Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham e-Theses
You are in:

Analysis of the strong field approximation for harmonic generation and multiphoton ionization in intense ultrashort laser pulses

Chirilă, Ciprian Constantin (2004) Analysis of the strong field approximation for harmonic generation and multiphoton ionization in intense ultrashort laser pulses. Doctoral thesis, Durham University.

[img]
Preview
PDF
961Kb
[img]
Preview
PDF (supplementary volume updating chapter 6)
2822Kb

Abstract

We apply the strong field approximation (SFA) to the study of harmonic generation (HG) and above threshold ionization (ATI) in intense low-frequency laser fields. We review in a systematic way the SFA model from the literature to date, and fill in some gaps regarding its analytical and computational aspects. Special attention is devoted to the analysis of the saddle point method, which is widely used to calculate the highly oscillatory integrals describing the
physical processes. Its accuracy is compared against the results from numerical integration; for the latter task, we propose two methods, which prove to be fast and reliable for all practical purposes. In the context of HG, we discuss
non-dipole effects, using a non-dipole non-relativistic method. The use of a second, weaker laser pulse is shown to allow the emission enhancement of selected harmonics. We briefly discuss the importance of relativistic effects
using the results of a fully relativistic calculation of Miloˇsevi´c et al.. In the context of ATI, quantitative comparisons are made with results obtained by integrating the exact static ionization rates over the pulse or, where possible, with ab initio results. Direct ionization in short pulses is extensively presented in the framework of a Coulomb-corrected version of the SFA, due to Krainov;
interesting interference effects are shown to take place, in particular modulations in the angle-resolved ATI spectra depending strongly on the phase of the carrier. These modulations happen for pulses that are not too long, typically fewer than (9-10) optical cycles. As a consequence, the ATI peaks in the 2 angle-integrated spectra have a good resolution or are undistinguishable from
the background, if the electric field component of the pulse is symmetrical or anti-symmetrical with respect to the pulse half duration, respectively. Partial conclusions are drawn regarding the applicability of the SFA to the study of the ionization process and possible ways to further improve the model are suggested.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Faculty and Department:Faculty of Science > Physics, Department of
Thesis Date:2004
Copyright:Copyright of this thesis is held by the author
Deposited On:22 May 2014 11:25

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter