure 7-3 shows the

architecture of EA-SODIAS in terms of its services and databases and the clients. The

diagram shows the internal classes and process of the DIS and the DS and omits the

input and output of each service and messages transferred between services.

145

+ContainmentTest()

+ResultComposition()

-Head

-subGoals

-Predicates

Query

+QueryDecomposition()

+ResultComposition()

-Head

-subGoals

-Predicates

SubQuery

+getResult()

-Head

-subGoal

-Predicates

SingleQuery+Retreive()

+Update()

+Discard()

+DeleteAtrribute()

+GetDataServiceName()

+GetDataServiceLocation()

-subGoals

-Predicates

ImportingView

+SchemaEvolutionDetection()

SchemaEvolutionDetector

+Execute()

+toSQL()

-Head

-subGoal

-Predicates

Query

+Retreive()

+Update()

+AutoViewModification()

+CreateAutomicView()

+DeleteAutomicView()

+getParent()

+createSQLViews()

-Root

-AtomicViews

-RelationSchemas

ExportingView

+SchemaEvolutionDetection()

SchemaEvolutionDetector

+Discard()

+AutoViewModication()

-ViewSchema

-Operation

AtomicView

Data Integrator Service

Meta-

database

Data Service

Meta-

database

Local

Database

Registry

Service

Locations

Client (JSP page)

Figure 7-3 Architecture of EA-SODIAS, Showing the Classes of each service and the

Databases

This architecture reflects the design of the services in EA-SODIA. In the DIS, the

Query and ImportingView and SubQuery and SingleQuery classes encapsulate the

query reformulation step and query decomposition and result composition, while the

SchemaEvolutionDetector class and ImportingView encapsulate the schema evolution

detection in the DIS. In the DS, the Query class encapsulates query transformation

step and also executes the reformulated query on the local database, while the

SchemaEvolutionDetector and ExportingView and AtomicView classes encapsulate

the schema evolution detection step performed in the DS.

146

In the implementation, a simple JSP web page client is developed to accept user

queries and show results obtained from the DIS. The meta-databases represent the

meta-databases in the DIS and the DS. The local database in Figure 7-3 represents the

actual DBMS of the source database. As mentioned previously, the registry service is

in fact another DS that explores a database storing the locations of the services in the

system.

The design of EA-SODIAS has also been influenced by a number of considerations:

 Optimizing the formulation at the DS site: not only save the definitions of the

views, but also build actual views in the local databases. Like program

compilation, the views need to be re-built every time when views definitions

change as the result of the schema evolution.

 Reducing the communication across network: the registry only stores the

locations of the services.

 Providing high reusability of the service: all the DSs have the unified method;

all receive SQL as a parameter, when publishing new databases, no programs

are required.

7.4.3.3 Meta-database Structure and Management

The meta-database is stored and managed as a MySQL 5.0 relational database

constructed using the MySQL Administrator tool. The meta-database is divided into

two parts as described in section 7.2.1. One of them is located and managed at the

integrator service site, while another one is at the DS site. Figure 7-4 shows the

structure which reflects the meta-database located in the DIS. The structure of the

meta-database which is located at the DS site is depicted in Figure 7-5.

147

Global-Schema

PK Relation-Name

 Attribute

 Domain

Importing-View-Head

PK,FK1,FK2 Data-Service-Name

PK,FK1,FK2 Importing-View-Name

 Attribute

 Domain

Importing-View-Subgoal

PK Data-Service-Name

PK Importing-View-Name

 Relation-Name

Importing-View-Condition

PK,FK1 Data-Service-Name

PK,FK1 Importing-View-Name

PK,FK1 Condition-Seq

 Predicate

ImV-Condition-Operand

PK Data-Service-Name

PK Importing-View-Name

PK Condition-Seq

 Content

 Class

 Domain

 Sequence

Data-Service

PK,FK1,FK2,FK3,FK4 Data-Service-Name

 Description

Organization

PK,FK1,FK2 Organization-Name

 Description

Organization-Property

PK,FK1 Organization-Name

 OP-Name

 OP-Type

 isRoot

Organization-Parent

PK Organization-Name

 OP-Name

 Parent

OPRemoval

PK OE-Seq

 Organization-Name

 OP-Name

OE

PK,FK1,FK2,FK3,FK4 OE-Seq

 OE-Type

OPRename

PK OE-Seq

 Organization-Name

 OP-Name

 Evolved-Name

ORGRemoval

PK OE-Seq

 Organization-Name

ORGRename

PK OE-Seq

 Organization-Name

 Evolved-Name

Figure 7-4 The Structure of the meta-database of Data Integrator Service

Although it is not shown in Figure 7-3, a small software tool called the Metadata

Creator is provided in order for the investigator to build exporting views and

importing views. One of the advantages of the RSMV is that views are easier to

manipulate than hard-coded programs. Without the software tool, novice maintainers

have to understand the structure of the meta-database in order to store the view

definition manual. The software tool is not aiming to automatically build the views

based on the local schema. It is more like an editor and compiler of the views,

accepting the view definitions from a maintainer and storing them in the

meta-database properly. A maintainer can enter all the atomic views of an exporting

view or the subgoals of an importing view on the interface of the Metadata Creator

148

which sequentially stores them in the meta-database. The validity of the views has to

be checked manually.

Atomic-View-Relation

PK,FK1 Exporting-View-Name

PK,FK1 Atomic-View-Name

 Relation-Type

 Attribute-Name

 Attribute-Domain

 isRoot

Join

PK,FK1 Exporting-View-Name

PK,FK1 Atomic-View-Name

 Relation-1

 Relation-2

Join-Common-Attribute

PK Exporting-View-Name

PK Atomic-View-Name

 Attribute-Name

Selection

PK,FK1 Exporting-View-Name

PK,FK1 Atomic-View-Name

 Relation

 isConditional

Selection-Condition

PK,FK1 Exporting-View-Name

PK,FK1 Atomic-View-Name

 Predicate

Selection-Condition-Operand

PK Exporting-View-Name

PK Atomic-View-Name

 Content

 Class

 Domain

 Sequence

Set-Operator

PK Exporting-View-Name

PK Atomic-View-Name

 Operation-Type

 Relation-1

 Relation-2

Projection

PK,FK1 Exporting-View-Name

PK,FK1 Atomic-View-Name

 Relation

Projection-Element

PK,FK1,FK2 Exporting-View-Name

PK,FK1,FK2 Atomic-View-Name

FK1,FK2 Source-Seq

 Source-Type

 Output-Attribute

Projection-Element-Source

PK Exporting-View-Name

PK Atomic-View-Name

 Source-Seq

 Source-Value

 Source-Domain

Projection-Element-Expression

PK Exporting-View-Name

PK Atomic-View-Name

 Source-Seq

 Operator

 Operand-Class

 Operand-Domain

 Operand-Content

Grouping

PK,FK1,FK2 Exporting-View-Name

PK,FK1,FK2 Atomic-View-Name

 Relation

Grouping-Group-List

PK Exporting-View-Name

PK Atomic-View-Name

 Attribute

Grouping-Aggregation-List

PK Exporting-View-Name

PK Atomic-View-Name

 Operator

 Attribute

 Resusting-Attribute

Exporting-View

PK,FK1 Exporting-View-Name

 Description

View-Expression

PK,FK1,FK2,FK3,FK4,FK5Exporting-View-Name

PK,FK1,FK2,FK3,FK4,FK5Atomic-View-Name

 Operation-Type

Figure 7-5 The Structure of the meta-database of Data Service

Although the Metadata Creator can help build a new exporting view or a new

importing view for the first time, the meta-database is managed manually using

MySQL Administrator. If the system was released for large-scale use this would need

to be rectified, however the current situation is acceptable for case study research.

149

7.4.3.4 Data Integrator Service

The DIS shown in Figure 7-4 can be referred to as a software component which can

be published as a web service. The system may have more than one DISs which all

have exactly the same internal processes. The following classes are designed:

 The query class represents a user query, providing methods to perform query

containment test and result composition. It will be created when the user

query is received from the client, the JSP web page in this case. It also

encapsulates the processes of identifying the possible source databases and

dealing with the organizational evolutions.

 The ImportingView class represents the importing views stored in the

meta-database, responsible for retrieving and updating an importing view in

the meta-database.

 The ImportingView class also provides methods to get the name and location

of the DS of the importing view by accessing the registry service.

 The SubQuery class represents the subqueries resulting from the query

containment test process, providing methods to further decompose a

subquery into single queries and compose the results for the current

subquery.

 The SingleQuery class represents the single queries finally produced from the

containment test, providing methods to get the required data from a relevant

DS. Therefore, the SingleQuery is the class which communicates with the

relevant service.

 The SchemaEvolutionDetector class provides the method for the schema

evolution detection step. It will be invoked by a DS when any schema

evolution that affects the importing views occurs. Then, it creates an

ImportingView object to undertake the retrieving or the updating of the

affected importing view.

The DIS is implemented by modifying an existing software product, OGSA-DAI WSI

2.1 [31]. OGSA-DAI is a middleware product which supports the exposure of data

150

resources, such as relational or XML databases. It is a free, open source software

available on the web [31]. OGSA-DAI enables users to expose a relational database as

a DS which can receive SQL queries in a string from a client and execute the queries

on the exposed database and then send the result back to the client. A DS published

using OGSA-DAI provides various activities such as retrieving and updating the

underlying database. All the OGSA-DAI DS have a unified method, called Perform,

which receives an XML document as a parameter in which the user query (in SQL)

and the designated activity are encapsulated.

The OGSA-DAI can be extended by adding new activities, which are in fact Java

classes, to perform new functions. Therefore, the DIS is implemented by adding two

new activities, called the Query and the SchemaEvolutionDetector, which perform the

tasks of the Query class and the SchemaEvolutionDetector class, respectively. Thus,

the user queries encapsulated in the perform document is in a conjunctive query

language instead of SQL. Other classes introduced above are invoked by these two

activities.

Rather than implementing a complete native version of the DIS, it was designed to

use the OGSA-DAI and modify it to embed the processes of the DIS for the following

reasons:

 It has the advantage of using a proven implementation. It is important to

establish the reliability of a third-party implementation. Establishing

confidence in the OGSA-DAI was achieved by experimenting with various

SQL queries on pre-defined data to successfully produce predicted results. In

addition, the OGSA-DAI has been used in a variety of research projects with

no reported problems.

 The connection with various DBMSs products is well supported by the

OGSA-DAI. A DS needs to connect to the underlying DBMS whenever the

user query is received. The OGSA-DAI provides XML document to store the

connection information so that it is easy to maintain.

151

 The transformation between the results of queries and the SOAP document is

well supported by the OGSA-DAI. The result of a query in Java is usually

stored in a object called the ResultSet. However, the messages between web

services are encapsulated in SOAP documents. The OGSA-DAI provides a

well-optimized method to convert the ResultSet to the WebRowSet format

before being sent back to the client in the body of a SOAP message.

 The management of configuration XML files of both services and connection

of the exposed database is well supported by the OGSA-DAI.

 A set of software tools to publish DSs are provided, which can reduce the

manual work.

Since the case study aims to examine whether EA-SODIA can solve the evolution

problems, the parallel query process is not considered and implemented in this

research. Therefore, the relevant DSs are accessed in sequence, which may affect the

performance of this experimental system. In addition, the Bucket Algorithm is

implemented without consideration of optimization, because there is no proven

existing implementation available. After the first step of the Bucket Algorithm, the

possibly relevant importing views are found. Each importing view found is referred to

as a single query which is immediately sent to the relevant DS to get results. The

results are stored in temporary tables which are created based on the importing views

in the meta-database at the DIS site. Namely, the relevant importing views are

materialized before the second step of the Bucket Algorithm. Once the contained

queries have been found in the second step, they are executed on those temporary

tables to obtain the results. Although this may increase the amount of data transferred

every time, it avoids repeatedly accessing the same DSs. More importantly, it enables

the investigator to check whether each DS is able to provide the correct answer,

especially when some schema evolution occurs.

7.4.3.5 Data Service

As with the DIS, each DS in this system has the same internal structure shown in

152

Figure 7-4. The following classes are designed:

 The Query class represents the single conjunctive query received from a DIS.

It translates the single query into a SQL query and then executes it on the

underlying local database. Since the exporting views have been created in the

local databases by the Metadata Creator as mentioned previously, the query

class does not perform the query transformation step introduced in Chapter 6.

 The ExportingView class represents an exporting view, providing methods

for retrieving and updating the exporting view, and for manipulating its

atomic views. It also provides method for automatic view modification.

 The AtomicView represents an atomic view, providing methods for

discarding and automatically modifying the atomic view.

 The SchemaEvolutionDetector class provides the method for the schema

evolution detection step using the methods described in Chapter 5. It finds

the affected exporting views based on the schema evolution operation

provided by the user. This class will create the instances of the exporting

view class to retrieve and modify those exporting views. If any atomic view

of the exporting view has been modified, the corresponding views in the

local database are re-built as well.

The method used in the SchemaEvolutionDetector to re-build the views in the local

database is the same as that of the metadata creator. The complete translation between

a query in SQL and a query in relational algebra would be very complex and therefore

not suitable for this single case study. Therefore, each atomic view is translated into

the view in SQL individually and then stored in the local database. As an atomic view

of an exporting view only involves a relational algebra expression that has one

operation, the translation becomes much easier to undertake. It means that for each

atomic view of an exporting view, there is a view that has the same name as it

involves an SQL query in the local database. Thus, the root atomic view is the view

where the query received from the DIS is performed.

153

The Query class receives a conjunctive query from the DIS. It is required that this

conjunctive query is translated into an SQL query, in order to execute on the local

database. By using the architecture and the methods in this research, the conjunctive

query sent to the Query class only involves one subgoal. Although it may have one or

more predicates, it is simple to translate this conjunctive query into a

“select-from-where” query with one relation.

As with the DIS, the DS is also implemented by modifying the OGSA-DAI WSI 2.1.

This is also acomplished by adding two new activities, called the Query and the

SchemaEvolutionDetector, which perform the tasks of the Query class and the

SchemaEvolutionDetector class, respectively. Again, the user queries encapsulated in

the perform document are in a conjunctive query language instead of SQL. Other

classes introduced above are invoked by these two activities.

7.4.3.6 Registry Service

As explained previously, a DS exposing a simple database is used as a registry service.

The database has only one relation called Service-Location where the locations of all

the services in this system are stored. The DS is deployed and published using

OGSA-DAI without any modification. Therefore, it provides one method which

receives a string representing an SQL query as a parameter. In this system, all the

service has to know is the location of this registry service in advance. This is achieved

by adding a simple relation with one tuple into the meta-database to record the

location of the registry service. However, the method provided by the registry service

and the relation storing the locations are encapsulated in the hard-coded program of

each service.

7.4.4 Test Data

Experimental implementation is used to examine whether EA-SODIA and its methods

can solve the evolution problems defined in this thesis while eliminating the

heterogeneities between databases. Therefore, building the implementation alone does

154

not provide any evidence to prove the hypotheses of the case study. It is essential to

apply this implementation to a particular application domain where the

heterogeneities and the evolutions defined in this research occur. Consequently, a

well-designed set of data is required.

7.4.4.1 Principles of Test Data

In order to obtain values for the variables to examine whether the hypotheses can be

supported, the following test data need to be included:

 The information in an application domain: the general information which

may be recorded and manipulated in databases. This is standard information

which can be understood by any organization in the same domain. As

described in Chapter 1, this information can be represented as an E-R model.

 The data in the relational model: these are different sets of data which are

designed differently based on the general information in E-R model. All the

heterogeneities defined in Chapter 1 need to be covered among these sets of

data. In practice, each set of data is designed independently by each different

organization for its own purpose. Although the query process is not the focus

of this research, it has been taken into account that the data sets should be

designed to examine whether the query process method in this research can

find the relevant DSs correctly.

