We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham e-Theses
You are in:

Generalised symmetric spaces

Pettitt, Richard Bruce (1972) Generalised symmetric spaces. Doctoral thesis, Durham University.



This thesis treats the symmetric spaces (originally studied by E. Cartan) and their various generalisations. Chapter I presents the necessary fundamental definitions and results. Chapter II describes the historical background to the subject: in Part A the relevant aspects of the theory of symmetric spaces are reviewed, the notion of k-symmetric space (due to A.J.Ledger) is introduced and various results (in particular those due to Gray for 3-symmetric spaces) are noted; in Part B the theory of Jordan algebras is summarised (as needed in this thesis) and the intimate relationship between Jordan algebras and symmetric spaces is discussed. Chapter III contains largely original results on a class of manifolds, the symmetric spaces of order k (a generalisation of the symmetric spaces made in the spirit of the "algebraic" approach to symmetric spaces developed by 0. Loos). A symmetric space of order k is a differentiable manifold M together with a smooth multiplication μ : M X M → M satisfying certain properties. The main result is that on such a manifold M an affine connexion V may be defined in terms of the multiplication u M may then be shown to be a reductive homogeneous space and ▼ the (complete) canonical affine connexion of the second kind. Chapter IV presents two original observations concerning the relationship between Jordan algebras and symmetric spaces (of order 2).Chapter V contains a summary of results and various suggestions for further research. A bibliography follows Chapter V.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Thesis Date:1972
Copyright:Copyright of this thesis is held by the author
Deposited On:13 Nov 2013 15:38

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter