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ABSTRACT 

This thesis t r e a t s the symmetric spaces ( o r i g i n a l l y studied by 

E. Cartan) and t h e i r various generalisations. 

Chapter I presents the necessary fundamental definitions and 

r e s u l t s . 

Chapter I I describes the h i s t o r i c a l background to the subject: in 

Part A the relevant aspects of the theory of symmetric spaces are reviewed, 

the notion of k-symmetric space (due to A.J.Ledger) i s introduced and 

various r e s u l t s ( i n p a r t i c u l a r those due to Gray for 3-symraetric spaces) 

are noted; i n Part B the theory of Jordan algebras i s summarised (as 

needed i n t h i s t h e s i s ) and the intimate relationship between Jordan algebra 

and symmetric spaces i s discussed. 

Chapter I I I contains l a r g e l y o r i g i n a l r e s u l t s on a c l a s s of 

manifolds, the symmetric spaces of order k (a generalisation of the 

symmetric spaces made i n the s p i r i t of the "algebraic" approach to symmetri 

spaces developed by 0. Loos). A symmetric space of order k i s a 

differentiable manifold M together with a smooth multiplication 

|i : M X M -» M s a t i s f y i n g certain properties. The main r e s u l t i s that 

on such a manifold M an a f f i n e connexion V may be defined i n terms of the 

multiplication [x'} M may then be shown to be a reductive homogeneous space 

andV the (complete) canonical affine connexion of the second kind. 

Chapter IV presents two o r i g i n a l observations concerning the 

relationship between Jordan algebras and symmetric spaces (of order 2 ) . 

Chapter V contains a summary of r e s u l t s and various suggestions for 

further research. A bibliography follows Chapter V. 
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INTRODUCTION 

Here I s h a l l outline b r i e f l y how my i n t e r e s t i n Jordan algebras, 

symmetric spaces and generalised symmetric spaces developed, how the 

contents of t h i s t h e s i s are arranged, and which of the r e s u l t s I claim as 

my o r i g i n a l contributions to the subject. 

At an ear l y stage of my research work under h i s supervision, 

Professor T.J.Willmore suggested that a f r u i t f u l area of research might 

be the examination of Jordan algebras with a view to exploring t h e i r 

relationships with, or applications i n , d i f f e r e n t i a l geometry. At that 

time only two references seemed r e a d i l y available i n the l i t e r a t u r e , 

namely Ottniar Loos's books on "Symmetric Spaces" (Loos [ l ] ) and a paper by 

U. Hirzebruch [2] concerning Jordan algebras and compact Riemannian 

symmetric spaces of rank one. This relationship between Jordan algebras 

and symmetric spaces fascinated me and I began to study Loos's books and 

Hirzebruch's paper i n some d e t a i l . I n the course of these studies I 

conjectured and proved what i s the main r e s u l t ( v i z . Theorem I V . l ) of 

Chapter TV of t h i s t h e s i s . 

Aware of my growing in t e r e s t i n symmetric spaces, Professor Willmore 

mentioned to me the notion of k-symmetric space due to Dr. A.J.Ledger. 

Not long afterwards i n the University of Leeds (at a Colloquium i n honour 

of Professor Ruse on h i s retirement) Dr. A. Deicke delivered a lecture on 

k-symmetric spaces} during that lecture the question occurred to me 

as to whether the algebraic approach to symmetric spaces developed by Loos 

could be applied to the study of k-symmetric spaces. Some months l a t e r , 

a f t e r several stimulating conversations with Dr. Ledger, I became 

convinced that indeed they could be so applied, and I then began an 

earnest attempt to generalise the methods of Loos. Chapter I I I contains 

the r e s u l t s of that endeavour. ^s&SJTSStfg^ 
tmtncr 

3 1 MAY 1972 
W i l l i . 
SRAK 
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I now summarise, chapter by chapter, the contents of the thesis,: 

( i ) Chapter I presents fundamental definitions and re s u l t s which w i l l 

be needed i n the subsequent pages. Here the definitions of 

diffe r e n t i a b l e manifold, affine connexion, L i e group, Jordan algebra, 

etc. are presented, together with various known r e s u l t s r e l a t i n g 

these notions. 

( i i ) Chapter I I describes the h i s t o r i c a l background to the new r e s u l t s 

of Chapters I I I and IV. I n PART A the theory of symmetric spaces 

i s reviewed i n those aspects which are relevant to t h i s t h e s i s , the 

notion of k-symmetric space i s introduced, and various r e s u l t s 

about s-regular k-symmetric spaces ( e s p e c i a l l y for k = 3) are noted. 

In PART B the theory of Jordan algebras i s summarised (as needed 

here), the intimate relationship between Jordan algebras and 

symmetric spaces i s described and various d e t a i l s are discussed. 

( i i i ) Chapter I I I contains largely o r i g i n a l r e s u l t s on a cla s s of 

manifolds - namely, the symmetric spaces of order k - which are a 

generalisation of the symmetric spaces, the generalisation being made 

i n the s p i r i t of the approach to symmetric spaces taken by Lpos [ l ] , 

[ 3 ] ; a symmetric space of order k i s a differentiable manifold M 

together with a smooth multiplication u : M X M -» M s a t i s f y i n g 

certain properties (cf. Definition I I I . l ) . 