 Various types of evolution: the types of evolution defined in this research are

covered. Not only are the evolution operations designed to perform on the

system, but a plan is devised to perform each evolution on different databases

to cover various possible cases. Without this plan, the test cannot be

repeatedly performed with the same results.

 A set of user queries: a set of user queries are designed to examine whether

the relevant DSs can be located and whether the correct results can be

produced, especially after each evolution occurs.

In addition to the temporary relations for storing the resulting data from each DS as

155

mentioned in the previous section, some log files which are plain text files are used to

record the outputs of each process of the system. The results are measured and

compared with the pre-defined “correct” answers. The test data are set using SQL

scripts so that they can be repeated easily. Entering the user queries to the system and

performing those evolution operations are manual work. Also, measurement and

comparison of the results are conducted manually due to the nature of the evolution

problems.

7.4.4.2 Application Domain

The application domain in this case study is the automobile trade industry in China.

Both new cars and used cars are being sold by different organizations or persons. The

organization may include dealers and garages. Personal owners may leave their cars in

a dealer or garage for sale. Those organizations may locate at different cities which

belong to different provinces in China. Each organization holds its owner database in

which the car sale information is stored. In addition to the above organizations, other

organizations such as insurance companies and register centres may provide relevant

information about used cars. EA-SODIAS aims at enabling users to find information

from various organizations. Although this case is much simpler than a practical case,

it is enough for answering the questions of the case study.

7.4.4.3 Design of Test Data

The information being managed in this application domain is about automobiles. It is

assumed that every organization in this domain understands this information.

Therefore, organizations’ own application systems store this information in different

ways. The E-R model of the general information of this application domain is shown

in Figure 7-6 and Figure 7-7.

156

Automobile

Model

Registration

Trader

Owner-

Automobile

Vin

Vin

Name

Registration

Number

Model

Year

Type

Name

Vin

Status

Vin

Status Brand

Owner

1

1
Automobile-

Model

1

1

1

Automobile-

Sells
1

Registration-

Automobile

1

1

Colour

Price

Figure 7-6 E-R Model for EA-SODIAS

Automobile

BrandVin Colour

Van Car

Capability

Year

Figure 7-7 Subclasses of Automobile Entity

It is shown in Figure 7-6 that the information regarding an automobile may involve its

model, registration, traders and previous owners (for a used car). This information is

represented by five entities and four relationships in this E-R model. Therefore, the

157

E-R model indicates that an automobile of a brand may have a vehicle identification

number which uniquely identifies the automobile. An automobile may also be new or

used, and be an automatic or manual one represented by the model entity. In addition,

either a new or a used automobile can be sold by a dealer or a person, represented by

the trader entity. A used automobile also has registration information, represented by

the registration entity. Finally, Figure 7-7 shows that the automobile has two

subclasses, indicating that an automobile can be either a van or a car. A van has a

attribute capability which is not a attribute of a car. Apparently, this E-R model is

simple and only includes some of information which is to be managed in practice.

However, this is enough for a case study to evaluate a research, because it is enough

to involve various heterogeneities.

Global schema

A global schema can be designed as follows, mapping the above E-R model.

AUTO (vin, status, brand, type)

VAN (vin, capability)

MODEL (vin, model, year, colour)

SELLS (name, type, vin, price)

Registration (vin, registration-number)

OWNER (vin, owner, status)

This design follows the rule introduced in Chapter 4 that the global schema is in a

higher normal form and has no composite attributes.

Local schema

The same E-R model may be mapped into different relational models by different

organizations. Therefore, this case study designs the following possible local schemas

to cover all heterogeneities defined in Chapter 1.

1) VEHICLE (vin, status, brand, type, cap, model, year)

SALE(name, type, vin, price)

158

CUR_OWNER (vin, owner)

2) AUTOMOBILE (vi-n, status, brand, type)

VAN (vi-n, capability)

MODEL (vi-n, transition, year, colour)

SELLS (trader_name, type, v-in, price, discount)

3) CAR (vi_number, status, brand)

VAN (vi_number, status, brand)

MODEL (vi_number, model, year, colour)

OWNER (vi_number, first_name, mid_name, last_name, price)

4) AUTO (vin, status, brand, type, year)

Registration (vin, number)

OWNER (vin, owner_name, status)

The first and second local schemas may be held by organizations such as the online

car trade market where various sellers show their automobiles, providing actual

traders’ information. The third local schema may be designed by dealers or garages

without holding trader information. The fourth local schema, however, may be

designed by the registration center, providing registration information of used cars

and no sale information about the cars. In this case study, four source databases are

published as DSs initially to examine whether the heterogeneities and the evolution

problems can be solved. Each of them has one of the local schemas above,

respectively. Then, more source databases having the above local schemas are

published to evaluate the scalability of the system. The heterogeneities existing

among the above local schemas are further discussed in Chapter 8.

159

7.4.5 Evaluation of Implementation

This section discusses some of the issues arising from the implementation of

EA-SODIA in EA-SODIAS. The EA-SODIA and methods themselves are evaluated

in the next chapter.

7.4.5.1 Design Evaluation

7.4.5.1.1 Combined Design Approach

The design approach combining Object-Oriented and Service-Oriented methods has

proved effective and the system architecture has not been changed for any version of

EA-SODIA, although some of the methods of the classes have been changed over

time. Using the service-oriented method can help to define the operations and the

messages of the services correctly and reduce the modifications on them afterwards.

The object-oriented method helped to design the internal process of each service

clearly. As the system is developed using Java which is an object-oriented

programming language, the object-oriented design method also made the

programming easier. In addition, combining these two methods also helped to expand

the system with minimal effort.

There were some disadvantages, in particular, the query processing. Both query

reformulation step and result composition steps consider little optimization. The query

reformulation step creates as many subqueries objects as the resulting conjunctions of

the Bucket Algorithm, which may waste computing resources. However, it made the

program elegant and easy to test. Also, all the relevant DSs were accessed and the

results were stored in the temporary relations in the meta-database of the DIS. It may

to some extent increase the cost of communication across network and the

communication with DBMSs, when the number of source databases becomes very

large or the amount of data in individual databases becomes huge. However, in this

case study, it is not necessary to make the number of DSs extremely large, because we

are not focussing on performance. Therefore, this method actually increased the

performance, as it reduced the times of communicating with DSs.

160

The DSs were accessed in sequence, therefore, the parallel query processing problem

was not considered. Java threads offer better performance of query processes, but the

current method works satisfactorily for the case study. Moreover, no validation check

on input data is provided. Therefore, it places responsibility on the investigator to

make the input data valid. However, it was not a problem after a complete set of test

data is produced.

7.4.5.1.2 Third-Party Software

There were good reasons for using the OGSA-DAI provided by the OGSA-DAI team,

the most important being that the code can be trusted as correct (see section 7.5.3.4

and section 7.5.3.5 for research citing use of the OGSA-DAI). In addition, a

substantial amount of time was saved by not handling the management of the

underlying database, nor providing tools to publish DSs.

Another crucial reason is that the OGSA-DAI provides a method of converting a Java

resultset into a Webrowset. It also provides a method to encapsulate the webrowset

into a SOAP document. It certainly provides methods to convert repeatedly and to

manipulate the results easily. This is complex and time-consuming work for a research

with one researcher.

The OGSA-DAI provides good extendibility by allowing users to add new activities

which are Java classes. This allows us to add our programs into it by simply

modifying one of its activities and adding our Java classes into the package. Therefore,

it also makes the EA-SODIAS extendible.

The main disadvantage of the OGSA-DAI is that it lacks documents for developers.

Although it provides useful guidance for a user to install it and publish a DS, there are

few documents showing the internal Java classes.

161

7.4.6 Test and Validation

Each class was tested individually before being included in the system. The classes

were tested in sequence because each class takes an input which is the output of

another. Each class program was slightly modified to gain high visibility of input and

output data so that very few problems were found during integration. Individual

programs were mostly checked by hand to ensure that the output generated was as

expected, e.g. the relevant DSs found by the Query class and the subqueries were

compared to a manually performed analysis. Also, the affected views resulting from

the SchemaEvolutionDetector class were also compared to the results produced by

hand.

The Query class and the ExportingView class were more complex and required the

use of Java Studio’s debugging tools. These allowed the internal state of various data

structures to be displayed at appropriate points during the execution of the classes.

SQL queries were also printed out to check the correctness before they were executed

on the database. Single-step tracing of the routines was used to ensure correct

implementation of the algorithms.

Due to its nature, the query containment test of the Query class cannot be tested using

a large number of DSs, because producing the results by hand was very

time-consuming. However, the experiments with typical test data are enough to ensure

its correctness even with a large number of DSs.

7.5 Summary

This chapter has presented the design of the services in EA-SODIA. A case study

including an experimental implementation is also described for evaluating the

EA-SODIA and the algorithms in this research. Various technical issues relating to the

system’s design have been discussed. The test data of the case study is described in

detail.

162

Chapter 8 presents an extensive evaluation of EA-SODIA, and the RSMV and the

SED algorithms using the results of the case studies. The main focus is on the

capability of solving the heterogeneity and the evolution problems, although various

basic characteristics of EA-SODIA are also examined.

163

Chapter 8 Evaluation

8.1 Introduction

Chapter 7 described the design rationale of the services in EA-SODIA and a case

study including an experimental implementation called EA-SODIAS.

Having shown the integration method RSMV and the schema evolution detection and

the query processing in EA-SODIA, this chapter presents an extensive evaluation of

all the methods introduced. It also shows how the service-based architecture can help

with the evolution problems.

The evaluation begins with one of the most essential properties of EA-SODIA: the

capability of eliminating heterogeneity. EA-SODIA is intended to solve some

evolution problems on the premise of integrating distributed databases with

heterogeneity. Therefore, it is important that the system is able to eliminate various

heterogeneities defined in Chapter 1. The chapter then discusses the capability of

solving evolution problems, which is the focus of this research. The issues relating to

query processing are also discussed. These properties are examined by answering the

research questions and demonstrating the hypotheses defined in Chapter 7. Finally,

some general characteristics of EA-SODIA such as scalability and expandability and

domain independence and language independence are also discussed.

8.2 Capability of Eliminating Heterogeneity

Recall that the motivation of the research is to provide an evolvable integrated

database system to provide users with a unified view of various distributed databases.

Therefore, in advance of dealing with the evolution problems, the heterogeneity

problems must be solved.

The algorithm in this research dealing with the heterogeneity problems is called

164

RSMV. Databases with various heterogeneities defined in Chapter 1 should be

integrated into EA-SODIAS successfully. In the case study, in order to examine the

capability of eliminating heterogeneity, a research question was defined in Chapter 7:

How and why the RSMV approach can integrate distributed databases,

eliminating the heterogeneities defined in Chapter 1.

Also, three hypotheses were defined, as follows, in terms of the above questions.

8.2.1 Hypothesis A

The hypothesis is:

The heterogeneities defined in Chapter 1 can be eliminated using the RSMV

approach and the query processor.

This is examined by integrating four pre-designed databases into the system, mapping

their schemas to the global schema. All heterogeneities exist among these four

databases each of which is mapped to the global schema individually. In principle, if

these typical databases can be integrated, there is no reason why a large number of

databases with these heterogeneities cannot be integrated as each of them is mapped

to the global schema separately. The integration of a database is regarded as a

“success”, if

 a set of valid exporting views are constructed based on the schema of the

database using relational algebra so that the exporting views are

homogeneous to the global schema (as explained in Chapter 4)

 and a set of corresponding importing views of the database can be

constructed validly based on the global schema

 and the system is able to find the relevant databases based on the importing

views

 and the values of relevant attributes can be obtained as long as the attributes

are involved in the database

165

8.2.1.1 Test Data

In order to verify the capability of the RSMV algorithm for reconciling heterogeneity,

an investigation was undertaken using EA-SODIAS and the pre-designed test data

introduced in Chapter 7. Recall that there are four local schemas involving various

heterogeneities and one global schema in the test data set. In this case study, the

global schema is stored in the relation called Global-Schema in the meta-database

residing in the DIS. Four source databases, D1 and D2 and D3 and D4, were built,

each of which holds one of the local schemas respectively. The source databases were

then published as DSs. The meta-database of each DS resided in the source database

(local schema) because this saved some work from connecting to a separate database

and made no difference to the results.

At this stage, only one DIS was built because it was enough for evaluating the

capability of solving the heterogeneity problems. The global schema that stored at the

DIS is shown in Table 8-1:

Table 8-1 Content of the Global-Schema Relation in the Meta-Database of the

Data Integrator Service

Relation-Name Attribute Domain Remark

AUTO vin String Vehicle Identification Number

AUTO status String “New” or “Used”

AUTO brand String

AUTO type String “Car” or “Van”

VAN vin String

VAN capability Double

MODEL vin String

MODEL model String “Automatic” or “Manual”

MODEL year String

MODEL colour String

166

SELLS name String

SELLS s_type String “Dealer” or “Garage” or “Person”

SELLS vin String

SELLS price Double

Registration vin string

Registration registration-number String

OWNER vin String

OWNER owner String

OWNER status String “Current” or “Previous”

Although the global attribute domain (GAD) was not stored in a separate relation, it

could obviously be obtained from the above table. It is assumed that each source

database is held individually by an organization. The organizations holding those four

databases were stored in the Organization relation and Organization-Property relation

and Organization-Parent relation, which are shown in Table 8-2, Table 8-3 and 8-4,

respectively.

Table 8-2 Organization Relation in the Meta-database of the Data Integrator

Service

Organization-Name Description

Location This organizational structure categorizes

the organizations by location

Table 8-3 Organization-Property Relation in the Meta-database of the Data

Integrator Service

Organization-Name OP-Name OP-Type isRoot

Location China Categorization Property Y

Location GuangDong Categorization Property N

Location Beijing Categorization Property N

167

Location GuangZhou Categorization Property N

Location D1 Local Schema N

Location D2 Local Schema N

Location D3 Local Schema N

Location D4 Local Schema N

Table 8-4 Organization-Parent Relation in the Meta-database of the Data

Integrator Service

Organization-Name OP-Name Parent

Location GuangDong China

Location Beijing China

Location GuangZhou GuangDong

Location D1 Beijing

Location D2 Beijing

Location D3 GuangZhou

Location D4 GuangZhou

The corresponding DSs of those databases, which are also represented as D1, D2, D3

and D4, were stored in the Data-Service relation.

The local schema of each source database is listed as follows:

1) Local schema of D1:

VEHICLE (vin: String, status: String, brand: String, type: String, cap: String,

model: String, year: String)

SALE(name: String, type: String, vin: String, price: Double)

CUR_OWNER (vin: String, owner: String)

2) Local schema of D2:

AUTOMOBILE (vi-n: String, status: String, brand: String, type: String)

168

VAN (vi-n: String, capability: Double)

MODEL (vi-n: String, transition: String, year: Integer, colour: String)

SELLS (trader_name: String, type: String, v-in: String, price: Double, discount:

Double)

3) Local schema of D3:

CAR (vi_number: String, status: String, brand: String)

VAN (vi_number: String, status: String, brand: String)

MODEL (vi_number: String, model: String, year: String, colour: String)

OWNER (vi_number: String, first_name: String, mid_name: String, last_name:

String, price: Double)

4) Local schema of D4:

AUTO (vin: String, status: String, brand: String, type: String, year: String)

Registration (vin: String, number: String)

OWNER (vin: String, owner_name: String, status: String)

Each local schema was created individually with a set of tuples in order to examine

whether the system is able to produce expected answers to pre-defined queries. In

order to evaluate the system later in this chapter, it is helpful to examine whether the

sample local schemas have covered all the types of heterogeneity defined in Chapter 1.

