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Abstract

We apply the strong field approximation (SFA) to the study of harmonic gen-
eration (HG) and above threshold ionization (ATI) in intense low-frequency
laser fields. We review in a systematic way the SFA model from the literature
to date, and fill in some gaps regarding its analytical and computational as-
pects. Special attention is devoted to the analysis of the saddle point method,
which is widely used to calculate the highly oscillatory integrals describing the
physical processes. Its accuracy is compared against the results from numer-
ical integration; for the latter task, we propose two methods, which prove to
be fast and reliable for all practical purposes. In the context of HG, we dis-
cuss non-dipole effects, using a non-dipole non-relativistic method. The use
of a second, weaker laser pulse is shown to allow the emission enhancement
of selected harmonics. We briefly discuss the importance of relativistic effects
using the results of a fully relativistic calculation of Milošević et al.. In the
context of ATI, quantitative comparisons are made with results obtained by
integrating the exact static ionization rates over the pulse or, where possible,
with ab initio results. Direct ionization in short pulses is extensively presented
in the framework of a Coulomb-corrected version of the SFA, due to Krainov;
interesting interference effects are shown to take place, in particular modu-
lations in the angle-resolved ATI spectra depending strongly on the phase of
the carrier. These modulations happen for pulses that are not too long, typi-
cally fewer than (9-10) optical cycles. As a consequence, the ATI peaks in the
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angle-integrated spectra have a good resolution or are undistinguishable from
the background, if the electric field component of the pulse is symmetrical or
anti-symmetrical with respect to the pulse half duration, respectively. Par-
tial conclusions are drawn regarding the applicability of the SFA to the study
of the ionization process and possible ways to further improve the model are
suggested.
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2.6 The magnitude squared of the Fourier transform of the dipole
acceleration (in a.u.) as a function of the photon energy (in units
of ~ω). Spectra for a Be3+ ion obtained in the dipole and non-
dipole approximations are shown for the emission of photons
polarized along the laser polarization direction (Dǫ, NDǫ) for
a 3-cycle pulse (n=3), a 4-cycle pulse (n=4) and a stationary
field. The peak intensity is 3.6× 1017 W cm−2 and λ = 800 nm. 40

3.1 The configuration of the strong and weak laser pulses. . . . . . . 44
3.2 The magnitude squared of the Fourier transform of the dipole

acceleration, in a.u., of Ne6+ as a function of the photon en-
ergy (in units of ~ω). The laser pulse duration is two-cycles,
with peak intensity 3.6× 1017 W cm−2 and wavelength 800 nm.
Dipole (Dǫ) and non-dipole (NDǫ) spectra are shown. In plots
(b) and (c), the non-dipole results are for the case in which the
ion interacts with a second, weaker laser pulse polarized along
the propagation direction of the intense pulse (see text). In plot
(b), the time delay (τw = 62 a.u.) and intensity (Iw = 4.8×1015

W cm−2) of the second pulse were chosen such that photon emis-
sion in the neighborhood of the 7500th harmonic is enhanced,
while in plot (c), τw = −80 a.u. and Iw = 3.6 × 1015 W cm−2,
leading to the enhancement of emission around the 30 000th
harmonic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 The magnitude squared of the frequency-resolved dipole accel-
eration for photon emission centered about the 2500th harmonic
of the driving field by a single Ne6+ ion interacting with a four-
cycle Ti:Sapphire pulse of 3.6 × 1017 W cm−2 peak intensity.
Shown are results obtained in the dipole approximation (a) and
in the non-dipole non-relativistic approximation (b, c). Plot (c)
shows the enhancement by a second laser pulse of photon emis-
sion at 3.4 laser periods. The peak intensity of the second pulse,
Iw, is 2.2× 1014 W cm−2 and the delay, τw, is 30.8 a.u. . . . . . 48



List of Figures 11

3.4 The magnitude squared of the Fourier transform of the dipole
acceleration of a single Ne6+ ion interacting with a four-cycle
Ti:Sapphire pulse of 3.6 × 1017 W cm−2 peak intensity. Shown
are results obtained in the non-dipole non-relativistic approxi-
mation, with the upper curve illustrating the enhancement of
photon emission around Ω/ω = 2500 when the ion interacts with
a second, weaker laser pulse having the same peak intensity and
delay as in Fig. 3.3. The high energy part of the spectrum is
not shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 The return time tr as a function of the detachment time ti for a
two-cycle sin2 laser field, with wavelength of 800 nm and inten-
sity of 3.6× 1017 W/cm2. The dashed curve shows the absolute
value of the electric field during the pulse (in arbitrary units). . 51

3.6 The initial speed [Eq. (3.4)] for two different field strengths, as
a function of delay with respect to the driving field. From the
first panel, one can see that the minimum weak field strength
for the parameters chosen here (see text) can be as small as
0.15 a.u. The second panel shows results for the field amplitude
chosen in Section 3.2 (the arrow points to the value of the delay
chosen there); the delay can be chosen among many values for
this case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 (a) Measured and (b) calculated photoelectron spectrum in ar-
gon for 800 nm, 120 fs pulses at the intensities given in TW/cm2

in the figure (10Up = 39 eV). From Nandor et al. [2]. . . . . . . 57
4.2 The saddle point trajectories in the complex plane for a He+

ion irradiated by a stationary pulse with intensity I = 1016 W
cm−2 and wavelength of 800 nm. The electron is emitted along
the polarization axis. The dashed curve is the profile of the
vector potential during one optical cycle. The circles represent
the positions of the two saddles for p=0 and the end points of
the trajectories correspond to p = A0. . . . . . . . . . . . . . . . 60

4.3 The graphical solution for the ‘birth’ times {t01, t02} for a sta-
tionary field, satisfying p‖/A0 + cos(ωt) = 0 with p‖ = −0.5A0. . 61

4.4 Schematic picture of the origin of interference in electron emis-
sion from two laser-induced sources. The indices (1) and (2)
correspond to the two positions as in Eq. (4.10). . . . . . . . . . 64

4.5 The vertical curves satisfy (4.23a) with Ip = 0 and the hori-
zontal ones (4.23b) (k 6= p). Therefore, the intersection points
give the solutions for the trajectories corresponding to final drift
momentum p = 0 (left panel) and p2/2 = 5.8Up (right panel,
with p in the polarization direction). . . . . . . . . . . . . . . . 70



List of Figures 12

4.6 Saddle points for scattering along the polarization axis for a
Keldysh parameter γ = 1.11 and p = 0. The labels refer to the
fact that the pairs (1,2) and (9,10) are ordered as a function of
the increasing travel time t− t′. The circles correspond to p = 0
and the trajectories end at p2/2 = 10Up. . . . . . . . . . . . . . 71

4.7 Direct and rescattering amplitudes for a zero-range binding po-
tential with Up/ω = 3.58, at 800 nm and a ground state energy
Ip = 0.5. The spectrum is in the laser polarization direction and
the pulse has a sin2 envelope with zero absolute phase. The cir-
cles correspond to the ATI peaks. For the rescattering plateau,
only the first five pairs of saddle points have been included. . . . 74

4.8 Scattering contributions for the first five saddle point pairs. The
physical parameters are the same as in Fig. 4.7. The contribu-
tions have been displaced for visual convenience. The red curve
shows the contribution of all the five pairs. . . . . . . . . . . . . 75

5.1 Graph of the modulating factor

∣∣∣∣
sin(Nx/2)

sin(x/2)

∣∣∣∣, with N = 20 . . . 89

5.2 Rates of ionization of a hydrogen atom by a linearly polarized
field at λ=1064 nm vs laser intensity. The (LG) and (VG) curves
show the results predicted by the SFA model in the length gauge
and velocity gauge. The other curves show the Floquet results
(the red curve and filled circles), the A Becker et al. corrected
version and the predictions of the Krainov Coulomb-corrected
rate. The upper scale gives the Keldysh adiabaticity parameter. 97

5.3 Log-Log plot of the ionization rates for He+ in a linearly polar-
ized stationary field. The wavelength is 800 nm. . . . . . . . . . 100

5.4 Same parameters as in Fig 5.3. The Krainov Coulomb corrected
rates are shown for 800 nm and for 1064 nm. . . . . . . . . . . . 101

6.1 Left panel: a 4-cycle sin2 pulse (black curve) and a sech pulse
(red curve) with the same FWHM (in intensity). The phase is
φ = π/2. The right panel shows the same, only for identical
FWHM in amplitude. . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2 The cutoffs for the return (left panel) and rescattering (right
panel) kinetic energy for a n-cycle sin2 pulse, with A(t) ∝
sin(ωt) sin2(ωt/2n). . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3 The phase dependence of the maximal return (left panel) and
rescattering (right panel) kinetic energy for a 4-cycle sin2 pulse,
with A(t) ∝ sin(ωt+ φ) sin2(ωt/8). . . . . . . . . . . . . . . . . 109



List of Figures 13

6.4 Angle-resolved [Eq. (6.3)] ATI energy spectra for electron emis-
sion from He+ along the polarization axis for an electric field
amplitude E0 = 0.2 a.u. (left panel) and E0 = 0.3 a.u. (right
panel). The wavelength is 800 nm and the pulse duration is four
optical cycles with φ = 0. The red curves show the exact inte-
gration result from which the first order boundary term (BT)
has been subtracted and the black curves show the saddle point
result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.5 Angular distributions in He+ for electron energy of 0.1Up. The
pulse parameters are the same as in Fig. 6.4. The red curves
show the exact integration result from which the first order
boundary term (BT) has been subtracted and the black curves
show the saddle point result. . . . . . . . . . . . . . . . . . . . . 113

6.6 Total ionization probability for a He+ ion irradiated by a four-
cycle sin2 pulse, with φ = 0. The results are given as a function
of the peak intensity and originate for the usual and KSFA
model. The other two estimates were calculated using the exact
rate of ionization in a static electric field and the Landau and
Lifshitz static tunneling rate, respectively. . . . . . . . . . . . . 115

6.7 Left panel: angle-resolved ATI spectra for different emission
angles θ with respect to the polarization direction. Right panel:
angle-integrated ATI spectra. The pulse is with a sin2 envelope,
encompassing four optical cycles, with 800 nm wavelength. The
electric field amplitude is E0 = 0.4 a.u. The ion is He+. . . . . . 116

6.8 Left panel: angle-resolved ATI spectra for different emission
angles θ with respect to the polarization direction. Right panel:
angle-integrated ATI spectra. The parameters are the same as
in Fig. 6.7, only the field phase is changed: φ = π/2 . . . . . . . 117

6.9 The differential ionization probability for constant electron en-
ergy as a function of the emission angle and the energy-integrated
probability for He+ irradiated by a four-cycle sin2 pulse with
peak electric field E0 = 0.2 a.u. Left panel: the field phase is
φ = 0, right panel: φ = π/4. The wavelength is 800 nm. (The
ponderomotive energy is Up = 0.77 a.u.) . . . . . . . . . . . . . 118

6.10 The case of a symmetrical electric field. . . . . . . . . . . . . . . 121
6.11 Angle-resolved ATI energy spectra at different emission angles

for a He+ irradiated by a sin2 pulse with E0 = 0.4 a.u. and field
phase φ = 0. The wavelength is 800 nm. Only the contribution
of the symmetrical pair of saddles is shown. The filled circles
represent the predicted LATI peaks, from Eq. (6.9). . . . . . . . 123



List of Figures 14

6.12 The saddle point contributions to the ionization probability of
He+, for a 4-cycle sin2 pulse with symmetrical electric field.
The pulse has 800 nm wavelength and the peak electric field is
E0 = 0.4 a.u. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.13 The case of an anti-symmetrical electric field. . . . . . . . . . . 125
6.14 Angle-resolved LATI energy spectra. Only the contribution of

the first pair is shown. The parameters are the same as in Fig.
6.11, only the electric field is anti-symmetrical: φ = π/2. The
filled circles are the predicted LATI peaks, from Eq. (6.10). The
emission is along the polarization direction (left panel) and at
an angle θ = π/10 with respect to the polarization axis (right
panel). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.15 The angle-integrated ionization probability in He+ for the same
pulse as in Fig. 6.12, only for various field phases. . . . . . . . . 127

6.16 Angle-integrated ionization probability of He+ for increasing in-
tensity. The electric field is symmetrical with respect to the
middle of the pulse. The rest of the pulse parameters are the
same as in Fig. 6.18. . . . . . . . . . . . . . . . . . . . . . . . . 128

6.17 Angle-integrated ionization probability of He+ for increasing in-
tensity. The electric field has the phase φ = π/4. The rest of
the pulse parameters are the same as in Fig. 6.18. . . . . . . . . 128

6.18 Angle-integrated ionization probability per pulse duration in
He+ irradiated by a 4-cycle sin2 pulse with E0 = 0.2 a.u. and
φ = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.19 Angle-integrated ionization probability in He+ for different du-
ration sin2 pulses with E0 = 0.3 a.u. and phase φ = 0.23 rad.
The rest of the parameters are the same as in Fig. 6.18. . . . . . 130

6.20 Left panel: angle-integrated ionization probabilities for He+ in
a 800 nm, 4-cycle sin2 pulse and a sech pulse with identical
FWHM (in amplitude). The peak electric field is E0 = 0.4 a.u.
The phase is φ = 0. Right panel: the probability for different
pulse phases for the sech pulse. . . . . . . . . . . . . . . . . . . 132

6.21 The same as in Fig. 6.20, but for a Gaussian pulse. . . . . . . . 132
6.22 The same as in Fig. 6.20, but for helium, at intensity I = 1×1015

W/cm2. (The Keldysh parameter γ = 0.45.) . . . . . . . . . . . 133
6.23 The asymmetry for direct ionization in He+ for a peak electric

field E0 = 0.4 a.u., at a wavelength of 800 nm. The field is
a sin2 field, encompassing four optical cycles. The two curves
show the KSFA results and the prediction of a simple model
based on the exact ionization rates in a static electric field. . . . 134



List of Figures 15

6.24 The ionization probability for an ejection angle θ = 10◦ with
respect to the polarization direction for a He+ ion irradiated
by a two-cycle sin2 pulse, with φ = π/2. The intensity is 1016

W/cm2 and the carrier wavelength is 400 nm. The red curve
gives the ab initio results and the black curve the KSFA results. 137

6.25 The ionization probability for an ejection angle θ = 10◦ with
respect to the polarization direction for a He+ ion irradiated
by a four-cycle sin2 pulse, with φ = π/2. The intensity is 1016

W/cm2 and the carrier wavelength is 400 nm. The red curve
gives the ab initio results and the black curve the KSFA results. 138

6.26 Emission probability in hydrogen, for ejection of the electron
along the polarization axis with momentum pz and in the per-
pendicular plane with momentum pn. The laser has a peak
intensity of 1.3×1014 W/cm2, eight optical cycles and the wave-
length is 800 nm. The electric field is symmetrical with respect
to the middle of the pulse. The ab initio result is displayed in
the upper panel [3], while the lower one shows the Coulomb-
corrected SFA result. White lines in the top diagram are the
predictions of the SFA in the velocity gauge [4]. . . . . . . . . . 140

6.27 Angle-integrated ATI spectrum of He+ irradiated by a 400 nm,
4-cycle sin2 laser pulse, with peak intensity of 1× 1016 W/cm2.
The field phase is φ = 0. The ab initio result is compared to
the KSFA result. . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.28 Comparison between the ab initio result and the KSFA result.
The pulse parameters are the same as in Fig. 6.27, only the
electric field is asymmetrical: φ = π/2. . . . . . . . . . . . . . . 142

E.1 Angle-resolved ATI energy spectrum generated by a 2-cycle sin2

pulse (left panel) and a 4-cycle one (right panel) with zero ab-
solute phase, λ=800 nm and intensity I = 5 × 1015 W/cm2 in
He+. The electron is emitted along the laser polarization direc-
tion. Panel (a): the smooth curve (black) represents the saddle
point result and the oscillating curve (red) the exact calculation
from which the first order boundary term contribution has been
subtracted. Panel (b): the two results are almost indistinguish-
able on the scale of the graph. . . . . . . . . . . . . . . . . . . . 165

E.2 Angle-resolved ATI energy spectrum calculated in the length
gauge, generated by a 4-cycle sin2 pulse with zero absolute
phase, λ=800 nm and intensity I = 6× 1013 W/cm2 in krypton
(Ip = 14 eV). The electron is emitted along the laser polariza-
tion direction. The lower (black) curve shows the saddle results
and the upper (red) curve shows the exact results. . . . . . . . . 167



List of Figures 16

E.3 Angle-resolved ATI energy spectrum calculated by using the
Krainov Coulomb corrected ionization amplitude, generated by
a 4-cycle sin2 pulse with zero absolute phase, λ=800 nm and
intensity I = 5.6× 1015 W/cm2 in He+. The electron is emitted
along the laser polarization direction. The upper (black) curve
shows the saddle results and the lower (red) curve shows the
saddle simplified version results. . . . . . . . . . . . . . . . . . . 171

E.4 Some of the saddle points for the case of a He+ ion irradiated by
a 4-cycle laser, at an intensity of 1016 W/cm2 and wavelength
800 nm. The laser pulse is described by a sin2 envelope with
zero absolute phase. . . . . . . . . . . . . . . . . . . . . . . . . . 172

E.5 Exponential decay (gaussian) and gaussian with cubic oscilla-
tory factor [see (E.18)]. . . . . . . . . . . . . . . . . . . . . . . 174

E.6 The relative error of the differential ionization probability for
emission along the polarization direction, in the case of a He+

ion irradiated by a 800 nm, 4-cycle laser pulse, at an intensity
of 8.8× 1015 W/cm2 and zero absolute phase. The black curve
shows the error made by using the usual saddle method and the
red curve shows the resulting error when using the improved
saddle method. . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

E.7 The deformation of the integration contour in the complex plane
to avoid strong oscillatory behaviour along the real axis. The
full curves represent the exponential decay of the integrand in
the vicinity of the saddle points. . . . . . . . . . . . . . . . . . . 177

E.8 The integrand behaviour in the complex plane (lower panel) and
along the real axis (upper panel). The letters correspond to the
integration path in Fig. E.7. For simplicity, only a part of the
real axis has been represented. The inset in the lower panel
shows the integrand along the beginning of the BC path. . . . . 178



List of Tables

6.1 Cutoffs for return and rescattering energy for sin2 pulses with
different number of cycles (see Fig. 6.2). . . . . . . . . . . . . . 108

17



Chapter 1

Introduction

The area of atom-light interaction is of growing importance mainly due to un-

precedented advances in laser technology and detection systems. Nowadays,

powerful laser systems are available as table top devices, allowing for the ex-

periments to be performed in a simpler manner than in the past. More precise

detection systems have made it possible to observe energy-resolved spectra of

ionized electrons with higher accuracy, leading, for example, to the observation

of the re-scattering plateau in above threshold ionization. Also, a large num-

ber of known phenomena can be studied in entirely new regimes, using intense

few-cycle laser pulses [5–8]. Such pulses can encompass as few as two or three

optical cycles and have a peak intensity around or exceeding 1014 W/cm2. This

new working regime led to new features of the known processes to be discov-

ered, as well as to new phenomena. The high laser intensity requires the devel-

opment of new mathematical and computational tools, as the perturbational

techniques break down. New physical models allow for a better understanding

of most of the experimental results: the well-known Simpleman’s model gives

a simple interpretation of a large number of atomic processes (such as above

threshold ionization, harmonic generation, recollision-induced multiple ioniza-

tion, . . . ) in terms of classical trajectories of the free electron in the external

laser field in conjunction with a quantal treatment of the tunneling through the

potential barrier formed by the Coulomb potential and the external field. The

18
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Simpleman’s model forms the basis of our present understanding of processes

occurring in low-frequency laser fields. It is remarkable that processes that ap-

pear to be complex at first sight, allow for an accurate qualitative description

with simple, intuitive semi-classical models.

For example, atoms and ions interacting with intense infrared laser pulses emit

high order harmonics of the driving field in the form of coherent attosecond

pulses [5, 9–12]. The process can be understood within the Simpleman’s model,

whereby electrons are detached from the atomic core by quasi-static tunneling

ionization, oscillate in the field and return to the core where they radiatively

recombine [13–17]. A quantum version of this model has formed the basis of

a vast number of theoretical investigations of high-order harmonic generation

[16–18], and has been used successfully to analyze experiments (see, e.g., [19]).

This theory relies on the strong field approximation (SFA), which assumes

that the interaction of the electron with the core is much weaker than the

interaction with the driving field, so the former can be neglected.

Nearly all the theoretical work to date on high-order harmonic generation in

low frequency fields assumes the dipole approximation. At the Ti:Sapphire

wavelength, the dipole approximation is expected to remain valid up to inten-

sities of about 5 × 1016 to 1 × 1017 W/cm2 (depending on the system, as will

be seen). In the recent theoretical investigations of photon emission by ions

interacting with intense near infrared laser pulses [1, 20–24], it was established

the existence of a ‘non-dipole non-relativistic’ dynamical regime, in which the

effect of the magnetic field component of the laser is too large for the dipole

approximation to apply, but not so large that a relativistic description would

become necessary. Only a few fully quantum calculations, all based on the SFA,

have addressed the role of the magnetic drift in this context. Expressions for

the dipole moment of an atom or ion in the non-dipole non-relativistic regime

have been developed by Walser et al. [21] and, in another form, by Kylstra,

Potvliege and Joachain [22, 25], and applied to photon emission in ultrashort

pulses.



Chapter 1. Introduction 20

Unlike an infinitely extended monochromatic plane wave which can be fully

characterized by its frequency and intensity, a finite pulse requires two addi-

tional parameters: its duration and the carrier-envelope relative phase, also

referred to as the ‘absolute phase’, that is the relative phase between the max-

imum of the envelope and the closest peak of the carrier wave. The shape of

the pulse crucially depends on these parameters and so do the physical pro-

cesses they may induce. Recently, few-cycle pulses with stable absolute phase

have been obtained for the first time [26], raising the question of finding a

reliable way to measure the phase. The fact that the atomic ionization de-

pends on the absolute phase was pointed out in [27, 28] and the measurement

of the angular distribution of electrons was proposed as a method to determine

the absolute phase in [29, 30]. Another important feature of ionization is the

left-right asymmetry of above-threshold ionization (ATI) yields, used to obtain

the first experimental evidence of absolute-phase phenomena in a ‘stereo-ATI’

experiment [31] with circularly polarized few-cycle laser pulses. Two detectors

were used, positioned opposite in a plane perpendicular to the propagation

direction of the laser beam. Depending on the value of the absolute phase,

one detector registers more electrons than the other. The theoretical analysis

of this experiment was presented in [32, 33]. The sensitivity of high-order ATI

(HATI) is discussed in the paper of [34].

In this work, we study some aspects of harmonic generation and above thresh-

old ionization in atomic systems, within the strong field approximation. In

Chapter 2 we analyze harmonic generation using the non-dipole approach of

Refs. [22, 25]. The saddle point analysis is applied to this model with the result

of extending the Simpleman’s model to the non-dipole regime. The interpreta-

tion of the results becomes more transparent in terms of the classical electron

trajectories, taking into account the effect of the magnetic field component of

the laser pulse. General interference features of the so-called plateaus in the

harmonic generation spectra are discussed and comparison is made between

photon emission in short pulses and in stationary fields. In addition, the rele-

vance of the relativistic effects is presented, in connection to the recent results
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of Milošević, Hu and Becker [1, 32] who gave a relativistic formulation of har-

monic generation in stationary fields, based on the Klein-Gordon equation.

Chapter 3 presents a possible way to correct the non-dipole effects for a given

harmonic order, by using a second, much weaker pulse whose role is to cancel

the drift of the electron wavepacket due to the magnetic field, as it returns

to the atomic core. The displacement of the wavepacket can greatly reduce

the efficiency of the recombination process and consequently of the harmonic

emission. Based on the saddle point approach, a simple and efficient computa-

tional method of the harmonic spectra is presented and its accuracy is proven

to be very reliable when compared to the direct integration results.

In the context of the strong field approximation applied to the study of above

threshold ionization, Chapter 4 gives a review of the relevant literature, pre-

sented in a compact way with details of less-discussed, more technical issues

not developed in the original articles. We give a clear connection between the

Keldysh-Faisal-Reiss approach to ionization, the saddle point method and the

classical Simpleman’s model. The uniform approximation for the saddle point

method, important in the calculation of the rescattering plateau, is explained

in detail and new ways to solve the equations for finding the saddle times in a

straightforward manner are proposed.

A systematic presentation of up to date theoretical results for the strong field

approximation is lacking from the current literature, as well as the analysis of

the agreement, under general pulse characteristics, between SFA and ab ini-

tio results (apart form the case of negative ions, where there is good general

agreement between SFA and experimental ATI spectra for low-energy ejected

electrons: see, e.g., the case of H− in Ref. [35] or F− in Ref. [36]). Chap-

ter 5 gives an extensive compilation of the relevant SFA formulae for direct

ionization, in both the length and the velocity gauge. It completes the list

of analytical expressions for direct ionization in the frame of the SFA model,

encountered in the literature, and extends some of the analytical techniques

used to calculate them to more general cases.
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A Coulomb-corrected version of the SFA, as given by Krainov (KSFA), is

analyzed together with the SFA results and compared to the quasi-static results

obtained by integrating the exact ionization rates in a static field: it is shown

that the agreement for the KSFA is much better than for the SFA formulation.

The detailed calculation for the low-frequency limit of KSFA is presented in

Appendix D, with the misprints form the original article corrected; it shows

that in the low-frequency limit, the KSFA result reduces to the ADK formula

[37], for both linear and circular polarization.

In Chapter 6 we apply the KSFA model to calculate direct ionization ATI spec-

tra for short laser pulses. We give a simple analytical analysis of the electron

interference patterns, based on the saddle point method and show the influ-

ence of different pulse parameters (such as pulse duration, intensity and phase)

on the low-order ATI spectrum (LATI). The relevance of pulse phase effects

is emphasized in connection to the pulse temporal length. The accuracy of

the saddle point method is analyzed in detail and a new concept of ‘boundary

terms’ is introduced, related to the fact that the pulse is finite in time, unlike

the case of the stationary field. Considering the boundary terms is shown to be

essential to obtaining correct physical results from the numerical integration of

the ionization amplitudes. Appendix E presents in detail the calculation of the

boundary terms, along with a more technical discussion of the computational

aspects for the saddle point method. It is shown that for the laser parameters

we use, the saddle point integration gives results in excellent agreement with

the numerical integration results. We develop two simple methods to calculate

by direct integration the oscillatory integrals giving the ionization amplitudes:

one method is based on the use of the saddle points of the integrand and the

other is an implementation of a method from the numerical literature. The

latter was especially designed for oscillatory integrands and we adapted it suc-

cessfully for our calculations, in order to reduce the computational time. The

efficiency of such methods is essential in the study of a large group of atomic

processes, including harmonic generation and above threshold ionization.
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Also, total ionization probabilities in a short laser pulse, as given by KSFA,

are compared to the results obtained by integrating the exact static ionization

rates along the pulse; good agreement is found, in contrast to the results from

the familiar SFA model (without the tunneling correction). In the last part

of the chapter, we compare the predictions of the KSFA model with ab initio

results in the form of a probability density plot in the momentum space. The

main differences are discussed.

Conclusions and suggested further developments of the theory we employed in

this work are given in Chapter 7.

Part of the results in this thesis were published in the following papers:

• Nondipole effects in photon emission by laser-driven ions, C C Chirilă, N

J Kylstra, R M Potvliege and C J Joachain, Phys. Rev. A 66(6), 063411

(2002).

• Three-step processes with relativistic ions, C C Chirilă, C J Joachain, N

J Kylstra and R M Potvliege, Las. Phys. 14(2), 190 (2004).



Chapter 2

Harmonic generation.
Non-dipole effects

2.1 Outline

In the present chapter, we give a detailed account of the non-dipole SFA

sketched in Ref. [22] and relate it to the theory of Walser et al. [21]. We

also assess the importance of the relativistic effects neglected here by compar-

ing with results obtained by Milošević, Hu and Becker [1]. We consider, in

particular, the emission of photons by isolated He+, Be3+ and Ne6+ ions ex-

posed to strong near-infrared pulses. Only multi-charged ions can withstand

the intensities at which the non-dipole effects play a role; neutral species would

ionize immediately. The importance of the non-dipole effects is investigated by

comparing the non-dipole non-relativistic photon emission spectra with dipole

spectra for long pulses (represented by stationary fields) as well as for few-cycle

pulses. The numerical results are interpreted with the help of the recollision

model, generalized to the non-dipole case. The trajectories we consider are

real and obey the classical equations of motion. This approach complements

the description of the electron’s dynamics in terms of complex trajectories dis-

cussed in Ref. [1]; the two approaches lead to essentially the same physical

picture. Unless otherwise indicated, atomic units are used.

24
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2.2 Theoretical approach

This section presents the non-dipole approach developed in Ref. [22]. We

assume that the vector potential describing the laser field can be written as

A(η) = ǫ̂ (E0/ω)f(η) sin(η) , (2.1)

with η = ω(t − k̂ · r/c). The field has carrier wavelength λ = 2πc/ω, field

strength E0, is linearly polarized with polarization vector ǫ̂ and propagates in

the direction k̂. The function f(η) describes the temporal profile of the pulse;

f(η) ≡ 1 for a stationary field.

The influence of the magnetic field component of the laser on the electron

dynamics can be accounted for in the long wavelength and non-relativistic

regime considered here by expanding the vector potential to first order in 1/c.

Assuming the atom to be initially located at the origin leads to

A(η) ≃ A(ωt) +
1

c
(k̂ · r)E(ωt) , (2.2)

whereE(ωt) = −(d/dt)A(ωt) = −ǫ̂(d/dt)A(ωt) = ǫ̂E(ωt). The time-dependent

Schrödinger equation

i
∂

∂t
Ψ(r, t) =

(
1

2
[−i∇+A(ωt)]2 +

1

c
(k̂ · r) [−i∇+A(ωt)] · E(ωt)

+ V (r)

)
Ψ(r, t), (2.3)

is exact up to order 1/c in the atom-field interaction. The spin of the electron is

neglected. The potential V (r) describes the interaction of the electron with the

ionic core. There are two non-dipole terms in the Hamiltonian: the first one,

in ∇ ·E(ωt), gives rise to electric quadrupole and magnetic dipole transitions.

The second one, in A(ωt) · E(ωt), contributes to the drift in the propagation

direction induced by the magnetic field component of the incident beam and

has a large influence on the emission of photons by ions at high laser intensities.