By c a r e f u l l y constructing an analogue of the af f i n e connexion 

defined by Loos on a symmetric space (of order 2 ) , I have defined i n 

Definition I I I . 6 an affine connexion on a symmetric space of order k 

for which a l l the " l e f t m u l t i p l i c a tions" are af f i n e maps (cf. Theorem 

I I I . 1 ( a ) ) . I then prove that with t h i s connexion a symmetric space 

of order k i s an s-regular k-symmetric space i n the sense of 

Graham and Ledger [ l ] . The connexion of Definition I I I . 6 i s , 
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moreover, complete; i n fact, a symmetric space of order k may be 

represented as a reductive homogeneous space and the connexion of 

Definition I I I . 6 i s the canonical connexion of the second kind i n 

the terminology of Nomizu [2]. 

The Definitions I I I . 1 and I I I . 6 and the proof of Theorem I I I . 1 ( a ) 

are modelled on the corresponding definitions and proof given by 

Loos [ l ] for the p a r t i c u l a r case k = 2; the necessary modification 

of h i s work to a r b i t r a r y integer k ^ 2 required some care and I 

consider t h i s modification to be one of the major o r i g i n a l 

contributions to the subject contained i n t h i s t h e s i s . Theorem 

111.1(b), which asserts that the symmetric spaces of order k are 

exactly the s-regular affine k-symmetric spaces, follows f a i r l y 

e a s i l y once Theorem I I I . 1 ( a ) has been established; t h i s equivalence 

was conjectured during a conversation between Dr. Ledger and myself, 

and the desire to prove the v a l i d i t y of the conjecture motivated the 

work presented i n Chapter I I I . The proof of the f i r s t part of 

Theorem I I I . 1 ( c ) which shows that the symmetric spaces of order k are 

homogeneous spaces of L i e groups follows the argument of Ledger and 

Obata [ l ] , with the piece of t h e i r proof involving the exponential 

map replaced by a direct computation (using d i f f e r e n t i a b i l i t y which 

Ledger and Obata had not assumed i n t h e i r hypotheses). The proof 

of the part of Theorem I I I . l ( c ) which shows that the symmetric spaces 

of order k are reductive homogeneous spaces i s a s l i g h t l y more 

detailed bub nevertheless di r e c t adaptation for a l l k of the method 

of proof given by Gray [6] in the s p e c i a l case k = 3. I am 

completely responsible for the part of the proof of Theorem I I I . 1 ( c ) 

which shows that the connexion of Definition I I I . 6 i s in fact the 

canonical connexion of the second kind; the proof involves e x p l i c i t l y 

computing an expression for the connexion in terms of an appropriate 

L i e algebra. 
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F i n a l l y , Theorem ITT.2 gives a characterisation of the isotropy sub

group in the representation of a symmetric space of order k by the 

homogeneous space of Theorem I I I . l ; the proof i s a dire c t 

adaptation for a l l k of the method of proof given by Loos [ l ] i n 

the s p e c i a l case k = 2 (cf. also Gray [6] in which the method of 

Loos was adapted to the case k = 3)« 

( i v ) Chapter IV concerns the relationship between Jordan algebras and 

symmetric spaces (of order 2) . One of the examples of symmetric 

spaces given by L003 [ l ] i s the set l ( A ) of i n v e r t i b l e elements i n 

a Jordan algebra A. E s s e n t i a l l y , I have examined the connexion 

on such a symmetric space and shown i t to be related to the various 

isotopes of A (cf. Theorem I V . l ) . The statement and proof of 

Theorem IV.1 are o r i g i n a l work ca r r i e d out by me, but i n a comprehensive 

paper on t h i s subject Helwig [6] establishes the same r e s u l t (by a l e s s 

d i r e c t method of proof); i t plays a s i g n i f i c a n t role i n h i s treatment. 

In Section 2 of Chapter IV I describe an observation that Jordan 

algebras are naturally associated to certain conformal transformations 

'of Riemannian manifolds; t h i s observation does not seem to appear 

in the l i t e r a t u r e . 

(v) Chapter V contains a summary of r e s u l t s and some remarks on a 

programme for further research. 

( v i ) The Bibliography contains the relevant references required i n 

establishing the new r e s u l t s of Chapters I I I and IV and contains a l s o 

general references to other subjects discussed. I n two areas i t i s 

intended to provide a reasonably complete survey of the ex i s t i n g 

l i t e r a t u r e : v i z . f i r s t l y for the work on k-symmetric spaces and 

secondly the applications of Jordan algebras to d i f f e r e n t i a l geometry. 
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CHAPTER I 

FUNDAMENTAL DEFINITIONS AND RESULTS 

1. piffgrentiable Manifolds f Maps and Tensor F i e l d s 

This chapter contains basic definitions and fundamental r e s u l t s 

which w i l l be used i n the subsequent chapters; r e s u l t s here are quoted 

not i n t h e i r f u l l generality but simply i n the form required for the work 

presented i n t h i s t h e s i s . I n the present chapter only a few proofs are 

given: v i z . i n those cases where there seems to be no standard reference 

in the l i t e r a t u r e . This f i r s t section introduces as b r i e f l y as possible 

some very basic notions and notational conventions; i t concludes with a 

statement of the version of the inverse function theorem required i n 

Chapter I I I . 