Table 8-5 lists all the heterogeneities and discusses how each one exists among four

sample local schemas.

Table 8-5 Heterogeneities among the Sample Source Databases

Heterogeneity Covered Explanation

Naming Conflicts Yes The local schemas use different relation names

and attribute names to represent the same entity.

For example, D1 uses relation VEHICLE to

represent automobiles, while D2 and D4 use

169

relation AUTOMOBILE and relation AUTO

respectively. Also, the attribute vin in D1 and the

attribute vi-n in D2 represent the same property.

Semantic Conflicts Yes D1, D2 and D3 provide an attribute to indicate

whether an automobile is an auto one or manual

one, while D4 does not.

Structural Conflicts Yes 1) D1 has one relation VEHICLE to include all

the basic information of an automobile,

while D2 has a separate relation MODEL to

provide information such as model, year and

colour of an automobile. It fulfills the

Condition (1) and (2).

2) Both D1 and D4 have one attribute to

represent the name of an owner, but D3 has

three attributes (first_name, mid_name and

last_name) to represent it. Also, the attribute

in D1 is composed of price and discount

(price * discount). It fulfills the Condition

(3).

3) D1, D3 and D4 have a relation to represent

owner information, while D2 does not. It

fulfills the Condition (4)

4) D1and D2 store the capability information of

vans, while D3 and D4 do not. It fulfills the

Condition (5)

Metadata Conflicts Yes In D1, D2 and D4, the subclasses Van and Car are

mapped into one relation with an attribute type to

indicate the classification; while in D3, they are

mapped into two relations.

170

Domain Conflicts Yes The attribute capability in D2 is in Double, while

the attribute cap in D1 is in String.

8.2.1.2 Resulting Views

Having constructed the global schema and the local schemas and the relevant

organizations, it can be examined whether a set of views can be built in order to

eliminate the heterogeneities. Recall that RSMV includes basically two steps:

 Eliminating the heterogeneities by building exporting views to make the local

schemas homogeneous to the global schema.

 Integrating the source databases into the global schema by building importing

views in terms of the global schema.

In fact, the elimination of some heterogeneity occurs during the process of both steps.

Moreover, some types of heterogeneity are solved during the query process. Therefore,

the full discussion requires that both the two steps and the query process be complete.

The resulting exporting views and the importing views of the local schemas are

shown in Table 8-6 and 8-7, respectively.

Table 8-6 Exporting Views Defined in Source Databases

Source

Database

Exporting View Atomic View

D1 D1-Auto-V 1) D1-Auto-V01 := πvin

vin, status

 status, brand

brand,

type

type, cap

capability , model

model, year

year

(VEHICLE);

2) D1-Auto-V02 := πname

name, type

type, vin

vin,

price

price (SALE);

3) D1-Auto-V03:= πvin

vin, owner

owner

(CUR_OWNER);

4) D1-Auto-V04 := D1-Auto-V01 vin

171

D1-Auto-V02;

5) D1-Auto-V := D1-Auto-V04 vin D1-Auto-V03;

D2 D2-Car-V 1) D2-Car-V01 := πvi-n

vin, status

 status, brand

brand,

type

type (AUTOMOBILE);

2) D2-Car-V02 := πvi-n

vin, transition

 model, year

year,

colour

colour (MODEL);

3) D2-Car-V03 := πvi-n

vin, trader_name

 name, type

type,

price

price (SELLS);

4) D2-Car-V04 := σtype=”Car” (D2-Car-V01);

5) D2-Car-V05 := D2-Car-V04 vin D2-Car-V02

6) D2-Car-V := D1-Auto-V05 vin D1-Auto-V03

D2 D2-Van-V 1) D2-Van-V01 := πvi-n

vin, status

 status, brand

brand,

type

type (AUTOMOBILE);

2) D2-Van-V02 := πvi-n

vin, capability

 capability (VAN);

3) D2-Van-V03 := πvi-n

vin, transition

 model, year

year,

colour

colour (MODEL);

4) D2-Van-V04:= πvi-n

vin, trader_name

 name, type

type,

price*discount

price (SELLS);

5) D2-Van-V05:= σtype=”Van” (D2-Van-V01);

6) D2-Van-V06:= D2-Van-V05 vin D2-Van-V02

7) D2-Van-V07:= D2-Van-V06 vin D2-Van-V03

8) D2-Van-V:= D1-Van-V07 vin D1-Van-V04

D3 D3-Auto-V 1) D3-Auto-V01 := πvi-number

vin, status

 status, brand

brand

(CAR);

2) D3-Auto-V02 := πvi-number

vin, status

 status, brand

brand

(VAN);

3) D3-Auto-V03 := πvi-number

vin, model

 model, year

year,

172

colour

colour (MODEL);

4) D3-Auto-V04 := πvi-number

vin, (first_name, mid_name,

last_name)

 name, tprice

price (OWNER);

5) D3-Auto-V05 := D3-Auto-V01∪D3-Auto-V02;

6) D3-Auto-V06 := D3-Auto-V05 vin

D3-Auto-V03

7) D3-Auto-V := D3-Auto-V06 vin D3-Auto-V04

D4 D4-Auto-V 1) D4-Auto-V01:= πvin

vin, status

 status, brand

brand,

type

type, model

model, year

year (AUTO);

2) D4-Auto-V02:= πvin

vin, number

registration-number

(Registration);

3) D4-Auto-V03:= πvin

vin, owner

owner, status

o_status

(CUR_OWNER);

4) D4-Auto-V04:= D4-Auto-V01 vin

D4-Auto-V02;

5) D4-Auto-V:= D4-Auto-V04 vin D4-Auto-V03;

The attributes of each atomic view are omitted from Table 8-6 in order to simplify the

table, because they can be obtained from the view definitions. Obviously, there may

be more than one set of atomic views which compose valid exporting views that

produce the same results, depending on the designer. Table 8-6 only shows one form

of definition of the exporting views. However, it is enough to prove the effectiveness

of the RSMV algorithm if there is at least one set of exporting views which are

effective.

It is apparent that the exporting views representing the local schemas were all made

homogeneous to the global schema, because they satisfy the rules defined in Chapter

4. Therefore, the naming conflicts were eliminated directly, because they were

173

changed to the attributes in the GAD using the projection operation. The structural

conflicts which fulfill the Condition (3) were also eliminated directly, because the

composite attributes were composed into a single attribute. In addition, the metadata

conflicts were eliminated, because the van relation and the car relation were combined

into one view using the union operation. An attribute called type was also added in

order to distinguish between “Van” and “Car”. Although others were also partially

addressed, they required the importing views to be complete.

Table 8-7 shows the corresponding importing views of the source databases, which

were defined in terms of the global schema. Those exporting views and the importing

views were successfully stored into the meta-databases in the DSs and the DIS

respectively.

Table 8-7 the Importing Views of the Source Databases

Source

Database

Head Goal Subgoal

D1 D1-Auto-V(vin,status,br

and,type,capability,mode

l,year,name,s_type,price,

owner)

AUTO(vin,status,brand,type),VAN(vin,capab

ility),MODEL(vin,model,year,colour),SELL

S(name,s_type,vin,price),

OWNER(vin,owner,o_status),

o_status=”Current”

D2 D2-Car-V(vin,status,bran

d,type,model,year,colour,

name,s_type,price)

AUTO(vin,status,brand,type),

MODEL(vin,model,year,colour),SELLS(nam

e,s_type,vin,price), type=”Car”

D2 D2-Van-V(vin,status,bra

nd,type,capability,model,

year,colour,name,s_type,

price)

AUTO(vin,status,brand,type),

VAN(vin,capability),MODEL(vin,model,year

,colour),SELLS(name,s_type,vin,price),type

=”Van”

D3 D3-Auto-V(vin,status,br AUTO(vin,status,brand,type),

174

and,model,type,year,colo

ur,owner, price)

VAN(vin,capability),MODEL(vin,model,year

,colour), SELLS(name,s_type,vin,price),

OWNER(vin,owner,o_status),

o_status=”Current”, s_type=”Person”

D4 D4-Auto-V(vin,status,ty

pe,model,year,registratio

n-number,owner,o_status

)

AUTO(vin,status,brand,type),

MODEL(vin,model,year,colour),

Registration (vin, registration-number),

OWNER(vin,owner,o_status)

Having built the importing views, some of the remaining heterogeneity was

eliminated. The structural conflicts which fulfill the Condition (1) and (2) were

eliminated by building exporting views in terms of the set of relations of the local

schema and then building importing views in terms of the set of relations of the global

schema. In principle, since the exporting views and the corresponding importing

views have the same schema, this indicates that the structural conflicts between the

two set of relations have also been eliminated.

It can be found that the semantic conflicts, the domain conflicts and the structural

conflicts which fulfill the Condition (4) and (5) were not addressed explicitly by the

views. The semantic conflicts and the structural conflicts which fulfill the Condition

(4) and (5) are also referred to as missing information problems. The views which are

actually queries cannot involve the missing information directly. The domain conflicts

were not addressed because the extended relational algebra does not provide

operations to address them directly. However, the above three types of conflicts were

considered during the query process which will be discussed later in this section.

In principle, most of the heterogeneities were eliminated by building views. However,

the system still requires tests to examine whether all those views are correct. In order

to examine whether those source databases have been successfully integrated into the

175

system, the validity of the exporting views was tested first. As mentioned in Chapter 7,

a set of SQL exporting views obtained by translating the exporting views into SQL

were stored into the source databases as well. This enabled the investigator to conduct

tests on the exporting views individually. Each exporting view was tested using a set

of queries which involves all the attributes of the root view. No errors came up,

indicating that the translation between relational algebra and SQL was correct.

8.2.1.3 User Query and Results

Having tested the exporting views individually, a set of pre-defined user queries were

raised on the global schema in order to examine whether the EA-SODIAS could find

the relevant source databases and produce the expected results. A set of results for

each query were produced manually in order to compare with the results of the test.

These involve:

 A set of relevant source databases which can produce complete or partial

information for the user query. By partial information, we mean the tuples

which provide some of the attributes asked by the user query

 A set of tuples which involve the tuples providing partial information.

The results of the tests are summarized in Table 8-8.

Table 8-8 User Queries and Results

User

Query

Found Databases Relevant

Databases

Number of

Tuple

Manual

Result

Q1 2 4 3 5

Q2 4 4 5 5

Q3 3 3 4 4

Q4 3 3 4 4

Q5 3 4 4 5

Q6 1 1 2 2

176

Q7 2 2 4 4

Q8 1 1 1 1

Q9 2 2 2 2

Q10 2 2 1 1

For some of the user queries, the source databases found by the system were not

identical to the manually produced results; also, the number of the tuples produced by

the system was not identical to the number of manually produced tuples. However,

this is not surprising, because the manually found source databases which were not

found by the system are those which do not provide some attributes or relations

required by the user query. This is due to LAV and the Bucket Algorithm adopted in

this research. During the process of the Bucket Algorithm, if there are one or more

attributes of the user queries which are not provided by the importing views of a

source database, the source database will not be considered as relevant and will not be

accessed. Consequently, the tuples in this source database will not be obtained. This is

also the way in which the method deals with the missing information problem. The

manually produced results were then modified following the Bucket Algorithm

exactly and the results became the same as the system produced ones.

The local schema which has semantic conflicts may have to be excluded from a query

if the query puts any conditions on the attributes that it fails to provide. For example,

a query asks for a manual car, but D4 does not provide an attribute to distinguish

automatic cars and manual cars. Thus, D4 may not be accessed by the query. However,

the semantic conflicts can still be tackled if any other attributes can help to provide

this information indirectly.

As mentioned above, the structural conflicts and the semantic conflicts (referred to as

missing information) were addressed during the query process by not accessing the

source databases that have missing information when the missing information is

177

required by the user query. Therefore, the system can work without errors. In addition

to the missing information, domain conflicts are another type of heterogeneity which

is tackled during the query process. Although it is not shown in Table 8-7, the

intermediate results showed that the attributes returned from the source databases, if

not consistent, were converted to be in the domain of the attributes of the global

schema.

8.2.1.4 Summary

The results of the tests showed that most types of heterogeneity defined in Chapter 1

were addressed successfully by the RSMV (building exporting views and importing

views). Some of them were eliminated by the relational algebra operations directly,

while some of them were eliminated by building both exporting views and importing

views. There is no strict rule as to which views need to be built to tackle a particular

heterogeneity. It relies, to a large extent, on the experience of the database designers.

The structural conflicts which fulfill the Condition (4) and (5) and the domain

conflicts and the semantic conflicts were not eliminated by the views. The RSMV and

the query process in this research addressed the former by not taking the source

databases with these conflicts into account. Although this can make the system work

properly without errors, it means that the system may sometime only provide

incomplete results to a user query. However, this is due to the adoption of both the

LAV approach and the Bucket Algorithm. It is not the issue raised from building

views instead of hard-coded programs, because hard-coded programs cannot involve

the missing information as well. The possible solution is that the database provider

can add an extra attribute into the exporting views which has null values so that the

source database can be considered as relevant although it provide null values.

Therefore, the system built based on RSMV most suits the application where the user

query requires the latest information and the completeness of the information is vital.

Although the domain conflicts were eliminated, the method was still naive. It can be

178

improved by defining a set of domains which can be converted effectively to each

other so that the unrecognizable value after the conversion can be avoided.

Moreover, the exporting views and the importing views were successful stored into

the meta-database in which they were correctly retrieved. Therefore, hypothesis A is

well supported and the RSMV is proved effective and the EA-SODIA has the

capability of solving the heterogeneities defined in this thesis.

8.3 Capability of Solving Evolution Problems

Recall that the aim of the architecture and the algorithms involved is solving some

evolution problems. In Chapter 7, research questions and hypotheses were listed in

order to evaluate the architecture and the algorithms in terms of the capability of

solving evolution problems. This section presents the results to answer the relevant

questions and examines whether the hypotheses are supported. The hypotheses are

discussed following the result of each response variable listed in Chapter 7. Finally,

research questions are answered.

The research questions regarding the evolution problems are:

2) How and why the RSMV and the meta-database can help solve the evolution

problems defined in this thesis.

3) How and why SED can help solve the evolution problems defined in this

thesis.

4) How and why SOA can help solve the evolution problems defined in this

thesis.

The hypotheses defined for answering the above questions are:

B. The RSMV approach and meta-database can reduce the cost of modification

work caused by schema evolutions.

C. If any schema evolution occurs in one source database, the views of other

179

source databases do not require modification so that the system can still work

properly.

D. The SED can reduce the cost of modification work caused by schema

evolutions.

E. The query processor can reduce the number of the queries which require

modification when any organization evolution occurs.

F. SOA and web services can help reduce the cost caused by the database

evolutions because they provide high reusability, autonomy and

discoverability.

In order to test the correctness of the SED, a new source database D5 was added:

CAR (vi-number: String, status: String, brand: String)

VAN (vi-number: String, status: String, brand: String)

This source database only aims to produce an exporting view which only includes a

Union operation so that the relation removal evolution can be tested. The exporting

views shown in the previous section were slightly modified to involve a Group

operation. The modified exporting views include all the relational algebra operations

so that the test on the SED can be complete. The modified views, however, can

produce the same results as that before modified. Table 8-9 shows only the modified

exporting views.