At low frequencies, it is appropriate to transform the time-dependent Schrödinger
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equation to the length gauge, with the result

i
∂

∂t
ΨL(r, t) =

(
−1

2
∇2 +

[
r− i

c
(k̂ · r)∇

]
· E(ωt) + V (r)

)
ΨL(r, t) , (2.4)

where ΨL(r, t) = exp[iA(ωt) · r]Ψ(r, t). By introducing the retarded Green’s

function associated with the Hamiltonian of Eq. (2.4), the wave function

ΨL(r, t) can obtained as the solution of a time-dependent Lippmann-Schwinger

equation. In the SFA approach of Lewenstein and co-workers [9, 16], this

Green’s function is replaced by the Volkov Green’s function associated with

the Hamiltonian that describes a free electron in the laser field, G
(+)
V (r, t; r′, t′).

To account for the magnetic field component of the laser pulse at high intensi-

ties, we employ the non-dipole Volkov Green’s function discussed in Appendix

B. Neglecting continuum-continuum transitions [38], the dipole moment of the

atom then reduces to

d(t) ≃
∫ t

−∞

dt′
∫
dr dr′

× φ∗
0(r, t)(−r)G

(+)
V (r, t; r′, t′)Hi(t

′)φ0(r
′, t′) + c.c.

(2.5)

The atom or ion is initially in its ground state and is described by the wave

function φ0(r, t) = φ0(r) exp(iIpt), Ip being the ionization potential of the

state. Hi(t
′) is the atom-field interaction Hamiltonian,

Hi(t
′) =

[
r− i

c
(k̂ · r)∇

]
· E(ωt′) . (2.6)

Eq. (2.5) can also be written in the form

d(t) ≃ 2Im

∫ t

0

dt′
∫
dp

× d∗
rec[π(p, t)] exp[−iS(p, t, t′)] dion[π(p, t′), t′]

(2.7)

where

π(p, t) = p+A(ωt) +
1

c

[
p ·A(ωt) +

1

2
A2(ωt)

]
k̂ , (2.8)

S(p, t, t′) =
1

2

∫ t

t′
dt′′ [π(p, t′′)]

2
+ Ip(t− t′) , (2.9)

drec(q) = (2π)−
3

2

∫
dre−iq·r(−r)φ0(r) , (2.10)
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and

dion(q, t) = (2π)−
3

2

∫
dre−iq·rHi(t)φ0(r) . (2.11)

The spectrum of the emitted photons is then obtained by calculating |ǫ̂·a(Ω)|2,
for emission polarized parallel to the polarization direction of the incident

pulse, and |k̂ ·a(Ω)|2, for emission polarized along the direction of propagation

of the incident pulse. In these expressions, Ω denotes the angular frequency of

the emitted photon and a(Ω) the Fourier transform of d̈(t). The ratio Ω/ω is

an effective ‘harmonic order’. Results in the dipole approximation are obtained

by setting 1/c = 0. The depletion of the ground state can be neglected for the

laser parameters and atomic systems considered here.

2.3 Saddle-point integration

The quasi-classical action S(p, t, t′) is a rapidly varying function of p, t and

t′, and therefore the required integrations in equation (2.7) can be carried out

using the saddle point method. We proceed by first using the relation

dion[π(p, t
′), t′] = −i d

dt′

∫
dr

(2π)
3

2

e−iπ(p,t′)·rφ0(r)

= −i d
dt′
φ̃[π(p, t′)] , (2.12)

where

φ̃[π(p, t′)] =
(8Ip)

5

4

8π

1

[π2(p, t′)/2 + Ip]
2

=
(8Ip)

5

4

8π

[
− ∂

∂t′
S(p, t, t′)

]−2

(2.13)

is the Fourier transform of the ground state wave function of the ion. We

have assumed that V (r) is a Coulomb potential with effective nuclear charge

(2Ip)
1/2. Equation (2.7) is then integrated by parts. Since Hint(t

′ = 0) = 0,

the boundary term at t′ = 0 is zero while the boundary term at t′ = t can be

ignored; it corresponds to the process whereby the electron both ionizes and
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recombines at time t. The new expression obtained for the dipole moment is

simpler, allowing for a straightforward application of the saddle point method,

described in the following subsection.

2.3.1 Exact saddle times

The saddle momentum ps depends on t and t
′ and is obtained by solving

∇pS(p, t, t
′)|p=ps

= 0 . (2.14)

The calculations can be simplified even further by neglecting terms of order

1/c2 and higher in the saddle momentum. This means that the momentum

π(ps, t) and the action S(ps, t, t
′), respectively, will be correct to order 1/c and

1/c2. In this approximation

ps = −α1(t, t
′)

t− t′ ǫ̂

+
1

c

[
α2
1(t, t

′)

(t− t′)2 −
α2(t, t

′)

2(t− t′)

]
k̂ , (2.15)

where

αn(t, t
′) =

∫ t

t′
dt′′An(t′′) . (2.16)

Next, the integral over p is approximated using the saddle point method, with

the result

d(t) ≃ 2Im
(8Ip)

5

4

8π

∫ t

0

dt′C(τ)d∗
rec[π(ps, t)]

× exp[−iS(ps, t, t
′)]

[
∂

∂t′
S(ps, t, t

′)

]−1

.

(2.17)

The factor

C(τ) = (2π)
3

2

(
(ε+ iτ)3

[
1− 1

c2
(ǫ̂ · ps)

2

])− 1

2

(2.18)

with τ = t− t′ and ε a small positive parameter, can be understood physically

as arising from wave packet spreading.
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The form (2.17) of the dipole moment, obtained by using the properties of the

Volkov wave function (see Appendix B), is most suited for the saddle point

method; it explicitly shows that the time saddle point solution is also a first

order pole in the pre-exponential factor. An adequate saddle point formula

has to be used in this case (see Appendix C).

The integral over t′ in Equation (2.17) is straightforward to evaluate numer-

ically, but the integration must be repeated for each value of t, due to the

dependence of the integrand on t. The total computational effort required for

calculating the temporal variation of the dipole moment thus increases as the

square of the laser pulse duration. For this reason, and because of the rapid

oscillations of the exponential term, it is advantageous to calculate the inte-

gral using the saddle point method. The saddle times, ts are complex and are

determined by the equation

− ∂

∂t′
S(ps, t, t

′)

∣∣∣∣
t′=ts

=
[
π

2(ps, t
′)/2 + Ip]

∣∣
t′=ts

= 0 . (2.19)

Figure 2.1 shows a typical case of the saddles’ trajectories in the complex plane,

for a two-cycle pulse.

Expanding the denominator in Eq. (2.17) in a Taylor series, retaining only the

linear term, and noting that the integrand has a first–order pole at the saddle

points (for the asymptotic formula in the case of an algebraic singularity at

the saddle point, see Appendix C and Ref. [39]), the dipole moment is found

to be

d(t) ≃ −2Re(8Ip)
5

4

8

∑

ts

C(t− ts)d∗
rec[π(ps, t)]

× exp[−iS(ps, t, ts)]

[
π(ps, t

′) · ∂
∂t′

π(ps, t
′)

]−1

t′=ts

. (2.20)

In all the cases considered, we have found that the spectra calculated using

equation (2.20) are in very good agreement with those obtained by carrying

out the integration over t′ in equation (2.17) numerically. Typically, they differ

by less than a factor of two, and the agreement improves as the laser intensity

increases (see Figure 2.2).
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Figure 2.1: The saddle point trajectories [ωts(t) from Eq. (2.19)] in the complex
plane for a He+ ion irradiated by a two-cycle sin2 laser field, at 800 nm and
peak electric field E0 = 0.4 a.u. The full circles are the initial positions of
the saddles at t = 0. The red curves represent the saddles contributing to the
dipole moment d(t): Re[ts(t)] < Re(t).

2.3.2 Approximate saddle times

The saddle time can also be obtained using a semi-analytical approach, similar

to the one described by Ivanov, Brabec and Burnett [40] for calculations in

the dipole approximation. In this approach, the saddle time is expressed as

ts = td +∆, with td determined by solving

πǫ(ps, td) = ǫ̂ · π(ps, td) = 0 . (2.21)

The condition (2.21) for td states that the velocity of the electron along the

polarization axis at the time of detachment is zero. Using Eq. (2.15), Eq.

(2.21) reduces to ∫ t

td

dt′′ [A(ωt′′)−A(ωtd)] = 0 , (2.22)

thereby giving td in the dipole approximation.

The electron is assumed to start his motion in the continuum at time td in

the origin, where the atomic core is located. Then, in terms of the electron’s
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Figure 2.2: The magnitude squared of the Fourier transform of the dipole
acceleration (in a.u.) as a function of the photon energy (in units of ~ω), for
a He+ ion interacting with a two-cycle laser field of wavelength 800 nm. The
peak electric field is E0 = 0.4 a.u. and the photon emission is in the polarization
direction. The black curve shows the exact results [numerical integration of
Eq. (2.17)] and the red curve the results of the saddle point integration [Eq.
(2.20)].

trajectory, Equation (2.14) can be interpreted as the condition for the canon-

ical momentum ps such that the electron returns at the origin at time t (the

recombination time). Using the Hamiltonian’s expression for a free particle

in an external electromagnetic field, one can re-write Eq. (2.14) in the form
∫ t

td
dt′∇pH(p, t, t′) = 0, as that the semiclassical action less the term depend-

ing on the ionization potential (which gives zero when differentiated over the

canonical momentum) is the classical action of an electron moving freely in the

electromagnetic field, with canonical momentum p. As the classical action is

the time-integral of the corresponding classical hamiltonian for the motion of

a free electron in the external field, from the Hamilton’s equations of motion,

we have that the trajectory satisfies dr(t′)/dt′ = ∇pH(p, t, t′)|p=ps
. Thus,

Eq. (2.14) reads:
∫ t

td

dt′ dr(t′)/dt′ = 0 ⇔ r(t) = r(td). (2.23)
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Using Eqs. (2.8), (2.15) and the condition (2.21) (where the later is coming

from the saddle integration over time), one can now calculate the initial velocity

in the direction of propagation, at the time of ‘birth’ in the continuum, td:

πk(ps, td) = k̂ · π(ps, td) (2.24)

= − 1

2c(t− td)

∫ t

td

dt′′ |A(ωt′′)−A(ωtd)|2 .

This initial velocity is zero in the dipole approximation (1/c = 0), and non-

zero in the non-dipole approach: in order to return at the origin, the electron

must have an initial velocity at the time of detachment in order to compensate

exactly the displacement imparted on it by the magnetic field component of

the pulse [21]. Otherwise, it would miss the atomic core and the recombination

process would be less effective.

To calculate the approximate saddle times, Eq. (2.19) is expanded in powers

of ∆ ≡ ts − td,

− ∂

∂t′
S(ps, t, t

′)

∣∣∣∣
t′=ts

= s0 + s1∆+ 1
2
s2∆

2 +O(∆3) . (2.25)

Depending on the initial velocity component of π(ps, td) in the propagation

direction, the first coefficient is

s0 = Ip +
1

2
π2
k(ps, td) . (2.26)

Analytical expressions for s1 and s2 are lengthy, and in practice can be obtained

numerically. Setting equation (2.25) to zero and solving for ∆, the dipole

moment (2.20) is evaluated using

S(ps, t, ts) ≃ S(ps, t, td)−

s0∆− 1
2
s1∆

2 − 1
6
s2∆

3 (2.27)

and

[
π(ps, t

′) · ∂
∂t′

π(ps, t
′)

]

t′=ts

≃ s1 +∆s2 . (2.28)
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We have verified that this approach yields results that are for all practical

purposes identical to those derived using Eqs. (2.19) and (2.20).

The coefficients s1 and s2, to order 1/c2, are then found to be

s1 =
π2
k(ps, td)

t− td
(2.29)

s2 = E2(ωtd)

[
1 +

1

c
πk(ps, td)

]
+

3s1
t− td

, (2.30)

Note that all of the non-dipole corrections to the expansion coefficients si are

of order 1/c2. Hence, consistent with the action being correct to order 1/c2,

we set

s1 = 0, s2 = E2(ωtd) . (2.31)

The resulting dipole moment can be expressed as [21, 40]

d(t) ≃ −2Im
∑

td

a∗
rec(t, td)apr(t, td)aion(t, td) , (2.32)

with the ionization, propagation and recombination amplitudes, respectively,

given by

aion(t, td) =
(8Ip)

5

4

8 (2s0s2)
1

2

exp

[
−1

3

(
8s30
s2

) 1

2

]
, (2.33)

apr(t, td) = C(t− ts) exp[−iS(ps, t, td)], (2.34)

a∗
rec(t, td) = d∗

rec[π(ps, t)] . (2.35)

Note that the ionization amplitude aion(t, td) from Eq. (2.33) depends expo-

nentially on the initial velocity in the propagation direction v⊥ ≡ πk(ps, td) at

the time of detachment td, through the quantity s0 [given by Eq. (2.26)]:

aion(t, td) ∝ exp

[
−2

3

(2Ip + v2⊥)
3

2

|E(ωtd)|

]
. (2.36)

The bigger the effect of the magnetic field component on the electron’s trajec-

tory (thus bigger v⊥), the smaller the ionization amplitude is.

We have evaluated the accuracy of the formula (2.32) by calculating |ǫ̂ ·a(Ω)|2

and comparing with the results obtained using exact numerical complex saddle
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times ts in Eq. (2.20) (see Figure 2.3). The approximation given by equation

(2.32) works extremely well: the spectra cannot be distinguished on the scales

used in the diagrams. The agreement improves for higher intensities.

The expression of d(t) given by Walser et al. [21] is obtained by ignoring the

non-dipole corrections in the pre-exponential factor in the ionization amplitude

(2.33) and the recombination amplitude (2.35) 1. These additional approxima-

tions have no significant effect on the emission spectra for photons polarized

along the laser polarization direction. Setting 1/c = 0 in all three amplitudes

in equation (2.32) leads to the formula obtained by Ivanov, Brabec and Burnett

[40] in the dipole approximation.
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Figure 2.3: Photon emission in the polarization direction for a He+ ion, irradi-
ated by a two-cycle laser pulse, at 800 nm. The black curve shows the result of
the exact saddle point integration and the red curve the approximated saddle
integration [Eq. (2.32)].

1In the notation of Ref. [21], Px(t, t0) and Pz(t, t0) are identical, respectively, to ǫ̂ · ps

and k̂ · ps, where ps is defined by Eq. (2.15), and Pzd ≡ −πk(ps, td). We take that the

equation defining Sm(t, t0) in Ref. [21] should read Sm(t, t0) = (1/2m)
∫
t

t0
dt′{Pz(t, t0) −

e/(mc2)[Px(t, t0)A(t
′)− e/(2c)A2(t′)]}2.
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2.4 Non-dipole effects in photon emission for

stationary fields

Dipole (Dǫ) and non-dipole non-relativistic (NDǫ, NDk) spectra are compared

in Figure 2.4 for photon emission by multiply charged ions driven by a station-

ary 800 nm laser field. The modulus squared of the Fourier transform of the

dipole acceleration is plotted against the effective harmonic order, Ω/ω. The

Fourier transform of the dipole acceleration is defined as

a(Ω) =
1

(2π)
1

2

∫ T+2π/ω

T

dt exp(−iΩt) d̈(t) , (2.37)

where T is chosen large enough so as to include the long trajectories that

contribute to the dipole moment. We use the notation aǫ(Ω) = ǫ̂ · a(Ω) and

ak(Ω) = k̂ · a(Ω) for the components of the acceleration.

The gradual breakdown of the dipole approximation with increasing intensity

is illustrated in Fig. 2.4 for emission by a Ne6+ ion (Ip = 207.3 eV). Going from

0.5 to 4 × 1017 W cm−2, the influence of the magnetic field component first

manifests itself as a reduction in photon emission polarized along ǫ̂ as compared

to the dipole approximation, then to a ‘bending over’ of the plateaus, and

finally to a marked suppression of emission at both ends of the spectrum and

to the disappearance of the intermediate cutoffs which separate the plateaus

in the dipole approximation. A small shift in the position of the cutoffs is also

noticeable.

Non-dipole spectra for emission polarized parallel to the direction of propa-

gation of the incident field are also shown in Fig. 2.4. Emission of photons

polarized in this direction is forbidden in the dipole approximation. Emission

polarized along the propagation direction is weaker compared to emission po-

larized along ǫ̂, but the spectra are otherwise similar in most respects. The

dip visible in the low-energy part of Figs. 2.4(a) and (b) also occurs when ions

are driven by ultrashort pulses, and can be attributed to accidental cancella-

tions between different terms contributing to the dipole moment [22]. In Fig.
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Figure 2.4: The magnitude squared of the Fourier transform of the dipole accel-
eration (in a.u.) as a function of the photon energy (in units of ~ω), for a Ne6+

ion interacting with a stationary laser field of wavelength 800 nm. Spectra
for the emission of photons polarized along the laser polarization direction ob-
tained in the dipole approximation (Dǫ) and in the non-dipole non-relativistic
approximation (NDǫ) are shown, as well as the non-dipole non-relativistic spec-
tra for photon emission polarized along the laser propagation direction (NDk).

2.4(a), we observe that |aǫ(Ω)|2 is reduced by more than one order of magni-

tude compared to the predictions of the dipole approximation at the relatively

weak intensity of 5× 1016 W cm−2. This reduction contrasts with the smaller

decrease found for a Li2+ ion irradiated by a two-cycle 800 nm pulse of 9×1016

W cm−2 peak intensity [22, 25], and the even smaller non-dipole effects found

for a He+ ion irradiated by a 5-fs 800 nm pulse of 5×1016 W cm−2 peak inten-

sity [21]. The origin of the difference between the results of Fig. 2.4 and the

results for He+ and Li2+ can be attributed to the larger ionization potential

of Ne6+ [see Eq. (2.36), where the binding potential appears together with the

initial velocity v⊥; the larger Ip is, the stronger the non-dipole effects manifest

themselves through the term v⊥].

The strong dependence on Ip, and in fact all the major differences between the

dipole and non-dipole spectra, can be understood within the framework of the

recollision model. Only two quantities are relevant: the ionization amplitude



Chapter 2. Non-dipole effects in Harmonic Generation 37

aion(t, td) [proportional to the detachment rate when the electron is born, see

Eq. (2.36)] and the kinetic energy of the electron when it returns to the core.

Since the propagation and recombination amplitudes vary far less in magnitude

than aion(t, td) from trajectory to trajectory, the importance of the contribution

to the spectrum of the different trajectories can be effectively gauged by the

corresponding values of the ionization rates at the detachment times.

In the dipole approximation, aion is largest for the long trajectories, as electrons

having short trajectories are detached at lower electric fields. Therefore, short

trajectories tend to contribute less to the photon emission spectrum. However,

when the magnetic field component of the laser field is taken into account, the

opposite is true. This is due to the fact that πk(ps, td) is larger for the long

trajectories than for the short ones. The exponential dependence of aion(t, td)

on the initial transverse velocity means that the ionization amplitude tends

to be smaller for the long trajectories than for the short ones, and the latter

end up dominating the spectrum over much of its range [1]. The secondary

plateaus, which arise from interference between the longest trajectories, almost

completely vanish. The oscillations evident in the dipole spectrum largely dis-

appear because at most frequencies only one set of trajectories (the short ones)

significantly contribute to emission. The spectrum ‘bends over’ as ionization

is exponentially suppressed, due to the relatively small value of |E(td)| for the
short trajectories that give rise to the lower harmonics and to the large initial

transverse velocity for the short trajectories that produce the high harmonics.

2.5 Importance of relativistic effects

We now evaluate the importance of the relativistic effects neglected in our

approach by comparing, in Fig. 2.5, the non-dipole non-relativistic results with

relativistic results recently obtained by Milošević, Hu and Becker [1, 24]. The

case of a Ne6+ ion interacting with a stationary field of wavelength 1054 nm

and intensities 0.7 × 1017 and 1.4 × 1017 W cm−2 is considered. Milošević’s,
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Hu’s and Becker’s calculations are also done within the SFA but are based

on the Klein-Gordon equation rather than on the Schrödinger equation. The

relativistic results shown in the figure are the emission rates presented in Fig.

2 of Ref. [1], rescaled so as to facilitate comparison4.
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Figure 2.5: The magnitude squared of the Fourier transform of the dipole
acceleration (in a.u.) as a function of the photon energy (in units of ~ω).
Spectra for a Ne6+ ion obtained in the dipole and non-dipole non-relativistic
approximations are shown for the emission of photons polarized along the laser
polarization direction. The ion is irradiated by a stationary laser field of peak
intensities 0.7 and 1.4 × 1017 W cm−2, as indicated, and wavelength 1054
nm. The non-dipole results are compared with the relativistic results (R) of
Milošević, Hu and Becker [1].

The large differences between the dipole and non-dipole results indicate a

strong influence of the magnetic field component of the laser field for these

parameters. As in Figs. 2.4 (d) and (e), the non-dipole spectrum is completely

dominated by the short trajectories at 1.4 × 1017 W cm−2. At this inten-

4The rates of Ref. [1] are proportional to the square of the modulus of the Fourier
transform of d(t) multiplied by the cube of the frequency of the emitted photon, Ω [private
communication with D. B. Milošević (2002)]. In order to compare them with the values of
|aǫ(Ω)|2 we have obtained, the rates have been multiplied by Ω and an arbitrary numerical
factor. (The same factor is used for both intensities.)
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sity, the maximum velocity of the electron, vmax, is at most 42 percent of the

speed of light (i.e., v2max/c
2 = 0.18) for any returning trajectory. The good

agreement between our non-dipole non-relativistic spectra and the relativis-

tic spectra, aside from an arbitrary overall factor, suggests that the relativistic

effects that are not taken into account in our model are not important. The dif-

ference is largest for the highest harmonics, as could be expected since v2max/c
2

grows linearly with the energy of the photon emitted at recombination for

electrons following short trajectories. In the non-dipole non-relativistic cal-

culation, compared to the spectra obtained in the dipole approximation, the

cutoffs occur at a slightly higher photon energy. The origin of this effect is the

additional kinetic energy the returning electron acquires due to its drift along

the pulse propagation direction. The non-dipole non-relativistic calculation

neglects other effects, such as the increase in the inertial mass, that contribute

to the kinetic energy to order 1/c2. In the relativistic results, these additional

effects lead to a small displacement of the cutoffs to lower energies. Finally, we

note that v2max/c
2 is less than 0.18 for the short trajectories responsible for the

generation of photons below the harmonic order 30,000 at 800 nm wavelength,

and is less than 0.10 for the short trajectories responsible for the strongest pho-

ton emission in Figure 2.4. The relativistic effects are therefore not expected

to be significant at the intensities considered.

2.6 Harmonic generation in short pulses

We briefly discuss photon emission by ions driven by ultrashort pulses. Spectra

for 3– and 4–cycle pulses are shown in the top and middle diagrams of Fig.

2.6. The field is described by Eqs. (2.1) and (2.2) with

f(η) = sin2
( η
2n

)
, (2.38)

where n denotes the number of optical cycles of the pulse. The pulse is assumed

to extend over all space. The corresponding Fourier transform of the dipole
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Figure 2.6: The magnitude squared of the Fourier transform of the dipole
acceleration (in a.u.) as a function of the photon energy (in units of ~ω).
Spectra for a Be3+ ion obtained in the dipole and non-dipole approximations
are shown for the emission of photons polarized along the laser polarization
direction (Dǫ, NDǫ) for a 3-cycle pulse (n=3), a 4-cycle pulse (n=4) and a
stationary field. The peak intensity is 3.6× 1017 W cm−2 and λ = 800 nm.

acceleration is

a(Ω) =
1

(2π)
1

2

∫ 2πn/ω

0

dt exp(−iΩt) d̈(t). (2.39)

The integral extends over the entire duration of the pulse instead of just one

optical cycle as in the case of a stationary field. Results for a stationary field of

the same intensity are shown in the bottom diagram. The plateau structure of

the spectra for few-cycle pulses largely originates from the temporal variation

of the intensity rather than from the contribution of very long trajectories [41].

(For every half-cycle during an ultra-short pulse, the trajectories are detached

with different probabilities and return with different kinetic energies.) Overall,

the magnetic field component of an ultra-short pulse affects photon emission

in a similar way as for stationary fields. However, for short pulses, photon

emission is not as strongly suppressed at the low energy end of the spectrum,

and plateau structures with oscillations are still visible. This indicates that
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more than one electron trajectory is contributing to the emission of a particular

harmonic in the largest part of the spectrum.

2.7 Conclusions

We have given a detailed account of the approach introduced in Refs. [21, 22]

for describing photon emission by ions interacting with laser fields (stationary

or pulsed) whose peak intensities are sufficiently high so that the dipole approx-

imation is no longer applicable. This approach can be viewed as a non-dipole

generalization of the SFA theory of Lewenstein and co-workers [9, 16]. It ap-

plies to the dynamical regime that lies between the usual non-relativistic dipole

regime and the fully relativistic regime. Using the non-dipole non-relativistic

Volkov wave functions (see Appendix B.4) and within the SFA, we have shown

that the time-dependent dipole moment of the ion in the laser field, d(t), can

be reduced to the simple form given by Eq. (2.20). Then through a series of

approximations, none of which compromise the accuracy of the calculations in

any significant way, we recover the expression for the dipole moment derived

by Walser et al. [21], whereby d(t) is obtained as a sum over amplitudes arising

from particular electron trajectories.

The trajectories satisfy two simple classical criteria. First, if the electron is

detached at some earlier time td, its displacement along the polarization direc-

tion must be zero at time t. Second, at time td its velocity along the laser pulse

propagation direction, v⊥, must be non-zero in order to counter-act the drift

due to the magnetic component of the field. One recognizes the language of

the recollision model, modified so as to include the magnetic field effects on the

detached electron. As in the intensity regime where the dipole approximation

is applicable, it follows that the main features of photon emission spectra can

be understood from two key quantities, namely the tunnel ionization rate when

the electron is detached and the kinetic energy of the electron when it returns

to the core. In contrast to the dipole approximation, the tunnel ionization
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rates depend now strongly on v⊥, and on particular on its magnitude relative

to Ip and the magnitude of the electric field at the time of detachment. The

overall effect of the dependence on v⊥ results, at sufficiently high intensities, in

a strong suppression of photon emission. Only trajectories with t− td and |v⊥|
small contribute meaningfully to the emission spectrum. As was emphasized

recently in Ref. [11], it is remarkable that multiphoton processes in atoms in-

teracting with intense fields, despite their apparent complexity, can be largely

understood in terms of classical trajectories of electrons that are detached and

then return, driven by the external field, to their parent ion. Manipulation

of the individual electron trajectories translates into an easy way to alter the

atomic system’s response to the external field, by controlling a relatively small

number of parameters.



Chapter 3

‘Undoing’ the non-dipole effects
in harmonic generation

3.1 Outline

At intensities where the dipole approximation is valid, the contribution of each

electron trajectory to photon emission depends primarily on the electric field

strength at the time of ionization. At higher intensities, the contribution of

a particular trajectory can be drastically reduced by the drift induced by the

magnetic component of the field. As discussed in detail in Chapter 2, to return

at the nucleus the electron must be emitted with a non-zero velocity in the

direction of the field propagation, and the probability for this is exponentially

small in the tunnelling regime. At the intensities considered here, the Lorentz

force acting on the electron has a magnitude comparable to that exerted by the

electric field component of a relatively weak laser field. This suggests that the

magnetic drift can be compensated, at least for certain trajectories, by irradi-

ating the ion with a second, weak laser field, polarized along the propagation

direction of the intense one. In Section 3.2, we show by an example that a

selective compensation of the magnetic drift through this mechanism is indeed

possible; consequences for single attosecond emission in the same context of

non-dipole effects, are discussed in Section 3.3. The details of choosing the

weak field’s parameters (such as its intensity and the time delay with respect

43
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Figure 3.1: The configuration of the strong and weak laser pulses.

to the strong field) are described in Section 3.4.

Finally, conclusions and some suggestions for further applications are presented

in Section 3.5.

3.2 Adding a second electric field

We consider the case of a Ne6+ ion irradiated by a combination of two ultra-

short pulses, both with the same carrier wavelength (800 nm). The first pulse,

with vector potential A, propagates in the direction k̂ and has the polarization

vector ǫ̂. The second pulse has the vector potential Aw and the polarization

vector ǫ̂w, with ǫ̂w ≡ k̂ (see Fig. 3.1).

We assume that the second pulse is weak enough that it can be treated in

the dipole approximation. Therefore, the Schrödinger equation governing the

motion of the electron in the non-dipole non-relativistic approach reads

i
∂

∂t
Ψ(r, t) =

(
1

2
[−i∇+A(ωt) +Aw(ωt)]

2 +

1

c
(k̂ · r) [−i∇+A(ωt)] · E(ωt) + V (r)

)
Ψ(r, t) ,

with E(ωt) = −(d/dt)A(ωt). Within the SFA, the dipole moment of the ion

can be still be expressed as in Eqs. (2.17) and (2.20), with the saddle momen-
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tum and the saddle times determined by Eqs. (2.14) and (2.19); however, we

now have

π(p, t) = p+A(ωt) +

{
Aw(ωt) +

1

c

[
p ·A(ωt) +

1

2
A2(ωt)

]}
k̂. (3.1)

We assume that the two pulses have the same envelope, with the second pulse

delayed a time τw with respect to the first one. We take, specifically,

A(ωt) =
E0

ω
sin2

(
ωt

2n

)
sin(ωt)ǫ̂, (3.2)

and

Aw(ωt) =
E0w

ω
sin2

(
ωt− δ
2n

)
sin(ωt− δ)k̂, (3.3)

where δ = ωτw and n is the number of optical cycles encompassed by each

pulse. In the classical model, an electron detached at a time td must have an

initial velocity

v⊥ = − 1

t− td

{∫ t

td

dt′′ [Aw(ωt
′′)− Aw(ωtd)]

+
1

2c

∫ t

td

dt′′ [A(ωt′′)− A(ωtd)]2
}

k̂ (3.4)

to return at the nucleus at time t. The electric field amplitude of the second

pulse, E0w, and the time delay τw are chosen so that v⊥ ≈ 0 for a particular

group of trajectories.