A differentiable manifold (or simply, a manifold) i s a Hausdorff 

topological space endowed with a differentiable (C°° ) structure of f i n i t e 

dimension. (For further d e t a i l s on t h i s terminology and indeed on t h i s 

whole section, r e f e r to Chapter 1 i n each of: Kobayashi and Nomizu [ l ] , 

Helgason [ l ] , Wolf [1]) . A chart on a manifold of dimension n i s a p a i r 

(\|r, U) of an (open) neighbourhood U i n M (U being c a l l e d a coordinate patch) 

and a homeomorphism \|r : U -» \|/(U) d K n (if being c a l l e d a chart map) 

where i|/(u) i s an open set i n 3R n, the n-dimensional vector space over the 

r e a l numbers 3R (with the usual topology on TRn); a chart (̂ , U) defines 

" l o c a l coordinates { u i on U" thus: r e l a t i v e to (i|r, U) and the 
n f . Ji e. ). .. of 1R , a point p e U has coordinates tu (v) /. . i i=u ' ~ i = l 

i f t ( p ) - u ^ p ) e. (the usual "summation convention" being used). 
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In the standard way ( c f . the books by Helgason and Wolf referred to 

above), the following notions may be introduced: The c l a s s F(M) of 

diffe r e n t i a b l e real-valued functions on M; the tangent space Mp at a 

point p G M; the cla s s T r(M) of differentiable tensor f i e l d s of type ( r , s ) 
s 

on M, i n p a r t i c u l a r the c l a s s T£(M) = T 1(M) of diff e r e n t i a b l e vector 

f i e l d s ; a differentiable map from M into another manifold N; a 

diffeomorphism between two manifolds, a diffeomorphism of M onto i t s e l f 

being c a l l e d a transformation of M; and the direct product manifold 

M X N of two manifolds M and N. 

For each i = l ,2,...,n, the "coordinate function" u* : U -» TR 

(associated to a chart (\|r, U ) ) , where u 1 maps p e U into u*(p), i s an 

element of F ( u ) ; i . e . , u 1 i s a differentiable function on U. A 

differentiable map y : E -» M from an open i n t e r v a l E of TR into M w i l l be 

ca l l e d a curve i n M, and i f E = IR, one w i l l speak of "the curve 7 ( t ) " , 

Analogously to the notion of differentiable (C°°) structure j u s t 

discussed, the notion of ( r e a l - ) a n a l y t i c (C^) or complex-analytic structure 

pn a manifold may be formulated; likewise the related notions of an a l y t i c 

(resp. complex-analytic) maps, diffeomorphlsms, functions, etc. may be 

introduced. 

At a point p e M the d i f f e r e n t i a l (d*)p of a dif f e r e n t i a b l e map 

• : M -* H i s the l i n e a r transformation (d*) : M -+ N A / \ induced by * on 
P P *(P) 

the tangent space M ; when i t "is obvious that (d*) i s acting on a vector 
P P 

Xp G Mp the subscript "p" -vail be suppressed and the expression d*(X p) w i l l 

be written (instead of (d4>) p(X p)). I f <t> : M -» N and i) i N -• P are two 

diffe r e n t i a b l e maps then t h e i r composition T\ O • : M -» P i s different iable; 

moreover for any p e M: (d(t]o *))p = ( d T ^ $ ( p ) 0 ^*^p* Given a 

transformation \|r of M and X e T X(M), the vector f i e l d d>|r(X) e T A(M) i s 

defined by (dt(x))p := di|r(X^-i( p)) for p e M. 
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. n 
Also, in terms of a system of l o c a l coordinates { u 1 }^ r e l a t e d to a 

a 
chart (\|r, U) the ( l o c a l ) vector f i e l d — r e T 1 ^ ) i s introduced for 

du 1 

I V d \ l n 

i a l ,2,...,n; at a point p e U the set < ( — r ) f forms a basis 
L \ Su 1 'p J i = l 

of the tangent space M . Indeed for a vector f i e l d X e T^M) the vector 
1? 

Xp for p € U may be represented as a d i f f e r e n t i a l operator on F(M) thus: 

X = X X(p) ( — r ^ where the X 1 define 

differentiable functions on U; i t i s observed that X*(p) = X^u 1 (the r e a l 

number obtained by the action of X on the element u 1 of F ( U ) ) . 
P ' 

The juxtaposition, XY, of two vector f i e l d s X, Y 6 T X(M) has the 

following significance: at a point u i n a coordinate patch U (with l o c a l 

coordinates { u 1 } " , ), X = X x(u) ( ^ and Y = Y 1 (u) ( - r r ^ and 
i = 1 ' u \ cV /, w V ou 1 / 

u 
the d i f f e r e n t i a l operator XY i s given at a point p e U by: 

< n > p . x W t p j f - f , ) + x W ^ ) ( J . ) 
p V d u W /p \ ou 1 / P \ ^ / p . 

(XY)^ i s also denoted X pY (notice that with regard to X, (XY) p does i n 

fact depend only on X ); notice further that t h i s juxtaposition of vector 

f i e l d s has a derivative nature i n Y, i . e . considering the vector f i e l d fY 

defined by (fY) -.= f(x)Y for x e M (where f e F(M) and Y e T^M)) then 

for X e T^M) (or simply X p e M p): 

X p ( f Y ) = (X pf)Y + f ( X p Y ) . 

I n terms of t h i s juxtaposition the L i e bracket of two vector f i e l d s may be 

defined; thus, given two vector f i e l d s X.Y e T^M) the vector f i e l d 

[X,Y] e T^M) i s given at a point x e M by: 
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[ X ' Y ] x • X x Y - Y x X • 

F i n a l l y i n t h i s section the following theorem i s quoted: 

Theorem I.1 Let M be a differentiable manifold and l e t * : M -* M be 

a di f f e r e n t i a b l e map. I f for a point p e M the l i n e a r transformation 

(d<l>)p : Mp -» M<t,(p) i s non-singular, then there e x i s t neighbourhoods 

VJL and V g of p and <t>(p) respectively such that : -» • (V 1) = V 2 

i s a diffeomorphism of VJL onto V"2 . 