Table 8-9 Modified Exporting Views

Source

Database

Exporting View Atomic View

D1 D1-Auto-V 1) D1-Auto-V01 := πvin

vin, status

 status, brand

brand,

type

type, cap

capability , model

model, year

year

(VEHICLE);

2) D1-Auto-V02 := πname

name, type

type, vin

vin,

price

price (SALE);

180

3) D1-Auto-V03:= πvin

vin, owner

owner

(CUR_OWNER);

4) D1-Auto-V04:= γname, type, vin, SUM(price)

price

(D1-Auto-V02)

5) D1-Auto-V05 := D1-Auto-V01 vin

D1-Auto-V04;

6) D1-Auto-V := D1-Auto-V05 vin D1-Auto-V03;

D5 D3-Auto-V 1) D5-Auto-V01 := πvi-number

vin, status

 status, brand

brand

(CAR);

2) D5-Auto-V02 := πvi-number

vin, status

 status, brand

brand

(VAN);

3) D5-Auto-V:= D3-Auto-V01∪D3-Auto-V02;

The next sections discuss each of the hypotheses by showing the results of the

relevant response variables.

8.3.1 Hypothesis B

The hypothesis is:

The RSMV approach and meta-database can reduce the cost of modification work

caused by schema evolutions.

In order to examine whether this hypothesis can be supported, the following response

variables need to be obtained:

 Number of user queries involving local schema

 Number of user queries explicitly designating source databases.

 Number of hard-coded queries

 Number of the affected user queries

 Views requiring modification

 Number of source databases affected

181

In the theory of this research, the RSMV approach and the meta-database should be

able to reduce the account of components of the system which require modification

when any schema evolution occurs. The meta-database should also reduce the

complexity of the modification by avoiding hard-coded programs. Each response

variable will be shown and discussed in this section.

Number of user queries involving local schema

The number of the user queries involving local schema is as follows:

 Total User Queries: 10

 User Queries Involving Local Schema: 0

 Percentage: 0

It can be seen that there are no user queries involving local schemas among the 10

pre-defined user queries. It needs to be clarified that the user queries were designed

by a colleague of the investigator for examining whether they can obtain expected

answers without consideration whether they intend to involve local schema. There is

no bias when designing them. In fact, it is easy to explain why there are no user

queries involving local schema. It is due to one of the features of the RSMV which is

that the users can only see the global schema and do not know the local schemas when

raising queries.

It is presented in [63] and [36] that, in a loosely coupled federated database system,

all the user queries include the local schemas. Including the local schemas means that

the user query requires modification if the local schemas have changed. Therefore, the

RSMV ensure that the user queries require no modifications so that it reduces the cost

of maintenance caused by schema evolution regarding this aspect. As a mediated [63]

system use GAV or LAV to integrate source databases, the user queries of a mediated

system do not involve local schemas as well. Therefore, EA-SODIA provides similar

advantage at this stage.

182

Number of user queries explicitly designating source databases

The number of user queries explicitly designating source databases is listed as

follows:

 Total User Queries: 10

 User Queries Designating Source Databases: 1

 Percentage: 10

There is one user query which explicitly designates a source database. Recall that a

user query can involve a conjunctive query and an organizational scope which

indicates an organizational property. The organizational property may designate a

categorization property (e.g. Beijing) or a source database (e.g. D1). In this test, the

organizational scope of one user query designates a source database. It means that the

user wants data only from a single source database. Thus, this user query may be

discarded and requires modification when and only when the designated source

database is removed. Note that other schema evolutions of the source database will

not lead to modification on this user query. In addition, a user query can at most

involve one source database in case the user wants to access a single source database.

This make the possibility of modifying the user query much smaller.

In a federated system, a user query designates all the source databases required.

Consequently, the user query requires modification when one of the involved source

databases change. Therefore, the RSMV reduces, to a large extent, the possibility and

cost of modification caused by database evolution and hypothesis B is supported by

this response variable. Still, EA-SODIA provides no improvement to the maintenance

cost at this point compared to a mediated system, because the user queries of a

mediated system does not designate source databases either.

Number of hard-coded queries

As mentioned throughout the thesis, one of the most important reasons that an

integrated database system is difficult to maintain is that it involves a huge amount of

183

hard-coded programs for schema reconciliation. Therefore, if the number of

hard-coded queries is reduced, the cost of the maintenance can also be largely reduced.

The number of hard-coded queries is as follows:

 Number of Source Databases: 5

 Java Classes For Schema Reconciliation: 0

As the EA-SODIAS was built using Java, the hard-coded programs means Java

classes in this system. As shown above, there were no Java classes for the purpose of

schema reconciliation in both the DIS and the DSs. This is due to the use of the

meta-database which stored all the views result from the RSMV approach. Therefore,

there are only structured data in the meta-database, rather than hard-coded programs.

The Java Classes of the DIS and the DSs are of course hard-coded programs and may

be considered as programs for schema reconciliation. However, these Java classes are

not specific to any local schema and do not embed any queries because they are only

intended to implement the algorithms by manipulating the meta-database. Therefore,

schema evolutions will not lead to modification on them.

In a federated system, all the schema reconciliation work is undertaken by hard-coded

programs which can be huge in length and very complex when the number of source

database becomes very large. It is also one of the most important reasons that schema

evolution is prohibited in a federated system. Although in a mediated system, the

integration of the source database may require no hard-coded programs depending on

the design, the elimination of the heterogeneity is conducted by a particular

hard-coded wrapper of each source database. Therefore, in this aspect, EA-SODIA

and RSMV, and the meta-database reduce the modification work compared with the

two architectures above. Hypothesis B is supported by this response variable.

Number of affected user queries and Views requiring modification and Number

184

of source databases affected

In order to examine how EA-SODIAS can deal with evolution problems, a set of

evolutions were designed covering all the possible evolutions defined in Chapter 5.

Recall that there were three types of evolution defined in Chapter 5: schema evolution,

organizational evolution and system evolution. Some of the schema evolutions may

have an impact on the system, while other schema evolutions do not. Similarly, some

of the organizational evolutions have impact on existing user queries, while other

organizational evolutions do not. The system evolutions involved all have some

impact on the system, but they should be tackled easily. In order to demonstrate the

hypothesis in this thesis, all the evolutions were involved in the test data. The design

of the schema evolutions was more complex than that of others, because the same

schema evolution on a different attribute or relation may result in a different

automatic view modification process. Therefore, the schema evolutions were designed

to consider each possible route of the process. The results are shown in Table 8-10.

Table 8-10 the Results of Evolutions

Evolution Number of

Evolutions

Number of

the Affected

User Queries

Exporting

Views

Requiring

Modification

Importing

Views

Requiring

Modification

Attribute Addition 10 0 0 0

Attribute Removal 10 0 13 13

Attribute Rename 10 0 13 0

Attribute Domain

Change

5 0 6 0

Attribute Decomposition 2 0 2 0

Relation Addition 4 0 0 0

Relation Removal 5 0 6 5

185

Relation Rename 4 0 5 0

Relation Decomposition 1 0 5 0

Database Addition 1 0 0 0

Database Removal 1 0 0 2

Organizational Property

Removal

3 5 0 0

Organizational Property

Rename

3 0 0 0

Organization Removal 1 10 0 0

Organization Rename 1 0 0 0

Parent Change 1 0 0 0

Organization Addition 1 0 0 0

Organizational Property

Addition

1 0 0 0

Service Name Change 1 0 0 0

Database Name Change 1 0 0 0

Service URL Change 1 0 0 0

Total 67 15 50 20

Note that the evolutions in Table 8-10 were designed to cover every typical evolution

which has a different impact on the system. More evolutions were also designed and

randomly applied to the system in order to further examine whether the system can

produce correct results. The system was modified until no programming errors

occurred.

It can be seen from Table 8-10 that the user queries required no modification when

schema evolution and system evolution occurred. This is due to the adoption of the

LAV approach. The LAV ensures that the user queries do not involve local schemas so

that they will not be affected by schema evolution.

186

Table 8-10 also shows that the only type of evolution which may have an impact on

the user queries is organizational evolution. There were two types of organizational

evolution: organizational property removal and organization removal, which led to

some user queries being discarded. As a user query may designate an organizational

property in which the relevant source databases will be accessed, the user query may

become invalid when the exact organizational property is removed. Also, when a

whole organization is removed, all the user queries which designate that organization

will be invalid. Making the user queries valid again completely depends on the

manual work of system maintainers and users. However, these two types of

organizational evolution only account for a very small proportion. Other

organizational evolution will not require any modification on the user queries. This is

due to the query processor introduced in this research.

The main components of the system which will be affected by schema evolution are

the exporting views, because they involve all the local schemas which will be

accessed in order to eliminate heterogeneities. Having applied the evolutions, some of

the exporting views required automatic modification, while some of them were

discarded and required manual modification. How the automatic view modification

can help reduce the maintenance cost is discussed later in this chapter. It may be

realized that the number of affected exporting views was greater than the number of

evolutions when some schema evolutions were applied. This was because more than

one exporting view involved one attribute or relation which was changed.

The system has the advantage that the importing views which integrate source

databases were rarely affected by the evolutions. They required modification only

when three types of schema evolutions occurred. This means that the DISs will rarely

be modified.

Another advantage of EA-SODIA is that no system evolution has impact on the user

187

queries and the views. This is due to the use of web services and the registry which

are discussed later in this chapter.

In a federated system, the user queries designate all the local schemas being accessed.

Hard-coded programs are used for both eliminating heterogeneities and integrating

source databases. The organizational information is also embedded into the

hard-coded user queries. Therefore, when an evolution occurs, all the user queries and

hard-coded programs must be modified. Hence, the RSMV reduces the components

which require modification compared with a federated system based on the schema

integration approach. Hypothesis B is thus supported by these response variables.

8.3.2 Hypothesis C

The Hypothesis is as following:

If any schema evolution occurs in one source database, the views of other source

databases do not require modification so that the system can still work properly.

One of most important reasons that a federated system and a mediated system based

on GAV do not allow evolution is that there are many hard-coded programs or views

which deal with the relationship between local schemas. Therefore, when a schema

evolution occurs, not only do the local evolved local schema need to be considered,

but also the relationship between other local schemas and it will also be considered. It

makes evolution impossible when the number of local schemas becomes very large.

In addition, because the relationship is embedded in the hard-coded programs directly,

the system may crash when a schema evolution happens to any of the related local

schemas. However, the system may allow evolution if the system does not include an

explicit relationship between the views of different source databases at design-time.

The case study looked at this aspect by apply a schema evolution to a local schema to

see if the system can work properly. The case study undertook the following steps:

 It discarded the evolved source database by discarding the importing views

188

of the source database. Until the relevant exporting views and importing

views were properly modified, the evolved source schema remained

discarded. The pre-designed user queries were entered into the system to

examine whether the relevant source databases could be found and the results

could be obtained as expected.

 It then modified the affected importing views and exporting views to

examine whether only the importing views and exporting views of the

evolved source database were modified.

The result shows that the system worked properly excluding the evolved source

databases during the first step. The expected relevant source databases were found

without considering the evolved source database. The results obtained were the same

as the manually produced results. Therefore, the RSMV approach ensures that the

local schema be integrated into the system independently of other local schemas so

that a schema evolution on one local schema will not have any impact on other local

schemas. Consequently, the system can work properly in terms of other local schemas

when a schema evolution occurs in one local schema. The results also indicate that

only the exporting views and the importing views of the evolved local schema were

modified. Modifying exporting views and importing views of a single local schema

independently is much simpler. This is due to the nature of the LAV approach. Each

local schema is integrated independently and therefore only has a relationship with the

global schema. The relationship among the local schemas is worked out during the

run-time using Bucket algorithm. Thus, the RSMV reduces the modification work

caused by schema evolution and hypothesis C is supported.

8.3.3 Hypothesis D

The hypothesis is:

The SED and Meta-database can reduce the cost of modification work caused by

schema evolution.

189

Recall that SED provided seven processes in order to automatically modify the

exporting views and the importing views. The aim of the SED is to reduce the manual

modification work. Therefore, in order to examine whether Hypothesis D is true, one

needs to determine how much manual modification work is still required. The case

study evaluated this aspect by applying the types of schema evolution listed in Table

8-10 and find out how many views cannot be automatically modified. The results are

shown in Table 8-11. The discarded exporting views and importing views are those

views which require manual modification.

Table 8-11 the Number of Discarded Views Resulted from Schema Evolutions

Evolution Number of

Evolutions

Number of

Discarded Views

Percentage (%)

Attribute Addition 10 0 0

Attribute Removal 10 2 20

Attribute Rename 10 0 0

Attribute Domain Change 5 1 20

Attribute Decomposition 2 1 50

Relation Addition 4 0 0

Relation Removal 5 6 120

Relation Rename 4 0 0

Relation Decomposition 1 0 0

Database Removal 1 2 150

Total 52 12 23

Table 8-11 shows that most of the schema evolutions (77%) did not require manual

modification on the views. The only schema evolutions which led to manual

modification were attribute removal, relation removal, attribute domain change and

attribute decomposition. This is due to the fact that a manual decision is required to

modify the views when the above schema evolutions occur. Among these four schema

190

evolutions, the attribute removal and the relation removal led to more discarding of

the views because removing attributes or relations means that the data stop providing

these information. The relation removal has the highest possibility of discarding views

because the process tackling relation removal discards the view as long as the

removed relation is in a relational algebra operation other than union.

Although the attribute decomposition and the attribute domain change can also result

in discarding of the views, there is only a small possibility of this. There are two

attribute decompositions shown in Table 8-11 and one makes a view discarded.

However, it does not reflect the real situation completely, because there are two

possibilities when an attribute decomposition happens:

 The evolved attribute is itself a source in the projection operation of a view.

This does not discard the view.

 The evolved attribute is one of the operands of an expression in the

projection operation of a view. This discards the view.

The test data of the case study only design two attribute decompositions each of

which cover one of the two possibilities. This is why the percentage was 50%.

However, there are 52 attributes in the four source databases and only two of them are

in the expression of a projection operation. Therefore, in principle, the possibility of

discarding a view when attribute decomposition happens is only 4%. Although, the

percentage may vary depending on different source databases, the total possibility

should not be high.

In a federated system or a mediated system, the integration and the schema

reconciliation of the source databases are undertaken by hard-coded programs.

Hard-coded programs are more complex to understand than the structured data in the

meta-database. Although some semi-automatic software tools have been produced, the

wrappers of a mediated system rely largely on manual work. The schema

reconciliation of a federated system is also carried out manually. In our architecture,

191

the meta-database enables database providers to save views as structured data in a

relational database. Therefore, software components implementing SED can be

provided so that most of the manual work is saved. Hypothesis D is supported by this

response variable.

8.3.4 Computational Cost

It has been discussed that most of manual modification has been replaced by

automatic view modification provided by SED in EA-SODIA. Therefore, it is helpful

to look at the computational cost of the SED. The SED was run on each schema

evolution listed in Table 8-11 and calculated the average time for each type of schema

evolution. The schema evolutions which discarded the views were not considered.

The results are shown in Figure 8-1.

0

0.2

0.4

0.6

0.8

1

1.2

Ti
m

e
(s

)

Schema Evolution

Figure 8-1 The Computational Time of SED

It can be seen from Figure 8-1 that all the average computational times of the SED

were all less than or equal to one second. The most economic processes were the

process tackling attribute removal and the process tackling relation removal. This is

due to the constraint defined in Chapter 5 that every relation and attribute of a local

schema must be renamed using a projection operation before it is taken by other

192

atomic views. Consequently, the SED only needs to check the atomic views which

involve a projection operation. It replaces the evolved attribute or relation with the

new one if the evolved relation or attribute is involved. Therefore, no other atomic

views were checked so that it took the least computational time.

The attribute removal and the database removal took more time because this involved

the communication cost between the DS and the DIS. The communication between

the DS and the DIS was required because the importing view required modification.

In addition, the relation decomposition and the attribute decomposition also took more

time because they needed to create new views so that more connections with the

DBMS were required.

Apparently, the automatic view modification takes much less time than the manual

work, because no manual work can be finished within a few seconds. Therefore, the

hypothesis D is further supported. The manual work on producing views will also be

discussed later in this chapter.