The left panel in Fig. 3.2 shows the magnitude squared of the Fourier transform

of the dipole acceleration of Ne6+ as a function of the photon energy for a two

cycle Ti:Sapphire pulse with E0 = 3.2 a.u. acting alone (E0w = 0). In order

to illustrate more clearly the differences between the dipole and non-dipole

results, the fast oscillations in the spectra have been averaged. Let us first

consider the trajectory of an electron ‘born’ at time td = 116 a.u. during the

laser pulse. If the Lorentz force was negligible, the electron would return to

the nucleus at time t ≈ 190 a.u., where it could recombine with emission of a

photon of energy 7500 ω. However, the Lorentz force is not negligible: in order

to return the electron must have an initial velocity of about 2 a.u. opposite to
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the direction of propagation of the pulse. Correspondingly, |aǫ(Ω)|2 is much

reduced, compared to its value in the dipole approximation [see Eq. (2.36) and

the related discussion].
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Figure 3.2: The magnitude squared of the Fourier transform of the dipole
acceleration, in a.u., of Ne6+ as a function of the photon energy (in units of
~ω). The laser pulse duration is two-cycles, with peak intensity 3.6 × 1017

W cm−2 and wavelength 800 nm. Dipole (Dǫ) and non-dipole (NDǫ) spectra
are shown. In plots (b) and (c), the non-dipole results are for the case in
which the ion interacts with a second, weaker laser pulse polarized along the
propagation direction of the intense pulse (see text). In plot (b), the time delay
(τw = 62 a.u.) and intensity (Iw = 4.8×1015 W cm−2) of the second pulse were
chosen such that photon emission in the neighborhood of the 7500th harmonic
is enhanced, while in plot (c), τw = −80 a.u. and Iw = 3.6 × 1015 W cm−2,
leading to the enhancement of emission around the 30 000th harmonic.

If, in addition, the ion is irradiated by a second two-cycle pulse, of field strength

E0w = 0.37 a.u. and delayed by τw = 62 a.u. with respect to the first pulse,

the electron returns to the core if detached with zero velocity at time td = 116

a.u. In the centre panel in Fig. 3.2 we see that the magnitude of the non-

dipole spectrum is now comparable to the spectrum obtained in the dipole

approximation in the region of the 7500th harmonic. The small difference is

due to the fact that the magnetic drift is compensated only for some of the

trajectories that contribute to emission in this part of the spectrum, namely

those with td ≈ 116 a.u.
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Photon emission in the region of the cutoff of the second plateau can be en-

hanced in a similar manner, by choosing the delay and the strength of the

second pulse to be τw = −80 a.u. and E0 = 0.32 a.u., respectively. The

resulting spectrum is shown in the right panel of Fig. 3.2.

3.3 Attosecond pulse generation

Finally, we investigate how the magnetic field component of the laser pulse

influences photon emission in the time domain. We calculate the frequency-

resolved dipole acceleration for emission in a narrow frequency window cen-

tered about Ω, defined by [42]

aǫ(t,Ω) =
1

(2π)
1

2

eiΩt

∫ ∞

0

dΩ′ei(Ω
′−Ω)tF (Ω′ − Ω) ǫ̂ · a(Ω′), (3.5)

where F (Ω′−Ω) is a Gaussian window centered at Ω′ = Ω. The transformation

described in Eq. (3.5) is known as the Gabor transform [43]. The square mod-

ulus of aǫ(t,Ω) is shown in Fig. 3.3, for Ne6+ interacting with a 4-cycle pulse

of 3.6 × 1017 W cm−2 peak intensity at 800 nm wavelength. We concentrate

on emission of 3.9 keV photons (Ω = 2500ω).

The results calculated in the dipole approximation are shown in Fig. 3.3(a).

Each spike in this diagram corresponds to a burst of emission of 3.9 keV

photons. The spikes occur precisely at the instants where, in the recollision

model, detached electrons return at the nucleus with the speed required for

emission at this energy. Seven bursts are particularly strong and have all about

the same intensity, showing that in the dipole approximation the emission is

dominated by seven groups of trajectories.

However, the magnetic drift, when taken into account, changes this picture

dramatically. The central part of the figure, where the non-dipole results are

plotted, shows that all but one of the seven returns that contribute most in

the dipole approximation are severely suppressed. The only significant emis-

sion event occurs towards the end of the pulse and dominates the spectrum.
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Figure 3.3: The magnitude squared of the frequency-resolved dipole acceler-
ation for photon emission centered about the 2500th harmonic of the driving
field by a single Ne6+ ion interacting with a four-cycle Ti:Sapphire pulse of
3.6 × 1017 W cm−2 peak intensity. Shown are results obtained in the dipole
approximation (a) and in the non-dipole non-relativistic approximation (b, c).
Plot (c) shows the enhancement by a second laser pulse of photon emission at
3.4 laser periods. The peak intensity of the second pulse, Iw, is 2.2 × 1014 W
cm−2 and the delay, τw, is 30.8 a.u.

The width of the spike indicates that the duration of the burst is about 20

attoseconds. The other trajectories make a smaller contribution; their main

effect is to induce, by interference, the oscillations in the non-dipole spectrum

which are visible in the lower curve of Fig. 3.4.

In Fig. 3.3(c), we present |aǫ(t,Ω)|2 calculated for a superposition of the same

intense pulse with another Ti-Sapphire pulse, as discussed in Section 3.2. The

electric field amplitude of the second pulse, E0w, and the delay between the two

pulses, τw, are chosen so as to compensate the magnetic drift for the trajectory

giving rise to the strongest burst of emission in Fig. 3.3(b). As seen from the

diagram, when the magnetic drift is compensated emission is as strong as in

the dipole approximation. The other trajectories are further suppressed by

the second pulse, with the consequence that a single attosecond pulse of X-ray

photons is emitted. The same conclusions can be drawn from the corresponding

spectrum, shown in Fig. 3.4. In fact, one sees from the spectrum that with

the second pulse, emission is much more intense and occurs as a single burst
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Figure 3.4: The magnitude squared of the Fourier transform of the dipole
acceleration of a single Ne6+ ion interacting with a four-cycle Ti:Sapphire pulse
of 3.6 × 1017 W cm−2 peak intensity. Shown are results obtained in the non-
dipole non-relativistic approximation, with the upper curve illustrating the
enhancement of photon emission around Ω/ω = 2500 when the ion interacts
with a second, weaker laser pulse having the same peak intensity and delay as
in Fig. 3.3. The high energy part of the spectrum is not shown.

(note the absence of oscillations), not only for Ω = 2500ω but also in a large

range of frequencies around this value.

3.4 How to correct the non-dipole effects for

a given harmonic order

To enhance the emission of a certain harmonic order Ω, one needs to calculate

the parameters of the weak field [its intensity and delay – see Eq. (3.3)]. These

parameters have to be chosen such that to cancel the magnetic drift of a certain

trajectory that contributes to the harmonic emission Ω.

First, we have to find all the emission times of the harmonic order we are

interested in correcting. This can be accomplished by performing a Gabor

transform, with the Gaussian window centered on the emitted frequency Ω.

Figure 3.3 shows a typical output of the Gabor transform: in the left panel,
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the dipole contributions are shown, while the centre panel displays the same

contributions in the non-dipole calculation. The emission peaks are in the

form of short bursts of radiation (as short as of the order of attoseconds).

The attenuation due to the effect of the magnetic field component of the laser

field is visible. From the Gabor transform of the dipole spectrum, we then

choose a certain peak we want to enhance with the help of the second laser

field. Once a particular emission time tr is selected, we need to calculate the

corresponding time td when the electron is ‘born’ in the field. This can be

done within the Simpleman model [Eq. (2.22)], by searching for the electron

trajectories returning to the nucleus along the polarization axis, at time tr.

With the two times calculated, we now turn to the expression of v⊥ from Eq.

(3.4) and search for the second field’s amplitude and delay such that to cancel

v⊥ (we assume here for simplicity that the second laser field has the same

shape of the envelope as the strong driving field). This way, the emission of

the harmonic order Ω due to the particular trajectory we enhanced will have

the same order of magnitude as in the dipole approximation calculation.

In Fig. 3.2, discussed at the end of Section 3.2, to enhance the 7500th harmonic

we chose the time of detachment td = 116 a.u. and the return time tr = 190

a.u. for a particular electron trajectory contributing to the harmonic emission.

Figure 3.5 shows the return times as a function of detachment times, calcu-

lated from the Simpleman model; knowing the return time from the Gabor

analysis, one can calculate approximatively the emission time. The possible

pairs (ωtd, ωtr) are shown by filled circles, for tr = 190 a.u. The detachment

time chosen in Section 3.2 (td = 116 a.u. , the third pair in Fig. 3.5) is seen to

correspond to the biggest electric field |E(ωtd)| at the time of emission.

With the trajectory known, we plot the velocity v⊥ from Eq. (3.4) for various

weak field amplitudes as a function of the weak field’s delay (the only two

parameters that need to be calculated). Figure 3.6 shows such a graph, for

two different values for the weak field’s amplitude: the minimal value of E0w =

0.15 a.u. for which the initial speed can be zero, and the one chosen in the
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Figure 3.5: The return time tr as a function of the detachment time ti for a
two-cycle sin2 laser field, with wavelength of 800 nm and intensity of 3.6×1017

W/cm2. The dashed curve shows the absolute value of the electric field during
the pulse (in arbitrary units).

analysis made at the end of Section 3.2. In the latter case, there are many

possible values for the weak field’s delay; for each of these choices, the harmonic

spectrum in the vicinity of the harmonic Ω = 7500 is affected in a different

way. Usually, enhancing a particular harmonic Ω results in enhancing a whole

range of harmonics around Ω, if the non-dipole effects are not too large. This

explains why in the left panel of Fig. 3.2, enhancing a single photon emission

resulted in most of the high-energy plateau being enhanced.

The interplay between the field strength and phase of the weak field allows

to select a certain trajectory among all contributing to the emission of the

particular harmonic Ω and greatly reduce the contribution of the remaining

ones. This way, the harmonic Ω is emitted in the form of a single attosecond

pulse, which we discussed in the previous section.
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Figure 3.6: The initial speed [Eq. (3.4)] for two different field strengths, as a
function of delay with respect to the driving field. From the first panel, one
can see that the minimum weak field strength for the parameters chosen here
(see text) can be as small as 0.15 a.u. The second panel shows results for the
field amplitude chosen in Section 3.2 (the arrow points to the value of the delay
chosen there); the delay can be chosen among many values for this case.

3.5 Conclusions

Typically, a number of electron trajectories contribute in a comparable way

to photon emission in some frequency interval or to ATI spectra in some en-

ergy range. We have discussed a scheme whereby a second laser pulse can be

used to control an individual electron trajectory: by the appropriate choice

of the laser parameters, the effect of the drift induced by the magnetic field

component of the pulse can be compensated for a selected trajectory, and en-

hanced for others, leading to the emission of a single attosecond pulse of high

frequency photons. The scheme has similarities with the proposal by Corkum,

Burnett and Ivanov for producing an isolated attosecond pulse, in which single

returning trajectories are selected by a temporal variation of the ellipticity of

the incident field [44].
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Many of the issues regarding the consequences of the breakdown of the dipole

approximation discussed here apply equally well to strong-field recollision pro-

cesses leading to single and multiple ionization. For instance, the reduced rec-

ollision probability in the non-dipole non-relativistic regime means, as has re-

cently been observed experimentally in nonsequential multiple ionization [45],

that these processes are strongly suppressed at very high intensity. This could

prohibit the experimental study of strong field recollision processes at intensi-

ties where relativistic effects become important. The selective compensation

of the effect of the magnetic drift by a second laser pulse, as discussed above,

may offer a way to alleviate this difficulty.

Another possible way is presented in Ref. [46], where a high-velocity beam of

charged ions encounters a counter-propagating intense laser beam (this experi-

mental setup will be available at GSI-Darmstadt where an accelerator complex

will be built, capable of accelerating multi-charged ions to Lorentz factors up

to about 30). Due to the high speed, in the frame reference of the ions the

laser frequency increases, leading to much smaller non-dipole effects as a con-

sequence of higher laser frequency. The effect would be the same for still

ions in the laboratory frame, if higher-frequency intense laser beams would be

available in practice.



Chapter 4

Above threshold ionization in
atomic systems

4.1 Outline

4.1.1 Historical overview

This chapter intends to give a brief description of what is called Above Thresh-

old Ionization (ATI) in connection to other aspects of the interaction between

atoms and laser radiation. Excellent reviews on this subject, including other

phenomena in intense laser fields, were given by Protopapas et al. [47], Joachain

et al. [48] and, more recently, by Becker et al. [49].

We begin by mentioning the multiphoton (single) ionization (MPI), whereby

an atom or an ion absorbs several photons from the laser field causing the

weakly bound electron to ionize. In 1965, Voronov and Delone [50] observed

this process using a ruby laser to induce seven-photon ionization of xenon.

In early experiments MPI was accurately modelled by the lowest-order per-

turbation theory (LOPT) (Fabre et al. [51], Petite et al. [52]), the n-photon

ionization rate being given by

Γn = σnI
n

54
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where n is the minimum number of photons needed for ionization, σn is the

generalized cross section and I is the intensity of the incident light. Difficulties

arise with the perturbative approach as the intensity of the incident light

increases and therefore, due to strong coupling with the laser field, the atomic

states can no longer be considered as unperturbed .

An important step in our understanding of MPI came along with improved

experimental techniques, giving the possibility of detecting energy-resolved

photoelectrons. It allowed Agostini et al. [53] to discover that the ejected

electron could absorb photons in excess of the minimum required for ionization

to occur. This became known as ‘above threshold ionization’ (ATI), and has

been largely studied over the recent years.

A typical ATI photo-electron energy spectrum consists of several peaks, sepa-

rated by the photon energy ~ω. As the intensity I increases, peaks at higher

energies appear, whose intensity dependence does not follow the power law

according to lowest order perturbation theory (LOPT).

Another feature of ATI spectra in low frequency fields, is that as the intensity

increases, the low-energy peaks reduce in magnitude, as the energies of the

atomic states are Stark-shifted in the presence of the laser field. In the length

gauge picture, the AC Stark shifts of the lowest bound states are smaller than

those for the Rydberg and continuum states. Because the energies of the

continuum states are shifted upwards relative to the lower bound states, there

is a corresponding increase in the intensity-dependent ionization potential of

the atom. This increase is essentially given by the electron ponderomotive

energy Up, which is the cycle-averaged kinetic energy of a quivering electron

in a laser field of frequency ω. For non-relativistic velocities,

Up =
e2E2

0

4mω2
(4.1)

where e and m are the electron’s charge and mass, and E0 is the electric field

amplitude.

Novel structures in the ATI spectra have been identified in recent experiments.
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Usually the angular distributions of electrons in the ATI spectrum produced

by very intense laser fields are aligned along the axis of polarization of the

applied laser field. Two groups (Yang et al. [54], Feldmann [55]) have shown

that for noble gases a few high energy peaks may be highly structured, and

in some cases feature rings 45◦ off the polarization axis. Theoretical inves-

tigations have shown that these rings may arise form the rescattering of the

electron wavepacket from the parent ion (Kulander and Schafer [14], Paulus

et al. [56], Lewenstein et al. [57]). The experiment of Paulus et al. [58] showed

the existence of the rescattering plateau in the ATI spectrum and one- and

three-dimensional theoretical simulations demonstrated that this effect is of

single-atom nature. The connection with the high energy side lobes was given

by Paulus, who found that the side lobes were restricted to the regions where

the plateau begins.

4.1.2 Theoretical methods

The single-active-electron approximation (SAE) is widely used in atomic physics.

It consists of modelling the atom in the laser field by a single electron that

interacts with the laser field and is bound by an effective potential. This po-

tential is optimized so as to reproduce the ground state and singly excited

states.

In single ionization in strong fields, up to now, no effect has been identified

that would reveal electron-electron correlation so that the ATI spectra are,

in essence, not influenced by multi-electron correlation effects. This can be

seen in a comparison made by Nandor et al. [2], where the experimental re-

sult is compared to the prediction of the three-dimensional time-dependent

Schrödinger equation (TDSE). Very good agreement is found (see Fig. 4.1).

Although numerical solution of the one-particle TDSE in one dimension proved

to be fruitful in early days to understand ATI, for further investigation the

three-dimensional solution is needed. This is computationally very demand-
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Figure 4.1: (a) Measured and (b) calculated photoelectron spectrum in argon
for 800 nm, 120 fs pulses at the intensities given in TW/cm2 in the figure
(10Up = 39 eV). From Nandor et al. [2].

ing because of the large excursion amplitudes of free-electron motion in high-

intensity low-frequency fields and therefore necessitates a large spatial grid.

The progress achieved in recent years in the intuitive understanding of the ATI

is mainly due to the Simpleman’s model and its refinements, a theory that

analyzes the behavior of classical electron trajectories in an oscillating electric

field of a laser. In its initial form [59], the Simpleman’s model explains the

photoelectron spectra of the so-called ‘direct’ electrons (electrons that don’t

rescatter off the atomic core) and predicts un upper limit of 2Up for their

kinetic energy in the case of short laser pulses. The validity of the model has

been confirmed in microwaves experiments [60].

Along with new computational techniques being devised to complete the dif-

ficult numerical task, other analytic approaches apart from the Simpleman’s

model have been proposed. The starting point of the Keldysh-type theories,

which gained a lot of attention, is the existence of an analytical solution for a

free electron in a plane-wave laser field, the Volkov solution [61]. As the laser
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field is of high intensity, the binding potential can be treated as a perturbation.

The ground state is propagated with the operator of the laser field and pro-

jected onto the Volkov states. Further improvement of these theories include

an additional interaction with the potential in order to describe the rescatter-

ing of the electron. Later, Lewenstein et al. decomposed the Keldysh rate into

the contributions of the relevant trajectories in the spirit of Feynman’s path

integrals [57]. This showed that the Keldysh-type theories are related to the

classical Simpleman’s model picture, and indicated also that the mysterious

dips in the ATI spectra are due to interference between electron’s trajectories.

These methods are particularly useful for theoretical investigations in the case

of stronger laser fields, longer pulses and low frequency, where a direct TDSE

solution proves to be increasingly prohibitive.

4.2 Direct ionization in a stationary field

A stationary laser pulse is usually considered as a plane wave and modelled by

the vector potential A(t) = A0 cos(ωt)ǫ̂, directed along the axis of polarization

ǫ̂. The magnitude of the electric field is E0 = A0/ω, where ω is the radiation

frequency. The pulse has an infinite number of cycles with duration Tp = 2π/ω.

Because of this periodicity, we can define a rate of ionization as the ionization

occurring per optical cycle. The cycle-averaged kinetic energy of an electron

in such a field reads Up = A2
0/4, which is the equivalent of the expression (4.1)

in atomic units.

4.2.1 The quantum-mechanical description

The transition amplitude for the direct electrons – electrons that leave the

vicinity of the atom right after they have tunnelled into the continuum – is

the well known Keldysh-Faisal-Reiss (KFR) amplitude [62–64]. This approx-

imation neglects the binding potential in the propagation of the electron in
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the continuum, and the laser field when the electron is bound. The transition

amplitude reads [65]:

M (0)
p = −i

∫ ∞

−∞

dt〈ψV l
p (t)|V |ψ0(t)〉, (4.2)

where V denotes the atomic binding potential and the initial state is the usual

hydrogenic ground state with atomic number Z and ionization energy Ip =

Z2/2:

〈r|ψ0(t)〉 =
Z3/2

√
π
e−ZreiIpt.

The final state is approximated with the Volkov state [see Appendix (A)]

describing a charged particle with asymptotic momentum p in the presence of

a field with vector potential A(t). In the length gauge, we have:

〈r|ψV l
p (t)〉 = eir·[p+A(t)]

(2π)3/2
exp

{
i

∫ ∞

t

dτ
[p+A(τ)]2

2

}
. (4.3)

After some manipulations, which are detailed in Subsection 5.3.1, the integral

in (4.2) can be written in the form:

M (0)
p = i

Z5/2

π
√
2

∫ Tp

0

dt
exp [iS(t)]

S ′(t)
, (4.4)

where Tp = np2π/ω is the duration of np optical cycles of the finite laser pulse.

The time integration domain is changed compared to (4.2), which describes in

fact a stationary field. For the stationary field case, the integral can be replaced

by an integral over just one cycle of the field, with the additional condition of

energy conservation; the conservation of energy for the ejected electron reads

Ep ≡ p2
n/2 = nω−(Ip+Up), where n is the number of photons absorbed. It can

be attributed to the interference of the contributions from different periods,

i.e., the quantum interference is destructive, unless the energy is conserved.

We introduced, in Eq. (4.4), the quantity

S(t) =
1

2

∫ t

0

dτ [p+A(τ)]2 + Ipt , (4.5)

which is the modified classical action of a free electron with conserved canonical

momentum p in the field. The dependence of the action S on the p variable

has been dropped here for clarity.
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A valuable physical insight can be drawn from Eq. (4.4) when applying the

saddle point method. To find the saddles, one has to solve the equation

dS(p, t)/dt = 0, which can be done analytically for the stationary field. There

are only two solutions in each laser cycle, with positive imaginary parts. Their

trajectories in the complex plane are shown in Fig. 4.2.
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Figure 4.2: The saddle point trajectories in the complex plane for a He+

ion irradiated by a stationary pulse with intensity I = 1016 W cm−2 and
wavelength of 800 nm. The electron is emitted along the polarization axis.
The dashed curve is the profile of the vector potential during one optical cycle.
The circles represent the positions of the two saddles for p=0 and the end
points of the trajectories correspond to p = A0.

For low kinetic energy, the two saddles are close to the maximum of the electric

field (or, alternatively, to the zeros of the vector potential) and with increasing

kinetic energy, their imaginary part increases, causing the ionization amplitude

to decrease exponentially. (We discuss later this aspect.)

The advantage of the saddle point method lays in the fact that the compli-

cated integral that represents the amplitude of ionization can be reduced to a

sum over just two terms. This simplification makes it easier to analyze ioniza-

tion within our model, leading to a semiclassical model, which we describe in
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Subsection (4.2.2).

While for the infinitely long monochromatic pulse, the ionization amplitude is

invariant with respect to the transformation p → −p, the backward-forward

symmetry in no longer true for a finite pulse. This may help in determination

of the absolute carrier phase (Dietrich et al. [66]).

4.2.2 The classical model of ionization

For a further detailed technical discussion of the amplitude integral, see Eqs.

(E.1) and (E.14). The latter, which is derived by using the simplified version of

the saddle point method, we reproduce below, with the appropriate pre-factors:

M (0)
p = −Z

5/2

√
2

∑

n0=1,2

π exp[iS(t0)]

(2Ip + p2⊥)
1/2|E(t0)|

exp

[
− 1

3

(2Ip + p2⊥)
3/2

|E(t0)|

]
. (4.6)

Here, p⊥ is the component of the electron’s asymptotic momentum p, per-

pendicular to the polarization axis. This expression provides an intuitive way
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Figure 4.3: The graphical solution for the ‘birth’ times {t01, t02} for a stationary
field, satisfying p‖/A0 + cos(ωt) = 0 with p‖ = −0.5A0.

to describe semiclassically the phenomenon of ionization in the Simpleman’s
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model for direct ionization, in which the electron is ‘born’ in the continuum at

real times t0 given by p‖ +A(t0) = 0. A graphical solution is presented in Fig.

4.3, for p‖ = −0.5A0.

The condition states that the electron is ‘born’ with zero kinetic energy along

the polarization axis and also sets a classical cutoff value for this energy: a

solution t0 exists only if p‖ ≤ A0 → Ep‖ ≡ p2
‖/2 ≤ A2

0/2.

After ionization, the second step of the classical model is the evolution of

the electron in the laser field. As the electron’s oscillation amplitude is much

larger than the atomic distances, the influence of the binding potential can

be ignored. For a given vector potential A(t) and a canonical momentum p,

which is conserved, the electron’s velocity reads:

v(t) = p+A(t). (4.7)

The velocity consists of a constant term p = −A(t0), which is the drift mo-

mentum measured at the detector, and an oscillating term. The kinetic energy

of the electron, averaged over a laser field period Tp, is:

Ep ≡
〈v2(t)〉Tp

2
=

p2

2
+
〈A2(t)〉Tp

2
≡ Edrift + Up. (4.8)

The ponderomotive energy is often employed to characterize the laser intensity.

Now, we can re-write the classical cutoff for the energy of direct electrons as

Ep ≤ 2Up. In the quantal model, this bound is softened. However, it is useful

as a guideline in the analysis of experimental spectra.

Of the two electrons, born at times t01 or t02 as depicted in Fig. 4.3, one keeps

moving directly away from the atom, never crossing the atomic core, while

the other starts moving in the opposite direction, turns around at a later time

crossing the atomic core, to acquire in the end the same drift momentum as the

first electron. The two different types of trajectories could relate to the ‘direct’

and ‘indirect’ wavepackets of de Bohan et al. in Ref. [4]. The emission of the

electron at each of the two ionization times t0 is weighted with a probability
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containing the real exponential factor

exp

[
− 1

3

(2Ip + p2⊥)
3/2

|E(t0)|

]
.

The factor decreases with p⊥, so that the probability of ejection with high

velocities in a direction perpendicular to the polarization direction is exponen-

tially small. This term was derived by Delone and Krainov [67].

We note that the terms in the sum (4.6) are in the form of a real amplitude

(containing the exponentially decreasing factor) and a complex phase factor

exp[iS(t0)]. Because of the symmetry of the pulse, the real factors are the same

for the two birth times and they can be factorized; this way, the phase terms

add and become responsible for interference in the energy spectrum, creating a

beat pattern. Because of its sensitive dependence on the laser intensity, which

is not very well controlled in an experiment, the beat pattern is usually washed

out.

Apart from the exponentially decreasing term, the other real pre-factors can

differ from one expression for the ionization amplitude to another (depending

on whether we use the length gauge or velocity gauge). What is common to all

these formulations is the exponentially decreasing term and the phase factor.

4.2.3 Interferences of direct electrons

For a stationary field, during one optical cycle, there are two saddle points

corresponding to a drift momentum p. For small momenta, the two satisfy the

approximate relation :

cos(ωts1,2) = ±iγ, (4.9)

where γ ≡
√

2Ip/A0 is the Keldysh parameter. Both complex saddles have

the real part close to the moments in time when the electric field reaches

the maximum value, at Tp/4 and 3Tp/4 (here Tp is the duration of one laser

period). The classical trajectory for an electron starting at the origin with zero

initial kinetic energy is r(t) = (A0/ω) sin(ωt). Hence, we can find the electron



Chapter 4. Above threshold ionization in atomic systems 64

positions at the two instants of detachment ts1,2. Although the detachment

times are complex, the positions are real:

r1,2 ≡ r(ts1,2) = ±
A0

ω

√
1 + γ2. (4.10)

From here, as discussed by Gribakin and Kuchiev [68], appears an intuitive two-

slit interference picture for the ionization spectrum at low energies. According

to this picture, the angular distribution of photoelectrons, emitted at an angle

θ with respect to the polarization direction, is determined by the interference

of two plane waves of wavevector k = p emitted with a time delay Tp/2 from

two sources separated by the distance r1− r2. These points are located at the

opposite sides of the atomic particle and emit the waves at an angle θ with

respect to the polarization direction (see Fig. 4.4).

Figure 4.4: Schematic picture of the origin of interference in electron emission
from two laser-induced sources. The indices (1) and (2) correspond to the two
positions as in Eq. (4.10).

The phase difference is obtained by multiplying the distance between the two

points by the projection of the electron momentum on the direction of the field

p cos θ. As a result, one obtains for the interference term 2
A0

ω
p cos θ

√
1 + γ2.

It is remarkable that this term is identical to the one obtained from Eq. (4.6)

when doing the explicit calculation [see Eq. (D.9)].
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4.3 Rescattering

So far, we have presented calculations for the ‘direct’ electrons, which after the

first step of ionization leave the laser focus without any additional interaction

with the atomic core. In this section, we will consider the consequences of such

an encounter.

4.3.1 The classical theory

The classical model becomes richer if rescattering effects are taken into account.

To find the electron trajectory, we integrate its velocity [Eq. (4.7)]:

r(t) =

∫ t

t0

A(τ)dτ −A(t0)(t− t0). (4.11)

The condition for the electron to return at a later time t1 > t0 to the atomic

core is given by

r(t1) ≡
∫ t1

t0

A(τ)dτ −A(t0)(t1 − t0) = 0. (4.12)

For linear polarization, it simply states that the electron moves along the

polarization axis towards the origin. When it returns, one of the following can

happen (Corkum, 1993 [15]):

• The electron may recombine with the core, emitting its energy plus the

ionization energy as one photon. This process is responsible for the

plateau of high-order harmonic generation.

• The electron may scatter inelastically off the core and dislodge a second

electron. This process is now believed to be the dominant contribution

to the non-sequential double ionization.

• The electron may scatter elastically, so that it can acquire drift energies

much bigger than otherwise.
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The kinetic energy of the electron at the time of return is

Eret =
1

2
[A(t1)− A(t0)]2. (4.13)

Maximizing this energy together with the condition (4.12), one gets for a sta-

tionary field Eret,max = 3.17Up.

With the mechanism of elastic rescattering, where the energy is conserved,

but the velocity can change direction, the drift energy increases. The maximal

energy is obtained when the electron backscatters by 180◦. A rescattering

at different angle gives less gain in energy, as part of the maximal energy of

the returning electron goes into motion transverse to the polarization axis.

Let us assume that at the time of collision with the core the electron has the

speed v(t1 − 0) = A(t1) − A(t0) along the polarization direction and after

v(t1+0) = −[A(t1)−A(t0)]. Then, from (4.7) we obtain the drift energy upon

backscattering:

Ebs =
1

2
[2A(t1)− A(t0)]2 (4.14)

Maximizing (4.14) under the condition (4.12) yields Ebs,max = 10.007Up. It is

important to note that for a given final energy smaller then the cutoff energy

of 10Up, there are two return times t1 within one optical cycle. The two

trajectories can be distinguished by the flight time of the electron.

4.3.2 The quantum-mechanical description

The generalized transition amplitude, which includes one act of rescattering,

is given by [69]:

Mp = −
∫ ∞

−∞

dt

∫ t

−∞

dt′〈ψV l
p (t)|V UV l(t, t′)V |ψ0(t

′)〉 (4.15)

where V denotes the atomic binding potential and UV l(t, t′) is the Volkov time-

evolution operator, describing the evolution of an electron in the presence of

the laser field only. In the limit t→ t′, the rescattering amplitude (4.15) goes

into (4.2). Hence, they must not be added. Close versions of the rescattering

amplitude have been used by several authors [70–74].
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Inserting the expansion of the Volkov propagator in terms of Volkov states,

UV l(t, t′) =

∫
d3k|ψV l

k (t)〉〈ψV l
k (t′)| (4.16)

into Eq. (4.15), the rescattering transition amplitude can be rewritten as

Mp = −
∫ ∞

−∞

dt

∫ t

−∞

dt′
∫
d3keiSp(t,t′,k)VpkVk0, (4.17)

with the corresponding action given by

Sp(t, t
′,k) = −1

2

∫ ∞

t

dτ [p+A(τ)]2 (4.18)

− 1

2

∫ t

t′
dτ [k+A(τ)]2 + Ipt

′.