A proof of t h i s theorem i s given in Wolf [ l ] , Chapter 1. 
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2« L i e Groups and Homogeneous Spaces 

Except for Theorems 1.2 and 1.5 the r e s u l t s of t h i s section are 

proved i n Chevalley [ l ] , Helgason [ l ] or Hochschild [ l ] ; Theorem 1.2 i s 

due to Ledger and Obata [ l ] and Theorem 1.5 i s proved here. 

( i ) A L i e group i s an analytic manifold G with a group structure 

such that the maps X : G x G -* G and o : G -» G are analytic (where for 

g,g' e G : X(g,g*) = g.g1 = gg1 the group product of g and g 1, and 

u(g) = g" 1 the group inverse of g). e denotes the identity element of G. 

For g e G the two ana l y t i c diffeomorphisms L : G -> G and R : G G 
g S 

are defined by L ( g 1 ) := gg' and R (g') := g'g for g 1 e G. 
g g 

The set g of " l e f t - i n v a r i a n t vector f i e l d s on G" i s defined as 

follows: 

g := {X € T X(G) : X . = d L ( X .) for a l l g,g» e G] 
SS S g 

R 

and the set g of "right-invariant vector f i e l d s on G" i s defined by: 

g* := {X e T X(G) : X g l g = d R g ( X g l ) for a l l g,g« e O) . 

An element of g or of | i s i n fact an an a l y t i c vector f i e l d . I f 

X e T X(G) then X^ w i l l be understood to denote the (unique) element of g R 

for which ( X R ) e = X g. For X,Y € g the L i e bracket [X,Y] i s also a 

vector f i e l d i n and t h i s product of l e f t - i n v a r i a n t vector f i e l d s 

defines on j; the structure of an n-dimensional L i e algebra over 3R (where 

n = dimension of G); as a vector space g i s isomorphic with GG, a vector 

f i e l d X £ g being i d e n t i f i e d with X g e GG, and the L i e bracket defines a 

L i e algebra on the n-dimensional vector space g because the two 

c h a r a c t e r i s t i c properties of a L i e algebra are s a t i s f i e d : namely for a l l 

X,Y,Z e g: 
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[X,Y] = - [Y,X] 

and [X,[Y,Z]] + [Y,[Z,X]] + [Z,[X,Y]] = 0 . 

For X R € g 8, Y e g the L i e bracket [X R,Y] vanishes at e e G5 t h i s i s 

the only r e s u l t i n the present section which dpes not seem to be 

e x p l i c i t l y proved i n the l i t e r a t u r e : a proof i s given at the end of t h i s 

section (see Theorem 1.5); because the r e s u l t i s needed in the proof of 

Theorem I I I . l . 

For X e JJ the curve exp tX c G (defined for - °° < t < °°) i s the 

in t e g r a l curve of X passing through e at t = 0. Moreover, the curve 

exp tX gives an a n a l y t i c homomorphism of the additive L i e group of the r e a l 

numbers IR into G, and the curve exp tX i s c a l l e d the one-parameter subgroup 

of G belonging to X; i n p a r t i c u l a r , (exp t Q X ) . (exp t^X) = e x p ( t Q + t x ) X 

for a l l tQjtj^ 6 3R. Also there e x i s t a neighbourhood U e of e i n G and a 

neighbourhood V Q of 0 i n g such that the map exp ; V Q -» U e, defined by 

exp(X) := (exp * X ) t - 1 for X e V Q, i s a diffeomorphism. These r e s u l t s have 

the straightforward consequence that given a positive integer k, there, e x i s t s 

a neighbourhood Ug of e i n G such that i f an element g e s a t i s f i e s 

gk = e, then g o e; ( e x p l i c i t l y U1 can be taken as exp( i ( V Q ) ) where 
e k 

1(V 0) := {X e s : kX e V 0 } . ) 
K. 

The ident i t y component G Q of a L i e group G i s the largest connected 

subset of G containing the identity e; G 0 i s a closed (and open, also 

normal) subgroup of G and G Q naturally i n h e r i t s from G the structure of a 

L i e group (closed subgroups are discussed further i n part ( i i ) below). 

F i n a l l y i t i s remarked that for a L i e group G, a continuous (group) 

automorphism T : G -» G i s necessarily an an a l y t i c diffeomorphism of G, 
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( i i ) A L i e group H i s a L i e subgroup of a L i e group G i f 

( I ) H i s a subset of G, (2) H i s a subgroup of G, (3) the 

inc l u s i o n i : H -» G i s a n a l y t i c , and (h) the d i f f e r e n t i a l 

(d£) n
 : \ ~* Gh i s one-to-one for each h e Hf The L i e algebra h of H 

i s then a subalgebra of the L i e algebra g of G; (conversely, corresponding 

to a given subalgebra of g there i s exactly one connected L i e subgroup of 

G whose L i e algebra i s the given one. Given a L i e group G and a 

topologically closed subset H of G with H also a subgroup of G, then H 

admits a unique analytic manifold structure such that i t becomes a L i e 

subgroup of G and such that the topology on H i s exactly the topology 

induced on H as a subset of the underlying topological space of G; more

over i n t h i s case the L i e algebra h of H i s given by: 

h = {x e g : exp tX e H for a l l - « < t < ~ } t 

( i i i ) A L i e transformation group G of a differentiable manifold M 

i s a L i e group G whose elements are transformations of M, for which group 

multiplication i s composition of transformations, and for which the map 

a : G x M -» M i s differentiable (where «(g,p), := g(p) for p e M and g a 

trans format ipn of M belonging to G). Notice that i f H i s a L i e subgroup 

of such a Me transformation group, then with i : H -* G the corresponding 

inclusion map, the map a' : H x M -» M (defined by a* (h,p) h(p) fpr 

for p e M, h e H) may be written as a* = 0 0 ( i X id^) whence, since a, i 

and idj^ are di f f e r e n t i a b l e maps, a' i s a di f f e r e n t i a b l e map and H i s 

therefore also a L i e transformation group of M, Concerning L i e 

transformation groups, the following theorem (due to Ledger and Obata [ i ] ) 

w i l l be used i n Chapter I I I : 