8.3.5 Hypothesis E

The hypothesis is:

SOA and web services can help reduce the cost caused by the database evolutions

and system evolutions because they provide high reusability, autonomy and

discoverability.

EA-SODIA is a service-based architecture. It is expected that the service-based

architecture and web services technologies can provide high reusability, autonomy

and discoverability. The case study examined each of the features.

Reusability

In order to examine the reusability provided by web service technologies, several new

databases were added into the system to see how the DS can be reused. The DS that

193

exposes a source database is built using the OGSA-DAI which were developed using

web service technologies. The following steps were used to publish a new source

database:

 Using the tool provide by OGSA-DAI to publish a new source database.

Firstly, the name of the new service was required. Secondly, the type and the

name and the URI of the database were required. Finally, the password and

the user name were required for the service to access the database.

 The exporting views and the importing views were built.

Each new database was deployed and published by the same steps. It can be seen from

the above steps that the data required for a particular database were:

 the name of the new service.

 the type and the name and the URI of the database.

 the password and the user name for access to the database.

 the exporting views and the importing views.

Among the above data, the first three were provided easily within one minute by the

investigator. The exporting views and the importing views had to be built differently

each time because heterogeneity problems needed to be solved. However, no

hard-coded programs were developed for publishing a new database. All the Java

classes provided for the EA-SODIAS were completely reused without any

modification. Also, the OGSA-DAI programs which deal with the message transfer

between services and the connection with the DBMS and the data transformation

between Java resultsets and the SOAP documents were also reused. As the DS of

OGSA-DAI has the consistent functions and parameters for external service

requestors to access, the DS can be accessed immediately after publishing. In a

traditional system (federated system or mediated), hard-coded programs are required

to add a new database into the system. Therefore, it concluded that SOA and web

service technology provide high reusability, in that they help to reduce the cost of

system maintenance.

194

In addition, the information such as the name and URI of the database for connection

with the DBMS are stored in an XML file, rather than a hard-coded program.

Therefore, the system can be easily maintained when a system evolution occurs. In

the case study, the investigator used the tool of OGSA-DAI to change the name and

the URI of the database. This work was finished within two minutes. Therefore, it

further supports hypothesis E.

Autonomy

One of the issues of distributed databases, although not the focus of this research, is

autonomy. The database providers need to have complete control over their databases

and their applications must be operated independently. The case study showed that the

database providers can have complete control over information exposed to external

applications by building views. The external application was only able to identify and

access the exporting views, rather than the local schema. Also, database providers do

not provide the authority of accessing the database to external users. The password

and the user name are only used by the DS so that all the external applications (DISs

in this case) access the DS and do not have any authority information. The local

schema can be used by other applications normally. There are no rules on the design

of the local schemas and how they are managed. A database provider has the complete

decision when the database is added to and removed from the integrated system.

Therefore, EA-SODIA provides high autonomy due to the use of web services.

Discoverability

The case study showed that EA-SODIA provided high discoverability by using a

registry service. This is one of the most important characteristics provided by SOA

and web services. Although UDDI was not used, the registry service which was a DS

provided similar functionality. All the DSs were registered into the registry service

where the DIS can find the locations of all relevant DSs. The DISs were also

registered into the registry service so that the SED of the DSs were able to find all the

DISs where the importing views required modification. In addition to providing high

195

discoverability, the registry service provided much help with reducing the

maintenance work. The registry service stores and manages the information of all the

services centrally so that an application can find all the relevant services in this

system by maintaining only the location information of the registry service.

Consequently, when a system evolution (e.g. the name and the location of a service)

occurs, only the information stored in the registry service requires modification.

In a loosely coupled federated system, each database has to maintain the information

of all other databases. Consequently, all the databases require modification when a

system evolution occurs on one database. In a mediated system, each mediator

maintains the information of all the involved source databases. Therefore, when a

source database evolves, all the mediators must be modified in order to work properly.

However, the source databases do not keep the information of the mediators so that it

is difficult to locate all the mediators.

To conclude, the SOA and web service technology provide considerable help in

reducing the maintenance cost caused by evolutions by providing high reusability,

autonomy and discoverability. Hypothesis E is therefore supported.

8.4 Scalability

One of the reasons that the traditional integrated systems (e.g. the federated system

and the GAV mediated system) do not allow evolution is that the number of the source

databases may become very large. As the number of source databases becomes larger,

the system becomes dramatically more complex because it has to deal with all the

relationships among source databases at design-time. Therefore, another important

characteristic which is scalability was examined by the case study. The case study

examined scalability by replicating the four source databases which were designed at

the beginning. Then, increase the number of DISs. The case study still applied the

same pre-defined schema evolutions in Table 8-10 on the system. The main variables

196

which were examined are:

 How the number of the views changes when the number of the source

databases becomes larger. The results are shown in Figure 8-2.

 How the number of the affected views changes when the number of the

source databases becomes larger. The results are shown in Figure 8-2.

 How the number of the discarded views changes when the number of the

source databases becomes larger. The results are shown in Figure 8-2.

 How the computational cost of the SED changes when the number of the

source databases becomes larger. The results are shown in Figure 8-3.

 How the computational cost of the SED changes when the number of the

source databases becomes larger. The results are shown in Figure 8-4.

0

20

40

60

80

100

120

140

10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

Number of Source Databases

Number of Views

Number of Affected
Exporting Views

Number of Affected
Importing Views

Number of Discarded Views

Figure 8-2 Growth of the Number of the Views and the Affected Views and the

Discarded Views when More Source Databases are Added

Figure 8-2 shows that all the numbers remained unchanged when the number of

source databases increased, except the number of the views which had a linear growth.

The increase of the number of the views was as expected, because for each new

source database, a set of views needed to be constructed. The number which generally

197

remained stable indicated that the components of the system did not increase when

more source databases were added. Therefore, the EA-SODIAS provided good

scalability at this stage.

Figure 8-3 Growth of Computational Time when More Source Databases are

Added

Figure 8-3 shows that the computational time of the SED for most of the schema

evolutions remained similar. The computational time of the SED for the attribute

removal and the database removal had a slow linear increase because these two types

of schema evolution required the access to the registry service and the DIS where the

importing views needed to be modified. As more source databases were added, the

number of the importing views increased so that the computational time grew slightly.

Generally, the EA-SODIAS provides much better scalability at this stage compared

with traditional systems.

198

Figure 8-4 Growth of Computational Time when More Data Integrator Services

are added

Figure 8-4 shows similar results to that of Figure 8-3. The computational time of SED

for tackling attribute removal and database removal grew linearly, while others

remained similar. It may be seen that the increase in the computational time of these

types was more dramatic than that in Figure 8-3. This is because that the increased

data integrated services led to more communication between the DS and DISs. When

an attribute removal evolution or a database removal occurred, the DS needed to

access the register service to find all the DISs and then access each of the DISs in

order to modify the relevant importing views. However, the computational time was

at the same level which was counted in seconds. Also, most of the computational time

remained unchanged.

To sum up, the above results showed that the components of the system which

required modification and the computational time of SED caused by the schema

evolutions generally remained unchanged, when the number of source databases and

the DISs grew. Although, there were small increases in some computational time, they

stayed at a similar level. Therefore, EA-SODIA can provide good scalability.

199

8.5 Manual Work

Although most evolution can be automatically tackled by SED and the query

processor, there is still some manual work. Therefore, it is important to examine how

much work is required for integrating a source database into the system and how

much work is required to identify affected views and modify them when a schema

evolution occurs. As the investigator is also the designer of the system and the source

databases, the work of the investigator may not be representative. Therefore, a

colleague of the investigator who has knowledge in relational databases was asked to

undertake this work. The colleague integrated the pre-designed four databases into the

system and then modified the relevant views manually when the pre-designed schema

evolutions were applied. For the work of tackling schema evolutions, the average

estimated time was recorded. The results are shown in Figure 8-5 and 8-6,

respectively.

Figure 8-5 Time to Integrate New Source Databases

200

Figure 8-6 Time to Tackle Schema Evolutions

Note that the time for learning how to integrate a source database and tackle schema

evolutions was not counted. Figure 8-5 shows that the time of publishing dropped

from one hour to about fifteen minutes while the time of building views dropped from

two hours to about forty minutes, as the investigator became familiar with the method.

Therefore, it can be expected that a database administrator can integrate a database

into the system within about three hours, which is acceptable.

Figure 8-6 shows that database removal and relation rename evolutions took the least

time while attribute decomposition and relation decomposition evolutions took the

most time. All the average times were less than an hour which is acceptable. In

addition, schema evolutions which took the most maintenance work can be

automatically tackled by the SED so that it further proved that the SED is effective.

8.6 Expandability

This section discusses the ability of EA-SODIA to incorporate different type of source

databases.

201

As mentioned in Chapter 1, the source databases which can be integrated into the

system must be in the relational model. In addition, the exporting views are

constructed using relational algebra operations. As the relational algebra operations

are designed to manipulate the data in the relational model, the data which can be

directly integrated into the system are relations. Other data sources such as flat files

and legacy hard-coded queries and the object-oriented databases cannot be integrated

into the system by constructing exporting views. However, the system has the

mechanism for translating the relational algebra into the language which can obtain

actual data from a local database. Therefore, other data sources may be integrated into

the system as long as the corresponding programs are provided by the data providers

for obtaining the data and converting them into relations. Also, the DSs need to be

extended by providing the programs for translating relational algebra into the queries

which can invoke the programs provided by the data providers.

As the importing views are constructed using a conjunctive query language, they have

the ability to integrate other types of source databases (e.g. objective-oriented

database). Also, the OGSA-DAI support other data sources such as XML documents.

Therefore, it is concluded that EA-SODIA has the potential to integrate other types of

source databases by adding new components, although it does not have this ability at

this stage, In addition, it requires further research to deal with the evolution problems

brought by other types of data sources.

8.7 Domain Independence

The RSMV, the meta-database and SED are designed for data in the relational model

without being tailored to a particular domain. As discussed in Chapter 7, the

information can be modelled into data in a relational model independently of its

domain. The relational data can then be integrated into the system. Although the case

study is a single case study which did not provide a set of data for another domain, it

can seen from the case study there are no views which rely on the information specific

202

for that domain. The data manipulated by the approaches in this research are only

relations and attributes and local schemas. In addition, it can be seen throughout the

thesis, all the examples demonstrating RSMV, the meta-database and SED use the

symbols which are independent of any application domains. Therefore, it is concluded

that EA-SODIA and all the algorithms in this research are domain independent.

8.8 Language Independence

This section discusses the potential for incorporating services developed in other

programming languages. EA-SODIAS was designed and developed using Java. In

principle, web services and SOA are completely language independent, because each

service provides functions based on the same standards and the communication

between services are based on SOAP messages. Therefore, the service requesters need

not know the programming language of the applications exposed by the web services.

Currently, web services are supported mainly by two programming languages, Java

and Microsoft ASP.net. They both provide APIs and development tools and web

containers for developing web services. Therefore, the web services developed in

either Java or ASP.net can work together as long as the parameters can be converted

into the SOAP document. Other programming languages, however, do not provide

support for web services.

However, one issue was found during the case study. It was found in a discussion with

one investigator’s colleague who was developing a DS using ASP.net that the ASP.net

is using a different format to encapsulate the relation of query results. Consequently,

the query result encapsulated by ASP.net service in the SOAP document may not be

correctly accepted by a service developed using Java. Another problem found in the

case study is that OGSA-DAI currently relies on the Java environment and is not

language independent. Thus, incorporating DSs developed by other languages was not

successful in this case study. However, this may be solved in the future when

programming languages implement more characteristics of web services and SOA.

203

8.9 Disadvantages

Some issues were also found in the case study. They indicated that under some

environments the system based on EA-SODIA does not work well. The issues are as

follows:

1) As mentioned previously, other types of data sources cannot be integrated

into the system because the heterogeneity among them cannot be solved

using relational algebra views. Although it is not a success criterion in this

research, some legacy systems which involve other types of databases (e.g.

flat files and objective-oriented language) do exist in practice. The traditional

integration systems such as federated systems and mediated systems may

have the ability to integrate other data sources, because the heterogeneity

problems can be handled by hard-coded programs. This is a remaining issue

of EA-SODIA and requires further research.

2) In this research, schema evolution must be entered into the system in order. It

means that a maintainer has to know not only what schema evolutions

occurred, but also the order. In practice, it is possible that the maintainer

cannot remember the sequence of the occurrence of schema evolution. It is

also possible that the complete database schema has been replaced.

Consequently, SED of EA-SODIA can be successfully conducted. It also

requires further research to deal with a batch schema evolution or replace an

existing schema with a new schema.

3) It is assumed in this research that the data in the tuples are consistent,

meaning that same terms are used. However, it is not realistic in a real-world

project. This problem is usually called an ontology problem which is an

important topic of other research.

4) Due to the nature of the LAV and the Bucket Algorithm adopted in this

research, it was shown in the case study that the system was only able to

provide incomplete result sometimes. In the environments where the

completeness of the data is vital, the federated system and GAV mediated and

204

the Data warehousing may be suitable choices.

5) One of the main concerns of the LAV approach is the computational cost of

the query containment test. The query containment test is well known to be

NP-complete. Although the Bucket Algorithm is used in order to reduce the

cost of the containment test, it may still be huge when a large number of

source databases are integrated. Evaluation of the LAV approach is shown in

[63] and [98]. However, this may be released by adding conditions into both

user queries and importing views so that the number of relevant source

databases can be largely reduced.

8.10 Conclusion

The conclusion reached by undertaking the case study is that EA-SODIA and all the

approaches introduced in this research have the ability to deal with most of the

heterogeneities defined in Chapter 1. More importantly, the goal of this research has

been achieved which is to solve the evolution problems and reduce the cost of

maintenance work caused by evolution. During the case study, all the questions were

answered and all hypotheses were supported by analyzing various response variables.

The test data of the case study included all the heterogeneities defined in Chapter 1

and all the evolutions defined throughout the thesis were applied into EA-SODIAS. In

addition, all possible conditions of SED were considered when designing the schema

evolutions. Therefore, the case study can be considered as a representative case. Also,

it was discussed that EA-SODIA is domain independent so that the results can be

generalized to other application domains.

Other characteristics such as scalability and expandability and language independence

were discussed. Although some disadvantages were still found during the case study,

the results show that the success criteria defined in Chapter 1 were fulfilled.

205

Chapter 9 Conclusion

9.1 Introduction

Chapter 8 presented the results of the case study for evaluation. Four research

questions were answered and five hypotheses were supported by analyzing the

response variables. Other properties such as scalability and domain independence and

language independence and expandability were also discussed followed by some

disadvantages found during the evaluation.

This chapter reviews the research presented in this thesis. The work accomplished is

compared to the criteria for success defined in Chapter 1, some general issues and

directions for further work are discussed.

9.2 Review of Research

9.2.1 The Research Issues

This thesis investigates the integration of separate existing heterogeneous and

distributed databases which, due to organisational changes, must be merged and

appear as one database. The integrated system based on our architecture is referred as

a virtual view approach and needs to:

 provide an integrated view of data from autonomous heterogeneous data

sources.

 allow data sources to evolve independently.

Schema reconciliation and query decomposition and schema evolution detection were

identified as the major research issues. Schema reconciliation deals with

heterogeneity problems by building views which are stored in a meta-database. Query

decomposition finds all the relevant source databases and deals with organizational

evolutions. Schema evolution detection automatically modifies the views when

schema evolution occurs.

206

9.2.2 Related Work and SOA

Chapter 2 explored several existing approaches to database integration. They are

federated database systems, data warehousing, DQP and mediated systems. The

comparison between those approaches was presented, discussing why they lack

support for evolution. The SOA and web services were introduced together with the

idea of SaaS and late-binding. These presented their potential to deal with evolution.