The expressions are useful if the form factors

Vpk = 〈p+A(t)|V |k+A(t)〉 (4.19)

=
1

(2π)3

∫
d3r exp[−i(p− k) · r]V (r)

and

Vk0 = 〈p+A(t′)|V |0〉 (4.20)

=
1

(2π)3

∫
d3r exp[−i(k+A(t′)) · r]V (r)ψ0(r)

can be calculated in analytical form. This is the case for the Yukawa potential

V (r) = −Z exp(−αr)/r, when we have:

Vpk = − Z

2π2

1

(p− k)2 + α2
(4.21)

and

Vk0 =−
√
2

π

Z5/2

(Z + α)2 + [k+A(t′)]2
(4.22)

=−
√
2

π

Z5/2

(Z + α)2 − 2Ip
.

The Coulomb form factors can be retrieved from Eqs. (4.21) and (4.22) in

the limit α → 0. Since for this case Ip = Z2/2, this leads to the well-known
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divergence of the Coulomb form factor (4.22), when used together with the

saddle point condition (4.23a).

The interpretation of the amplitude (4.17) can now be given in terms of the

form factors. Firstly, the electron tunnels out from the ground state to an

intermediate scattering state with free momentum k [the corresponding ma-

trix element is Vk0 in (4.20)]. Once in the continuum, the electron scatters

under the influence of the bounding potential from the scattering state with

momentum k to the final state with asymptotic momentum p [the matrix ele-

ment is Vpk in (4.19)]. The resulting amplitude is summed over all the possible

intermediate momenta k and integrated along the pulse duration.

Equation (4.17) simplifies by restricting the integration over the rescattering

time t to only one laser cycle together with imposing the conservation of energy

condition. The latter is a consequence of the interference of contributions to the

ionization amplitude coming from different laser cycles, which is characteristic

to the stationary field.

4.3.3 Saddle point method. Quantum orbits

For the rescattering amplitude, the saddle point equations for the integration

variables t, t′ and k in Eq. (4.17) are:

[k+A(t′)]2 = −2Ip (4.23a)

[p+A(t)]2 = [k+A(t)]2 (4.23b)
∫ t

t′
dτ [k+A(τ)] = 0. (4.23c)

Their solution determine the ionization time t′, the rescattering time t, and

the drift momentum k of the electronic orbit between those two times, such

that in the end the electron acquires the asymptotic momentum p. Equations

(4.23a) and (4.23b) are related to the energy conservation at the ionization

time and rescattering time, respectively, and equation (4.23c) determines the

intermediate electron momentum.
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If we let Ip = 0 in Eqs. (4.23), all the variables are real and we obtain the same

equations as in the Simpleman’s model [75]. One very important feature of

the solution for (t′, t) is that they come in pairs. If we denote the ‘travel time’

by τ ≡ t − t′, we find that for a given asymptotic momentum p and for the

nth travel-time interval nTp/2 ≤ τ ≤ (n+ 1)Tp/2 (n = 1, 2, . . .), there are two

solutions having slightly different travel times. A solution (t′, t,k) describes

an electron that starts from the origin of the binding potential at time t′ with

drift momentum k, returns to the atomic core due to the laser field at time t,

rescatters and subsequently moves away in the laser field with drift momentum

p. For increasing electron energy, the two solutions in a pair approach each

other to finally become identical. The energy when this happens is the cutoff

energy of the pair and it represents the maximum kinetic energy an electron

starting with zero velocity can gain classically. (For a more detailed discussion,

see [76].)

Numerically solving the system of non-linear equations (4.23) is not an easy

task as the numerical routines available require a good initial guess which then

they refine to the exact solution. To find this guess, one needs to systematically

search the region of the plane (t′, t) we are interested in. If we allow for Ip

to be non-zero, the times become complex and we have to consider two extra

dimensions, the imaginary parts of both times. This makes our task even more

difficult.

We have been able to find a simple way to identify the real solutions for a

given electron energy p. We look for the return times occurring in the same

cycle ωt ∈ [0, 2π] and for ionization times in all the precedent cycles ωt′ ∈
[−(n + 1)2π,−n2π], n = 0, 1, . . .. The solutions can be visualized graphically

by using the ImplicitPlot command available within Mathematica [77]. In

Fig. 4.5 we plot the two implicit curves given by Eqs. (4.23a) and (4.23b)

with Ip = 0 and for two increasing values of the drift momentum p; the

increasing of the momentum makes the solutions to approach each other, until

they eventually coalesce at the cutoff.
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Figure 4.5: The vertical curves satisfy (4.23a) with Ip = 0 and the horizontal
ones (4.23b) (k 6= p). Therefore, the intersection points give the solutions for
the trajectories corresponding to final drift momentum p = 0 (left panel) and
p2/2 = 5.8Up (right panel, with p in the polarization direction).

It is obvious from Eq. (4.23a) that as long as Ip 6= 0, the times t, t′ and the

momentum k are complex. Physically, the fact that t′ is complex means that

the ionization takes place via a tunneling process. Regardless of the electron

energy, the orbits are now complex. These are often called quantum orbits or

quantum trajectories. Unlike their real counterparts, after the cutoff they do

not disappear, but their real parts remain essentially frozen and the imaginary

parts quickly increase. Two typical pairs of quantum orbits are displayed in

Fig. 4.6.

Both ionization and rescattering times depend on the ionization energy and

the photo-electron momentum p, but not on the shape of the potential V (r),

which enters the transition amplitude only by the form factors (4.21) and

(4.22). It is to be expected that for high energy electrons, their spectrum

would not be much influenced by the binding potential. This was confirmed

by the numerical experiments within the SFA.

Within the saddle-point approximation, the amplitude (4.17) can be approxi-
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Figure 4.6: Saddle points for scattering along the polarization axis for a
Keldysh parameter γ = 1.11 and p = 0. The labels refer to the fact that the
pairs (1,2) and (9,10) are ordered as a function of the increasing travel time
t−t′. The circles correspond to p = 0 and the trajectories end at p2/2 = 10Up.

mated by:

Mp ≈
∑

s

As exp(iSs) (4.24a)

Ss = Sp(ts, t
′
s) (4.24b)

As = (2πi)5/2
Vpk(ts,t′s)Vk(ts,t′s)0√

detS ′′
p(t, t

′)|s
, (4.24c)

where the index s runs over the relevant saddle points and detS ′′
p(t, t

′)|s is the
five-dimensional matrix of the second derivative of the action (4.18) evaluated

at the solutions of the saddle point equations (4.23). To avoid including the

contribution of the direct electrons, we choose to sum only those pairs of

solutions for which the travel time is bigger than half of the laser period. This

way, we select only the rescattering trajectories.

The saddle point method allows one to calculate the rescattering amplitude,
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avoiding the five dimensional integral present in its definition, which is a con-

siderable simplification. This comes at the expense of solving a system of

non-linear, complex equations and dealing with the so-called Stokes transition

phenomenon encountered when applying the saddle point method. The Stokes

transition is described in the following.

4.3.4 The saddle point uniform approximation

Upon approach to the classical cutoff, the two solutions that make up a pair

come very close to each other. As an example, this is illustrated in Fig. 4.6. On

the other hand, the saddle point approximation (4.23) treats different saddles

as independent. As mentioned in [65] and the references therein, this leads to

a qualitative breakdown of the standard saddle point approximation near the

cutoff of any pair of solutions, mainly for two reasons: (i) This approxima-

tion can overestimate the saddle contribution to the transition amplitude by

several orders of magnitude (and can actually diverge if both saddle coalesce).

(ii) The usual procedure to avoid the problems described in (i) is to drop,

after the cutoff, the spurious saddle (the saddle whose contribution increases

exponentially after the cutoff – this is the Stokes phenomenon) by requiring

a minimal discontinuity of the transition amplitude. Still, a discontinuity re-

mains visible in the spectrum and it can still affect quantitatively the results

in an undesirable manner.

The remedy offered by the asymptotic expansion theory comes in the form of

the uniform approximation. To improve the expansion of the action function

in the neighborhood of the two saddles in the pair, one needs to include higher

orders in the coordinate dependence and to take the resulting integrals as the

collective contribution of both saddles. The final expression can be cast in

a simple form, which uses the same information as the simple saddle point

method and this has been done in [65]. The uniform approximation for the

case of two close saddles i and j using the Airy function and its derivative
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reads:

Mi+j = (6πS−)
1/2 exp(iS+ + iπ/4)×

[
A−√
z
Ai(−z) + i

A+

z
Ai′(−z)

]
, (4.25)

where z = (3S−/2)
2/3 and the other quantities are:

2S± = Si ± Sj

2A± = Ai ± iAj. (4.26)

The subscript i denotes the first saddle in the ordered pair, whose contribution

does not increase after the Stokes transition. The uniform contribution given

in (4.25) appears as given in [78]. Another, equivalent version, using the Bessel

functions is given in [65]. It can be shown that for |S−| large (i.e., the saddle

points can be treated as independent), (4.25) reduces to (4.24). Also, due

to the asymptotic properties of the Airy function for large arguments, the

Stokes transition at the classical cutoff is automatically built into the uniform

approximation. Notably, the uniform approximation is of the same simplicity

as the usual saddle point formula.

By using the uniform approximation, we calculate here the rescattering am-

plitude for the case of a zero-range potential (see [65], Section VI). We choose

the parameters such that we have Up/ω = 3.58, ω = 0.05695 (800 nm) and a

ground-state energy of E0 = −0.5 a.u. The calculation is done for emission

along the polarization axis.

The output of the calculation is shown in Fig. 4.7, where we can compare

the relative magnitudes of the direct ionization and rescattering term with

respect to the full amplitude; the difference can be as much as four orders

of magnitude. Also, it is important to note that there is an energy interval

(between 5Up and 6Up) where the direct contribution is of the same order of

magnitude as the rescattering, so that interference effects can occur.

One other aspect is the cutoff region in the rescattering spectrum, which is

around the value of 10Up in electron drift energy, after which the magnitude
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decreases exponentially. This comes as a confirmation of the intuitive results

obtained in the classical model of the rescattering discussed in Subsection 4.3.1.

Had we used the usual saddle point method, due to the Stokes transition not

being taken into account properly, cusps would have appeared in the spectrum,

with up to an order of height in magnitude, thus significantly altering the

spectrum. For more details see Fig. 2(a) in [65], where the authors also compare

the saddle point results to the exact results and find very good agreement.

0 2 4 6 8 10 12 14
Electron energy (Up)

10
−10

10
−8

10
−6

10
−4

10
−2

|M
p
|2

direct & rescattering
direct
rescattering

Figure 4.7: Direct and rescattering amplitudes for a zero-range binding poten-
tial with Up/ω = 3.58, at 800 nm and a ground state energy Ip = 0.5. The
spectrum is in the laser polarization direction and the pulse has a sin2 enve-
lope with zero absolute phase. The circles correspond to the ATI peaks. For
the rescattering plateau, only the first five pairs of saddle points have been
included.

To asses the importance of each pair of trajectories, we plotted in Fig. 4.8 the

squared amplitude for the first five pairs. The (1,2) pair’s contribution comes

from the saddles whose trajectories are depicted in Fig. 4.6. This electron

trajectories described by this pair have the smallest travel time. The cutoff

for this pair is about 10Up and this is the only pair contributing for the end
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of the high energy plateau. The other pairs have smaller cutoffs and they

contribute to different energy intervals with a decreasing magnitude. Note

that the interference pattern for each pair has a different characteristic scale

and that in the total contribution this interference effects average over, giving

a much smoother interference pattern.

The last pair considered here is (9,10) and its saddles trajectories are shown

in Fig. 4.6. Because of the longer travel time for this pair, the contribution to

the rescattering plateau is the smallest compared to the other pairs.
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Figure 4.8: Scattering contributions for the first five saddle point pairs. The
physical parameters are the same as in Fig. 4.7. The contributions have been
displaced for visual convenience. The red curve shows the contribution of all
the five pairs.

The Stokes phenomenon is well represented for the (1,2) pair if one looks at the

high energy part, around 10Up. If before the cutoff there is still an interference

pattern given by the two saddles contributing together to the pair amplitude,

after the cutoff one of the saddles has to be dropped, and the contribution

shows a smooth decay, as it originates now from only one saddle.
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4.3.5 Direct- and rescattered-electrons interference

For linear polarization, in the tunneling regime there is a short energy inter-

val where direct and rescattered electrons are emitted with comparable yields

and hence can interfere with significant contrast. For elliptical polarization,

the yield of rescattered electrons decreases faster while the yield of the direct

electrons is less dependent on ellipticity. Consequently, the energy range for

interfering can be broader. For more details, see the review of Kopold and

Becker [79]. The interferences have been observed experimentally [80].

4.4 Conclusions

This chapter gives a brief introduction to the theoretical treatment of Above

Threshold Ionization (ATI) within the Strong Field Approximation (SFA)

model. The relevant approaches along these lines encountered in the liter-

ature are presented and illustrated with specific study cases.

We focus separately on describing the direct ionization both quantum-mechanically

and classically. The classical description relies on the Simpleman’s model and

its success in developing an intuitive physical picture is underlined and sus-

tained with experimental proofs. Especially, it predicts the cutoff for the

kinetic energy of an ejected electron. The quantum description belongs to the

widely used Keldysh-type expressions. Here, we show a particular version of

it and a more general discussion is presented in the next chapter. Although

we analyze the case of a stationary laser field, many features extend also to

finite pulses, like the interference patters due to beating among the different

quantum trajectories.

The second part of the present review concerns the phenomenon of rescattering

of the electron off the atomic core. The quantum treatment is an extension

of the Keldysh-like amplitude by taking into account one more interaction of

the ejected electron with the core. This is shown to explain the rescattering
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plateau in the ejected electron energy spectra, seen in experiments.

The rescattering amplitude can be approximated by using the saddle point

method. This leads formally to a description in terms of complex quantum

orbits, much similar to Feynman’s path integral. It seems however that there

is a lot of physical reality associated with these trajectories. Their real parts

are almost identical to the real classical trajectories of the Simpleman’s model.

The predictive power of this model is remarkable. For example, it has been

demonstrated in the case of two-color harmonic generation by comparing the

results from an integration of time-dependent Schrödinger equation with the

Simpleman’s model [81]. The return times predicted by the Simpleman’s model

exactly reflects in the temporal structure of the harmonic spectrum. The same

kind of agreement holds also in the case of ATI in the way that one can identify

groups of electron trajectories contributing to the ionization spectrum in a

certain energy range.

Another advantage of the quantum orbits approach is that it allows for quick

quantitative results, unlike solving the Schrödinger equation numerically, which

for high intensities can reach today’s computational limits. To be able to run

quick simulations means that one can study a broad domain of intensities

or laser frequencies and draw conclusions for further research or analysis of

experiments.

The biggest advantage of the quantum orbits description is that it allows us

to describe an otherwise difficult phenomenon in terms of a few electron tra-

jectories. The interferences between these trajectories are responsible for the

interference patterns in the ATI spectra, observed experimentally. An im-

portant conclusion is that manipulation of quantum orbits opens the gate to

control spectral features.



Chapter 5

Strong Field Approximation
(SFA)

5.1 Outline

Whereas the previous chapter presents the Keldysh theory [62–64] as the back-

bone of a compact theoretical description of ionization giving some insights of

the process. In this chapter, we focus more on the theoretical aspects of this

approximation, with the purpose to set the basis for the work on ionization in

short pulses presented in Chapter 6.

The usual Keldysh amplitude satisfactorily accounts for a multitude of features

of the electron spectra of ATI for low electron energies. Within the strong field

approximation (SFA), good agreement has been found with experimental data

of strong field ionization of helium [82, 83]. This data did not extend to suffi-

ciently high electron energies to display the rescattering plateau, nor did the

up to date theory include the rescattering. The new experimental techniques

allowed for a dramatic improvement of the electron counting statistics and,

as a result, measurements were able to detect ejected electrons with energies

exceeding 10Up (the classical cutoff of the electron energy spectrum owing to

rescattering [75]).

The rescattering has been measured for helium at a laser intensity around 1015

78
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W/cm2 by Walker et al. [84]. The data showed on a logarithmic scale the

presence of an extended plateau at high electron energies, not described by

the initial Keldysh theory. The next step in modifying the Keldysh theory to

include the rescattering was made by Lohr et al. [69], whose model explained

the rescattering plateau and was found to be in good agreement with the

measured experimental data.

In the next sections, expressions for the ionization amplitude encountered in

the literature are reviewed and their theoretical justification is highlighted.

As emphasized in the previous chapter, the literature mainly discusses the

case of a stationary laser field. However, the case of the short pulses requires

the consideration of other aspects of the calculation, such as boundary terms

(BT), directly linked to the way the turn on and off of the laser electric field

is modelled by the theory (see Appendix E.2.2). When they are not properly

treated, the BT are shown to induce spurious features in the description of

ionization.

To summarize, Section 5.2 extends the Keldysh theory by including the re-

scattering term, following the work of Lohr et al. in [69]. In Section 5.3 we

present the Keldysh expression in the context of short laser pulses by intro-

ducing the boundary terms. The importance of their correct treatment in

calculations is illustrated with specific examples and the first order BT are

calculated. We propose here a simplification of the Keldysh ionization ampli-

tude, based on the properties of the Volkov solutions for which we find a unified

way to write them for both the velocity (V) and length (L) gauge [Appendix

A, Eq. (A.5)]. The general expressions of the Keldysh ionization amplitude are

then particularized for the velocity and length gauge. An important remark on

the proper definition of the vector potential A(t) is made in Subsection 5.3.2.

The improved version of the Keldysh amplitude, given by Krainov [85], is

examined in Subsection 5.3.3 and its detailed application to the stationary field

presented in Section 5.4. These expressions are further calculated analytically

in Section 5.5 (for the velocity gauge form) and in Section 5.6 (for the length
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form). Although the techniques are the ones commonly used in the literature

for such integrals, we give here their complete form, including the correct

pre-factors of the integrals; the latter are often skipped by many authors,

on the basis that the main dependence of the ionization integrals lies in the

exponential dependence and the pre-factors are important only for the actual

numerical calculation of the rates. Some of the methods used in other context

(e.g., for harmonic generation, see Appendix A in [86]) are adapted here to

calculate analytically the ionization amplitudes, where possible [Eq. (5.42)].

Finally, we present a new way to analyze the validity domain for a modified

version of the velocity gauge (V) amplitude, used by A Becker et al. [87] to

successfully reproduce experimental data.

In the last section, we compare the predictions for the ionization rate for all

the amplitudes discussed previously and show their agreement relative to the

cycle averaged exact static rates. The relevance of the Keldysh adiabaticity

parameter γ is illustrated.

5.2 The direct and re-scattering ionization am-

plitudes

We proceed following the familiar Keldysh approach. The matrix element for

ionization from the ground state |ψ0(t)〉 of an atom with binding potential V

into a scattering state |ψp(t)〉, with asymptotic momentum p is:

Mp = lim
t→∞, t′→−∞

〈ψp(t)|U(t, t′)|ψ0(t
′)〉, (5.1)

where the limit process has been extended to ±∞, keeping in mind the case

of a stationary laser pulse. For the temporally finite pulses, the limit process

is unnecessary, and the values for t′ and t correspond to the beginning and the

end of the pulse.

The operator U(t, t′) is the time-evolution operator of the atom in the presence

of the external laser field. It satisfies an integral equation which yields an



Chapter 5. Strong Field Approximation (SFA) 81

expansion with respect to the interaction hamiltonian Hi(t) with the external

field:

U(t, t′) = Ua(t, t
′)− i

∫ t

t′
dτ U(t, τ)Hi(τ)Ua(τ, t

′). (5.2)

The interaction hamiltonian for an electron with an external field has different

forms, depending on the gauge one uses. For the length gauge, it reads:

Hi(t) = E(t) · r, (length gauge)

and for the velocity gauge:

Hi(t) = −i∇ ·A(t) +
A2(t)

2
(velocity gauge).

The Ua(t, t
′) term in (5.2) is the time-evolution operator for an electron inter-

acting with the nucleus, with the hamiltonian:

Ha = −
∇

2

2
+ V ≡ H0 + V.

(We denote by H0 the hamiltonian of a free particle.)

Using the integral equation for U(t, t′), one gets for the ionization matrix

element:

Mp = lim
t→∞, t′→−∞

[
〈ψp(t)|ψ0(t)〉

−i
∫ t

t′
dτ〈ψp(t)|U(t, τ)Hi(τ)|ψ0(τ)〉

]
(5.3)

and due to the orthogonality of the scattering state and the ground state, the

matrix element becomes:

Mp = −i lim
t→∞, t′→−∞

∫ t

t′
dτ〈ψp(t)|U(t, τ)Hi(τ)|ψ0(τ)〉. (5.4)

In addition, we have another integral equation for U(t, t′), written as an ex-

pansion in terms of the binding potential V :

U(t, t′) = Uf (t, t
′)− i

∫ t

t′
dτ Uf (t, τ)V U(τ, t

′). (5.5)

The Uf (t, t
′) operator is the time-evolution operator for a free electron in an

external field, also referred to as the Volkov operator. It can be expanded
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over the Volkov wavefunctions base, as in Eq. (4.16), and its corresponding

hamiltonian is

Hf (t) = H0 +Hi(t).

So far, no approximation has been made. In the strong field picture, one uses

the expansion (5.5) with the binding potential as the expansion parameter.

Substituting the first order term for U(t, t′) from (5.5) into (5.4) and replacing

the exact scattering state |ψp(t)〉 with the Volkov plane wave |ψV
p (t)〉, gives

the usual Keldysh amplitude for direct ionization:

M (0)
p = −i lim

t→∞, t′→−∞

∫ t

t′
dτ〈ψV

p (τ)|Hi(τ)|ψ0(τ)〉. (5.6)

Further manipulations using the relation that Hi(t) = Hf (t)−Ha + V yield:

M (0)
p =− i lim

t→∞, t′→−∞

∫ t

t′
dτ〈ψV

p (τ)|Hf (τ)−Ha + V |ψ0(τ)〉

=− i lim
t→∞, t′→−∞

∫ t

t′
dτ〈ψV

p (τ)| − i
←−
∂

∂τ
+ i

−→
∂

∂τ
+ V |ψ0(τ)〉, (5.7)

which, up to a boundary term, gives the equivalent of (5.6):

M (0)
p = −i lim

t→∞, t′→−∞

∫ t

t′
dτ〈ψV

p (τ)|V |ψ0(τ)〉. (5.8)

This particular form is most suited for calculations involving short range po-

tentials, because the potential V explicitly appears in the matrix element. A

thorough investigation of this type of expansion, involving the binding poten-

tial, is done in [88].

Using the integral equation (5.5), with U(t, t′) in the right term replaced by

the free field time-evolution operator Uf (t, t
′), the next order correction to the

ionization matrix element in terms of the binding potential V is:

M (1)
p = − lim

t→∞, t′→−∞

∫ t

t′
dτ

∫ t

τ

dτ1〈ψp(τ1)|V Uf (τ1, τ)Hi(τ)|ψ0(τ)〉 (5.9)

The ionization matrix element reads now

Mp ≈M (0)
p +M (1)

p .
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In what follows, we drop the limit process in (5.9). The limit process applies

only to a stationary laser field for which, along with the conservation of energy

condition, the rescattering time t can be restricted to the interval [0, Tp]. Here,

Tp is the field period. For a finite pulse, we take the integration over t in the

interval [0, Tp] and for the ionization time t′ ∈ [0, t]; Tp is the pulse temporal

duration. (We assume that the pulse lasts from the time ti = 0 to a time

tf = Tp, such that the magnetic vector potential A(t) and the electric field

E(t) are both negligible for t ≤ ti and t ≥ Tp .)

5.3 Direct ionization amplitude

From Eq. (5.6) and using the explicit form of the Volkov solution (A.4), we

obtain after an integration by parts:

M (0)
p = −〈ψV

p (τ)|ψ0(τ)〉|Tp

0 + i

∫ Tp

0

dτ〈ψV
p (τ)|Ip +

[ΠV
p (τ)]

2

2
|ψ0(τ)〉. (5.10)

The ΠV
p (t) is the momentum eigenvalue of the Volkov solution

〈r|ψV
p (t)〉 = (2π)−3/2 exp

{
iΠV

p (t) · r−
i

2

∫ t

[p+A(τ)]2dτ

}
.

For a hydrogenic ground state |ψ0(t)〉 with ionization energy Ip, we have for

the matrix element:

〈ψV
p (t)|ψ0(t)〉 =

(2Ip)
5/4

π
√
2

exp[iS(t)]

[ΠV
p (t)

2/2 + Ip]2
, (5.11)

with S(t) the modified classical action (4.5), depending also on the asymptotic

momentum p present in the definition of ΠV
p . Finally, we write the direct

ionization amplitude as:

M (0)
p = i

(2Ip)
5/4

π
√
2

(
i

exp[iS(τ)]

[ΠV
p (τ)

2/2 + Ip]2

∣∣∣∣
Tp

0

+

∫ Tp

0

dτ
exp[iS(τ)]

ΠV
p (τ)

2/2 + Ip

)
(5.12)

and by extracting the first boundary contribution from the integral [see (E.2.2)],

we can write the first order boundary term of the direct ionization amplitude
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as:

b(0) =
(2Ip)

5/4

π
√
2

exp[iS(τ)]

ΠV
p (τ)

2/2 + Ip

(
1

dS(τ)/dτ
− 1

ΠV
p (τ)

2/2 + Ip

) ∣∣∣∣
Tp

0

(5.13)

or, by replacing the action’s derivative:

b(0) =
(2Ip)

5/4

π
√
2

exp[iS(τ)]

ΠV
p (τ)

2/2 + Ip

(
1

[p+A(τ)]2/2 + Ip
− 1

ΠV
p (τ)

2/2 + Ip

) ∣∣∣∣
Tp

0

.

(5.14)

The importance of the boundary terms is discussed in (E.2.2), and it will be

further detailed for specific gauges in the following sections.

5.3.1 The length gauge direct amplitude

To analyze the direct ionization amplitude in the length gauge, we replace

in (5.12) (the integral term only, we leave the boundary term for a separate

discussion) the Volkov momentum eigenvalue ΠV
p (t) [see Eq. (A.5) for the

definition of the Volkov momentum] with its expression in the length gauge

and obtain:

M (0)
p = i

(2Ip)
5/4

π
√
2

∫ Tp

0

dτ
exp[iS(τ)]

[p+A(τ)]2/2 + Ip
. (5.15)

A detailed analysis based on the saddle point method and the physical inter-

pretation of the asymptotic results are given in Appendix E [see Eq. (E.1)].

From now on, the form of the ionization amplitude (5.15) is going to be referred

to as the length gauge (L) form.

For short pulses, the boundary terms can no longer be ignored, as is possible

for the case of the stationary field due to the conservation of electron energy

condition. The first order boundary term (5.14) cancels in the length gauge, so

we are left with next order boundary terms. These can be shown to depend on

the electric field and its derivatives at the beginning and the end of the pulse.

The condition for the amplitude to be well approximated by the asymptotic

contribution of the saddle points only is to have the boundary contribution

much smaller. This requires smooth turn-on and off of the electric field. If this

condition is not satisfied, one needs to extract the boundary terms explicitly
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from the numerical value of the integral. Avoiding the effects of the bound-

ary terms has the physical content that the ionization amplitude cannot be

influenced by the turn-on and off of the field. In reality, the turn-on and off is

done very smoothly, unlike it is modelled by the theory used in the Keldysh

approach.

5.3.2 The velocity gauge direct amplitude

Using the same path as for the length gauge, we can write the direct ionization

amplitude [Eq. (5.12) – the integral term only] in the velocity gauge (less the

boundary terms) by using the Volkov eigenvalue momentum given in Eq. (A.5):

M (0)
p = i

(2Ip)
5/4

π
√
2

1

p2/2 + Ip

∫ Tp

0

exp[iS(τ)]dτ. (5.16)

We are going to refer to this form as the velocity gauge form (V), discussed in

detail from the asymptotic point of view in Appendix E [see Eq. (E.2)]. The

first order boundary term reads:

b(0) =
(2Ip)

5/4

π
√
2

exp[iS(t)]

p2/2 + Ip

(
1

[p+A(t)]2/2 + Ip
− 1

p2/2 + Ip

) ∣∣∣∣
Tp

0

. (5.17)

We note that the boundary term contribution decreases with increasing elec-

tron energy and the condition for it to cancel is A(0) = A(Tp) ≡ 0. In this

way, we are left with next order contributions which are negligible compared

to the saddle point contribution provided the electric field turns on and off

smoothly at the beginning and the end of the pulse. The origin of the equality

A(0) = A(Tp) can be related to the condition that the electric field should

have no dc component:

∫ Tp

0

E(τ)dτ = −[A(Tp)− A(0)] = 0.

The other condition, that the vector potential is zero at the pulse temporal

boundaries, simplifies the equations and gives some numerical advantages by

cancelling the first order boundary term. This is the convention we use in

our calculations. If the vector potential is nonzero at the end of the pulse, in
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order for the asymptotic momentum p used in the (L) and (V) form of the

ionization amplitude to really describe an electron with final momentum p at

the detector, one has to make the substitution p→ p−A(Tp) (see Milošević

et al. in [34]). This particular choice would make the first order BT term to

be non-zero, as opposite to the more convenient choice A(Tp) = 0.

5.3.3 The Krainov Coulomb-corrected ionization ampli-
tude

The Coulomb correction is calculated (see Krainov, [85]) in the framework

of quasiclassical perturbation theory with respect to the Coulomb potential

V (r) = −Z/r (Z is the electric charge of the atomic or ionic core) by including

an extra factor in the Volkov wave function:

I = exp(−i
∫
V dt). (5.18)

From the classical equations of motion for an electron in an external field, we

have:

dt = dr/p = (Z2 − 2E0r)
−1/2dr,

with p the electron momentum, E0 the amplitude of the electric field ampli-

tude and the binding energy Ip = −Z2/2. The centrifugal energy, as well as

the contribution of the Coulomb potential energy to the electron momentum

p, are neglected. The upper limit of integration over r is the classical turning

point where p(r0) = 0. The lower limit of integration is the arbitrary radial

coordinate, large enough compared to the radius of the atomic system consid-

ered, and where the external electromagnetic field is negligible with respect to

the strength of the Coulomb interaction. This way, an asymptotic expression

for the atomic wave function of the initial unperturbed state can be used.

The approach of Krainov is based on the idea of considering the Coulomb

potential as a small perturbation and the motion of the electron in the sub-

barrier region governed by the external field only. The correction is position-
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dependent and is singular at the origin; in the amplitude (5.20), this singularity

leads to an analytical result after integrating over the electron’s coordinates.