Theorem 1.2: Let G be a L i e transformation group of a connected 
1 

d i f f e r e n t i a b l e manifold M. I f G i s l o c a l l y t r a n s i t i v e on M, i . e . i f 
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f o r each point p e M there exists a neighbourhood U of p such that U i s 

contained i n the o r b i t G(p) := {z e M : z = g(p) f o r some g e G}, then 

G i s a t r a n s i t i v e Lie transformation group of M. (G i s t r a n s i t i v e on 

M i f for any two points x,y e M, there exists an element g e G such 

such that g(x) = y ) . 

The proof of t h i s theorem i s a straightforward topological argument. 

The following theorem i s v a l i d : 

Theorem I.g 

(a) Let H be a closed Lie subgroup of a connected Lie group GQ. Let 

g and h denote the Lie algebras of G,Q and H resp. and consider a 

vector subspace m of j ; chosen such that g = h Q m (direct sum). 

Then the homogeneous space GQ/H of cosets of G Q modulo H admits 

a Hausdorff topological space structure uniquely determined by the 

requirement that 7t : G Q -» G0/H (defined by it(g) = gH) be an open 

and continuous map; G0/H further admits an analytic manifold 

structure uniquely determined by the requirement that G Q be a Lie 

transformation group of Ĝ /H (for the natural action g(g*H) = (gg')H 

for g e G 0 and g'H e G Q/H). 

Then the projection n : G Q -* GQ/H i s analytic and moreover given 

a point a e G D there exists a connected neighbourhood V a of aH i n the 

manifold Gn/H and an analytic "cross-section" \|r : V ~» Gn such u a a o 
that i t o ^ = id.. . For a = e. V and may be chosen to a v Q e e 

sa t i s f y also the following two properties: t g(eH) = e and 

d\|f E((G 0/H) e Ij) = m (m being considered as a vector subspace of ( G 0 ) G 

under the natural isomorphism between g and ( G Q ) ) . 
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(b) A l l the statements made i n (a) remain v a l i d i f the connected 

Lie group G Q i s replaced by any Lie group G. 

This theorem follows from various results contained i n Helgason [ l ] , 

Chevally [ l ] and Hochschild [ l ] ; the heart of the matter l i e s i n the fact 

that f o r the decomposition a = h © m there exist open balls U. and U 
- — h m 

about 0 i n h and m resp. such that the map * : U, X U -» V C G - h m o 
(defined by *(X,Y) = (exp X).(exp Y) f o r X e U , Y e \J ) i s an analytic 

diffeomorphism of X U onto an (open) neighbourhood V of e i n 0 0. 

The following important theorem i s also v a l i d (cf. Helgason [ l ] , 

Chapter I I ) : 

Theorem I.U-: Let G be a t r a n s i t i v e Lie transformation group of a connected 

d i f f e r e n t i a b l e manifold M; G D denotes the i d e n t i t y component of G. Let 

p Q be a given point i n M and define the ("isotropy") subgroup H of G Q 

by: 

H := {g e G Q : g(p Q) « p Q } . 

Then H i s a closed subgroup of GQ, G Q i s a t r a n s i t i v e Lie transformation 

group of M and the map r\ : GQ/H -» M (defined by T)(gH) = g(p 0) f o r 

gH e GQ/ H) i s a diffeomorphism (where G0/H has the (unique) 

d l f f e r e n t l a b l e manifold structure compatible with i t s natural analytic 

manifold structure of Theorem 1.3* H being endowed with the natural 

Lie group structure of a closed subgroup of G Q mentioned i n part ( i i ) ), 

( i v ) For a group G and an element g e G the automorphism Ad„(g) : (J ->( 

i s defined by Ad^fgjg' : = 'gg'g-"1" for g 1 e G{ i f H i s a subgroup of (5 then 

for h e H c G : Ad^h) • Adgfh) H* I f G i s a Lie group then, since the 
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i d e n t i t y e i s a fi x e d point of the (analytic) map Ad^(g), the d i f f e r e n t i a l 

(d(Adg(g))) e i s a l i n e a r transformation of Gg and the corresponding 

l i n e a r transformation of g (the Lie algebra of G, i d e n t i f i e d with Gg) w i l l 

also be denoted Ad^(g). Ad^(g) i s a Lie algebra automorphism of 

With t h i s notation the following d e f i n i t i o n i s made: 

Def i n i t i o n I.1: Let G0 be a connected Lie group and H a closed subgroup 

of GQ; l e t § and h denote the Lie algebras of GQ and H resp. Then the 

homogeneous space GQ/H (with the analytic manifold structure of 

Theorem I.3) i s said to be reductive i f there exists a vector subspace 

m of g such that g * h © m and Ad (H)m C m. (The l a t t e r 

inclusion means that for each h e H and X e m, Ad (h)X e m ) , 

(v) I n t h i s part (v) the following theorem i s established: 

Theorem 1.5: Let G be a Lie group and X,Y e Ge; X̂ , Y*1 denote the related 

r i g h t - i n v a r i a n t , resp. l e f t - i n v a r i a n t vector f i e l d s (uniquely determined 

by the requirement (X*) = X, ( Y L ) e = Y). 