9.2.3 Evolution Adaptive Service-Oriented Data Integration Architecture

The architecture for database integration in this thesis which deals with the

heterogeneity and evolution is called EA-SODIA. It involves three processes

addressing the three major research issues reviewed in section 10.2.1. Chapter 3

presented the overview of the architecture and the components of the architecture

encapsulating the three processes.

The first process is schema reconciliation (presented in Chapter 4) which reconciles

the schemas and the representation of heterogeneous source databases, establishing

mapping between the local schemas and the global schema in the meta-database. The

algorithm for schema reconciliation is termed Relational Schema Mapping by Views

(presented in Chapter 4) which is accomplished by stages at DIS and DS respectively.

The RSMV eliminates heterogeneities and integrates source databases by constructing

exporting and importing views. The approach, called LAV, is adopted to integrate the

reconciled local schema into the global schema. Both views are represented and

stored in a meta-database. The formal representations of the views were also

presented.

The process of solving schema evolutions is called Schema Evolution Detection

(presented in Chapter 5). Some rules were defined to identify the views affected by a

schema evolution and whether a view must be discarded. Two processes were

presented in order to identify affected views and automatically modify affected views.

Finally and more importantly, eight processes for automatic view modification were

207

produced in order to tackle different types of schema evolution.

The final process is query processing (presented in Chapter 6) which basically

involves four steps: Query Reformulation, Query Decomposition, Query

Transformation and Result Composition. All of these steps identify the relevant

source databases and transfer user queries into queries in terms of the local schema,

finally obtaining the results. Among these steps, query reformulation takes the

responsibility for tackling the organizational evolutions. The query decomposition

step adopts the Bucket Algorithm which is a query process algorithm for LAV

approach.

The EA-SODIA was compared with the related works in some aspects such as

scalability and complexity of creation and complexity of maintenance. Chapter 3

presented a summary of this.

9.2.4 Service Design

As EA-SODIA is service-based and the algorithms in this research need to all be

implemented by services, the design of both DIS and DS was presented in Chapter 7.

Although the schema reconciliation based on RSMV is manual work, the

meta-database is managed at both DIS and DS respectively. A design method which

combines the service-oriented design and the object-oriented design was presented

with its advantages discussed.

9.2.5 Case Study

As both heterogeneity and evolution are difficult to evaluate, a single case study was

conducted to examine all typical situations. An experimental implementation

(presented in Chapter 7) was produced for the case study, as the complete

implementation was unrealistic. The experimental implementation reflects the query

processing and the schema evolution detection, employing Java classes which are

embedded in OGSA-DAI to implement various parts of the process. Although the

208

RSMV is mostly manual process, the meta-database was designed and created at both

services.

Chapter 7 presented an introduction to the case study method and discussed why it

was chosen as the evaluation method in this research. The research questions and

hypotheses and some response variables of the case study were also defined. Chapter

8 presented an extensive and detailed evaluation of the EA-SODIA and all of its

algorithms using the hypotheses and the response variables defined in Chapter 7. A set

of local schemas in an application domain were designed in order to examine the

capability of eliminating heterogeneity of the system. Although two heterogeneities

were not addressed directly by building exporting views and importing views, they

were addressed in the query process. The issue of an incomplete result which is a

consequence of the adoption of the Bucket Algorithm and the LAV approach was

discussed. The capability of handling evolution was also examined. All the

hypotheses were generally supported. The examination of the computational cost and

the scalability showed that most of the cost remained similar and others only had a

slow linear growth. The case study also showed that the manual work of integrating a

new database and modifying existing views in response to the schema evolutions were

acceptable. The EA-SODIA can be applied into other application domains and other

programming languages can be used as long as they provide support for web services.

Finally, some environments where the EA-SODIA is not suitable were also discussed.

9.3 Evaluation of the Research

An evaluation of the research reported in this thesis is now presented in the context of

the criteria for success and research aims given in Chapter 1. There are repeated here

with a discussion of each.

1) The heterogeneities defined in Chapter 1 can be eliminated using the RSMV

approach and query processing.

Chapter 4 defines a set of extended relational algebra operations which can deal with

209

most of the heterogeneities. The remaining heterogeneities such as domain conflicts

and some structural conflicts are tackled during query processing presented in Chapter

6.

2) The RSMV approach and meta-database can reduce the cost of modification

work caused by schema evolutions, and the query processor can reduce the

number of the queries which require modification when any organizational

evolution occurs.

Chapter 4 defines the formal representation of the views in the meta-database so that

all views can be stored in the meta-database. Modifying the structured data in the

database is simpler than modifying hard-coded programs. The RSMV ensures that

there are no hard-coded programs required for schema reconciliation. Chapter 6

provides a process of identifying source databases which can tackle some

organizational evolutions.

3) If any schema evolution occurs in one source database, the views of other

source databases do not require modification so that the system can still work

properly.

The adoption of LAV ensures that each local schema is integrated into the global

schema independently of other local schemas. The relationship among local schemas

is worked out by the query containment test. Therefore, the views of the source

database are independent of each other.

4) The SED and Meta-database can reduce the cost of modification work caused

by schema evolutions.

As all the views are stored in the meta-database presented in Chapter 4, the automatic

view modification is able to be produced. Chapter 5 provides eight processes for

tackling schema evolutions by automatically modifying the views in the

meta-database so that most of the manual work can be saved.

5) SOA and web services can help reduce the cost caused by database evolution

and system evolution because they provide high reusability, autonomy and

discoverability.

210

Chapter 3 and 7 present the various characteristics of SOA and web services. As web

services follow a consistent standard, they provides high reusability. This ensures that

no modification is required on the components of the service when publishing new

source databases. The registry service enables the DS to find all the DISs and the

change of the information such as name of URL of the services is easier to tackle.

Is has been demonstrated that the work presented in this thesis meets the criteria for

the success and research aims defined in Chapter 1. Section 9.4 discusses these

accomplishments, and section 9.5 identifies areas for continuing the work and

improving the capabilities of the method.

9.4 Discussion

A reflective discussion of the work accomplished in this thesis is now presented. In

general, EA-SODIA is a success. It meets the requirements shown in Chapter 1.

The RSMV approach has proved to be successful. The adoption of the LAV and the

Bucket Algorithm is a good choice, as they allow source databases to be integrated

independently. Although the high cost of the query containment test is the major

concern, the Bucket Algorithm relieves the problem to some extent. Also, adding

extra conditions in both importing views and user queries is a possible solution for

reducing the cost. Although the LAV and the Bucket Algorithm can only provide

incomplete results in some situations, they fulfill the requirements for solving

evolution problems. The use of a set of relation algebra operations has been a good

idea, as the views constructed in terms of them can be well represented as structured

data in the meta-database.

One of the major successes has been the meta-database. The formal representation of

the data in the meta-database has proved to be effective so that all the data required

for schema reconciliation can be stored. It has been the key to avoid hard-coded

211

programs which are the major cause of high maintenance cost of the traditional

systems. The representation of the data in the meta-database also ensures that the

automatic view modification can be conducted. Consequently, the manual work has

been further reduced.

The schema evolution detection has proved to be effective. The rules for examining

the validation and the rules for identifying the affected views and views which should

be discarded have been effective. The processes for tackling eight types of schema

evolution have proved to be correct and effective. It has largely reduced the manual

maintenance work caused by schema evolution. Some schema evolution such as

attribute removal and relation removal and attribute domain change and attribute

decomposition may lead to discarding the views so that manual work is required. The

major issue of the current schema evolution detection has been that it has only been

able to tackle the types of schema evolution one by one and sequentially. In the case

that the schema evolution cannot be recalled or the complete database schema is

replaced, the schema evolution detection cannot provide help. However, it may be

improved by further work which is discussed in next section.

The query process has proved to be effective in the original work which is identifying

the source databases. This process ensures that the user queries do not require

modification when organizational evolutions occur unless the organization property

which is designated explicitly by the user queries changes. This is achieved by

recording the organizational evolutions in the meta-database.

The SOA and web services have been helpful in reducing the maintenance cost. They

have made the removal and addition of new source databases very simple. Also, both

schema evolution detection and query process rely on the registry service which

centrally manages the information such as the name and URL of all the services. This

has also tackled system evolution easily.

Comparing EA-SODIA to the traditional systems such as the federated system and the

212

mediated system has proved an interesting study. EA-SODIA is similar to the LAV

mediated system as they both use LAV approach. However, it provides a better ability

to tackle evolution by not requiring hard-coded programs. The federated system can

provide complete results, but it is incapable of dealing with evolution problems.

Overall, EA-SODIA has proved to a successful architecture for data integration with

the capability of addressing most types of evolution.

9.5 Further Work

The work presented in this thesis could be extended in many ways and some ideas are

discussed in this section.

9.5.1 Other Source Databases

Currently, other types of data sources cannot be integrated into the system because the

heterogeneity among them cannot be solved using relational algebra views. However,

some legacy systems which involve other types of databases (e.g. flat files and

objective-oriented language) or existing queries (e.g. programs providing query

results) do exist in practice. Therefore, it is useful to extend the system to have the

ability of integrating other types of data sources. In fact, the system has the potential

to integrate other data sources. Relational algebra operations take relations as

operands and output another. These relations do not have to be the real relations in a

relational database schema. They can be views or queries. Thus, other programs such

as queries or the programs which obtain data from a data source also have the

potential to be taken by a relational algebra operation as operands, as long as the

output from them are relations.

A possible solution is that data in other data models and existing queries are translated

into relations. The schemas of these relations are stored into the meta-database with

additional information such as whether the relation is an existing query or data in

213

other data model and how it can be accessed. Exporting views and importing views

can then be built as usual in terms of the relations produced above. However, this may

require a program for each relation in order to obtain result from the actual database.

These programs usually translate a conjunctive query received from a DIS into an

equivalent query in the query language supported by the actual database. This leads to

a new challenge that the programs are hard-coded and require modification when the

actual database changes. Thus, we propose that the data in other data model is

described as relations using some language (e.g. Description Logic) which can be

structured and stored into the meta-database. It is similar to building views in terms of

the local schema of the relational database schema using relational algebra operators.

A component, which translates conjunctive queries into queries in other language, is

added into the DS. Consequently, the only part requiring modification, when an actual

database changes, is the information in the meta-database. The current schema

evolution detection can then be improved to modify this information automatically.

However, it may be hard to describe some data sources such as flat files. Therefore,

hard-coded programs may still be required. Further research needs to be carried out.

9.5.2 Extending the SED

As discussed in Chapter 8, schema evolution must be entered into the system in order.

The schema evolution detection cannot provide help in the following cases:

 The schema evolution cannot be recalled.

 The complete database schema is replaced.

The system has the potential to deal with this situation. The former one can be solved

by adding date and time of the schema evolution into the meta-database. Thus, the

new process of schema evolution detection can be produced to tackle a batch of

schema evolution. A software tool needs to be provided for the database administrator

to apply schema evolution and store all the schema evolution in the meta-databases.

214

As for the latter case, a possible solution may be to provide software tools in order to

find out the mapping from the new schema to the old one using some automatic

schema mapping methods if the local schema is completely replaced by another one.

Although software tools can be provided to help the manual work, the DS may have

to be rebuilt by data provider.

9.5.3 Query Based on the Organizational Structure before Evolution

As discussed in Chapter 1, the integrated system based our architecture only answers

a user query based on the current organizational structure. For example, a hospital,

which used to belong to Newcastle, has become one in Durham since 2009. This

evolution is tackled automatically in the integrated system. Thus, the answer to a user

query asking for the number of patents in Durham will involve the patents in this

hospital since the evolution. However, as the system keeps only the current version of

the organizational structure, one cannot realize that the hospital used to be in

Newcastle.

A possible solution, similar to that in section 9.5.2, is to add additional properties such

as date and time into the organizational evolution stored in the meta-database. Thus,

the system knows what and when organizational evolution occurred so that the query

processing component can find the right version of the organizational structure based

on the evolution. Take the previous example, the system will check the organizational

evolution records in the meta-database and realize that a hospital moved from

Newcastle to Durham. Therefore, the system will not access the database of this

hospital if a user query asks for the number of patents in Durham in 2008.

Organizational structure evolution can have more impact on materialized systems,

because both the existing materialized views and the programs extracting data from

source databases require modification. We believe that the architecture in this thesis

with the solution proposed in this section may also help in a materialized system if

this architecture is used as a part which extracts data from the source databases.

215

However, it requires further research and experiments.

9.5.4 Dynamic Tackling of Schema Evolution

Currently, the schema evolution detection process is triggered manually by a data

provider if the local schema changes. Consequently, the DS has to be discarded

temporarily in order to conduct the schema evolution detection process until the

schema evolution is tackled. Namely, the user query cannot obtain answer from this

DS until the exporting views and the importing views are modified based on the

schema evolution.

A possible solution may be for a DS to get the current exporting views based on the

evolution history stored in the meta-database. Each schema evolution is recorded in

sequence in the meta-database and the exporting views do not require changes. When

a user query is received, the DS can automatically obtain the current exporting views

by taking the schema evolution into account. For example, the following evolution

occurs:

1) The name of the attribute A1 in relation R1 has been changed to B1.

2) The name of the relation R1 has been changed to R2.

The exporting views do not need to be changed when the above evolution occurs.

When a user query involving the relation R1 and A1 is received, the DS finds the

above evolution in the meta-database and then changes the user query to involve R2

and B1. In this way, the DS does not need to be suspended and is able to tackle

schema evolution automatically each time when a user query comes. It may further

reduce the manual maintenance.

The challenge is that for such schema evolution as Relational Removal and Attribute

Removal, human intervention may still be required to modify the exporting views.

Therefore, the combined approach of this solution and the schema evolution detection

is preferred. It also requires further research and experiments.

216

9.6 Final Summary

A review of the work accomplished has been presented in this chapter. The overall

success of the research has been considered in terms of the criteria shown in Chapter

1, and the two directions for further work have been established.

This thesis has examined the context, motivation, and definition of data integration,

leading to the development of an architecture with some algorithms to reconcile

schemas of source databases and process user queries and solve some evolution

problems. The service-based architecture, called Evolution Adaptive Service-Oriented

Data Integration Architecture, has been presented. Three methods, Relational Schema

Mapping by Views, Query Processing and Schema Evolution Detection, have also

been described and compared to similar systems. An extensive evaluation using a case

study has demonstrated various characteristics of the methods by examining the

response variables to support pre-defined hypotheses. Issues found in the case study

were also discussed. Ideas for further work have been suggested.

EV-SODIA with RSMV and Query Process and Schema Evolution Detection is a

novel and successful solution to data integration.

217

Appendix

A.1 Relational Algebra Operators

A set of extended algebra operators is used to construct exporting views in terms of

the local schema. Those operators have been slightly modified to fulfil the needs in

this work.

A.1.1 Set Operators on Relations

Three most common operations on sets are taken into account: union, intersection,

and difference [84].

 The Union of R and S, denoted R ∪ S, is the set of elements that are in R or S or

both.

 The Intersection of R and S, denoted R ∩ S, is the set of elements that are in

both R and S.

 The Difference of R and S, denoted R – S, is the set of elements that are in R

but not in S.

These operators can be applied to relations after putting some additional conditions on

operand relations R and S.

1. The schema of R and the schema of S must have identical set of attributes. and the

types (domains) of each attribute must be the same in R and S.

2. The attributes of R must be in the same order to the attributes of S.

It will be allowed that the number of attributes of two relations is not identical. This is

explained in a later section.