In a slightly different form, the same technique was used by Perelomov and

Popov in [89], whereby the authors give a correction independent of electron’s

position. They solve the problem of singularity by employing a matching

procedure between the wavefunction close to the end of the barrier, where the

semiclassical considerations apply, and the wavefunction close to the origin.

Near the origin, because the external field is negligible, the wavefunction can

be well approximated by that of a free atom.

After calculating the integral in (5.18), the correction reads:

I =
2Z2

E0r
. (5.19)

The result (5.19) is the same for linear and circular polarization of the elec-

tromagnetic field, and it is proportional to the Coulomb potential V (r). This

factor multiplies the Volkov wavefunction in the expressions for the direct ion-

ization. We now obtain from (5.6):

M (0)
p = −i2

√
2Ip

E0

∫ Tp

0

dτ〈ψV
p (τ)|Hi(τ)V |ψ0(τ)〉. (5.20)

The boundary terms are not included, in view of the previous discussions.

Making use of the explicit form of the Volkov solution (Appendix A), we get:

M (0)
p = −i2

√
2Ip

E0

∫ Tp

0

dτ〈ψV
p (τ)|ψ0(τ)〉[ΠV

p (τ)
2/2 + Ip]

2, (5.21)

and the final form:

M (0)
p = −i

√
2

πE0

(2Ip)
7/4

∫ Tp

0

dτ exp[iS(τ)]. (5.22)

This ionization amplitude, which includes the Coulomb correction, is going

to be referred from now on as the Krainov (K) form, and the integral in its

definition is the same as the integral (E.2), thoroughly analyzed in Appendix

E.
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One remarkable feature of Eq. (5.22) is that it does not depend on the Volkov

momentum eigenvalue (A.5), and therefore is the same in both the length

gauge and the velocity gauge, considered here. This is consistent with the

general property that the ionization matrix elements must be invariant under

gauge transformations.

In [85], Krainov shows that for a stationary field, the tunneling limit (γ → 0,

where γ is the Keldysh parameter) for the ionization rate based on Eq. (5.22),

in the case of a stationary laser field, goes to the expressions of the ADK

tunneling ionization rates [90], both for linear and circular polarization (note

that the correct expressions of ADK tunneling rates can be found in Ref. [91],

where all misprints from the original paper were corrected). The calculations

are presented in detail in Appendix (D), correcting some misprints from the

original article [85].

5.4 The case of the stationary field

In this section, we present the result of applying the (K) expression (5.22)

for direct ionization, for a stationary field, treating explicitly the pre-factors,

which are sometimes not present in the literature.

5.4.1 Linearly polarized radiation

For this, we take the external electric field of the form E0 cosωt, whereas the

magnetic vector potential is equal to A(t) = −E0 sinωt/ω. Then Eq. (4.5)

reads

S(t) = (p2/2 + E2
0/4ω

2 + Ip)t+ (p‖E0/ω
2) cos(ωt)− (E2

0/8ω
3) sin(2ωt).

Here, the quantity p‖ is the electron’s momentum projection along the direction

of the electric field E0. It can be easily seen that:

S(t+ k
2π

ω
) = S(t) +

2π

ω
k(p2/2 + E2

0/4ω
2 + Ip) ≡ S(t) + kS0, (5.23)
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which shows that the action is a periodical function, up to a term that increases

linearly with time; after k cycles, the value of the action is the same as in the

first cycle plus kS0, with S0 is defined in (5.23).

TakingM
(0)
p as the contribution to the transition amplitude of only one period

of the driving field (5.22), the transition amplitude after N periods can be

written as [see Eq. (5.23)] :

M (0)
p (N) =M (0)

p {1 + exp(iS0) + exp(2iS0) + . . .+ exp[i(N − 1)S0]}

=M (0)
p [1− exp(NiS0)]/[1− exp(iS0)].

(5.24)

Hence, the squared transition amplitude after N periods is given by:

WN =
∣∣M (0)

p

∣∣2
[
sin(NS0/2)

sin(S0/2)

]2
(5.25)

When N ≫ 1, the modulating factor in (5.25) looks like in Fig. 5.1. The
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Figure 5.1: Graph of the modulating factor

∣∣∣∣
sin(Nx/2)
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∣∣∣∣, with N = 20

quantity WN is maximal only for S0 = 2kπ, with k an arbitrary integer, and

goes quickly to zero otherwise. Hence, to avoid destructive interference, we

must have S0 = 2kπ, which is the same as the condition of energy conservation

for the ejected electron. In this way, the conservation of energy arises because
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for any other value of the electron energy not satisfying it, we would have

destructive interference coming from the summed contributions of all laser

cycles. With the condition satisfied, we rewrite one of the ratios of the two

‘sin’ functions as equal to N = t/(2π/ω) (N field periods) and use for the

second identical ratio that:

δ(x) =
1

2π
lim

N→∞

sin(Nx/2)

sin(x/2)
.

From Eq. (5.25) we get the density of probability for ionization:

WN = |M (0)
p |2(ω2t/2π) δ(p2/2 + E2

0/4ω
2 + Ip −Nω). (5.26)

The Dirac δ-function ensures the energy-conservation for the absorbtion of N

photons. Dividing by time t, multiplying by the density of the final states

d3p and integrating over the electron momentum p, we obtain the general

expression for the energy and angular distribution of the electrons ejected by

the ionization of the linearly polarized electromagnetic field after absorbtion

of N photons:
dwN

dΩp̂

=
Z7ω2

E2
0π

3
pN

∣∣∣
∫ 2π/ω

0

dt exp[iS(t)]
∣∣∣
2

. (5.27)

Thus, we have obtained the general formula for the ionization rate of a linearly

polarized field for arbitrary values of the field strength E0, in the Krainov

Coulomb corrected formulation [Eq. (5.22)]; it takes into account the Coulomb

correction in the tunneling stage.

5.4.2 Circularly polarized radiation

The difference from the case of linear polarization is the different expression

of the action due to changing the expression of the vector potential:

A(t) =
E0

ω
(êx cos ωt+ êy sin ωt),

with êx and êy the unit vectors in the polarization plane of the electromagnetic

field. Following Krainov [85], we take the momentum p at an angle θ with the
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polarization axis Oz and its projection onto the polarization plane coincides

with axis Ox.

From Eq. (4.5) we obtain:

S =

(
p2

2
+

E2
0

2ω2
+ Ip

)
t+

pF sin θ

ω2
sinωt

Further, with N0 the minimum number of photons required to allow a tran-

sition to continuum N0 = [(E2
0/2ω

2 + Ip)/ω] + 1, the action exponentiated

reads:

exp[iS(t)] =
N=∞∑

N=N0

JN

(
pF sin θ

ω2

)
exp(ifN t), (5.28)

where fN = (p2 − p2N)/2 and pN =
√

2(Nω − E0/2ω2 − Ip). For the integral,

we have
∫ t

−∞

dt exp[iS(t)] =
∑

N

JN

(
pF sin θ

ω2

)∫ t

−∞

dt′ e(ifN+η)t′ =

=
∑

N

JN

(
pF sin θ

ω2

)
e(ifN+η)t

ifN + η
.

(5.29)

Here, η → 0 is introduced to ensure convergence for integration in (5.29). The

modulus squared differentiated with respect to time, as needed in transition

amplitude per unit time, reads:

d

dt

∣∣∣∣
∫ t

−∞

dt exp[iS(t)]

∣∣∣∣
2

=
∑

N

J2
N

(
pF sin θ

ω2

)
2 η

f 2
N + η2

e2ηt + osc. terms (5.30)

Averaged over one period of the field, the oscillating terms give no contribution,

and using

lim
η→0

2η

x2 + η2
= 2π δ(x)

we can write:

d

dt

∣∣∣∣
∫ t

−∞

dt exp[iS(t)]

∣∣∣∣
2

= 2π
∑

N

J2
N

(
pF sin θ

ω2

)
δ

(
p2 − p2N

2

)
. (5.31)

Now we have all we need to derive the ionization probability per unit time

averaged over one cycle from the time derivative of (5.22) and from (5.31):

d

dt
|M (0)

p |2 =
4Z7

πE2
0

∑

N≥N0

J2
N

(
pF sin θ

ω2

)
δ
(
p− pN

)

pN
.
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Multiplying with the density of the electron states d3p, we get for the ionization

rate in a fixed solid angle for a circularly polarized field:

dw

dΩp̂

=
4Z7

πE2
0

∑

N≥N0

pN J
2
N

(
pNE0 sin θ

ω2

)
. (5.32)

Going into the tunneling regime, one needs to calculate the limit of the sum in

(5.32) over all the multiphoton orders . This is presented in detail in Appendix

(D.2).

5.5 Analytic results for the direct ionization

(velocity gauge)

This section concerns the analytical forms of the Keldysh direct ionization

amplitude in the length gauge [(L) form, Eq. (5.15)] and velocity gauge [(V)

form, Eq. (5.16)]. Although we discuss here the case of a stationary field, most

of the methods presented can be applied to more general fields.

5.5.1 Elliptic polarization

Some calculations in this section follow the ones appearing in [87], with minor

corrections [such as missing the sgn(p1) factor in Eq. (5.33)]. We consider,

as in [87], a general elliptically polarized laser field described by the vector

potential in the dipole approximation:

A(t) = A0[ǫ̂1 cos(ξ/2) cos(ωt)− ǫ̂2 sin(ξ/2) sin(ωt)],

where the propagation direction is chosen perpendicular to the unit polariza-

tion vectors and the ellipticity of the field ξ is in the interval [0,±π/2]. The

signs +/− correspond to right/left helicity.



Chapter 5. Strong Field Approximation (SFA) 93

The action [Eq. (4.5)] and its derivative read, after some manipulations :

dS(t)

dt
=

(
p2

2
+ Up + Ip

)
+ Up cos ξ cos(2ωt)+ (5.33)

+sgn(p1)A0

√(
p1 cos

ξ

2

)2

+

(
p2 sin

ξ

2

)2

cos(ωt+ χ),

where Up = A2
0/4 is the ponderomotive energy, tanχ = (p2/p1) tan(ξ/2) and

sgn(p1) is the sign of p1.

The action S(t) can be easily obtained by integrating its derivative given by

(5.33):

S(t) =

(
p2

2
+ Up + Ip

)
t+

Up

2ω
cos ξ sin(2ωt) +

+ sgn(p1)
A0

ω

√(
p1 cos

ξ

2

)2

+

(
p2 sin

ξ

2

)2

sin(ωt+ χ). (5.34)

To simplify the expressions, we use the conservation of energy condition:

p2N
2

+ Up + Ip = Nω, N > N0 (5.35)

(N0 is the threshold number of photons) and the Jacobi-Anger expansion to

get:

exp[iSN(t)] =
∞∑

n=−∞

∞∑

k=−∞

Jn(a)Jk(b)e
i(2n+k+N)ωteikχ, (5.36)

with a =
Up

2ω
cos(ξ) , b = sgn(p1)A0/ω

√(
p1 cos ξ/2

)2

+

(
p2 sin ξ/2

)2

and

Jn(x) the Bessel function of the first kind.

The easiest analytical result for the transition amplitude in the case of ab-

sorption of N photons can be written in the velocity gauge [see Eq. (5.16)],

by using the expansion from (5.36), in which case its integral over one cycle is

zero unless 2n+ k+N = 0, so the double infinite sum is replaced by one sum:

M (0)
p =

z5/2

π
√
2

(−1)N
p2N/2 + Ip

2π

ω

∞∑

n=−∞

Jn(a)J2n+N(b)e
−i(2n+N)χ (velocity gauge.)

(5.37)

In the next two subsections, we particularize Eq. (5.37) for linear and circular

polarization.
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5.5.2 Linear polarization

Taking ξ = 0 (the laser field is linearly polarized along the Ox1 axis) in (5.37),

we have for the absorbtion of N photons:

M (0)
p =

z5/2

π
√
2

(−1)N
p2N/2 + Ip

2π

ω

∞∑

n=−∞

Jn
(Up

2ω

)
J2n+N

(A0p1
ω

)
. (5.38)

5.5.3 Circular polarization

With the choice ξ = −π/2 in A(t), for the circularly left polarized field, the

amplitude for direct ionization reads:

M (0)
p =

z5/2

π
√
2

(−1)N
p2N/2 + Ip

2π

ω
JN

(
A0p⊥sign(p1)

ω
√
2

)
e−iNχ (5.39)

(p⊥ ≡
√
p21 + p22 is the momentum perpendicular to the laser propagation

direction and tanχ = −p2/p1). The expression (5.39) differs from the case of

linear polarization (5.38), by having no summation over the Bessel functions;

therefore, one expects less interference effects in the ionization spectrum for

circularly polarized radiation. We show that this is indeed the case.

5.6 Analytic results for the direct ionization

(length gauge)

In the length gauge, one has to deal with integrals of type (5.15), where the

exponential can be written in the form of (5.36). Therefore, it remains to

calculate analytically integrals of the type:

IN(r) =

∫ 2π/ω

0

dt
exp(irωt)

[pN +A(ωt)]2/2 + Ip
, (5.40)

i.e., a Fourier transform [the index N refers to the conservation of energy

condition (5.35)]. This could be done either numerically, based on the fact
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that the Fourier components decrease exponentially with the order r (as it

will be proven below), or analytically, following an idea given in the context of

harmonic generation from the article of Antoine et al. (Appendix A in [86]).

By doing the substitution exp(iωt) = z, the integral can be rewritten as:

IN(r) = −
i

ω

∮
zr−1

[pN +A(z)]2/2 + Ip
dz, (5.41)

where the integration contour in the complex plane is the unit circle going

around the origin counter-clockwise. In the expression of the potential, all the

trigonometric functions have been expressed as a function of eiωt, using the

fact that cosx = (eix + e−ix)/2 and the corresponding relation for the ‘sin’

function. From the residue theorem (with r ≥ 0, so z = 0 is not a pole), the

integral is :

IN(r) =
2π

ω

∑

k
|zk|<1

Res[zk, f(z)].

The function f(z) is just the integrand in (5.41) and the poles are the roots of

the equation:
dS

dt
(zk) = [pN +A(zk)

2]/2 + Ip = 0.

For general elliptical polarization, the equation is a polynomial of order four

in zk (which can be factorized for linear polarization in two second order equa-

tions); the roots can be found, but the expressions are intricate. Usually, only

two roots have their modulus smaller than unity. However, for more compli-

cated cases, reliable numerical routines are available for solving polynomial

equations.

For circular polarization, the equation for finding the poles is quadratic. Using

the energy conservation (5.35) and taking ξ = −π/2 in (5.33), we obtain:

dS

dt
(z) = Nω + sgn(p1)

A0√
2
p⊥
z exp(iχ) + exp(−iχ)/z

2
,

where p⊥ ≡
√
p21 + p22 is the momentum perpendicular to the direction of the

propagation of the laser. Another form is:

dS

dt
(z) =

b

2z
(z − z1)(z − z2),
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with a = Nω, b = sgn(p1)
A0√
2
p⊥ and:

z1,2 =

(
−a
b
±
√(a

b

)2
− 1

)
e−iχ.

Because either |z1| < 1 and |z2| > 1 (if
a

b
> 1) or |z2| < 1 and |z1| > 1 (if

a

b
< −1):

IN(r) =
4π

bω

zrl
zl − z3−l

, r ≥ 0

with l = 1 or l = 2 such that |zl| < 1. The integral decreases exponentially

with increasing r, as lim
r→∞

zrl = 0. For r < 0, we use analytic continuation and

taking the complex conjugate of (5.40), we find :

IN(r) =
4π

bω

z
|r|
l

zl − z3−l

.

Combining (5.15) with the expansion for the action (5.36) and the result for

IN(r), we obtain the ionization amplitude for a circularly polarized stationary

field, in the length gauge (L):

M (0)
p = i

(2Ip)
5/4

π
√
2

∞∑

k=−∞

Jk[sgn(p1)
A0√
2
p⊥] IN(k +N)eikχ, (5.42)

with tanχ = −p2/p1.

5.7 A modified velocity gauge amplitude

In [87], A Becker et al. used a simplified version of the Coulomb correction

proposed by Krainov [85]. The simplification, which is shown to successfully

describe a large set of experimental results, is simply a multiplicative correction

by the factor

C2(Z, Ip, E0) =

(
2kBIp
E0

)2Z/kB

applied to the ionization rates given by the SFA model in the velocity gauge

[(V) form, see Eq. (5.16)]. The parameters are Ip = k2B/2, Z is the core
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charge and E0 is the peak field strength. We note that for all the short-ranged

potentials (Z = 0) the correction factor reduces to unity and it is independent

on the polarization state of the laser. In particular, the correction factor has

an inverse dependence on the electric field, so it amplifies the low intensity

part of the SFA and lowers the high intensity one.

Comparisons are made in [87] with the predictions of the ab initio Floquet

calculation and SFA model for a H atom in a linearly polarized laser field. We

have repeated the calculation, adding the results predicted by the SFA in the

length gauge [(L) form, see Eq. (5.15)] and extending the intensity range. Fig.

5.2 shows the comparison1.
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Figure 5.2: Rates of ionization of a hydrogen atom by a linearly polarized field
at λ=1064 nm vs laser intensity. The (LG) and (VG) curves show the results
predicted by the SFA model in the length gauge and velocity gauge. The other
curves show the Floquet results (the red curve and filled circles), the A Becker
et al. corrected version and the predictions of the Krainov Coulomb-corrected
rate. The upper scale gives the Keldysh adiabaticity parameter.

1The dot-dashed curve in Fig. 5.2 makes use of Eq. (2) from Ref. [87]. Nonetheless, the
curve in Fig. 1 of [87], which would correspond to our dot-dashed curve, agrees very well
with the calculation based on the Krainov correction (the blue line in Fig. 5.2).
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We note that the biggest difference of about 3 orders of magnitude comes with

the results in the SFA velocity gauge. The length gauge is roughly two orders

of magnitude smaller than the Floquet results and the Krainov and the A

Becker et al. corrections are in excellent agreement with the exact results. The

A Becker et al. predictions are slightly smaller than those given by the Krainov

formula.

In Ref. [87], another comparison is made with results from the direct inte-

gration of the Schrödinger equation and very good quantitative agreement is

found (see Fig. 4 of [87]). Also, an extensive comparison for a number of laser

wavelengths and atomic species is done with experimental results, and all show

the same remarkable overall agreement (Fig. 6 in [87]).

The domain of validity for the WKB correction proposed by A Becker et al. is

examined in the article of Reiss [92]. The author establishes lower and upper

bounds on the intensity and shows that the correction is essentially a low-

frequency one. Also, the author compares an energy resolved single ionization

spectrum for helium, obtained experimentally, with the prediction of the SFA

model in the velocity gauge and the A Becker et al. corrected SFA; it is shown

that because the correction lowers the transition rate with increasing intensity,

the agreement with the experiment (which is qualitatively well reproduced by

SFA expression) is poor for the high energy tail of the spectrum. Therefore,

the correction is useful only to calculate the total ionization rates.

We propose another way to analyze the applicability domain of the correction,

by using the asymptotic expressions presented in Appendix (D) (thus implicitly

assuming a low frequency of the laser field).

To calculate the ratio between the rates of ionization in the Krainov Coulomb

corrected version (5.22) and in the velocity gauge (5.16) for a linearly polarized

field, we follow the steps described in Subsection 5.4.1 and in the low-frequency

limit, by summing over all multiphoton orders as done in Appendix (D), we
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obtain:

(
wK

wV

)2

=

(
Z3

E0

)2

∫ ∞

0

exp[−(γ3/3ω)p2]dp
∫ ∞

0

exp[−(γ3/3ω)p2]/[(p/Z)2 + 1]2dp

. (5.43)

Apart from the ratio of the two integrals, the rates are identical up to a factor

which is the same as the one used by A Becker et al. . The validity of the

approximation requires then that the two integrals should have similar values.

One of the integrals is a decaying exponential and the other has the same

exponential and an extra factor in the denominator. For the two to have

close values, the extra factor should be of order of unity, in the range of the

integration variable where the exponential is still contributing to the value

of the integral. So, we ask that p/Z ≪ 1 within the decaying range for the

exponential, p <
√

3ω/γ3. Combining the two conditions, we arrive at

Z
√
γ3/3ω ≫ 1.

Typically, values of Z
√
γ3/3ω bigger than 3 assure that the relative difference

between the Krainov rate wK and the corrected velocity gauge rate, as given

by Eq. (5.43), is smaller than 10%. For the Fig. 5.2, the value is between 19 at

low intensity and 3 at upper range of intensity, but the field frequency should

be lower for our estimates to become more accurate. The conditions given in

[92] are:

ωZ
√
2≪ E0 ≪ Z3,

and they refer to general conditions (specifically, the left inequality) under

which SFA can be applied; thus, they do not state when the Krainov cor-

rection agrees with the A Becker et al. correction. The Reiss conditions are

not satisfied in Fig. 5.2, with E0 being up to 6 times smaller than the lower

limit ωZ
√
2. Thus, a qualitative and quantitative agreement should not to be

expected at the intensities and field frequency employed here; despite the con-

ditions not being satisfied, there is good general agreement with the Floquet

results, as can be seen from Figure 5.2.
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5.8 Study case: ionization of He+ in a station-

ary field

We apply the Coulomb corrected rates in the case of He+ for linearly polarized

stationary field, with wavelength of 800 nm. For comparison, we use the exact

DC rates [93], cycle averaged:

w(E0) =
2

π

∫ π/2

0

dt Γ(|E0 cos t|)

with Γ(E0) the DC rate at electric field amplitude E0.
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Figure 5.3: Log-Log plot of the ionization rates for He+ in a linearly polarized
stationary field. The wavelength is 800 nm.

Fig. 5.3 shows the averaged DC rates together with the adiabatically corrected

static rates (D.12) [this is an approximation to the Krainov Coulomb corrected

rate (5.22) in the tunneling limit] and the usual static rates (no adiabatic

correction, namely γ = 0 in D.12). First thing to note is that the DC rate

overlaps with the static rate at low field amplitudes. For high intensity, the

adiabatically corrected static rate overlaps with the static rate; this is expected,
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since the Keldysh adiabatic parameter decreases with increasing intensity, so

the two rates become identical.
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Figure 5.4: Same parameters as in Fig 5.3. The Krainov Coulomb corrected
rates are shown for 800 nm and for 1064 nm.

Fig. 5.4 shows results from the Krainov Coulomb corrected rate both for 800

nm and for 1064 nm. The adiabatic corrected rate is closer to the Krainov

result than the static rate, and all three approach each other at high intensity

(where the Keldysh parameter γ is small). The case of a Nd:YAG laser (1064

nm) is presented because γ is lower then for 800 nm radiation; therefore, it

almost overlaps with the results for the static rate even at small intensities,

and at the upper intensity range, it approaches the results for the 800 nm.

After getting closer to the static rate at an intensity of approximatively 2.2×
1015 W/cm2, the DC rate starts departing slowly from it with increasing in-

tensity, showing that the exact static ionization rate cannot be approximated

well by the usual static rate formula in this region.

The results presented confirm the validity of the asymptotic expressions de-

duced in Appendix D in the limit of low γ. It also shows the role of the
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adiabatic correction to the static ionization rate, by analyzing its effects in

different regimes of intensity and frequency of the laser field.

5.9 Conclusions

We have presented the main results from the literature concerning the Keldysh

transition amplitude for the direct ionization along with the next order cor-

rection term, the latter being able to predict the rescattering plateau in the

energy spectra of the ejected electrons.

Starting from the general formalism, we then discuss the direct ionization

amplitude in the context of short laser pulses, with special attention devoted

to the boundary terms and their correct treatment in numerical calculations.

The boundary terms are calculated in both the length gauge and the velocity

gauge and then related to the proper choice for the vector potential A(t), which

can simplify the final results is suitably chosen.

The Coulomb correction is introduced as given by Krainov and it is proven

that the amplitude is the same in both velocity and length gauge. A simplified

version of this correction [87] is examined and conditions for its applicability

are proposed.

For the stationary field, general features, such as conservation of energy con-

dition for the ejected electrons, are presented in detail. Calculation of the

ionization rates are included for both circular and linear polarization; in each

case, analytical formulae are given for these rates. The expression for the ve-

locity gauge amplitude is applicable for the elliptical polarization and some of

the analytical techniques can be extended to more general laser fields.

The last part compares results for the ionization rate in the case of a stationary

field in the context of the Krainov rate, tunneling rate and the cycle-averaged

rate based on the exact static rates. The role of the Keldysh adiabaticity

parameter is pointed out in relating these results and establishing their domain
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of applicability.



Chapter 6

Direct ionization in short pulses

6.1 Outline

In this chapter, we present the predictions of the Coulomb-corrected SFA

model (KSFA) for direct ionization in short laser pulses. We show that the

model confirms the well-known sensitivity of the angle-resolved ATI energy

spectra to the absolute phase. This is also the case in the context of har-

monic generation [94, 95]. The origin of this can be traced to the interplay

between electron trajectories corresponding to direct ionization in the Simple-

man’s model. Finally, total probabilities are calculated and compared to those

obtained using the exact static rates or the tunneling rate. The relevance of

the Keldysh adiabaticity parameter γ is discussed. For all the cases studied

here, we are in the tunneling regime, i.e., γ < 1, unless otherwise stated, and

the laser intensity is such that the ionization is not in the over-the-barrier

regime for the atomic systems considered.

In the last part of the chapter, we compare the predictions of the Coulomb-

corrected SFA model to the fully numerical results from the Schrödinger equa-

tion; the major differences and their possible explanations are emphasized.

104
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6.2 Pulse form and classical energy cutoffs

At relatively small intensities, the dipole approximation can be invoked. The

magnetic field component of the pulse accelerates the electrons in the direction

of field propagation for a linearly polarized laser, which tends to suppress re-

collision processes. At 800 nm, the wavelength of a Ti:Sapphire laser, this

effect becomes non-negligible for intensities above 1017 W/cm2, in which case

a non-dipole description is necessary.

Using the dipole approximation, the response of the atom to a linearly polar-

ized laser pulse can be calculated by taking an electric field E(t) = E(t)ǫ̂ and

a vector potential A(t) = A(t)ǫ̂. Although in some cases accurate numerical

representations of the pulse are necessary, a simple analytical model is ade-

quate in many applications. Assuming no chirp (the frequency is constant for

the pulse), one can adopt the simple expression

E(t) = E0 χ(t) sin(ωt+ φ),

for the electric field of the pulse, or, alternatively,

A(t) = E0/ω χ(t) cos(ωt+ φ)

for the pulse’s vector potential. The two approximations are equivalent pro-

vided that the pulse is sufficiently long for dχ/dt to be negligible compared to

ωχ(t). It is convenient to characterize the pulse intensity by the peak intensity,

I0, defined as for the stationary field, I0 = E2
0/2, assuming that 0 ≤ χ(t) ≤ 1.

The envelope function, χ(t), is usually taken a half-period sin2 function, en-

compassing a certain number of cycles n, such that

A(t) = A0 sin(ωt+ φ) sin2(ωt/2n). (6.1)

In this case, the pulse has a strictly finite duration. If we define the full width

at half maximum (FWHM) as the time interval during which the intensity

envelope is bigger than half the peak intensity I0, we obtain for the sin2 pulse
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FWHM = 4n arccos(2−1/4)/ω, or, in terms of one optical period T = 2π/ω,

FWHM/T = 2n arccos(2−1/4)/π ≈ 0.364n. If instead of intensity, we choose

the field amplitude, then FWHM = nπ/ω, or FWHM/T = n/2 field periods.

Other popular choices are a Gaussian function (which is convenient as the

intensity drops fast in the wings, but perhaps not as good a representation of

the actual pulse) and a sech function. The later has for the vector potential

A(t) = A0 sin(ωt+ φ)sech(ωt/τ), (6.2)

and the full width at half maximum in intensity is FWHM = 2τ arccosh
√
2/ω

or, in units of one optical cycle, FWHM/T = τ arccosh
√
2/π ≈ 0.281 τ .

In amplitude, FWHM = 2τ arccosh2/ω, or FWHM/T = τ arccosh2/π ≈
0.419 τ optical cycles. Figure 6.1 shows a sin2 and a sech pulse with identical

FWHM.
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Figure 6.1: Left panel: a 4-cycle sin2 pulse (black curve) and a sech pulse (red
curve) with the same FWHM (in intensity). The phase is φ = π/2. The right
panel shows the same, only for identical FWHM in amplitude.

To give an idea about the changes one might expect in the case of short pulses
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when compared to a stationary field, we calculate the maximal kinetic energy

at the time of return t of an electron starting in the origin at a time t′ during

the pulse, as well as the maximum kinetic energy after rescattering. If we

define the quantity ks(t, t
′) = −

∫ t

t′
A(τ)dτ/(t − t′), we look for the pair of

‘birth’ time t′ and return time t (as in the Simpleman’s model) for which the

return kinetic energy Eret = [A(t) − A(t′)]2/2 is maximal, or the rescattering

kinetic energy Eres = [2A(t)−A(t′)]2/2 is maximal. The solution must satisfy

the condition ks(t, t
′) + A(t′) = 0, which means that the electron is back at

the origin at time t. For the stationary field we have the well known values

of Eret = 3.1731Up and Eres = 10.0076Up, with Up the ponderomotive energy

Up = A2
0/4.

Figure 6.2 shows the maximal return and rescattering energies in units of the

ponderomotive potential Up for a sin2 pulse with A(t) ∝ sin(ωt) sin2(ωt/2n),

as a function of the number of optical cycles n. The convergence to the values
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Figure 6.2: The cutoffs for the return (left panel) and rescattering (right panel)
kinetic energy for a n-cycle sin2 pulse, with A(t) ∝ sin(ωt) sin2(ωt/2n).

for the stationary field is readily achieved for both the direct and rescattering

maximal energies. This shows that the envelope of the field can affect to

a certain extent the physical processes. Some particular values are given in
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Table 6.1; it is easy to see that already for a pulse with 38 optical cycles, the

direct cutoff agrees to the stationary field’s value with 0.07% relative accuracy.

n 2 4 5 10 14 19 28 38
Edir/Up 2.469 2.970 3.040 3.139 3.156 3.164 3.169 3.171
Eres/Up 7.693 9.330 9.565 9.893 9.949 9.976 9.992 9.999

Table 6.1: Cutoffs for return and rescattering energy for sin2 pulses with dif-
ferent number of cycles (see Fig. 6.2).

Figure 6.3 shows the dependence with the phase φ of both energy cutoffs, for

a 4-cycle pulse. The variation in the cutoff energies can be steep for certain

values of φ. On the basis of the Simpleman’s model, this indicates that the

ionization process is highly sensitive to the phase of the field. Also, it points

out that the relative phase φ can influence the process to a great extent, and it

is important in applications to be able to produce laser pulses with controllable

absolute phase and to find ways to accurately measure it.