Then [X 8, Y 1] = 0 . 

Proof;- Observe f i r s t l y that f o r any tx e F(G): 

X f x - ^ f J e x p t X ) ^ (1) 

For given f € F(o) take f = Y L f i n ( l ) ; therefore f o r g e G: 

f.(g) - (^) t 

= A f ( g. ( e x p s Y ) ) | g = o , 
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and substituting t h i s i n t o ( l ) yields: 

X ^ " 3T ( ~ f((exp tX).(exp SY))| )| . (2) 

I n exactly similar fashion: 

Y ( x R f ) " fs < {t f « e x p t X ) ' ( e x P ^ l ^ ' s ^ O * ( 3 ) 

The expressions i n (2) and ( j ) d i f f e r pnly i n the orders of 

d i f f e r e n t i a t i o n with respect to s and t ; but f e F(G), exp i s a 

di f f e r e n t i a b l e map (on some neighbourhood of 0 i n G e), and group 

m u l t i p l i c a t i o n (denoted by "." above) i s d i f f e r e n t i a b l e : e x p l i c i t l y 

denoting group m u l t i p l i c a t i o n by X : G X G -> G, one notes that the 

function <t>:= f o X o (exp X exp) o (fl x T) : I x 1 -> B i s d i f f e r e n t i a b l e 

at (0,0) (the d i f f e r e n t i a b l e maps a : TR -* GQ and T : 3R Gg are 

defined by a(s) := sX and f ( t ) := tY for s,t e TR ); consequently 

d24> 
dsdf. (0,0) 

d2» 
dtds (0,0) ' 

i, e . from (2) and (5): 

X(Y Lf) - Y(X Rf) = 0 f o r any f e F(G)', 

i . e . , r e c a l l i n g that ( X R ) g = X,(Y I') e = Y: 

[ X R , Y L ] e f = 0 f o r any f e F ( G ) , 

i . e . [ X R , Y L ] e = 0. 

This completes the proof of Theorem 1.5. 
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3. Affine Connexions 

Helgason [ l ] Chapter 1 and Kobayashi and Nomizu [ l ] volume I serve 

as general references for t h i s section; the material on invariant 

connexions on reductive homogeneous spaces i s taken from Nomizu [2], 

( i ) D e f i n i t i o n 1.2: 

(a) An a f f i n e connexion Von a manifold M i s a map 

V : T A(M) x T X(M) T X(M) which maps (X,Y) e T X(M) X T^M) into 

VXY € T X(M) and s a t i s f i e s the following four conditions f o r a l l Xx, 

X2, Y, Yx, Y 2 e T̂ -(M) and a l l f e F(M); 

(1) V x(Y i + Y 2) = V XY 1 + V XY 2 

& V ( X X + X,? " V + V 
(3) V ( f x )Y . f(V xY) 

(h) V x(fY) = (Xf)Y + f(V xY). 

(b) An a f f i n e transformation • of a manifold M endowed with an a f f i n e 

connexion V i s a transformation • : M -* M such that 

Vd«D(x) a d 0 ^ V x Y ^ f o r a 1 1 X ' Y e t 1 ^ * 

Henceforth i n t h i s section M denotes a given manifold endowed with 

a given a f f i n e connexion V. Defining now the d i f f e r e n t i a l operator 

r(x,Y) := V Y - XY f o r X,Y 6 T X(M), i t i s seen that a transformation 

* : M T» M i s an a f f i n e transformation of M i f f 

r(X,Y) p(f o 4>) = r(d<t>(x), d * ( Y ) ) ^ ( p ) f f o r a 1 1 X > Y e T A(M), a l l p £ M and 

a l l f e F(M); t h i s follows d i r e c t l y from the observation that for any 

transformation \|r : M -> M, (XY) p(f o ty) = { ( d * ( X ) ) ( d K Y ) ) } ^ p ) f f*>r a 1 1 
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X,Y e T A(M), a l l p e M and a l l f e F(M). Also given two a f f i n e 

connexions 9 and V on M i t follows d i r e c t l y from D e f i n i t i o n 1,2 that a 

tensor f i e l d D 6 Tj(M) i s defined by D (X,Y) := (V Y - V Y) f o r 

X,Y e T 1(M) and p e M: D i s called the difference tensor of ̂  and V, 

The following result i s quoted (cf. Loos [ l ] volume 1, Chapter l ) t 

Theorem 1.6: Let <t> and \|r be two a f f i n e transformations of a connected 

manifold M endowed with an a f f i n e connexion V. I f for at least one 

point p e M, ( d < , ))p = ( d^)p a B l i n e a r transformations from onto 

%(pJ-T|f(p)' ^ h e n * = ^ a s transformations of M. 