A.1.2 Cartesian Product

The Cartesian Product [84] of two sets R and S is the set of pairs that can be formed

by choosing the first element of the pair to be any element of R and the second any

218

element of S. It is denoted R × S. When R and S are relations, the product is

essentially the same. The resulting tuple is a longer tuple, with one component for

each of the components of constituent tuples. The resulting relation is therefore a

relation with all the attributes of R followed by all the attributes of S in the same

attribute order to S and R. For example, given two relations R with the schema R{a, b,

c} and S with the schema S{b, c, d}, the resulting relation of R×S is P with the

schema P{a, b, c, b, c ,d}. Note that the attribute order of the resulting relation schema

is important. The first b is from R, while the second is from S.

A.1.3 Common Join

Common Join is a special natural join of two relations R and S, denoted as R A S, in

which we pair only those tuples from R and S that agree in a set of designated

attributes which are common to the schemas of R and S. More precisely, let A {A1,

A2,…, An} be a set of attributes that are in both the schema of R and the schema of S.

Thus, a tuple r from R and a tuple s from S are successfully paired if and only if r and

s agree on each of the attributes A1, A2,… , An. The result of the pairing is a tuple,

called a joined tuple, with one component for each of the attributes in the union of the

schemas of R and S. The resulting relation is the set of all joined tuples. For example,

given two relations R and S with the schemas R{a, b, c} and S{b, c, d} with two

common attributes b and c, the resulting relation is P with the schema P{a, b, c, d}.

Note that the difference between a natural join and a common join is that the natural

join agrees on all the common attributes of two relations, while common join agrees

on the designated common attributes which are a subset of all the common attributes.

A.1.1 Selection

The selection operator [84], applied to a relation R, produces a new relation with a

subset of R’s tuples. The tuples in the resulting relation are those that satisfy some

condition C that involves the attributes of R. This operation is denoted as σC(R). The

schema for the resulting relation is the same as R’s schema, and the attributes of the

219

resulting relation schema are in the same order as for R.

C is a conditional expression of the type with which we are familiar from

conventional programming language; for example, conditional expression follows the

keyword “if” in programming languages such as C or Java. The only difference is that

the operands in condition C are either constants or attributes of R. The resulting

relation is derived by applying C to each tuple t of R by substituting, for each attribute

A appearing in condition C, the attribute of t for attribute A. If after substituting for

each attribute of C the condition C is true, then t is one of the tuples in the resulting

relation.

A.1.4 Projection

The original projection operator is used to produce from a relation R a new relation

with a schema that has only some attributes of the schema of R. It is denoted πL(R). L

is a list of attributes of relation R. The result of expression πA1,A2,…,An(R) is a relation

that has a schema with attributes A1, A2, …, An of R.

We extend the projection operator to allow it to compute with attributes of tuples as

well as choose attributes. The extended projection is also denoted πL(R). However, the

projection lists L can have the following kinds of elements.

1. A single attribute of R

2. An expression xy, where x and y are names for attributes. the element xy in

the list indicates that we take the attribute x of R and rename it y so that the name

of this attribute in the schema of the resulting relation is y.

3. An expression Ez, where E is an expression involving attributes of R, constants,

arithmetic operators, and string operators, and z is a new name for the attribute

that results from the calculation implied by E. For example, a + b x as a list

element represents the sum of the attributes a and b, renamed x. Element c || d e

means concatenate the presumably string-valued or time-valued attributes c and d

and call the result e.

220

The result is a relation whose schema is the names of the attributes on list L.

A.1.5 Grouping

The grouping operation [84] aims to consider the tuples of a relation in groups,

corresponding to the values for one or more other attributes, and then aggregating or

summarizing the values for one attribute within each group.

The grouping operator is denoted γL(R), where L is a list of elements each of which is

either:

 An attribute of the relation R to which the γ is applied; this attribute is one of the

attributes by which R will be grouped. This element is called a grouping

attribute.

 An aggregation operator applied to an attribute of the relation. To provide a name

for the attribute corresponding to this aggregation in the result, an arrow and new

name are appended to the aggregation. The underlying attribute is called an

aggregated attribute.

The aggregation operators are used to summarize or aggregate the values for an

attribute of a relation. The aggregation operators supported in this work are:

1. SUM produces the sum of a list of values for an attribute with numerical values.

2. AVG produces the average of an attribute with numerical values.

3. MIN and MAX, applied to an attribute with numerical values, produces the

smallest or largest value, respectively.

4. COUNT produces the number of values for an attribute. Equivalently, COUNT

can apply to any attribute of a relation to produce the number of tuples of that

relation.

For example, given the relation R(a, b, c, d, e), the grouping operation can be written

as:

γa, MIN(b)

g, COUNT(e)

h(R)

221

The relations taken as operands of these operators are in fact relation schemas until

the operators are executed at a particular time. A relation schema can be referred to as

variable of a relation which can be assigned to a value at a particular time. A relation

instance with a set of tuples at a particular time is referred to as a constant or a value

of a relation schema. Therefore, in this work, when we talk about a relation, we are

actually talking about a relation instance. Otherwise, we always mean relation

schema.

A.2 Expression Tree of a View

Writing single algebra operations on one or two relations as queries does not show the

power that the relational algebra has. However, the algebra operations take relations

as operands and the result of an operation is still a relation. Therefore, it is allowed to

form an expression of arbitrary complexity by applying operations to the result of

other operations. Consequently, more complex queries can then be constructed by

forming complex expressions. An expression can be represented as an expression tree.

For example, we have two relation schemas R (a, b, c, d) and S (a, e, f,), an expression

may be:

πa,b,e (σb>100 (R a S) ∩ σe=50 (R a S))

The expression tree of the above expression is shown in Figure 4-4.

222

∩

σb>100 σe=50

R R

πa,b,e

SS

Figure 4-4 Expression tree for a relational algebra expression

It can be seen from Figure 4-4 that at an interior node an operator is applied to the

arguments, which are the results of its children. In fact, there is a resulting relation, a

relation or a view, which is derived at each node which is one of the operands of its

parent node. Apparently, the leaves are relations or views that already exist, while the

result from the root of the tree is the final result of the expression. At each interior

which is neither leaf nor root, there is still a temporary view derived from the operator

at that node.

In order to show clearly the temporary views, an alternative way to represent a

expression is to invent names for the temporary views that correspond to the interior

nodes of the tree and write a sequence of assignments that create a value for each. The

notation that we use for assignment statement is:

1. A relation (view) name and parenthesized list of attributes for that relation.

2. The assignment symbol :=.

3. Any algebra expression on the right.

Thus, the expression tree shown in Figure 4-4 can be represented differently as:

223

V01 (a, b, c, d, e, f) := R a S

V02 (a, b, c, d, e, f) := σb>100 (V01)

V03 (a, b, c, d, e, f) := σe=50 (V01)

V04 (a, b, c, d, e, f) := V02 ∩ V03

VAnswer (a, b, e) := πa,b,e(V04)

The order of the assignment is flexible as long as the values of the views have been

created before they are taken by their parents to create values for the parents

themselves. VAnswer is the final result of the whole expression. In this research, the

view on each node must only have one algebra operator within the expression on the

right side of the assignment statement. This view is called the atomic view. The

representation of an atomic view consists of two parts, the schema of the view (name

and attributes) and the expression on the right side of the assignment.

224

References

[01] P.J.Layzell, K.H.Bennett, D.Budgen, P.Brereton, L.A.Macaulay, M.Munro,

„Service-Based Software: The Future for Flexible Software‟ Asia-Pacific Software

Engineering Conference, 5-8 December 2000, ISBN: 0-7695-0915-0 pp. 214-222

[02] K.H.Bennett, N.E.Gold, M.Munro, J.Xu, P.J.Layzell, D.Budgen, O.P.Brereton

and N.Mehandjiev, „Prototype Implementations of an Architectural Model for

Service-Based Flexible Software‟, in Proceedings Thirty-Fifth Hawaii International

Conference on System Sciences (HICSS-35), edited by Ralph H. Sprague, Jr. p.76,

2002

[03] M. Turner, D. Budgen, and P. Brereton, „Turning software into a service,‟ IEEE

Computer, 2003, vol. 36, pp. 38-44.

[04] K. H. Bennett, N. E. Gold, P. J. Layzell, F. Zhu, O. P. Brereton, B. D., J. Keane, I.

Kotsiopoulos, M. Turner, J. Xu, O. Almilaji, J. C. Chen, and A. Owrak, „A Broker

Architecture for Integrating Data using a Web Services Environment,‟ presented at

First International Conference on Service-Oriented Computing (IC-SOC 2003),

Trento, Italy, 2003.

[05] I. Kotsiopoulos, J. Keane, M. Turner, P. Layzell, and F. Zhu, „IBHIS:

Integration Broker for Heterogeneous Information Sources,‟ presented at 27th

Annual International Computer Software and Applications Conference (COMPSAC

2003), Dallas, 2003.

[06] F. Zhu, M. Turner, I. Kotsiopoulos, K. Bennett, M. Russell, D. Budgen, P.

Brereton, J. Keane, P. Layzell, M. Rigby, and J. Xu, „Dynamic Data Integration

Using Web Services,‟ presented at 2nd International Conference on Web Services

(ICWS 2004), San Diego, California, USA, 2004

225

[07] M. Turner, Zhu, F., Kotsiopoulos, I., Russell, M., Budgen, D., Bennett. K.,

Brereton, P., Keane, J., Layzell, P., and Rigby, M., „Using Web Services Technologies

to create an Information Broker: An Experience Report,‟ presented at 26th

International Conference on Software Engineering (ICSE 2004), Edinburgh, Scotland,

2004.

[08] A.Gounaris, J.Smith, N.W. Paton, R.Sakellariou, A.A.A. Fernandes, P.Watson:

"Adapting to Changing Resource Performance in Grid Query Processing".Proc. of

the 1st International Workshop on Data Management in Grids, DMG'05.

[09] N.M. Alpdemir, A.Mukherjee, A.Gounaris, N.W. Paton, A.A.A. Fernandes, R.

Sakellariou, P.Watson, P.Li: ‘Using OGSA-DQP to Support Scientific Applications

for the Grid’. First International Workshop on Scientific Applications in Grid

Computing SAG'04, LNCS 3458, pp. 13-24

[10] I.Gorton, J.Almquist, K.Dorow, P.Gong, D.Thurman, ‘An Architecture for

Dynamic Data Source Integration’, Proceedings of the 38th Annual Hawai i

Internat ional Conference on System Sciences (HICSS'05) - Track 9,

January 2005.

[11] „Web Services Architecture‟, W3C Working Group w3c-wsa

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211 Accessed in February 2005

[12] „Service-Oriented Architecture expands the vision of Web services, Part 1‟,

http://www-128.ibm.com/developerworks/webservices/library/ws-soaintro.html

Accessed in June 2005

[13] „The Web Services Conceptual Architecture‟,

http://www-306.ibm.com/software/solutions/webservices/pdf/WSCA.pdf Accessed in

February 2005

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211
http://www-128.ibm.com/developerworks/webservices/library/ws-soaintro.html
http://www-306.ibm.com/software/solutions/webservices/pdf/WSCA.pdf

226

[14] XML Protocol Working Group http://www.w3.org/2000/xp/Group/ Accessed in

February 2005

[15] „Bridging the integration gap, Part 1: Federating grid data‟,

http://www-128.ibm.com/developerworks/grid/library/gr-feddata/ Accessed in June

2006

[17] „Service-Oriented Architecture and Web Services: Concepts, Technologies, and

Tools‟, http://java.sun.com/developer/technicalArticles/WebServices/soa2/ Accessed

in March 2005

[18] „Migrating to a Service-Oriented Architecture’,

http://www-128.ibm.com/developerworks/webservices/library/ws-migratesoa/

Accessed in March 2005

[19] „New to Service-Oriented Architectures‟

http://www-128.ibm.com/developerworks/webservices/newto/ Accessed in May 2005

[20] SOAP 1.2 (Specification)

http://www.w3.org/TR/2003/REC-soap12-part0-20030624/ Accessed in December

2004

[21] Web Services Addressing

http://www.ibm.com/developerworks/webservices/library/specification/ws-add/

Accessed in May 2007

[22] UDDI 3.0 http://uddi.org/pubs/uddi_v3.htm Accessed in December 2005

[23] WSDL 2.0 (Working Group) http://www.w3.org/2002/ws/desc/ Accessed in

December 2004

[24] Web Service Architecture from W3C

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/ Accessed in December 2004

[25] D. Austin, A. Barbir, C. Ferris, S. Garg, „Web Services Architecture

Requirements’, W3C Working Group Note, 11 February 2004.

http://www.w3.org/TR/2004/NOTE-wsa-reqs-20040211 Accessed in April 2005

[26] S. C. Kendall, J. Waldo, A. Wollrath, G. Wyant, „A Note on Distributed

Computing’, November 1994 http://research.sun.com/techrep/1994/abstract-29.html

Accessed in December 2004

[27] ‘Web Services Resource Framework’

http://www.w3.org/2000/xp/Group/
http://www-128.ibm.com/developerworks/grid/library/gr-feddata/
http://java.sun.com/developer/technicalArticles/WebServices/soa2/
http://www-128.ibm.com/developerworks/webservices/library/ws-migratesoa/
http://www-128.ibm.com/developerworks/webservices/newto/
http://www.w3.org/TR/2003/REC-soap12-part0-20030624/
http://www.ibm.com/developerworks/webservices/library/specification/ws-add/
http://uddi.org/pubs/uddi_v3.htm
http://www.w3.org/2002/ws/desc/
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.w3.org/TR/2004/NOTE-wsa-reqs-20040211
http://research.sun.com/techrep/1994/abstract-29.html

227

http://www-128.ibm.com/developerworks/library/specification/ws-resource/ Accessed

in January 2005

[28] „Web Services Metadata Exchange’

http://www-128.ibm.com/developerworks/webservices/library/specification/ws-mex/

Accessed in June 2005

[29] „Grid in action: Monitor and discover grid services in an SOA/Web services

environment’ http://www-128.ibm.com/developerworks/grid/library/gr-gt4mds/

Accessed in July 2005

[30] „Build grid applications based on SOA‟

http://www-128.ibm.com/developerworks/grid/library/gr-soa/ Accessed in March

2006

[31] Data Access and Integration (DAI) Project http://www.ogsadai.org/ Accessed in

May 2005

[32] UDDI v3.0 http://uddi.org/pubs/uddi_v3.htm#_Toc12653784 Accessed in

December 2005

[33] „GT4 Primer‟ http://www.globus.org/toolkit/docs/4.0/key/index.html Accessed in

June 2006

[34] Information Services (MDS): Key Concepts

http://www.globus.org/toolkit/docs/4.0/info/key-index.html Accessed in July 2006

[36] A. Sheth and J. Larson., „Federated database systems for managing distributed,

heterogeneous and autonomous databases‟ ACM Computing Surveys, 1990, 22, 3,

pp. 183-236.

[37] E.A. Rundensteiner, A.Koeller, X.Zhang, „Maintaining data warehouses over

changing information sources‟, Communications of the ACM, June 2000, Volume 43

Issue 6

[38] I. Foster et al., “The Physiology of the Grid: An Open Grid Services

Architecture for Distributed Systems Integration,” tech. report, Glous Project

[39] Foster, I., Kesselman and Tuecke, “The Anatomy of the Grid: Enabling Scalable

Virtual Organizations”. International Journal of High Performance Computing

Applications, 2001, 15 (3). 200-222.

[40] C.Bontempo, G.Zagelow, „The IBM data warehouse architecture‟,

http://www-128.ibm.com/developerworks/library/specification/ws-resource/
http://www-128.ibm.com/developerworks/webservices/library/specification/ws-mex/
http://www-128.ibm.com/developerworks/grid/library/gr-gt4mds/
http://www-128.ibm.com/developerworks/grid/library/gr-soa/
http://www.ogsadai.org/
http://uddi.org/pubs/uddi_v3.htm#_Toc12653784
http://www.globus.org/toolkit/docs/4.0/key/index.html
http://www.globus.org/toolkit/docs/4.0/info/key-index.html

228

Communications of the ACM, September 1998, Volume 41 Issue 9

[41] M.Antonioletti

, M.Atkinson

, R.Baxter

, A.Borley

, N.P.C.Hong

, B.Collins

, N.