6.3 Definitions of SFA angular and energy dis-

tributions

We use the Krainov Coulomb-corrected ionization amplitude [Eq. (5.22)], while

for the vector potential we choose a linearly polarized field along the axis ǫ,

with A(t) = A0 sin(ωt + φ) sin2(ωt/2n)ǫ̂. Choosing the vector potential zero

at the beginning and the end of the pulse gives numerical advantages when

calculating the transition amplitudes, by avoiding the boundary terms affecting

the physical result. The quantities of interest are:

• the differential ionization probability for the emission of an electron with

energy Ep ≡ p2/2 = kUp in the direction θ with respect to the polariza-

tion axis:

w(θ, φ) =
|M (0)

p |2 d3p
dΩp̂dk

= Up

√
2kUp|M (0)

p |2, (6.3)
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Figure 6.3: The phase dependence of the maximal return (left panel) and
rescattering (right panel) kinetic energy for a 4-cycle sin2 pulse, with A(t) ∝
sin(ωt+ φ) sin2(ωt/8).

where φ is the polar angle of the electron’s asymptotic momentum in a

plane perpendicular to the polarization direction and θ is the angle of

ejection with respect to the polarization direction; M
(0)
p is the Krainov’s

transition amplitude for direct ionization. The electron emission is sym-

metrical around the polarization direction of the field (namely, the same

for any value of φ);

• the differential probability per unit energy (in units of Up) and per unit

azimuthal angle θ, integrated over the polar angle φ:

w(k, θ) ≡ d2P
dk dθ

= 2π sin θ Up

√
2kUp|M (0)

p |2, (6.4)

with Ep ≡ p2/2 = kUp.

Both distributions, integrated over the emission angles and energies, give the

total emission probability. The angle/energy integrated probability is given by
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the integration of Eq. (6.4) over θ and k, respectively:

dP
dk

=

∫ π

0

w(k, θ)dθ

and
dP
dθ

=

∫ ∞

0

w(k, θ)dk.

6.4 The accuracy of the saddle point method

Before presenting numerical results obtained for energy distributions of the

ejected electrons in the case of finite laser pulses, we discuss first the accuracy

of the saddle point method.

As discussed in detail in Appendix E.2.2, the exact integration can be per-

formed in two ways: (i) Along the real axis, by using a special method to deal

with the strongly oscillatory behavior of the integrand or (ii) Along a path in

the complex plane, passing through the saddle point closest to the real axis,

and connected to the end points of the integration interval by vertical lines.

Of course, the results obtained by using either of the methods are identical in

view of the Cauchy theorem.

Nonetheless, the complex plane integration method intuitively reveals a result

from the asymptotic theory: the main contributions to an integral come from

its saddle points (the integrand decreases exponentially in their vicinity) and

from the end points of the integration interval. The latter part is known as

the ‘boundary contribution’ and can be calculated analytically as an infinite

series involving derivatives of the integrand, calculated at the end points (for

more details, see Subsection E.2.2). In practice, we use only the first order

boundary term (BT) contribution as the expressions for higher orders become

increasingly cumbersome.

The BT terms can be shown to depend on the derivatives of the electric field

at the beginning and the end of the laser pulse, i.e., on the way the laser
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pulse is switched on and off. If the electric field derivatives at the temporal

boundaries of the pulse are not negligible, then their inclusion in the result will

distort the ionization spectrum. Therefore, according to one’s intuition, the

BT contribution should be extracted from the integral giving the ionization

amplitude.

A way to eliminate the BT is to perform the calculation in the complex plane,

and taking as a final result only the contribution coming from the path that

goes through the saddle point, parallel to the real axis. The contributions

coming from the connection paths with the end points of the integration in-

terval should be thus discarded, as they represent the BT contribution. The

result of such a procedure should be approximated to a high accuracy by the

contribution of the saddle points. We show that this is indeed the case for

the laser parameters we use. This way, the saddle point calculation implicitly

discards the BT contribution and gives correct physical results.

Another way is to perform the calculation along the real axis and subtract

the first order BT contribution only. The results agrees to the saddle point

contribution, provided the higher order BT are negligible, which happens if the

electric field is a smooth function at the beginning end the end of the pulse,

or if the pulse is long enough (see Appendix E.2.2 for more details).

To illustrate the above, we present two sets of results: one for angle-resolved

ATI energy spectra and the other for angular distribution of the ejected elec-

tron.

Figure 6.4 shows in the left panel an angle-resolved ATI energy spectrum for

low field intensity, where BT are expected to play a role. Calculating the

ionization amplitude by integration along the real axis followed by substrac-

tion of the first order BT (red curve) is compared to the result obtained by

integrating along the path in the complex plane, parallel to the real axis and

going through the saddle point (hence eliminating the BT contribution – black

curve). (The complex path integration agrees well with the result of the saddle
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point method, as expected; the two cannot be distinguished on the scale of the

graph.) Although the first order BT is extracted, there is a clear difference,

due to higher order BT. For higher intensity (right panel), the two calcula-

tions (the saddle point and the one from which the first order BT has been

subtracted) yield results in excellent agreement, undistinguishable on the scale

of the graph. Should the BT terms not have been extracted from the integra-

tion along the real axis, we would obtain a result of order 103 a.u. instead of

10−8 in the left panel of Figure 6.4.
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Figure 6.4: Angle-resolved [Eq. (6.3)] ATI energy spectra for electron emission
from He+ along the polarization axis for an electric field amplitude E0 = 0.2
a.u. (left panel) and E0 = 0.3 a.u. (right panel). The wavelength is 800 nm
and the pulse duration is four optical cycles with φ = 0. The red curves show
the exact integration result from which the first order boundary term (BT)
has been subtracted and the black curves show the saddle point result.

Similar comments can be made for the case of angular distribution spectra.

The same values for intensities as in Fig. 6.4 are chosen in Fig. 6.5 for angular

distribution spectra. The quantitative agreement with the saddle point results

become better for higher intensity and/or for longer pulses.

In conclusion, for the range of intensities we are interested in, the saddle point

method provides accurate numerical results for the ionization amplitudes. As

the method is fast, it enables us to calculate, in a reasonable amount of com-
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Figure 6.5: Angular distributions in He+ for electron energy of 0.1Up. The
pulse parameters are the same as in Fig. 6.4. The red curves show the exact
integration result from which the first order boundary term (BT) has been
subtracted and the black curves show the saddle point result.

putational time, angle/energy-integrated spectra or total probabilities.

6.5 Total ionization probabilities

The usual SFA model includes the Coulomb interaction in a first step, by using

the exact wavefunction for the initial bound state of the ionizing electron. Fur-

ther improvements include corrections due to tunneling through the potential

barrier formed by the Coulomb potential and the external field: one way to

do this is given by the KSFA version we use in our calculations. The accuracy

for taking into account the Coulomb interaction within the SFA proved to be

sufficient for obtaining correct total probabilities of ionization [37, 87, 89, 96].

In this section, we analyze the results for the ionization probabilities in a short

laser pulse, given by the SFA model (with and without Coulomb correction).

These are compared to the approximate results obtained by integrating along

the pulse duration the exact ionization rate for a constant electric field; this
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way, due to the low frequency of the carrier wave, we implicitly assume that

the ionization process is of adiabatic nature. The ion studied is He+.

The total ionization probability is calculated by integrating Eq. (6.3) or (6.4)

over the ejection angle and energy. For a 4-cycle, sin2 pulse with zero phase,

the dependence with the laser peak intensity of the ionization probability cal-

culated within the Coulomb-corrected SFA model is given by the blue curve in

Fig. 6.6. In contrast to the results predicted by the usual SFA (for which the

difference can be as much as two orders of magnitude), the Coulomb-corrected

results are much closer to the estimated probabilities from the integration

of the exact static rates (red curve). This justifies the use of the Coulomb-

corrected SFA as a way to get more accurate quantitative results. As it will

be shown in the next section, there are still significant qualitative differences

between the Coulomb-corrected version and the exact results, but the order of

magnitude is the same.

As seen in the similar comparison made for the stationary field, for higher

intensities (thus lower Keldysh adiabaticity factor), the Coulomb-corrected

SFA gives results closer to the ones obtained from integration of the static

tunneling ionization rate of Landau and Lifshitz. Knowing the rate of ion-

ization for a constant field Γ(E), one can calculate the ionization probability

as P = 1 −
∫ Tp

0
Γ[E(t)]dt, where the integration is done over the entire laser

pulse. The agreement at low Keldysh adiabaticity parameters comes from the

proven fact that the rate of ionization obtained from the Coulomb-corrected

SFA goes in the low frequency limit into exactly the static ionization rate (see

Appendix D).

To conclude, the Coulomb-corrected SFA model gives results that are in bet-

ter agreement with the adiabatic estimates of the ionization probabilities, than

those of the usual SFA model. In the limit of low Keldysh adiabaticity param-

eter, the Coulomb-corrected SFA is close to the results coming from the inte-

gration of the static ionization rates. This proves that for the case examined

here, in the tunneling limit, the ionization process is to a good approximation,
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Figure 6.6: Total ionization probability for a He+ ion irradiated by a four-cycle
sin2 pulse, with φ = 0. The results are given as a function of the peak intensity
and originate for the usual and KSFA model. The other two estimates were
calculated using the exact rate of ionization in a static electric field and the
Landau and Lifshitz static tunneling rate, respectively.

adiabatic. As a final remark, the corrected SFA proves to be a useful tool to

obtain estimates of the ionization probabilities in short laser pulses.

In the next section, we discuss the agreement of the Coulomb-corrected SFA

with ab initio results, analyzing in detail some ATI angular distributions.

6.6 Differential ionization probabilities

We present some predictions of the Krainov Coulomb-corrected SFA model

(KSFA) for direct ionization in short pulses, in the case of various ions. In

Section 6.10 we show that for the field parameters and the atomic system

studied there, the model is able to reproduce qualitatively the general charac-
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teristics of the ATI spectra and predicts emission probability of the same order

of magnitude as the results obtained from the Schrödinger equation (Section

6.10). The interference effects met in the case of the stationary field cannot

build up unless the pulse is long enough. Without the Krainov correction, the

SFA in the length gauge or velocity gauge predicts results that are a few orders

of magnitude lower than the ab initio results.

Figure 6.7 shows the differential ionization probability [Eq. (6.4)] for two emis-

sion angles, close to the the axis of polarization. One remarkable feature is
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Figure 6.7: Left panel: angle-resolved ATI spectra for different emission angles
θ with respect to the polarization direction. Right panel: angle-integrated ATI
spectra. The pulse is with a sin2 envelope, encompassing four optical cycles,
with 800 nm wavelength. The electric field amplitude is E0 = 0.4 a.u. The ion
is He+.

that for low ATI orders (LATI), the peaks occur at approximatively the same

energies, irrespective of the angle of emission. As a result, when integrating

the probability over the emission angle, the LATI are still present in the angle-

integrated spectrum (see the right panel of Fig. 6.7). As explained below, the

weak dependence of LATI on emission angle is linked to the fact that the field

phase φ is zero in Eq. (6.1). (The electric field is symmetrical with respect to

the middle of the pulse.)

For a field phase different from zero, LATI peaks become less and less resolved
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in the angle-integrated spectrum, until they eventually disappear. Figure 6.8

shows the case when the electric field is anti-symmetrical with respect to the

middle of the pulse [φ = π/2 in Eq. (6.1)]. The energies of the LATI peaks
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Figure 6.8: Left panel: angle-resolved ATI spectra for different emission angles
θ with respect to the polarization direction. Right panel: angle-integrated ATI
spectra. The parameters are the same as in Fig. 6.7, only the field phase is
changed: φ = π/2

depend now on the emission angle as it can be seen in the left panel. Hence,

integrating over the angle of emission θ smoothes the spectrum, leading to

less resolved LATI peaks. In particular, for the anti-symmetrical electric field,

there are no peaks in the angle-integrated ATI spectrum, as the right panel of

Fig. 6.8 shows. This dependence of LATI peaks on the field phase could help

measuring the absolute phase of a short laser pulse.

Figure 6.9 shows the differential probability for two energies of the ejected

electron, as a function of the emission angle θ. Note the decrease for higher

energies although their values are far below the cutoff value. The probability

of emission decreases faster for electrons not ejected along the polarization

direction (which corresponds to θ = 0 and θ = π). For high ejection energies,

the emission perpendicular to the polarization axis is practically negligible,

this being characteristic for ionization in linearly polarized radiation. The

dashed curves in Fig. 6.9 show the energy-integrated probability. Because
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Figure 6.9: The differential ionization probability for constant electron energy
as a function of the emission angle and the energy-integrated probability for
He+ irradiated by a four-cycle sin2 pulse with peak electric field E0 = 0.2 a.u.
Left panel: the field phase is φ = 0, right panel: φ = π/4. The wavelength is
800 nm. (The ponderomotive energy is Up = 0.77 a.u.)

of the symmetrical electric field with respect to the middle of the pulse, the

electron emission in the left panel has a backward-forward symmetry (i.e.,

emission at angle θ is the same as for the angle π − θ). This is typical to

Keldysh-like theories as the Coulomb interaction, responsible for breaking the

symmetry, is not included. (For a more detailed discussion of Keldysh-like

theories for ionization in elliptical polarization, see Ref. [97] or for asymmetries

in short laser pulses see Ref. [98].) Another symmetry is for rotations around

the polarization axis; together with the other symmetry, it gives the known

fourfold symmetry of the angular distribution of the SFA model. The right

panel of the same figure depicts the case of a nonzero value of the field phase.

As the electric field is not symmetrical with respect to the middle of the pulse,

the electron emission is bigger in that direction of the polarization axis in

which the electric field points mostly during the pulse. This effect is discussed

in Section 6.9.
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6.7 Mathematical analysis

Based on the saddle point method, the interference effects due to different

electron trajectories during the pulse duration can be analyzed and, for low

energies, approximate analytical expressions describing this interference can

be found.

The ionization amplitude is given by a sum over the contribution of all saddle

points, of the form:

A =
ns∑

l=1

al exp(iSl), (6.5)

where al and Sl are the amplitudes and the phase of the contribution of saddle

time tl. The modulus squared reads:

|A|2 =
ns∑

l=1

a2l + 2
ns∑

l,m=1
m>l

al am cos(Sl − Sm), (6.6)

In order to analyze the possible interference effects in Eq. (6.6), one needs

to calculate the expression of the phase difference between any two saddles.

The saddle points are solutions of the equation [p+A(t)]2/2 + Ip = 0; the

equation can be re-written as A(ts) = −p‖± i
√
2Ip + p2⊥, where the indices for

the asymptotic momentum p refer to the directions parallel and perpendicular

to the polarization direction, respectively. For small energies |p2/2| ≪ Up, we

have that ts is close to t0, where t0 is one of the zeros of the vector potential,

A(t0) = 0; this can be seen from the equation for A(ts). The goal is to

write an expansion of quantities of interest (such as the semiclassical action

S(0, t) =
∫ t

0
dt′[p+A(t′)]2/2 + Ipt) for small electron energies. This can be

accomplished by expanding the time derivative of the action around t0, up to a

second-order term proportional to the small quantity (ts− t0)2. By solving the

approximate equation for the saddle time ts and replacing it in the expression

of the action, one obtains:

S(0, ts) = S(0, t0) +
p‖

E(t0)

(
Ip +

p2 + 2p2⊥
6

)
+ i

(2Ip + p2⊥)
3/2

3|E(t0)|
+ · · · . (6.7)
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Consider now a pair of saddles: denoting the two saddles times in the pair

by ts1 and ts2, then, from Eq. (6.7) one obtains the following expression for

S2 − S1 ≡ S(0, ts2)− S(0, ts1):

S2 − S1 = S(t01, t02) + p‖

(
Ip +

p2 + 2p2⊥
6

)[
1

E(t02)
− 1

E(t01)

]
, (6.8)

where S(t01, t02) ≡
∫ t02
t01
{[p+A(t′)]2/2 + Ip}dt′. The expression obtained for

the phase difference of a pair of saddles applies only for low momenta of the

ejected electron. The reason for using the times t01 and t02 is that they do

not depend on p, making the analysis possible. The phase difference is seen

to depend on the angle of ejection, via the quantity p‖, only through the term
∫ t02
t01

A(t)dt and another one proportional to the difference E(t02) − E(t01).

When doing the integration over the angles to obtain the angle-integrated

ATI spectrum, the contribution of a certain saddle pair averages to zero if

the corresponding phase difference of the pair depends on the angle. Hence,

to avoid the cancellation of a certain pair, the necessary condition is to have
∫ t02
t01

A(t)dt = 0 together with E(t02) = E(t01). If there is not at least one such a

pair whose amplitude al am is not negligible, then one would expect a relatively

flat angle-integrated ATI spectrum. Moreover, for a pair (lm) whose phase

difference does not depend on the angle of emission, the LATI peaks coming

form the pair’s interference occur at energies given by the condition Sl−Sm =

2Nπ, when constructive interference takes place between the contributions of

the two saddles. These peaks are not affected by the angle integration.

To exemplify, we study in the next Subsection the case of a four-cycle sym-

metrical electric field, for which the interference occurs typically between a

pair of saddles and an isolated saddle. We prove that, when integrating over

the emission angle, the modulus squared of the total contribution is equal

approximately to the modulus squared of the contribution coming from the

saddle pair and the modulus squared of the isolated saddle contribution. This

is in agreement with the previous discussion. The case of an anti-symmetrical

electric field is presented in Subsection 6.7.2.
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6.7.1 The case of symmetrical electric field

Let us consider the case when the electric field has the same value for both

saddles, E(t01) = E(t02). This happens for example if the electric field is

symmetrical with respect to the middle of the pulse [φ = 0 in Eq. (6.1)]. Fig.

6.10 shows such a possible configuration for a four-cycle sin2 pulse; one can see

that in this case t02− t01 = 2π/ω. Because of the strong nonlinear dependence

of the ionization amplitude on the electric field, we discuss only the saddle

pair with the highest electric field value. Then, from Eq. (6.8), using that the
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Figure 6.10: The case of a symmetrical electric field.

electric fields are equal at the two times t01 and t02 and that
∫ t01
t01

A(t′)dt′ = 0

due to the asymmetry of A(t) with respect to the middle of the pulse, the

condition for constructive interference for the saddle pair reads

(
p2N
2

+ Ip

)
2π

ω
+

∫ t02

t01

A2(t′)/2dt′ = 2Nπ, (6.9)

giving the energies of LATI peaks: p2N/2 = Nω − [(
∫ t02
t01

A2(t′)/2dt′)/(2π/ω) +

Ip]. Thus, the pair has the property that its interference patters does not

depend on the angle of emission (see the previous general discussion at the

beginning of this Section). The other possible pairs can be formed by the

isolated saddle and t01 or t01, respectively; these pairs are seen to depend on the
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angle of emission, as the electric fields differ within each pair and also
∫
A(t)dt

is non-zero between the pair’s saddles [see Eq. (6.8)]. As a consequence, their

interference patters does not contribute to the angle-integrated spectrum.

The symmetrical pair’s interference peaks are separated by ω, the carrier wave

frequency. Their energies are seen not to depend on the emission angle θ and

this explains why the LATI peaks are still well resolved after integrating over

θ. An illustration of this was presented in the left panel of Fig. 6.7, from Sec-

tion 6.6. The expression for LATI energies is identical to the definition of the

ATI peaks for a stationary field (the conservation of energy condition). With

t01 and t02 taken as the beginning and the end of one optical cycle, the quan-

tity
(∫ t02

t01
dt′A2(t′)/2

)
/(2π/ω) resembles the definition of the ponderomotive

energy Up, for a stationary field.

As an application of the LATI energies formula, Figure 6.11 shows angle-

resolved ATI energy spectra for a four-cycle pulse; the contribution is only that

of the symmetrical pair’s. Three different emission angles with respect to the

polarization axis are depicted. Note the decrease of the ionization amplitude

with increasing emission angle. The filled circles represent the LATI energies

calculated from Eq. (6.9). The agreement is very good and indicates also

that our expansion holds for not so small kinetic energies (in this case, up to

0.15Up).

Furthermore, interesting effects could appear. This is due on one hand to the

fact that LATI peaks do not depend on emission angle and on the other hand

to the fact that the main contribution to the ionization amplitude comes from

an isolated saddle point (corresponding to electron emission close to the middle

of the pulse – see Fig. 6.10) and from one pair of saddles. The magnitude of

the isolated contribution is the biggest, as the electron is emitted close to the

peak of the electric field. If the pair’s contribution is smaller, then, as a result,

the angle-integrated spectrum will display a series of LATI peaks modulated

by the saddle pair, superimposed over a background whose magnitude is given

by the isolated saddle.
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Figure 6.11: Angle-resolved ATI energy spectra at different emission angles
for a He+ irradiated by a sin2 pulse with E0 = 0.4 a.u. and field phase φ = 0.
The wavelength is 800 nm. Only the contribution of the symmetrical pair of
saddles is shown. The filled circles represent the predicted LATI peaks, from
Eq. (6.9).

Figure 6.12 shows the angle-integrated ATI spectrum for the case of a four-

cycle symmetrical electric field. In agreement with those discussed above,

the main contribution to the ionization rate comes from an isolated saddle

(with the biggest magnitude) and from a pair of saddle points (responsible for

the interference pattern in the angle-integrated spectrum). The second pair’s

contribution is six orders of magnitude lower that the first pair’s. One can

see that the magnitude of the LATI peaks is set by the isolated contribution,

while the modulation of the spectrum is due to the pair of saddles. The peak

separation in energy is equal to approximatively ω, the carrier wave frequency.

As discussed in Section 6.7, the ATI spectrum for each angle of emission con-

sists of peaks at energies which do not depend on the angle (the LATI peaks

are given by the interference of the saddles in the pair). The energy-resolved

spectra for different emission angles are modulated by a factor depending on

the angle, coming from the interference of each of the saddles in the pair with
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Figure 6.12: The saddle point contributions to the ionization probability of
He+, for a 4-cycle sin2 pulse with symmetrical electric field. The pulse has 800
nm wavelength and the peak electric field is E0 = 0.4 a.u.

the isolated saddle. In the final angle-integrated spectrum, these fast oscilla-

tions depending on the angle average out, and one sees only the peaks at the

angle-independent energies.

Increasing the pulse duration and/or intensity will result in better resolution

for LATI peaks in the angle-integrated spectrum. Of course, if the pulse du-

ration is too long, the effects just discussed become less relevant, as the pulse

resembles a stationary field, where the carrier phase is no longer important in

the physical processes. These aspects are discussed in the Section 6.8.

6.7.2 The case of anti-symmetrical electric field

For an anti-symmetrical electric field we have E(t01) = −E(t02) and t02− t01 =
π/ω. Figure 6.13 shows the first two saddle pairs. Due to the lower electric

field magnitude, the second saddle pair (filled red circles) does not contribute
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to the ionization amplitude. Equation (6.8) can be re-written as

(
p2

2
+ Ip

)
π

ω
+ p‖

[∫ t02

t01

A(t′)dt′ +

(
Ip +

p2 + 2p2⊥
6

)
2

E(t01)

]
+

+

∫ t02

t01

A2(t)

2
dt = 2Nπ.

(6.10)

The situation is different from the symmetrical case, as because of the ’p‖’ term
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Figure 6.13: The case of an anti-symmetrical electric field.

in Eq. (6.10), the LATI peaks depend now on the emission angle. Their energies

satisfy a cubic equation in pN and the spacing between two consecutive peaks

is no longer equal to the carrier frequency ω, as in the case of the symmetrical

electric field. Figure 6.14 shows the accuracy of the LATI peaks prediction

formula.

The particularity of the anti-symmetrical case is that the dependence of LATI

peaks on the emission angle relates to the quantity
∫ t02
t01

A(t′)dt′ (the region

‘(1)’ in Fig. 6.13). The smaller its value is, the weaker the dependence on

the emission angle. A typical example was given in left panel of Figure 6.8,

Section 6.6. The angle-integrated spectrum in the right panel shows no peaks:

as the position of the LATI peaks depends on angle, the integration results in

a relatively smooth angle-integrated spectrum (right panel in the same figure).
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Figure 6.14: Angle-resolved LATI energy spectra. Only the contribution of
the first pair is shown. The parameters are the same as in Fig. 6.11, only the
electric field is anti-symmetrical: φ = π/2. The filled circles are the predicted
LATI peaks, from Eq. (6.10). The emission is along the polarization direction
(left panel) and at an angle θ = π/10 with respect to the polarization axis
(right panel).

6.8 Influence of pulse parameters on direct ion-

ization

For a given intensity, there is a maximal pulse duration for which phase effects

still play a role, as the previous discussions suggest. Moreover, we show that

the resolution of LATI peaks depend on the pulse intensity, duration and shape.

6.8.1 Influence of the field phase

From the previous sections, we have seen that LATI peaks depend on the

field phase value. We choose here a four-cycle sin2 pulse and study the angle-

integrated LATI spectrum while changing the field phase.

To see how sensitive the effect of LATI disappearance is with the phase vari-

ation from zero, Fig. 6.15 shows calculations done for increasing phases. The

spectra for nonzero phase have no LATI peaks, and the effect is visible even
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for phases as small as π/10 (the blue curve). For the anti-symmetrical electric
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Figure 6.15: The angle-integrated ionization probability in He+ for the same
pulse as in Fig. 6.12, only for various field phases.

field (φ = π/2), the spectrum is almost flat, with no structure.

6.8.2 Influence of the intensity

For short pulses and/or low intensities, the contribution to the ionization am-

plitude of the saddle pair is much less than the magnitude of the isolated

saddle. Under such conditions, even for a symmetrical electric field, the LATI

interference pattern has little contrast or is even absent in the angle-integrated

spectrum. The left panel in Fig. 6.16 shows a case where despite the phase

being zero, the LATI do not appear in the spectrum. The explanation is that

the amplitude of the saddle pair’s contribution is so low that does not influ-

ence the ATI spectrum. To improve the contrast, it suffices to increase the

intensity (see the centre panel). This way, the contribution of the saddle pair
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increases and LATI become better resolved. Further increase of the intensity

allows higher energy peaks to gain resolution (right panel).
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Figure 6.16: Angle-integrated ionization probability of He+ for increasing in-
tensity. The electric field is symmetrical with respect to the middle of the
pulse. The rest of the pulse parameters are the same as in Fig. 6.18.

If we increase the intensity for a field with non-zero phase, the ATI spectrum

changes as in Fig. 6.17. The spectrum remains relatively flat, with no well-

resolved ATI peaks.
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Figure 6.17: Angle-integrated ionization probability of He+ for increasing in-
tensity. The electric field has the phase φ = π/4. The rest of the pulse
parameters are the same as in Fig. 6.18.
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6.8.3 Influence of pulse duration

For a short pulse, we have seen that the carrier phase can influence to a great

extent the appearance of the LATI peaks in the angle-integrated ATI spectra.

For phases different from zero, the LATI peaks are less and less resolved, until

they eventually disappear. In addition, even for a symmetrical electric field, if

the intensity is too low and/or the pulse is too short, the LATI peaks are not

well resolved.

A possible way to have better contrast for the LATI peaks is to increase the

pulse duration. Figure 6.18 shows a field with zero phase, which should have

LATI peaks in the angle-integrated spectrum. For a pulse as short as two

cycles and low intensity, the magnitude of the saddle pair contribution to the

ionization spectrum is much lower than that of the isolated saddle. Hence,

there is no modulation in the spectrum and the LATI peaks are absent. Be-

cause the relative magnitude of the isolated saddle contribution to that of the

saddle pair is set by the ratio of the ionization rates at the corresponding birth

times, its variation is more abrupt in the region of low electric fields. This

is because the tunneling ionization rate varies strongly at low electric fields.

By increasing the pulse duration, the contribution of the saddle pair increases

relatively to the isolated saddle contribution, and the LATI peaks begin to

appear, separated approximatively by ω, the carrier wave frequency.

If the pulse is long enough, the phase effects become less important (see also

Ref. [32] for phase effects related to ionization in circularly polarized short

pulses, where the authors reached similar conclusions). Figure 6.19 shows the

angle-integrated spectra for a non-zero field phase. For a four-cycle pulse, the

LATI are not well resolved, as expected (see the left panel). The centre panel

displays the results for longer pulses (five and six optical cycles). Despite the

non-zero phase value, LATI peaks are seen in the spectra and the lower their

energy, the better the resolution. Increasing the pulse duration, the resolution

improves even more, looking similarly to the ATI spectrum for a stationary
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Figure 6.18: Angle-integrated ionization probability per pulse duration in He+

irradiated by a 4-cycle sin2 pulse with E0 = 0.2 a.u. and φ = 0.

field. The spacing between the peaks is approximatively ω, the carrier wave

frequency. The explanation for this is that with increasing duration, the field
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Figure 6.19: Angle-integrated ionization probability in He+ for different dura-
tion sin2 pulses with E0 = 0.3 a.u. and phase φ = 0.23 rad. The rest of the
parameters are the same as in Fig. 6.18.

near the peak of the envelope (where the main contribution to the ionization

amplitude comes from) encompasses a large number of optical cycles. This in

turn, resembles a stationary field. The larger the pulse duration is, the less

relevant the phase effects become. For the intensity used in Fig. 6.19, already

for nine cycles and longer, the phase effects diminish when compared to a
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four-cycle pulse.

In conclusion, for a given intensity, one possible way to increase the resolution

of LATI peaks is to increase the pulse duration. However, a pulse that is too

long loses the sensitivity to the phase effects. For symmetrical electric field

and same pulse duration, better resolution can be achieved by increasing the

field intensity.

6.8.4 Influence of the binding energy and pulse shape

The pulse shape can affect the ATI spectrum due to effects induced by the

shape of the envelope (more precisely, the envelope variation near its peak).

Figure 6.20 shows the angle-integrated ATI spectrum for a sech pulse [for defi-

nition, see Eq. (6.2)]. The spectrum for symmetrical electric field is compared

to the one for the case of a sin2 pulse, with the same FWHM (in amplitude).

In the left panel it can be seen that the general effect of interference described

previously is still present, independent of the pulse shape. The right panel

presents the situation for different field phases, where the LATI are less re-

solved.

Another case we choose to study is a Gaussian pulse, with the width such that

its FWHM (in amplitude) is the same as for a four-cycle sin2 pulse. The same

comparison as for the sech pulse is done. Figure 6.21 shows in the left panel

that the general behavior of LATI peaks contrast with the field phase is the

same. The right panel depicts the LATI losing resolution for phases different

from zero.

Both the sech and Gaussian pulse calculations prove that the analysis done in

Section 6.7 applies to an arbitrary pulse shape.