Consider a purve y : (a,b) --* M (with a > b ) ; l e t y(t) denote the 

tangent vector to t h i s curve at the point y(t) e M. Then given s e (a,b) 

there exists a vector f i e l d X s e T 1(M) such that ( X s ) ^ t j » f ( " t ) f o r t i n 

some neighbourhood of s in. (a,b); y i s called a geodesic (with respect 

to the a f f i n e connexion V) i f (7 X s) n = 0 f o r each s e (a,b) (and 
X s y { & ' 

each choice of X' ). The fundamental existence theorem for geodesies 

asserts that given p e M and X e M there exists an e > 0 and a unique 
P P 

geodesic y : (-e,c) -* M such that y(0) =« X . I f a geodesic y may be 
P 

extended (as a geodesic) to a curve y' : TR ~*. M whose r e s t r i c t i o n to 

each f i n i t e non-0 open i n t e r v a l of 3R i s a geodesic (as Just defined)^ 

then such a curve yl i s called a complete geodesic. I f each geodesic 

on M admits of such an extension to a complete geodesic, then V le called 

a complete a f f i n e connexion and M i s said to be complete with respect to V. 

One notes also that a f f i n e transformations map geodesies i n t o geodesies, 

The vector f i e l d V Y i s referred to as the covariant derivative 

Y along X (with respect to V); the notion of p a r a l l e l t r a n s l a t i n g a 
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vector f i e l d along a curve y : (a,b) -» M may be introduced ( r e l a t i v e 

to V) i n such a way that a vector f i e l d Y € T X(M) i s invariant under 

and p a r a l l e l t r a n s l a t i o n with respect to V may be naturally extended to 

a l l tensor f i e l d s , i n such a way that a tensor f i e l d Q e T P(M) i s 

invariant under any p a r a l l e l t r a n s l a t i o n i f f V Q (the cpvariant derivative 

of Q along X) vanishes for a l l X e T 1(M), (For further details on the 

covariant d i f f e r e n t i a t i o n and p a r a l l e l t r a n s l a t i o n of a r b i t r a r y tensor 

f i e l d s see Kobayas,hi and Nomizu [ l ] ) . 

The set A(M,V) of a l l a f f i n e transformations of M (M being endowed 

with the a f f i n e connexion V) forms a group, with composition of 

transformations as the group m u l t i p l i c a t i o n ; moreover A(M,V) admits the 

structure of a Lie group with which A(M,V) i s a Lie transformation group 

of M (cf. Kobayashi and Nomizu [ l ] , Chapter V l ) . 

Related to a given a f f i n e connexion V on a manifold M, the 

torsion tensor T e Tg(M) and the curvature tensor R e T*(M) are defined 

fo r X,Y,Z e T^M). 

( i i ) I n t h i s part ( i i ) some of the results of Nomizu [2] 

concerning invariant a f f i n e connexions on reductive homogeneous spaces w i l l 

be summarised. Consider, with the notation of Section 2, a reductive 

homogeneous space Q0/H (of a connected Lie group G0) - reductive with 

p a r a l l e l t r a n s l a t i o n along y i f f (V Y) / x = 0 f o r a l l s e (a,b) (and 

fo r X s as i n the above paragraph). The notion of covariant derivation 

by: 

T(X,Y) :- VXY - V̂ C - [X,Y] 

( V ) - W ) - V R(X,Y,Z) 
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respect to a given decomposition j§ = h ® m as i n D e f i n i t i o n 1,1, 

• i V •» G0 i s the l o c a l cross-section (of Theorem 1,3) defined on a 

neighbourhood V of eH i n G Q/ H such that tyg(eH) =» e and 

d ^ ( ( G 0 / H ) e H ) = m. 

Suppose now that the manifold GQ/H i s endowed with an a f f i n e 

connexion V ; with the d i f f e r e n t i a b l e manifold structure naturally 

induced on V as an open subset of GQ/H, consider V endowed with the 

corresponding r e s t r i c t i o n V*" of V to vector f i e l d s i n T X(V) as an a f f i n e 

manifold. For notational convenience define a : V ~» a(v) d G by 

a(p) :.= t e ( p ) f o r p e V: then a i s a diffeomorphism of the manifold V 

onto a(V); a(V) i s i n fact a submanifold of G, whence i t follows that 

given X e T X ( G ) and p e V a vector f i e l d X + e T A(V) may be defined by: 

( X + ) p d u ( X p C p ) ) . 

With t h i s notation established, the following important theorem (due to 

tyomizu [2]) i s now quoted: 

Theorem 1.7' (The connexion V on GQ/H i s said to be G 0-invarlant i f G 0 

i s a subgroup of A(G Q/H, V).) 

(a) There exists a one-to-one correspondence between the set of a l l 

G 0-invariant a f f i n e connexions on the reductive homogeneous spacs 

G0/H and the set of b i l i n e a r functions a : m x m m f o r which 

a(Adr< (h)X, Ad r (h)Y) = Ad„ (h) oa(x,Y) for a l l X,Y € m and a l l 
u o "o • "o 

h e H. 

For a given G 0-invariant a f f i n e connexion V on GD/H the 

correspondence i s e x p l i c i t l y given by: 

a(X,Y) - da(V +
+ Y + ) e H , 
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where d a ( ^ + Y + ) e n F ^ e ^ x * Y +^eH l s c o n s i d e r e d a s ar* element of 
m c S u n a e r t n e i d e n t i f i c a t i o n of ( G 0 ) G with jg . 

(Recall here that m i s the p a r t i c u l a r subspace of g with respect 

to which G0/H i s reductive). 

(b) The G 0-invariant a f f i n e connexion on GQ/H corresponding to the 

function a = 0 i s called the canonical connexion of the second kind 

(on G 0/H). G0/H endowed with t h i s connexion i s complete; i n fact 

the geodesies through eH e G0/H are exactly the projections (under n 

of section 2) of the one-iparameter subgroups of G P ; the images of 

such projections under the elements of G Q y i e l d a l l geodesies. 