Hardman

, A.C. Hume

, A.Knox

, M.Jackson

, A.Krause

, S.Laws

, J.Magowan

, N.W.

Paton

, D.Pearson

, T.Sugden

, P.Watson

, M.Westhead, „The design and

implementation of Grid database services in OGSA-DAI’, Concurrency and

Computation: Practice and Experience, Volume 17, Issue 2-4 , Pages 357 - 376

[42] ‘A new Architecture for OGSA-DAI’

http://www.ogsadai.org.uk/docs/OtherDocs/OGSA-DAI_Architecture_AHM05.pdf

Accessed in October 2006

[43] Stéphane Lafortune, Eugene Wong, „A State Transition Model for Distributed

Query Processing‟ August 1986, ACM Transactions on Database Systems

(TODS), Volume 11 Issue 3

[44] Jim Smith, Anastasios Gounaris, Paul Watson, Norman W. Paton, Alvaro A.A.

Fernandes, Rizos Sakellariou, „Distributed Query Processing on the Grid‟

http://www.cs.man.ac.uk/grid-db/papers/dqp.pdf Accessed in October 2006

[45] M. Nedim Alpdemir, Arijit Mukherjee, Anastasios Gounaris, Norman W.Paton,

Paul Watson, Alvaro A.A. Fernandes, Jim Smith, „OGSA-DQP A service-based

distributed query processor for the Grid‟

http://www.ogsadai.org.uk/docs/OtherDocs/114.pdf Accessed in March 2006

[46] Alpdemir, M.N.Mukherjee, A.Gounaris, A.Paton, N.W.Watson, P.Fernandes,

A.A.A.Smith, „Service-Based Distributed Querying on the Grid’ In (M. E. Orlwoska,

S. Weerawarana, M. P. Papazoglu, and J. Yang, eds.) Service Oriented Computing -

ICSOC 2003 First International Conference, Trento, Italy, December 15-18, 2003,

LNCS 2910, Springer-Verlag, ISBN 3-540-20681-7. pp. 467-482.

[47] V.Raman, I.Narang, C.Crone, L.Haas, S.Malaika, T.Mukai, D.Wolfson and

C.Baru, „Data Access and Management Services on Grid‟

http://www.cs.man.ac.uk/grid-db/papers/dams.pdf Accessed in October 2005

[48] N.Paton, M.Atkinson, V.Dialani, D.Pearson, T.Storey and P.Watson, „Database

Access and Integration Services on the Grid‟

http://www.cs.man.ac.uk/grid-db/papers/dbtf.pdf Accessed in October 2006

[49] Do.Kossmann, „The state of the art in distributed query processing‟, ACM

Computing Surveys (CSUR), December 2000, Volume 32 Issue 4.

[50] P. Bodorik, J. S. Riordon, C. Jacob, „Dynamic distributed query processing

techniques‟, Proceedings of the 17th conference on ACM Annual Computer Science

Conference, February 1989.

http://www.ogsadai.org.uk/docs/OtherDocs/OGSA-DAI_Architecture_AHM05.pdf
http://www.cs.man.ac.uk/grid-db/papers/dqp.pdf
http://www.ogsadai.org.uk/docs/OtherDocs/114.pdf
http://www.cs.man.ac.uk/grid-db/papers/dams.pdf
http://www.cs.man.ac.uk/grid-db/papers/dbtf.pdf

229

[51] D.Jantz, E. A.Unger, R. McBride, J.Slonim, „Query processing in a distributed

data base‟, Proceedings of the 1983 ACM SIGSMALL symposium on Personal and

small computers, December 1983.

[52] H.Stuckenschmidt, R.Vdovjak, G.J.Houben, J.Broekstra, „Distributed semantic

query: Index structures and algorithms for querying distributed RDF repositories‟,

Proceedings of the 13th international conference on World Wide Web, May 2004.

[53] D.L.Davison, G.Graefe, „Dynamic resource brokering for multi-user query

execution‟, ACM SIGMOD Record, Proceedings of the 1995 ACM SIGMOD

international conference on Management of data, May 1995, Volume 24 Issue 2.

[54] S.P. Bradley and K.H. Bennett, “Mental Health Minimum Data Set (MHMDS)”,

September 2002

[55] IBHIS executive summary

http://www.co.umist.ac.uk/ibhis/summary.htm Accessed in October 2005

[56] Database Access and Integration Services (DAIS-WG)

http://www.gridforum.org/6_DATA/dais.htm Accessed in October 2005

[57] Globus Toolkit http://www.globus.org/toolkit/ Accessed in May 2005

[58] I.Foster, C.Kesselman, „The Grid: Blueprint for a New Computing

Infrastructure‟

[59] The OGSA-DAI project, http://www.ogsadai.org.uk/ Accessed in July 2008

[60] WS-I, Web Services Interoperability, Basic Profile 1.0. 2004.

[61]D. Calvanese, G. D.Giacomo, M. Lenzerini, and R. Rosati. Logical foundations

of peer-to-peer data integration. In Proc. of the 23nd ACM SIGACT SIGMOD

SIGART Symp. on Principles of Database Systems (PODS 2004), 2004.

[62]D. Calvanese, G. D. Giacomo, M. Lenzerini, R. Rosati, and G. Vetere. Hyper: A

framework for peer-to-peer data integration on grids. In Proc. of the Int. Conference

on Semantics of a Networked World: Semantics for Grid Databases (ICSNW 2004),

volume 3226 of Lecture Notes in Computer Science, pages 144–157, 2004.

http://www.co.umist.ac.uk/ibhis/summary.htm
http://www.gridforum.org/6_DATA/dais.htm
http://www.globus.org/toolkit/
http://www.ogsadai.org.uk/

230

[63]M. Lenzerini. Data integration: A theoretical perspective. In Proc. of the 21st

ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems(PODS

2002), pages 233-246, 2002.

[64]J. Madhavan and A. Y. Halevy. Composing mappings among data sources. In

Proc. of the 29th Int. Conf. on Very Large Data Bases (VLDB 2003), pages 572-583,

2003.

[65]A.Cali, D.Calvanese, G.D.Giacomo, and M.Lenz-erini. Accessing data

integration systems through conceptual schemas. In Proc. of the 10th Ital. Conf. on

Database Systems (SEBD 2002), pages 161-168, 2002.

[66]A.Halevy, Z.Ives, D.Suciu, and I.Tatarinov. Schema mediation in peer data

management systems. In Proc. of the 19th IEEE Int. Conf. on Data Engineering

(ICDE 2003), pages 505{516, 2003.

[67]T.Catarci and M.Lenzerini. Representing and using interschema knowledge in

cooperative information systems. J. of Intelligent and Cooperative Information

Systems, 2(4):375{398, 1993.

[68]A.Y.Halevy. Answering queries using views: A survey. Very Large Database J.,

10(4):270–294, 2001.

[69]M.Friedman, A.Levy, and T.Millstein. Navigational plans for data integration. In

Proc. of the 16th Nat. Conf. on Artificial Intelligence (AAAI’99), pages 67–73. AAAI

Press/The MIT Press, 1999.

[70]L.M.Haas,E.T.Lin, and M.A.Roth, Data integration through database federation.

IBM Systems Journal, Dec 2002.

[71] B.Lerner, A model for compound type changes encountered in schema

evolution. ACM TODS, 25:1, 83-127, 2000

[72] E. Rahm,and P. A.Bernstein, A survey of approaches to automatic schema

matching. VLDB, 334-350, 2001

[73] P.Shvaiko, A Survey of Schema-based Matching Approaches. Journal on Data

Semantics, 146-171, Vol. 4, 2005

[74] A.Y.Levy, D.Srivastava, T.Kirk, Data Model and Query Evaluation in Global

Information Systems. Journal of Intelligent Information Systems, 121-143, Vol. 5,

1991

[75] D.Budgen, M.Turner, I.Kotsiopoulos, F.Zhu, M.Rigby, K.Bennett, P.Brereton,

J.Keane, P.Layzell, Managing healthcare information: the role of the broker.

231

Studies in Health Technology and Informatics, 3-16, Vol. 112, 2005

[76] M.Antonioletti, A.Krause, N.W. Paton, A.Eisenberg, S.Laws, S.Malaika,

J.Melton, D.Pearson, The WS-DAI Family of Specifications for Web Service Data

Access and Integration. ACM SIGMOD Record, 48-55, Vol 35, Issue 1, 2006.

[77] A.Gounaris, C.Comito, R.Sakellariou, D.Talia, A Service-Oriented System to

Support Data Integration on Data Grids. Proceedings of the Seventh IEEE

International Symposium on Cluster Computing and the Grid, 627-635, 2007

[78] Y.Arens , C.Y. Chee , C.N.Hsu , C.A. Knoblock, Retrieving and Integrating

Data from Multiple Information Sources. International Journal of Intelligent and

Cooperative Information Systems, 127-158, Vol. 2, 1993.

[79] D.Talia, A.Bilas and M.D. Dikaiakos, Service Choreography for Data

Integration on the Grid. Knowledge and Data Management in GRIDs, 19-33, Vol 1,

2007

[80] J.Widom, Research Problems in Data Warehousing. Conference on Information

and Knowledge Management, Proceedings of the fourth international conference on

Information and knowledge management, 25-30, 1995.

[81] C.Comito, D.Talia, Grid Data Integration Based on Schema-Mapping. Lecture

Notes in Computer Science, Applied Parallel Computing. State of the Art in Scientific

Computing, 319-328, Vol 4699, 2009.

[82] R. Hull. Managing Semantic Heterogeneity in Databases: A Theoretical

Perspective. In Proc. of the 16th ACM SIGACT SIGMOD SIGART Symp. on

Principles of Database Systems (PODS’97), 1997.

[83] G. Wiederhold. Mediators in The Architecture of Future Information Systems.

IEEE Computer, 25(3):38-49, March 1992.

[84] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database System

Implementation, chapter 11: Information Integration. Prentice Hall, 2000.

[85] S. Chaudhuri and U. Dayal. An Overview of Data Warehousing and OLAP

Technology. SIGMOD Record, 26(1):65{74, 1997.

[86] M. Jarke, M. Lenzerini, and P. Vassiliadis Y. Vassiliou. Fundamentals of Data

Warehouses. Springer Verlag, 2000.

[87] M. K. Mohania and G. Dong. Algorithms for Adapting Materialised Views in

http://www.springerlink.com/content/105633/?p=05d267beb08b4f6685ac84740eea7244&pi=0
http://www.springerlink.com/content/105633/?p=05d267beb08b4f6685ac84740eea7244&pi=0
http://www.springerlink.com/content/x375r75uq605/?p=05d267beb08b4f6685ac84740eea7244&pi=0
http://www.springerlink.com/content/x375r75uq605/?p=05d267beb08b4f6685ac84740eea7244&pi=0

232

Data Warehouses. In CODAS, pages 309--316, December 1996.

[88] E.A.Rundensteiner, A.J.Lee, and A.Nica, On Preserving views in evolving

environments. In Proceedings of 4th Int. Workshop on Knowledge Representation

Meets Databases (KRDB '97): Intelligent Access to Heterogeneous Information.

Athens, Greece (Aug. 1997), pp. 13.1--13.11.

[89] M. Bonjour and G. Falquet. Concept Bases: A Support to Information Systems

Integration. Proceedings of CAiSE94 Conference, Utrecht, 1994.

[90] T.Erl, Service-Oriented Architecture: Concepts, Technology, and Design.

Prentice Hall PTR (August 12, 2005) ISBN-10: 0131858580

[91] C.J. Date, An Introduction to Database System Addison Wesley; 8 edition

(August 1, 2003) ISBN-10: 0321197844.

[92] J.Gehrke, R.Ramakrishnan, Database Management Systems.

McGraw Hill Higher Education; 3rd edition (November 1, 2002) ISBN-10:

0071230572.

[93] B.Kitchenham, L.Pickard, S.L. Pfleeger, Case Studies for Method and Tool

Evaluation. IEEE Softw., Vol. 12, No. 4. (July 1995), pp. 52-62.

[94] R.K. Yin, Case Study Research Design and Methods, Sage Publications,

Beverley Hills, Calif., 1984.

[95] R.K. Yin, Applications of Case Study Research. 2nd edition, Sage Publications,

Beverley Hills, Calif., (December 4, 2002).

[96] S.Chawathe, H.Garcia-Molina, J.Hammer, K.Ireland, Y.Papakonstantinou,

J.Ullman, and J.Widom. The TSIMMIS Project: Integration of Heterogeneous

Information Sources. In 10th Meeting of the Information Processing Society of Japan

(IPSJ), pages 7{18, Tokyo, Japan, October 1994.

[97] T.Kirk, A.Y.Levy, Y.Sagiv, and D.Srivastava. The Information Manifold. In

AAAI Symposium on Information Gathering in Distributed Heterogeneous

Environments, 1995.

http://www.amazon.com/C.J.-Date/e/B000AQ6OJA/ref=ntt_athr_dp_pel_1
http://www.amazon.com/Johannes-Gehrke/e/B001HCU55K/ref=ntt_athr_dp_pel_2
http://www.amazon.com/Raghu-Ramakrishnan/e/B000AQ3IHQ/ref=ntt_athr_dp_pel_1
http://www.citeulike.org/user/billkidwell/author/Kitchenham:B
http://www.citeulike.org/user/billkidwell/author/Pickard:L
http://www.citeulike.org/user/billkidwell/author/Pfleeger:SL

233

[98] J.D.Ullman. Information Integration using Logical Views. In International

Conference on Database Theory (ICDT), pages 19-40, Delphi, Greece, January 1997.

[99] C.Ghezzi, “Ubiquitous, Decentralized, and Evolving Software: Challenges for

Software Engineering”, In Proc. Of 1
st
 International Conference on Graph

Transformation (ICGT’02), Lecture Notes in Computer Science, Vol. 2502, 1-5,

Springer, Barcelona, Spain, Oct. 2002.

[100] IEEE Standard Glossary of Software Engineering Terminology. IEEE Std

610.12-1990

[101] B.P. Lientz, E.B. Swanson, Software Maintenance Management,

Addiso-Wesley Publishing Company, 1980, ISBN 0201042053.

[102] IEEE Computer Society, IEEE Standard for Software Maintenance (IEEE

Std 1219-1998), Institute of Electrical and Electronics Engineers, 1998, ISBN

0738103365, in IEEE Standards, Software Engineering Volume 2 Process Standards,

1999 Edition, Institute of Electrical and Electronics Engineers, 1999, ISBN

0738115606.

[103] A. Y. Levy. Combining Artificial Intelligence and Databases for Data

Integration. In Special issue of LNAI: Artificial Intelligence Today; Recent Trends

and Developments. Springer Verlag, 1999.

[104] R. Pottinger and A. Levy. A Scalable Algorithm for Answering Queries Using

Views. In International Conference on Very Large Data Bases (VLDB), pages

484-495, Cario, Egypt, September 2000.

[105] P.Mitra. Algorithms for Answering Queries Efficiently Using Views.

Technical report, Infolab, Stanford University, September 1999.

	1Cover
	2abstract_final
	3Acknowledgements_final
	4Declaration
	5Content
	6chapter_1_final
	7chapter_2_final
	8chapter_3_final
	9chapter_4_final
	10chapter_5_final
	11chapter_6_final
	12chapter_7_final
	13chapter_8_final
	14chapter_9_final
	15Apandix
	16reference