One other effect appears, and it is due to the form of the field envelope near

its peak. In Fig. 6.21, the LATI peaks for the Gaussian pulse appear to have

a better contrast that those for the sech pulse in Figure 6.20. This underlines
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Figure 6.20: Left panel: angle-integrated ionization probabilities for He+ in
a 800 nm, 4-cycle sin2 pulse and a sech pulse with identical FWHM (in am-
plitude). The peak electric field is E0 = 0.4 a.u. The phase is φ = 0. Right
panel: the probability for different pulse phases for the sech pulse.
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Figure 6.21: The same as in Fig. 6.20, but for a Gaussian pulse.

the influence of the field envelope: because the sech pulse has a faster decrease

in amplitude near the peak of the envelope, the contribution of the saddle pair

is smaller than for the case of a sin2 or Gaussian field. As a consequence, the

LATI become less resolved from the background. The Gaussian pulse results

agree better to the results obtained for the sin2 pulse. The reason is that the

the two envelopes are nearly identical to the peak, provided they have the
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same FWHM (in amplitude).

To conclude, we present results for the helium atom (Ip = 0.903 a.u.). Figure

6.22 (left panel) presents angle-integrated ATI spectra for a sin2 pulse and a

sech pulse, with the same FWHM (in amplitude).
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Figure 6.22: The same as in Fig. 6.20, but for helium, at intensity I = 1×1015

W/cm2. (The Keldysh parameter γ = 0.45.)

Due to the lower ionization potential and the low intensity (where the ion-

ization rates vary rapidly with the electric field amplitude), the effect of the

envelope on the ATI spectrum is stronger than in the case of the He+ ion (see

Figure 6.20). The right panel of Fig. 6.22 shows the angle-integrated spectra

for two different field phases (namely for the case of the symmetrical and anti-

symmetrical electric pulse). For the case of the anti-symmetrical electric field,

the ATI spectrum is not flat, as expected; because of the low intensity, the

asymmetry effects are not strong enough. To increase the intensity for this

case would mean to approach the saturation intensity.
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6.9 Field-phase dependence of emission asym-

metry

Depending on the phase of the laser field, the emission of ionized electrons can

occur in the positive direction of the polarization axis with different probability

than in the negative direction. To asses the importance of the phase effects

in the emission of electrons in the positive/negative direction we define the

asymmetry:

R =
P+ − P−

P+ + P−

, (6.11)

where P+ is the total probability of emission in the positive direction of the

polarization axis and P− is the total probability in the negative direction. The
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Figure 6.23: The asymmetry for direct ionization in He+ for a peak electric
field E0 = 0.4 a.u., at a wavelength of 800 nm. The field is a sin2 field,
encompassing four optical cycles. The two curves show the KSFA results and
the prediction of a simple model based on the exact ionization rates in a static
electric field.

emission probabilities are calculated using the KSFAmodel, by integrating over

the energy of the ejected electron and over the emission angles corresponding to

emission in the positive and negative direction, respectively. The black curve
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in Figure 6.23 shows the variation of R with the field phase. Its variation is

similar to a sinusoidal dependence and it reaches zero for phases φ = 0 and

φ = π, when the vector potential A(t) is anti-symmetrical with respect to the

middle of the pulse (thus, the electrons are emitted with the same probability

in the positive/negative direction of the polarization axis).

From the Simpleman’s model, at a time t0 during the pulse, the electron is

born in the continuum with a momentum along the polarization axis p1 =

−A(t0). The probability of emission depends exponentially on the modulus of

the electric field |E(t0)|. For a sin2 pulse, we have that A(t, φ) = −A(t, π+ φ)

(φ is the field phase) and the same for the electric field. Therefore, by changing

the phase with π, the emission of electrons changes direction. This explains

why the asymmetry factor R in Figure 6.23 satisfies R(φ+ π) = −R(φ).

Starting from the Simpleman’s model, we can calculate the total probabilities

of emission in the positive/negative direction of the polarization axis as:

P+ =

∫ Tp

0

Γ+(|E(t′)|)dt′

P− =

∫ Tp

0

Γ−(|E(t′)|)dt′. (6.12)

In Eqs. (6.12), we assume that the depletion is negligible [i.e.,
∫ t

0
Γ(|E(t′)|)dt′ ≪

1 at all times]. We define the ionization rate Γ+(|E(t)|) as being equal to the

exact ionization rate in the static electric field of magnitude |E(t)| if A(t) < 0,

and zero if A(t) > 0. The latter condition ensures that the emission occurs

in the positive direction: p1 = −A(t) > 0. A similar definition is adopted

for Γ−(|E(t)|), only the condition for emission in the negative direction reads

A(t) > 0, such that p1 = −A(t) < 0. The results are shown by the red curve in

Fig. 6.23. They are in good agreement with the KSFA results which suggests

that for the frequency and intensity used here, the ionization process can be

approximated as adiabatic and occurs via tunneling.

A similar curve for the asymmetry factor R has been obtained in the work

of Chelkowski, Bandrauk and Apolonski [99], based on ab initio calculations.
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Their curve has an offset with a certain phase, so R(φ = 0) 6= 0. This may

be attributed to the Coulomb effects, which are only partially included in the

KSFA model.

6.10 Comparison with ab initio results

In this section, we compare predictions of the KSFA model with exact results1,

aiming at establishing the differences between the two calculations. A possible

way to improve this agreement is suggested.

The usual SFA model doesn’t take into account the Coulomb interaction of the

electron with the atomic core. The only place where the Coulomb interaction

is taken into account is in the ground state used in the SFA amplitude. This

ground state is the exact ground state of an electron bound by a Coulomb

potential. The Krainov Coulomb-corrected SFA accounts for the influence of

the Coulomb potential in the tunneling step of the ionizing electron; it re-

duces to a factor proportional to the Coulomb potential that multiplies the

Volkov solution describing the final wavefunction of the electron. What it

still uncorrected for the Coulomb interaction is the motion of the electron in

the continuum. The reason is that due to the large electric field, the electron

spends little time in the vicinity of the atomic core. The electron’s large excur-

sion amplitudes under the influence of the laser field only justifies neglecting

the Coulomb interaction.

To asses the main differences between the Coulomb-corrected SFA and the

exact results, we study some ATI spectra for two cases. Figure 6.24 shows

the emission spectrum for an electron ejected at an angle θ = 10◦ with the

polarization axis, for a two-cycle pulse. The KSFA results agree quantitatively

well with the results obtained from the integration of the Schrödinger equa-

tion. One should remember that the usual SFA model gives results that are

1The author thanks Dr. R M Potvliege for the ab initio results, obtained using a numerical
code courtesy of Dr. B Piraux.
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consistently lower than those given by KSFA. Also, the ATI peaks energies as

coming form the KSFA are slightly shifted in energy with respect to the exact

results. The energy shift seems to increase with increasing electron energy.
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Figure 6.24: The ionization probability for an ejection angle θ = 10◦ with
respect to the polarization direction for a He+ ion irradiated by a two-cycle sin2

pulse, with φ = π/2. The intensity is 1016 W/cm2 and the carrier wavelength
is 400 nm. The red curve gives the ab initio results and the black curve the
KSFA results.

Figure 6.25 shows the same as Figure 6.24, only for a longer pulse (four cycles).

The general conclusions hold: the positions of the ATI peaks are energy-shifted,

and the KSFA peaks show less structure than the exact peaks, obtained from

the integration of the Schrödinger equation. Qualitatively, the number of ATI

peaks is the same, only their energy differs from the exact value and the

structure is less complicated.

Comparing to the exact spectra, one can say that the KSFA model is satisfac-

tory to some extent, but there are differences in the structure of the ATI peaks

and a small shift in ATI peak-energy is present. Better agreement is expected

for higher laser intensities, or at least smaller frequencies. The comparison is

hampered for the high intensity regime by a lack of data for the exact results.

This is due to the increased numerical difficulty in solving the Schrödinger

equation.
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Figure 6.25: The ionization probability for an ejection angle θ = 10◦ with
respect to the polarization direction for a He+ ion irradiated by a four-cycle sin2

pulse, with φ = π/2. The intensity is 1016 W/cm2 and the carrier wavelength
is 400 nm. The red curve gives the ab initio results and the black curve the
KSFA results.

The shift in the positions of the LATI peaks could be attributed to the big-

ger influence of the Coulomb interaction on the electron trajectories with the

same final (low) momentum state. Some of the electron wavepackets created

after tunneling through the potential barrier are ‘direct’, in the sense that

after emission they propagate away from the atomic core. Other trajectories

(presumably corresponding to the ‘indirect wavepackets’ of Ref. [4]) remain in

the vicinity of the nucleus for a longer time; for these we expect the Coulomb

interaction during the motion of the electron in the continuum, which is not

included in the SFA model, to play a more important role .

A more detailed and complete comparison is presented in Figure 6.26: the

density of probability in the momentum space2 as obtained from the fully

numerical solution of the Schrödinger equation is compared to the predictions

of the KSFA model. This case differs from the ones studied so far in that the

2Courtesy of Dr. Bernard Piraux, from A. de Bohan, “Thèse de Doctorat”, Université
Catholique de Louvain, 2001
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ponderomotive energy is actually smaller than the binding energy (Up = 0.29

and Ip = 0.5 atomic units, respectively). In this regime, it is expected that

many electron trajectories will stay close to the atomic core, before leaving

it, probably experiencing many interactions with the core [57], which agrees

with the observation about the existence of the ‘indirect wavepackets’ of de

Bohan et al. in Ref. [4]. Within the rescattering SFA model (using the atomic

potential as expansion parameter), calculations done in Ref. [57] show that

for the case Up < Ip, the first-order term, or rescattering, is much larger

than the zeroth-order term (which, Coulomb-corrected, gives the KSFA). This

may indicate, according to [57] that the perturbation expansion in terms of

the atomic potential actually breaks down, or converges more slowly. The

Keldysh adiabaticity parameter γ ≈ 1, so we are at the borderline between

the tunneling and the multiphoton regime. In the ab initio calculation, the

ATI peaks are much better defined than in the SFA model and the momentum

distribution extends to slightly higher momentum values. Also, the up-down

asymmetry along the polarization axis Oz is obvious, while the SFA gives a

symmetrical distribution. So, the symmetry breaking could be attributed to

effects related to the Coulomb interaction.

In the same figure, the comparison made in the upper picture with the results

of a semiclassical approximation refers to an earlier version of the SFA, due

to Faisal [63] and Reiss [64]. In the lower picture, we show the results of the

KSFA model, for which an overall qualitative agreement can be seen. For the

comparison to be more relevant, it requires a higher intensity case (where SFA

is expected to be more accurate). At the same time, the numerical difficulty

of the ab initio calculations increases considerably.

A last comparison is made for 4-cycle, sin2 pulse, at an intensity I = 1016

W/cm2, at 400 nm. We compare the ab initio results to the predictions of

the KSFA model for a symmetrical (Figure 6.27) and anti-symmetrical pulse

(Figure 6.28). The interference effect is visible in the ab initio calculation, but

it is less obvious than in the KSFA calculation. This may be due to the shorter
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Figure 6.26: Emission probability in hydrogen, for ejection of the electron
along the polarization axis with momentum pz and in the perpendicular plane
with momentum pn. The laser has a peak intensity of 1.3× 1014 W/cm2, eight
optical cycles and the wavelength is 800 nm. The electric field is symmetrical
with respect to the middle of the pulse. The ab initio result is displayed in the
upper panel [3], while the lower one shows the Coulomb-corrected SFA result.
White lines in the top diagram are the predictions of the SFA in the velocity
gauge [4].
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wavelength of the field (half the value used in Section 6.8).
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Figure 6.27: Angle-integrated ATI spectrum of He+ irradiated by a 400 nm,
4-cycle sin2 laser pulse, with peak intensity of 1×1016 W/cm2. The field phase
is φ = 0. The ab initio result is compared to the KSFA result.

Based on the conclusions from this Section, it appears that the behavior of the

ATI angle-integrated spectrum with the phase of the field described in Section

6.8 should remain valid.

6.11 Conclusions

In this chapter, we have presented predictions of the Krainov Coulomb-corrected

SFA model (KSFA) for direct ionization in short laser pulses. The numerical

results were obtained using the saddle point method. We showed that the

agreement with the exact numerical results is excellent for the pulse parame-

ters used.

The main point is the interference effect in the ATI spectrum and its depen-

dence on the field phase. Only for a symmetrical electric field with respect to
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Figure 6.28: Comparison between the ab initio result and the KSFA result.
The pulse parameters are the same as in Fig. 6.27, only the electric field is
asymmetrical: φ = π/2.

the middle of the pulse there are LATI peaks in the angle-integrated spectrum.

Otherwise, the spectrum is flat for field phases departing from the zero value.

This may suggest a way to measure the absolute phase of a short laser pulse.

The analysis of the influence of pulse parameters, as pulse duration and in-

tensity, shows that the phase sensitivity of LATI manifests only for a small

number of optical cycles. Increasing the pulse duration results in losing the

phase effects, as the ATI spectrum begins to resemble the one for the stationary

field.

We have also analyzed the total ionization probability and compared it to the

results obtained from integration over the pulse duration of the exact ionization

rates in static electric field. The agreement of the KSFA model is much better

that for the usual SFA.

The last part of the chapter compares angle-resolved LATI spectra from the

KSFAmodel to the exact results from the numerical integration of the Schrödinger
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equation. We show that the agreement is good as order of magnitude, but there

is a shift in the energies of the LATI and less structure of the peaks for the

KSFA. The differences may originate in the neglect of the Coulomb interaction

for the motion of the electron after tunneling. A more accurate SFA would

have to incorporate these corrections for the motion of the electron in the

continuum.



Chapter 7

Conclusions

This work is concerned with the study of the predictions of the strong field

approximation model (SFA) for harmonic generation (HG) and above threshold

ionization (ATI) in simple atomic systems. For the case of HG, the non-dipole,

non-relativistic approach of Ref. [22] is shown to be in good agreement with

the fully relativistic calculation of Refs. [1, 32] in the dynamical regime where

relativistic effects are not dominant. The non-dipole approach is based on

including the 1/c correction to the electric and magnetic field components of

the laser beam, which raises the natural question of the inclusion of the next

orders at higher intensities. The answer can be based on two remarks: (i) The

relativistic mass effect is of order 1/c2; by not including it, the model becomes

explicitly non-relativistic, and therefore its predictions cannot be expected

to be correct. The fact that the first relativistic correction is of order 1/c2

allowed in the first place the existence of the intermediate non-relativistic,

non-dipole regime, where 1/c2 corrections are negligible, but 1/c corrections

are not. (ii) Solving the non-relativistic Schrödinger equation for a vector

potential A(ωt− k · r) (hence including all orders of 1/c) is shown to predict

energy bands [100, 101] instead of a continuum spectrum for a free electron in

the field. The energy bands are not present in the relativistic formulation.

We can conclude that the 1/c correction is the only possible non-dipole ex-

tension in this form of the SFA, without directly contradicting the relativistic
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theory. Its analytical simplicity led to a natural extension of the Simpleman’s

model in the non-dipole regime. This suggests a deeper connection between

classical trajectories and the semi-classical approximation, on which the SFA

is based. A further understanding may open the way to control the atomic

processes by controlling the few parameters that govern the contributing tra-

jectories [11].

Regarding ATI, the SFA model (including rescattering) qualitatively repro-

duces the experimental data well and helps in elucidating the role of different

variables, related to the laser pulse or to the atomic species. Quantitatively,

only short range interactions (such as for the case of negative ions) can be mod-

elled in a satisfactory way. We discuss a version of the Coulomb correction of

the SFA as proposed by Krainov (KSFA), and show it to be an improvement

for the long range interactions, but the overall level of agreement with ab initio

results under general pulse conditions remains an open question. A possible

investigation could analyze when the semi-classical propagator, including the

interaction of the electron with the atomic core, is a sufficiently accurate ap-

proximation to the exact propagator. Furthermore, in the same manner as

the KSFA corrects for the tunneling step of the process, a correction for the

Coulomb interaction during the motion of the electron in the continuum can

be done.

Predictions of the KSFA model for ionization in short laser pulses reveal inter-

esting interference features, much richer that for the stationary field. Electron

wavepackets are ejected from the atom at times when the electric field is close

to a maximum, and they interfere. Because the magnitude of each interference

term that corresponds to a certain emission time depends exponentially on

the electric field amplitude when the electron is ‘born’ in the continuum, the

modulations in the ATI spectrum will depend essentially on the pulse param-

eters, such as shape, carrier phase or duration. It is the interplay between all

these parameters that shape the ATI distribution spectrum, making it more

complex than for a stationary field where the carrier phase does not play a role
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and there are only two interfering wavepackets per optical cycle. Brief com-

parisons with ab initio spectra of the KSFA are in good qualitative agreement

and of the same order of magnitude, suggesting that the interference effects are

genuine and should also be present in ab initio results. The latter are difficult

to obtain numerically at the relatively high intensities we employed here. The

confirmation of such effects is still a matter for future research.

To finalize, we hope that the present work would help in a better understanding

of the predictive power and limits of the SFA model and its improvements for

the analysis of HG and ATI.



Appendix A

The dipole Gordon-Volkov
solution

The problem of a charged particle in an external electromagnetic field was first

solved by W Gordon [102] and D M Volkov [61]. Below, we reproduce their

result and introduce notations used in this work.

Consider a charged particle in an external electromagnetic field. We try to solve

the associated quantum mechanical problem (i.e., finding the wave function of

the particle) in the dipole approximation.

By ‘dipole approximation’ we understand that for the terms in the hamiltonian

describing the interaction with the field, we neglect the dependance on the spa-

tial position of the particle, meaning that the field changes over a characteristic

length much bigger than the amplitude of the particle motion. Usually this is

the case for low frequency radiation (long wavelength). As long as the particle

doesn’t move over extended regions in space, the approximation remains valid.

For describing the electromagnetic field, we choose to work in the Coulomb

gauge, in which the field with the propagation vector k is completely described

by the magnetic vector potential A(t,k · r) and the electrostatic potential φ

is set to zero. The magnetic vector potential has to satisfy the condition of

being a transverse field : A · k = 0.
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In the velocity gauge and the dipole approximation, the Schrödinger equation

reads:

i
∂

∂t
|ψ(t)〉 = 1

2

[
− i∇+A(t)

]2|ψ(t)〉 . (A.1)

The easiest way to solve it is to choose the momentum representation for the

wave function ψ̃(t,p) = 〈p|ψ(t)〉 (which corresponds to solving the equation

in the Fourier transformed form). From

i
∂

∂t
ψ̃(t,p) =

1

2

[
p+A(t)

]2
ψ̃(t,p) ,

one obtains :

ψ̃(t,p) = exp

{
− i

2

∫ t

[p+A(τ)]2dτ

}
.

Taking the inverse Fourier transform of the above, we obtain the solution of

(A.1) :

ψp(t, r) = C exp

{
ip · r− i

2

∫ t

[p+A(τ)]2dτ

}
,

with C a normalization constant.

From the normalization condition :

〈ψp(t, r)|ψp′(t, r)〉 = δ(p− p′),

we find the constant C = (2π)−3/2.

Putting it all together, the Volkov solution [61] for a plane wave in the dipole

approximation and using the velocity gauge reads:

ψV v
p (t, r) = (2π)−3/2 exp

{
ip · r− i

2

∫ t

[p+A(τ)]2dτ

}
. (A.2)

To go to the length gauge, one can use the unitary transformation:

|ψV l(t)〉 = exp[iA(t) · r] |ψV v(t)〉

and obtains

ψV l
p (t, r) = (2π)−3/2 exp

{
i[p+A(t)] · r− i

2

∫ t

[p+A(τ)]2dτ

}
. (A.3)
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A general way to write the Volkov solutions in both gauges is:

ψV
p (t, r) = (2π)−3/2 exp

{
iΠV

p (t) · r−
i

2

∫ t

[p+A(τ)]2dτ

}
, (A.4)

where ΠV
p (t) is the momentum eigenvalue for the Volkov solution and reads:

ΠV l
p (t) ≡ (−i∇)ψV v

p (t, r) = p, (length gauge)

ΠV v
p (t) = p+A(t) (velocity gauge). (A.5)
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Non-dipole non-relativistic
Volkov solution

For a charged particle in an external electromagnetic field, the calculation of

the wavefunction including first order corrections in 1/c (c is the speed of

light), was first done by Kylstra, Potvliege and Joachain in [22].

The non-dipole non-relativistic Volkov Green’s function can be expressed as

G
(+)
V (r, t; r′, t′) = −iθ(t− t′)

∫
dpΨL

p(r, t)
[
ΨL

p(r
′, t′)

]∗
, (B.1)

where the function ΨL
p(r, t) is a solution of the time dependent Schrödinger

equation (TDSE) (2.4) with V (r) = 0. Calling Ψp(r, t) the solution of the

TDSE (2.3) with V (r) = 0, introducing the wave function Ψ′
p(r, t) by

Ψp(r, t) = exp

(
i

c

[
−i∇ ·A(ωt) +

1

2
A2(ωt)

]
(k̂ · r)

)
Ψ′

p(r, t) , (B.2)

and recalling that ∇ ·A(ωt) commutes with k̂ · r, it is seen that

i
∂

∂t
Ψ′

p(r, t) =
1

2

(
−i∇+A(ωt) +

1

c

[
−i∇ ·A(ωt) +

1

2
A2(ωt)

]
k̂

)2

Ψ′
p(r, t) .

(B.3)

The Hamiltonian operator in equation (B.3) commutes with the momentum

operator, so that the TDSE is easily solved. Transforming back to the length
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gauge, the non–dipole Volkov wave function reads

ΨL
p(r, t) =

1

(2π)
3

2

exp

(
iπ(p, t) · r− i

2

∫ t

dt′′ [π(p, t′′)]
2

)
. (B.4)

where π(p, t) is defined in equation (2.8). The non-dipole Volkov wave function

(B.4) is also readily obtained by expanding the relativistic Volkov wave func-

tion in powers of 1/c and neglecting terms of orders 1/c2 and higher. It reduces

to the familiar non-relativistic, dipole Volkov wave function when 1/c→ 0.



Appendix C

Singular asymptotics

When we apply the usual saddle point formula, we assume that the exponential

is of Gaussian form and the pre-exponential factors have no singularities. The

presence of a singularity in the pre-exponential term (e.g., a pole or a branch

point) makes the analysis difficult, especially if the singularity is close to one

of the saddle points. A way to deal with this is to use what is called uniform

approximations; they are generalizations of the classical saddle point formulae

which simplify to the standard form, under appropriate conditions (for ex-

ample, when the singularity and the saddle point are far apart, as implicitly

considered in the non-uniform saddle methods).

In our case (the dipole moment in the context of harmonic generation), one

has to deal with the situation when the saddle point is also a pole of first order

in the pre-exponential factor; i.e., we have to consider asymptotic expansions

for model integrals

Jν =

∫
exp[−λf(x)]
(x− x0)ν

dx ; ν > 0, (C.1)

with the first term of the uniform asymptotic expansion (from Appendix B in

[68])

Jν ≃ iν
Γ(ν/2)

2Γ(ν)

(
2 π

λf”(x0)

)1/2

[2λf”(x0)]
ν/2 exp[−λf(x0)], (C.2)

where Γ(x) is the gamma function. For more details and next order terms
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see the book of Borovikov [39]. For ν = 0 one recovers, of course, the usual

standard saddle point formula.



Appendix D

Coulomb corrected ionization
rates

This appendix details the calculation done in [85] and corrects the misprints

in the article.

D.1 Tunnelling ionization by linearly polar-

ized radiation

In the limit of a weak field E0 ≪ Z3 when tunneling ionization is realized, we

can simplify the general expression (5.27) for the energy and angular distribu-

tion of electrons by using the saddle point for the calculation of the integral

(i.e., finding its asymptotic expansion within the constraints on the arguments

imposed by the tunneling regime). The actual integral of the action can be

written as a generalized Bessel function (for a detailed discussion see [103] ) .

The saddle points satisfy the equation :

S ′(ts) ≡ p2⊥ + (p‖ − E0/ω sinωt)2 + Ip = 0 (D.1)
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and in the interval [0, 2π/ω] are given by :

t(1)s =
1

ω
arcsin

[
ω

E0

(
p‖ + i

√
p2⊥ + Z2

)
]

(D.2a)

t(2)s = π/ω − (t(1)s )∗. (D.2b)

For momentum p ≪ Z, one can see that the real part of the saddle times

corresponds to t = 0 and t = π/ω, when the electric field is maximal.

The interference between these two saddle points is responsible for oscilla-

tions in the photoelectron angular distribution. From the theory of the saddle

approximation, the integral in 5.27 can be written as:

A =

∫ 2π/ω

0

exp[iS(t)]dt =
∑

1,2

√
2πi

S ′′(ts)
exp
[
iS(ts)

]
. (D.3)

Using the energy conservation for the absorption of N photons, we note that

S(π/ω − x∗) = Nπ − S(x)∗ (D.4)

S ′′(π/ω − x∗) = −S ′′(x)∗,

which means together with (D.2) that the contribution from the second saddle

is just the complex conjugate of the contribution from the first, apart from a

phase factor exp(iNπ). From

ρeiφ + eiNπρe−iφ = 2ρeiNπ/2 cos(φ− nπ

2
),

with qs ≡ ρeiφ ≡
√

2πi

S ′′(t
(1)
s )

exp
[
iS(t

(1)
s )
]
we get from (D.3):

|A|2 = 2|qs|2
{
1 + (−1)N cos[2 arg(qs)]

}
. (D.5)

To carry out the full calculation, we need expanding the expressions in powers

of the electric field amplitude E0. For the saddle point, we obtain:

t(1)s =
p‖ + i

√
p2⊥ + Z2

E0

+O( 1

E3
0

).
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Note that for low momentum, the real part of one saddle is close to zero, while

for the other will be close to half of the period of the oscillating field (see above

comments).

The second derivative of the action (after expanding in power series in electron

momenta and inverse of powers of the electric field amplitude) is given by:

S ′′(t(1)s ) = iFZ

(
1 +

p2⊥
2Z2

)
+O( 1

E0

). (D.6)

(Remember that the probability for the electron to have a momentum perpen-

dicular to the polarization direction is very small, as we will see below).

Let us calculate the exponent in the saddle point approximation:

Re[S(t(1)s )] =
Fp‖
ω2

+ p‖
p2‖ + 3(p2⊥ + Z2)

6E0

+O( 1

E3
0

)

Im[S(t(1)s )] =
(p2⊥ + Z2)3/2

3E0

− ω2(p2⊥ + Z2)3/2

30E3
0

(−5p2‖ + p2⊥ + Z2) +O( 1

E5
0

)

(D.7)

Further, expand D.7 in powers of the momenta, and keep the lowest (quadratic)

terms:

Re[S(t(1)s )] =
Fp‖
ω2

[
1 +

γ2

2
+
γ2

6

p2 + 2p2⊥
Z2

]
+O( 1

E3
0

) (D.8a)

Im[S(t(1)s )] =
Z3

3E0

(1− γ2

10
) +

Z

2E0

p2⊥ +
γ3

6ω
p2‖ (D.8b)

Here γ = ωZ/E0 is the Keldysh adiabaticity parameter.

The complex argument of the saddle contribution from the first saddle point

originates from the real part of the action and half the argument of the second

derivative of the action (see D.5); because the second derivative comes as
√
i/S ′′, its dominant contribution in the tunneling limit is real [see (D.6)], so

that the argument of the saddle interference term is given by the real part of
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the action only. In conclusion:

∣∣∣
∫ 2π/ω

0

dt exp[iS(t)]
∣∣∣
2

=
4π

ZF
exp

[
− 2Z3

3E0

(1− γ2

10
)− Z

E0

p2⊥ −
γ3

3ω
p2‖

]{
1+

(−1)N cos
[
2
Zp‖
ωγ

(1 +
γ2

2
) +O( 1

E0

)
]}

(D.9)

If we choose to expand the action in momenta only and not in powers of

the electric field strength E0, the interference term would be
2Zp‖

ωγ

√
1 + γ2

[compare to Eq. (42) in [68], where the authors do a similar calculation].

Integrating the distribution (which doesn’t depend on φ) over the momentum

solid angle

dΩ = sin θdθdφ ≃ θdθdφ

neglecting the highly oscillating cos function and remembering that

p⊥ ≃ p θ and p⊥ ≃ p,

we obtain (up to a numerical factor which will be included in the end to avoid

confusion):

∫
pN

∣∣∣∣∣

∫ 2π/ω

0

dt exp[iS(t)]

∣∣∣∣∣

2

dΩ =
2

pN

(2π
Z

)2
exp

[
− 2Z3

3E0

(1− γ2

10
)− γ3

3ω
p2
]

(D.10)

The integration over the p⊥ was done for θ in small intervals around θ = 0 and

θ = π, where the distribution decreases exponentially (the electron emission

can occur with equal probabilities in both directions of the axis of polarization);

the integral can be thus replaced by two times a Gaussian-like integral.

When the frequency of the field decreases ω → 0 the momentum spectrum of

the ejected electrons becomes continuous, so we can replace the summation

over the number of absorbed photons N according to the rule:

∑

N

=

∫
wdN =

∫
(w/ω)d(Nω) =

∫ ∞

0

(w/ω)pdp,

where we used the energy-conservation law.
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To conclude, in the tunneling regime the sum over the multiphoton contribu-

tions reduces to:

∑

N

pN

∣∣∣∣∣

∫ 2π/ω

0

dt exp[iS(N)(t)]

∣∣∣∣∣

2

= 2
(2π)3E0

(2ωZ)2

√
3E0

πZ3
exp

[
− 2Z3

3E0

(1− γ2

10
)
]

(D.11)

From 5.27, we can write the limit ionization rate in the tunneling regime:

wl =
4Z5

E0

√
3E0

πZ3
exp

[
− 2Z3

3E0

(1− γ2

10
)
]

(D.12)

We can see that the ADK [90] result is obtained exactly for the ionization

rate. The ionization rate in the field of linear polarization wl is connected to

the ionization rate in the field of circular polarization wc by the well-known

relation

wl =

(
3E0

πZ3

)1/2

wc.

This result is correct only in the tunneling regime, so wl ≪ wc. In the case of

barrier-suppression ionization, both ionization rates are of the same order of

magnitude.

D.2 Tunnelling ionization by circularly polar-

ized radiation

In the tunneling limit, we have the adiabatic Keldysh parameter γ = ωZ/E0 ≪
1 and the field strength is small compared to the barrier suppression field

strength. Therefore we can use the asymptotic representation for the Bessel

function:

JN(N/ coshα) = (2πN tanhα)−1/2 exp[N(tanhα− α)]. (D.13)

Instead of the angle θ between the direction of propagation of the ejected

electron and the direction of propagation of the polarized wave, we will use

the small angle

ψ =
π

2
− θ,
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between the ejected electron and the plane of polarization. Further, we intro-

duce the small number

δN = N − E2
0/ω

3 − Ip/ω. (D.14)

Comparing the argument of the asymptotic Bessel function representation with

the argument as appears in (5.32) with pN given by the energy conservation

condition, replacingN = N(δN) from (D.14) and θ with ψ as above, we obtain:

coshα =

1 +
ω3

E2
0

δN +
1

2

(
ωZ

E0

)2

cos(ψ)

√

1 +
2ω3

E2
0

δN

.

Expanding in power series of inverse of the field strength 1/E0 and |δN | ≪ 1:

α ≃
Z ω

E0

−
Z3 ω3

24E3
0

−
Z δN ω4

2E3
0

+
δN2 ω5

2E3
0 Z

+

[
E0

2Zω
+O(

1

E0

)

]
ψ2 +O(

1

E3
0

, ψ4).

Following the same changes in the exponential of the Bessel asymptotic ex-

pansion, we get to the same order (after constructing a binomial expression in

δN):

2N(tanhα− α) ≃ −2Z3

3E0

(1−
γ2

15
)− ZF

ω2
ψ2 − Z ω4

E3
0

(
δN − Z2

6ω

)2

(D.15)

The pre-exponential factor in (D.13) has the series expansion:

N tanhα =
FZ

ω2
+O(ψ2).

Before putting it all together, we write one last expansion:

pN =
E0

ω

√
1 +

2ω3

E2
0

δN ≃ E0

ω
+O(

1

E2
0

, δN)

and the ionization rate (5.32) becomes:

dwc/dΩp =
2ωZ6

π2E2
0

∑

N≥N0

exp

[
− 2Z3

3E0

(1−
γ2

15
)− ZF

ω2
ψ2 − Z ω4

E3
0

(
δN − Z2

6ω

)2]
.

(D.16)
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One can see that the emission of electrons has a maximum in energy approxi-

matively at
p2max

2
≃ E2

0

2ω2
+

2

3
Ip

(see Fig. 1 in [104]) and that the angular distribution decreases exponentially

as moving away from the polarization plane.

We also quote the result:

∑

N≥N0

pN J
2
N

(
pNE0 sin θ

ω2

)
tunneling limit−−−−−−−−→

E0

2Zω

√
E0

πZ
exp

[
− 2Z3

3E0

(1−
γ2

15
)− ZF

ω2
ψ2

]
(D.17)

Summing over the number of absorbed photons in (D.16):

dwc =
2Z6

πω

1√
πZE0

exp

[
− 2Z3

3E0

(1−
γ2

15
)− ZF

ω2
ψ2

]
cosψ dψ dφ. (D.18)

and finally, the total ionization rate (identical to the ADK result, as expected,

for ionization of the s states):

wc =
4Z5

E0

exp

[
− 2Z3

3E0

(
1−

γ2

15

)]
. (D.19)

The presence of the Keldysh factor γ in (D.19) is often referred to as an

adiabatic correction to the static field ionization rate.



Appendix E

Computational methods

E.1 Statement of the problem

In order to calculate quantities such as ionization probabilities (for short

pulses) and ionization rates (for stationary pulses) in the framework of the

SFA (strong field approximation), one has to deal, up to a numerical factor,

with integrals of the form:

L =

∫ Tp

0

dt
exp[iS(p, t)]

S ′(t)
, (E.1)

or

V =

∫ Tp

0

dt exp[iS(p, t)], (E.2)

where Tp is the duration of the laser pulse.

The two expressions represent the Keldysh-like transition amplitudes in length

gauge (E.1) and velocity gauge (E.2). The latter is identical (again up to

a numerical factor) to the Krainov Coulomb corrected ionization amplitude

(which is the same in both the length gauge and velocity gauge).

One common feature of the two forms is the presence of the oscillatory term

exp[iS(p, t)], where S(p, t) =
∫ t

0
{[p+A(t′)]2/2+Ip}dt′ is the modified classical

action of an electron with final canonical momentum (or the field-averaged

value of the kinetic momentum) p, in a linearly polarized electromagnetic field
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within the dipole approximation. The atom/ion ionization potential is Ip.

Because |S(p, t)| ≫ 1, we can apply the saddle point method to obtain nu-

merical estimates for the integrals. The advantage of the saddle point method

is that once the saddle points are calculated, the integrals can be written as a

sum over just a few saddle points. A short description of the saddle method

is given in the next section.

The higher the values of the classical action, the higher the accuracy of the

saddle point estimate and the more difficult the calculation of the integral

along the real axis is. This makes the saddle point method best suited for our

task, from the point of view of accuracy and duration of the calculation.

E.2 Saddle point method

E.2.1 General introduction

The theory behind the saddle point method relies on the possibility of chang-

ing the path of integration in the complex plane taking into account the possi-

ble singularities of the integrand inside the contour, according to the Cauchy

residue theorem. The path is deformed such as to go through the so-called

critical points of the integrand (in our case the end points of integration and

the points where the derivative of the action is zero). A second important

detail is that in the vicinity of the saddle point, the exponential can decay or

increase, depending on the orientation of the path in the complex plane cross-

ing the saddle or its vicinity. Choosing the path on which the integrand decays

exponentially assures that the main contribution to the integral will come from

the vicinity of the saddle. All contributing saddles must be summed over.

For the integrals (E.1) and (E.2), we can write the asymptotic expansions (only
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the leading terms are given):

V =
∑

ns=1,2,...

exp[iS(ts)]

√
2πi

S ′′(ts)
+ boundary terms , (E.3)

and

L =
∑

ns=1,2,...

πi
exp[iS(ts)]

S ′′(ts)
+ boundary terms. (E.4)

The momentum p is still present in the expression of the action, but we choose

not to write it for simplicity.

The boundary terms are the asymptotic contributions to the integral coming

from the endpoints of the integration interval (the beginning and the end of

the laser pulse). In the case of an ultrashort pulse, the manipulation of these

terms proves to be of great importance for calculating physical quantities.

E.2.2 Boundary terms

The existence of boundary terms comes from the fact that in theory the laser

pulse is represented as having a finite temporal duration, while in reality the

laser pulse is very slowly turned on and off such that the boundary effects, if

present, should be negligible. In actual calculations, including the boundary

terms can affect the results (such as energy spectrum of ejected electrons) by

introducing spurious oscillations, which cannot be physically correct.

There are two contributions to the amplitude of ionization: one comes from

the boundaries of the integration interval and the second one comes from the

vicinity of the saddle points [see Subsection (E.5.1) for an intuitive picture]. In

view of the comments above, we make the ansatz that the physically correct

result is given by the saddle point contribution only. To see that, we point out

that in some cases the magnitude of the boundary contribution can be much

bigger than the saddle contribution. The particular form of the boundary term

can be responsible under such circumstances for an oscillatory pattern in the

result, as we will prove in the following.
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The boundary terms are given by a simple procedure (see [39], p.8), which

consists of forcing an integration by parts after re-writing the integrand:

∫ b

a

f(x)eiS(x)dx =

∫ b

a

dx
f(x)

iS ′(x)
[eiS(x)]′

=
f(x)

iS ′(x)
eiS(x)

∣∣∣∣
b

a

−
∫ b

a

dx

[
f(x)

iS ′(x)

]′
eiS(x).

(E.5)

The procedure can be repeated in order to obtain higher order boundary terms.

Our model integrals now read:

V =
∑

ns=1,2,...

exp[iS(ts)]

√
2πi

S ′′(ts)
+

exp[iS(t)]

iS ′(t)

∣∣∣∣
Tp

0

+ . . . (E.6)

and

L =
∑

ns=1,2,...

πi
exp[iS(ts)]

S ′′(ts)
+

exp[iS(t)]

iS ′(t)2

∣∣∣∣
Tp

0

+ . . . (E.7)

Let us analyze the boundary term for the (V) form of the integral [Eq. (E.6)]:

exp[iS(Tp)]

iS ′(Tp)
− exp[iS(0)]

iS ′(0)
= 2

cos[S(Tp)/2]

i(p2/2 + Ip)
exp

[
i S(Tp)/2

]
.

We have assumed that the vector potential satisfies the condition A(0) =

A(Tp) = 0.

One can see that the magnitude of this term decreases for higher electron

energies, so the boundary terms are expected to be more influential in the

low energy part of the electron spectra. The presence of the cosine factor will

cause oscillations in the spectrum, with minima at electron energies given by

the condition S(p, Tp) = kπ, with k an integer number. It is interesting to note

that for the case of a stationary field, this condition is automatically fulfilled,

as it is nothing else but the condition of conservation of energy for the ejected

electron. Actually, it can be shown that because of the energy conservation,

the boundary terms are zero to all orders.

As an example, we show in Fig. E.1 the differential ionization probability in the

laser polarization direction. The differential ionization probability is defined
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Figure E.1: Angle-resolved ATI energy spectrum generated by a 2-cycle sin2

pulse (left panel) and a 4-cycle one (right panel) with zero absolute phase,
λ=800 nm and intensity I = 5× 1015 W/cm2 in He+. The electron is emitted
along the laser polarization direction. Panel (a): the smooth curve (black)
represents the saddle point result and the oscillating curve (red) the exact
calculation from which the first order boundary term contribution has been
subtracted. Panel (b): the two results are almost indistinguishable on the scale
of the graph.

as:

w =
|Mp|2d3p
dΩpdEp

= p|Mp|2. (E.8)

The amplitude of ionization Mp is calculated with the Krainov Coulomb cor-

rected formula and the absolute phase is defined as the carrier-envelope relative

phase for the laser pulse. In panel (a), the difference between the smooth saddle

result and the exact one from which the first order boundary contribution has

been subtracted [see Eq. (E.6)] is attenuated at high electron energies due to

next order boundary terms. According to our ansatz, these contributions have

to be further subtracted from the integral in order to get correct predictions

for the physical quantities of interest.

In panel (b), the same results are shown for a 4-cycle pulse. Because the

pulse is longer, the higher order boundary terms become negligible and the

agreement with the saddle calculation is very good. The oscillations in panel

(b) are physical characteristics of the electron spectra, while in panel (a), the
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oscillations in the red curve are due solely to the interference pattern coming

from boundary terms, which is un-physical as explained at the beginning of

this section.

In general, the next order boundary terms depend on the electric field and its

derivatives. Thus, the boundary contribution will be negligible for sufficiently

smooth vanishing electric fields at the beginning and the end of the pulse or

for very long pulses.

E.2.3 Comparison with exact results

If the asymptotic expansion is straightforward to obtain for the velocity gauge

form [Eq. (E.2)], it is more difficult for the length gauge form [Eq. (E.1)]

because the saddle points are also poles of the integrand. Nonetheless, the

corresponding asymptotic formula can be found in the literature (see [105],

p.308, Problem 7.12 and for the general case of algebraic singularity Section

9.4 in the same book). A simple way of deducing the leading asymptotic

contribution in such cases is given by Gribakin and Kuchiev [68].

Comparing the exact numerical results to the results obtained by using the

saddle method, good agreement is obtained for regular saddle points as seen

in panel (b) of Fig. E.1. For the case of singular saddle points, showed in

Fig. E.2, the agreement is good qualitatively. However, the results differ by

apparently a constant factor.

The overall agreement is good and given that the saddle point method is fast, it

allows for satisfactory qualitative and quantitative predictions, especially when

calculating the total ionization probabilities, which require a large number of

integrals to be evaluated.
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Figure E.2: Angle-resolved ATI energy spectrum calculated in the length
gauge, generated by a 4-cycle sin2 pulse with zero absolute phase, λ=800 nm
and intensity I = 6 × 1013 W/cm2 in krypton (Ip = 14 eV). The electron is
emitted along the laser polarization direction. The lower (black) curve shows
the saddle results and the upper (red) curve shows the exact results.

E.3 Finding the saddle points

E.3.1 General considerations

The principal difficulty when applying the saddle point method is to find the

saddle points, which means that one has to solve the nonlinear equation:

dS(ts)

dt
≡ [p‖ + A(ts)]

2

2
+

(
p2⊥
2

+ Ip

)
= 0. (E.9)

For physical reasons, we look for solutions ts with the real part in the temporal

interval of the pulse (0 < Re(ts) < Tp).

Because the equation has real coefficients, its solutions come in complex con-

jugate pairs. Only one solution of the pair contributes to the integral, as the

exponential might ‘explode’ in some of them. As we ask for these integrals

at a series of increasing electron momenta, the calculation could use a good

initial guess for the saddle points (for example at p = 0) and then increase p‖



Appendix E. Computational methods 168

and p⊥ by a small step, using the values of ts obtained at each step as guesses

for the next step.

To calculate this solution numerically, one needs a good initial guess which is

then refined by a specialized subroutine, until convergence is achieved, provided

the two roots are sufficiently separated in the complex plane. If the solutions

are close, the routine might get ‘confused’ when trying to converge to one of the

roots. To avoid this, in practice we factorize the equation (E.9) and calculate

the solutions for only one of the following factors:

(
p‖ + A(ts) + i

√
p2⊥ + 2Ip

)(
p‖ + A(ts)− i

√
p2⊥ + 2Ip

)
= 0. (E.10)

The solutions for either of the factors in Eq. (E.10) can have both positive and

negative imaginary parts. As it will be shown later, the relevant solution is

the one with positive imaginary part.

E.3.2 Approximate saddle points

An approximate solution for the saddle times can be obtained by making use of

the Simpleman’s model, where the approximate ‘birth time’ t0 of the electron

is obtained by solving the equation p‖ + A(t0) = 0, numerically.

To find the saddle point close to t0, we choose to write the first terms of a

Taylor expansion for (E.9) around t0 and obtain

dS(ts)

dt
= Ip +

p2⊥
2

+
E(t0)

2

2
(ts − t0)2 = 0, (E.11)

from which it follows a pair of solutions :

ts − t0 = ±i
√
2Ip + p2⊥
|E(t0)|

. (E.12)

The approximation is good only if the electric field is not zero at t = t0 and

if the transversal momentum p⊥ is small compared to the ionization potential

Ip. In practice, we ask that |E(t0)| ≥ 0.5max[E(t)]. Knowing the position of
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the saddle point and the Taylor expansion of the action first order derivative,

we can approximate the action at the saddle point

S(ts) = S(t0) +

∫ ts

t0

dt
dS(t)

dt

and its derivatives as

S(ts) = S(t0) + i
1

3

(2Ip + p2⊥)
3/2

|E(t0)|
, (E.13a)

S ′′(ts) = i(2Ip + p2⊥)
1/2|E(t0)|, (E.13b)

S ′′′(ts) = E(t0)
2, (E.13c)

where the saddle point with positive imaginary part was used. From here we see

that using the solution with negative imaginary part would make exp[iS(ts)]

‘explode’ because the exponent is positive.

In conclusion, we can find approximate solutions to the saddle equation, close

to the real times t0. Using only the approximate saddles gives rise to a simpli-

fied version of the saddle point method, allowing for good qualitative calcula-

tions.

To summarize, we present an easier version of the saddle point method that

doesn’t require finding the exact saddle points in the complex plane, but uses

an approximate expression [see (E.12)]. The method follows the steps below:

• Find real solutions for the equation p‖ + A(t0) = 0, such that |E(t0)| ≥
0.5max |E(t)|. The solutions exist only if |p‖| is at most equal to the

amplitude of the magnetic vector potential. This implies that we can

only describe the spectrum up to a certain (high) electron energy.

• Write the model integrals (without the boundary terms) as

L =
∑

n0=1,2,...

π exp[iS(t0)]

(2Ip + p2⊥)
1/2|E(t0)|

exp

[
− 1

3

(2Ip + p2⊥)
3/2

|E(t0)|

]
(E.14)
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and

V =
∑

n0=1,2,...

√
2π exp[iS(t0)]√

(2Ip + p2⊥)
1/2|E(t0)|

exp

[
− 1

3

(2Ip + p2⊥)
3/2

|E(t0)|

]
. (E.15)

This simplified version of the saddle point method has the advantage that it

doesn’t require the exact saddle points, which makes it easy to implement as

described above. One should note that the saddle points are estimated by

using a simple quadratic expansion around the birth times of the electron.

The error of the estimates has to be as low as possible as they appear in the

exponent in the saddle point formula. It turns out that the quadratic estimates

give a fairly accurate result in the range of low electron energies for which the

imaginary parts of the saddle points are small [the low energy electrons tunnel

out when the laser electric field is close to the maximum, thus the imaginary

part of the saddle solutions is small, see Eq. (E.12)]. An example is given in

Fig. E.3.

The departure of the simplified saddle results from the saddle point estimate

increases with electron energy. The difference is both in magnitude and rel-

ative phase. Higher order estimates of the saddle points [see Eq. (E.11) for

a quadratic estimate] would improve the result, but the extra difficulties may

not justify their use over the full saddle method.

E.3.3 Exact saddle points

For finding the exact saddles, one needs to find all the solutions for the non-

linear equation (E.9) or for one of the factorized branches (E.10) in a finite

region of the complex plane. Such a problem has been addressed intensively

in the literature of numerical methods and in the case of only one unknown,

algorithms are available to isolate the roots in a certain interval and then use

a Newton-like method to refine the solution.

A reliable method is discussed in [106] and it is based on the property that the
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Figure E.3: Angle-resolved ATI energy spectrum calculated by using the
Krainov Coulomb corrected ionization amplitude, generated by a 4-cycle sin2

pulse with zero absolute phase, λ=800 nm and intensity I = 5.6×1015 W/cm2

in He+. The electron is emitted along the laser polarization direction. The
upper (black) curve shows the saddle results and the lower (red) curve shows
the saddle simplified version results.

integral 1/(2π)
∮
dzf ′(z)/f(z) on a contour encircling the region of interest is

equal to the number of zeros (including multiplicities) of f(z) interior to the

contour considered. Then the contour is divided in smaller regions, containing

only one root. The algorithm gives all roots in the region considered.

A more direct approach to find the saddle points is to use the Mathematica

package [77] and its ContourPlot command. For example

ContourPlot[Log[Abs
[dS(p=0,x+Iy)

dt

]
], {x, 0, Tp}, {y, 0, 5}],

which draws a density plot of the absolute value of the action derivative for

all times with the real part in the interval when the pulse is acting and the

imaginary part chosen such that the saddle points would become visible (the

‘Log’ function is used to increase contrast). An example is shown in Fig. E.4

for a 4-cycle laser pulse with wavelength of 800 nm described by the magnetic

vector potential with zero phase A(t) = E0/ω sin t sin2(t/8) interacting with a

He+ ion. The saddle points can now be read directly from the graph.
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Figure E.4: Some of the saddle points for the case of a He+ ion irradiated by
a 4-cycle laser, at an intensity of 1016 W/cm2 and wavelength 800 nm. The
laser pulse is described by a sin2 envelope with zero absolute phase.

One other possibility is to start with the birth times t0 from the Simpleman’s

model (the solutions of p‖+A(t0) = 0) and then use them as guesses for either

equation in (E.10). The solution is propagated while increasing the imaginary

term from zero up to the actual value in small steps. One has to be careful not

to choose a step so large that the solution at the next step would depart too

much from the solution at the previous step and the numerical routine would

not be able to find it. We found that a suitable step is |E(t0)|/20. As the

contribution of a certain birth time t0 to the integral depends exponentially on

the electric field magnitude |E(t0)| [see Eqs. (E.15) or (E.14) where the electric
field is present in the exponential], only those points with non-negligible electric

field should be considered (i.e., in practice we use the condition |E(t0)| ≥
0.6E0).
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E.4 Improved saddle point method - the high

intensity case

It is expected that with increasing intensity, and therefore with increasing

action (roughly in proportion to both the laser intensity and the temporal

length of the pulse), the saddle point method would give more accurate results.

Unfortunately, this is not the case. The reason for this is revealed by analyzing

the behaviour of the exponential, when crossing the saddle point along the

saddle axis and taking into account the third order derivative of the action at

the saddle point (remember that only the quadratic variation is included when

deducing the saddle point formula).

The model integral looks like
∫
dx exp(−a

2
x2 + i

b

6
x3) with a < 0, Im(b) = 0. (E.16)

Following the simple version of the saddle point method, we can estimate the

values of a = [d2S(ts)/dt
2]/i and b = d3S(ts)/dt

3 from (E.13b) and (E.13c):

a = (2Ip + p2⊥)
1/2|E(t0)| (E.17a)

b = E(t0)
2. (E.17b)

Therefore, with increasing electric field, the third derivative increases, causing

oscillations in the quadratic decaying of the exponential (see Fig. E.4). This

makes the gaussian integral representing the saddle point formula ineffective

and to account for the oscillations we need to treat the cubic term explicitly.

Fortunately, this can be done analytically using the Airy function:
∫ ∞

−∞

dx exp(−a
2
x2 + i

b

6
x3) = 24/3

√
π/b1/3 exp

(
a3

3b2

)
Ai

(
a2

22/3b4/3

)
(E.18)

A more accurate way to define the range of applicability of the usual saddle

point formula is to follow the general techniques from the asymptotic theory.

Namely, for the usual saddle formula to be valid, the magnitude of the cubic

term has to be much smaller than that of the quadratic term, within the range
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Figure E.5: Exponential decay (gaussian) and gaussian with cubic oscillatory
factor [see (E.18)].

of the saddle point. With the coefficients of the quadratic and cubic terms

approximated by (E.17), we arrive at the condition:

E0 ≪
9

2
Z3, (E.19)

with E0 the amplitude of the electric field. The condition of validity found in

[107] for a stationary field, but using exact expressions for the derivatives a

and b, is E0 ≪ 9Z3.

The formula (E.18) can be used with a, b either given by (E.17) in the simpler

version of the saddle point method or with a and b calculated by using the

exact second and third derivative of the action at the saddle point. Then, we

simply replace the term
√

2πi/S ′′(ts) from the classical saddle point formula

by the expression given in (E.18). This is to be used in integrals of the form

(E.2), when no singularity is present. For the integrals of type (E.1), a similar

formula can be written but it involves more complicated functions.

This issue has been also addressed by Ortner and Rylyuk in [108]. Contrary

to what we found, these authors concluded that the approach described above

wouldn’t work. The reason given is that integrals containing cubic terms would

be divergent anywhere in the complex plane. As seen from the simple version

of the saddle method, the coefficient of the cubic term [see Eq. (E.17b)] in this

approximation is real, meaning that the contribution of the cubic term to the
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integrand is purely oscillatory and therefore poses no difficulties. The exact

value of the cubic coefficient (obtained by taking the third derivative of the

action at the exact saddle point) has a very small imaginary part which makes

the calculation presented here still possible, with no divergence, even for the

full saddle point method where the exact saddle points are used.

As an example, we analyze the error made by using the standard saddle point

method in the case of a He+ ion irradiated by a 800 nm, 4-cycle laser pulse, at

an intensity of 8.8×1015 W/cm2 for detachment in the direction of polarization.

1 1.2 1.4 1.6 1.8 2
p

2
/2 (units of Up)

0

4

8

R
el

at
iv

e 
er

ro
r 

(%
)

Figure E.6: The relative error of the differential ionization probability for
emission along the polarization direction, in the case of a He+ ion irradiated
by a 800 nm, 4-cycle laser pulse, at an intensity of 8.8 × 1015 W/cm2 and
zero absolute phase. The black curve shows the error made by using the usual
saddle method and the red curve shows the resulting error when using the
improved saddle method.

We found that the relative error in the high energy region of the spectrum

close to cutoff is of the order of 6% with an increasing trend, while for the

improved saddle method, the relative error is 2% and doesn’t increase with

increasing electron energy.

Because the effect of the cubic term increases with intensity of the external

field, making the usual saddle formula inapplicable, the advantage of the im-
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proved saddle method is that it extends the domain of applicability for the

usual saddle point method to higher values of the laser intensity.

E.5 Numerical integration

In order to directly integrate (E.1) and (E.2), special methods have to be used

due to the highly oscillatory nature of the integrand. Classical methods such

as Gauss quadratures or the Simpson method converge, but at the cost of a

large number of sample points required to resolve the oscillations, which make

them time consuming and thus inefficient. An exact calculation can also be

useful for assessing the validity of the saddle approximation.

We propose two methods: one is based on integration in the complex plane,

using the properties of the saddle points and the second one uses a novel

technique recently developed in the literature. They are comparable in perfor-

mance and, although slightly slower, the latter is simpler and more general as

it doesn’t require to calculate the saddle points of the integrand.

E.5.1 Method I - using the saddle points

A fast method can use the basic ideas of the saddle method, namely that the

integrand decreases exponentially in the vicinity of the saddle points. This

requires the knowledge of the positions of the saddle points, which presents no

difficulty as shown in the previous section. Once they are calculated, we choose

the one with the lowest (positive) imaginary part and instead of integrating

along the real axis, we deform the contour as presented in Fig. E.7.

To illustrate the advantage of the method, we show in Fig. E.8 the real part of

the integrand as in the Krainov Coulomb corrected amplitude [see Eq. (E.2)],

for the same parameters as in Fig. E.4, but for an intensity I = 5×1015 W/cm2

and emission along the laser polarization direction. The energy of the emitted

electron is 0.2Up. The letters define the path in the complex plane, as pictured
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Figure E.7: The deformation of the integration contour in the complex plane to
avoid strong oscillatory behaviour along the real axis. The full curves represent
the exponential decay of the integrand in the vicinity of the saddle points.

in Fig. E.7. The exponential decrease in the vicinity of the end points (A) and

(D) is related to the boundary term contribution [see Subsection E.2.2]. In

our particular case, their magnitude is much higher than the contribution of

the saddle points (red curve). The peaks on the red curve are located near the

saddle points and their height is in proportion to how close the saddle points

are to the integration path (BC).

The upper panel shows the real part of the integrand along the real axis. We

choose to show only one tenth of real axis, otherwise it is difficult to see the

details due to rapid oscillations.

It now becomes easy to integrate the function, as the oscillatory behaviour has

been changed to an exponential decay.

The way the integration contour must cross the lowest saddle point is related

to the directions of the steepest descent (pictured in Fig. E.7) and steepest

ascent axes (the paths on which the absolute value of the integrand decreases

respectively increases exponentially). The integration contour must be chosen

such as to be as close as possible to the steepest descent path which can be
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Figure E.8: The integrand behaviour in the complex plane (lower panel) and
along the real axis (upper panel). The letters correspond to the integration
path in Fig. E.7. For simplicity, only a part of the real axis has been repre-
sented. The inset in the lower panel shows the integrand along the beginning
of the BC path.

approximated with the axis of the saddle point. The latter contains all x such

that Re
[
iS

′′(ts)
2

(x− ts)2
]
≤ 0 (for more details see [109], p.84). For all cases of

interest this has been found to be almost parallel to the real axis, so that the

integration path can go through the saddle point parallel to the real axis, as

shown in figure. For the case of the integral (E.1), the height of the contour is

chosen smaller than the imaginary part of the saddle point closest to the real

axis, because of the singularity. For practical purposes, a value of 0.9 Im(ts)

was taken.

E.5.2 Method II - integration along real axis

The second method is based on an approach proposed by Levin [110] and

further developed by Evans and Webster [111].
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Levin’s idea is to write

∫
f(x)eiq(x)dx = y(x) exp[iq(x)]. (E.20)

By differentiating the equation he obtains a differential equation for the un-

known function y(x). Levin shows that there is a solution to this equation

which is not oscillatory and he solves it by using collocation method with a

non-oscillatory function basis (polynomials) in order to eliminate the (other)

oscillatory solution. To get more precision, more and more functions have to

be used and the method becomes unstable (the linear system to be solved

becomes ill-conditioned). Evans and Webster improved the method by using

Chebyshev polynomials to form the collocation basis set, and the problem is

no longer ill-conditioned. But for long integration intervals, it becomes more

and more time demanding to solve linear systems of equations with a large

number of variables due to a larger number of basis functions.

To avoid those difficulties, we adapted their method by writing a recursive pro-

cedure which in practice is fast and reliable. Our method uses a small number

of Chebyshev polynomials (between 10 and 20) to reduce the dimensions for

the linear system to be solved. It begins by calculating the integral for a

given interval with the initial function basis (containing for example the first

15 Chebyshev polynomials) and then re-calculates it by adding to the basis

the next order polynomial. If the accuracy test is passed, the routine picks the

next interval to analyze, if not, the current interval is divided in half and it

begins again with each of them, until the whole integration interval is covered.

The novelty of the algorithm consists in devising a suitable strategy to inte-

grate an oscillatory function over a long interval. For such intervals, just by

increasing the polynomial base as suggested by the authors, although numeri-

cally stable and convergent, the execution time increases beyond practical use.

In our method, the number of polynomials is kept as low as possible to the

exchange of dividing the integration interval in manageable parts.

When applied to our model integrals, the integration time is considerably
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smaller compared to an integration using the trapezoidal method and a high

accuracy can be achieved. This way, it can be applied successfully to deal with

similar integrals, as encountered in atomic physics.

E.6 Conclusions

We analyzed ways to calculate the ionization amplitudes within the SFA. The

most direct approach that is suitable given the characteristic of the problem

at hand (strongly oscillatory behaviour of the integrand) is the saddle point

method which gives relatively accurate numerical results for a reasonably short

computational time. It only requires an efficient way to calculate the complex

saddle points. Methods to do that were presented along with an easier version

of the saddle point method which avoids using the exact saddle points in

exchange of slightly less accuracy but still in good qualitative agreement with

the exact calculation. The simplified version has the advantage that it is

straightforward to implement and allows for a quick evaluation of the results

which then can be further studied by using the full saddle point method or the

exact integration.

For high intensities, we found that the saddle method gives less good agree-

ment, contrary to what one could expect. We proposed a modified version

of the saddle point formula, which takes into account the third order deriva-

tive, responsible for the poorer results given by the usual saddle method and

checked this assumptions in practical cases, obtaining good agreement in spite

of the high intensities used in calculation.

We also found that it is possible to perform the exact integration either by

deforming the integration contour such as to go through a vicinity of the

saddle point closest to the real axis, though taking advantage of the exponential

decay of the integrand in that region or by using a special method based on

Chebyshev collocation (Evans and Webster method). For the collocation case,

we used the basic algorithm proposed by Evans and Webster and adapted it to
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successfully deal with SFA model integrals for which the collocation method

is not practical because of long integration intervals. We propose a recursive

version of it which with reasonable accuracy requirements can be as fast or

even faster than the method of changing the integration path.

In practice, to calculate angle integrated ionization probabilities or rates, a

large number of such integrals have to be calculated, so the saddle point

method gives the best computational time for such a task. The exact methods

can be used to compare in certain cases the approximate results to the exact

ones.
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