(c) (For X/Y e g l e t [X,Y] m denote the m-component of [X ?Y] with respect 

to the decomposition g = h © m). The G 0-invariant affine, 

connexion on G0/H corresponding t o the funotlon ot given by 

a(X,Y) = \ [X,Y] m f o r X,Y e m 

i s the unique torsion-free a f f i n e connexion on G0/ H having the 

same geodesies as the canonical connexion of the second kind; t h i s 

torsion-free connexion i s called the canonical connexion of the f i r s t 

kind (on G0/ H), 

Nomizu showed also that the canonical connexion of the second kind 

i s characterised by the fact that i t i s the unique G 0-invariant a f f i n e 

connexion on the reductive homogeneous space GQ/ H such t h a t , f o r any 

one-parameter subgroup exp tX i n GD, the p a r a l l e l t r a n s l a t i o n from 

7t(exp toX) to Ti(exp t^X) along the curve 7t(exp tX) i n GQ/ H i s 

equivalent to the action of the d i f f e r e n t i a l of the transformation 

( e x p ( t x - t 0 ) x ) e G0 . 
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h. FseudOT-Riemannian Manifolds 

Wolf [ l ] , Chapter 2, serves as a general reference f o r t h i s section. 

D e f i n i t i o n 1.3: 

(a) A pseudo-Riemannlan manifold i s a d i f f e r e n t i a b l e manifold M 

endowed with a tensor f i e l d g e T°(M) such that g t M X M T-» TR 
2 °p p • p 

i s a non-degenerate symmetric b i l i n e a r form on f o r each p e M; 

g i s then called a metric tensor on M. 

(b) I f the b i l i n e a r form g^ of (a) i s p o s i t i v e - d e f i n i t e f o r each 

p e M, then M endowed with g is called a Riemannian manifold; g i s 

then called a Riemannian metric on M. 

(c) An isometry of a pseudo-Riemannian manifold M i s a transformation 

• : M -»M such that f o r a l l X,Y e T^(M) and a l l p e M: 

W V " 6 * ( p ) ( d * ( V ' A H V ] ] 

(d) Two metric tensors g and g on a manifold M are said to be 

conformally equivalent i f there exists a function f e F(M) suoh that 

g = f g . 

The fundamental theorem concerning pseudo-Riemannian manifolds i s 

the following: 

Theorem 1.8: A pseudo-Riemannian manifold M with metric tensor g admits 

exactly one torsion-free a f f i n e connexion with respect tp which the 

covariant derivative of the metric tensor vanishes.. This connexion i s 

called the Levi-Civita connexion of M ( r e l a t i v e to the metric tensor g). 
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A useful fact i s that isometries of a pseudo-Riemannian manifold M 

are a f f i n e transformations of M with respect to the Levi-Civita connexion. 

I n general, on a pseudo^Riemannian manifold, a f f i n e concepts (suqh as 

a f f i n e transformation; completeness and p a r a l l e l translation), always 

refer t o the Levi-Civita connexion (unless otherwise indicated), 

The following remark (from Section 3,5 of Klingehberg et a l , [jU) 

w i l l he used i n Chapter IV: given two conformally related metric tensors 

g and g on a Riemannian manifold M (say g = f g with f e F ( M ) ) , then the 

difference tensor D of t h e i r respective Levi-Civita connexions $ and V 

sa t i s f i e s f o r X,Y € T 1(M): 

D(X,Y) == VXY - VXY 

= ^ { ( X f ) Y + (Yf)X - g(X,Y)Vf} 

where 7 = (log f ) e F(M) (note that f o r each x e M, f ( x ) > 0) and V f 

denotes the usual gradient of f (with respect to g) - namely, ^ f i s the 

unique element of T^M) satisf y i n g g(Z, V f ) = Zf f o r a l l Z e T*(M). 
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5. A Miscellaneous Result. 

Theorem 1.9: Let M be a d i f f e r e n t l a b l e manifold and • j M -» M a 

transformation of M of f i n i t e (positive integer) order k, i , e , 
*k 

I f moreover * has a point p e M as an isolated fixed point, then the 

linear transformation (d-*)p '• M -» M does not have + 1 as an 

eigenvalue. 

Proof: Consider a coordinate chart ( l ) ' , with p e U', Define 

U ;= U1 n <J>(U') n ... f\ ^ " ^ ( U 1 ) and t i|r» |- . Then because 

* k = i d M , <!>(U) =» U; furthermore (U, ty) is a coordinate chart with p e U, 

U w i l l now be considered as a manifold, with the manifold structure induced 

on i t as an open (non-empty) subset of M. 

Now i|f(U) C l n (n = dim U = dim M) and so \|r(u) admits the usual 

Kronecker metric 5 ( i . e . 5(e., e.) = 5 i f {e. }" i s the standard 
J- J i j i i — 1 

basis on I R n ) . Define the Riemannian metric g on U by: 

g(X,Y) := &(di|r(x), d^(Y)) f o r X,Y e T 1 (ll) t 

Consider also the Riemannian metric g defined on U by: 

g(X,Y) := g(X,Y) + g(d<l>(X), <H>(Y)) + ... 

... + g ( ( d * ) ( k " 1 ) ( X ) , ( d * ) ( k _ l ) ( Y ) ) 

for X,Y e T^U). 

Henceforth consider U as a Riemannian manifold with metric g; then 

from the d e f i n i t i o n of g i t follows that * i s an isometry of U. 
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Assume now that f o r (d*) some vector X e M has eigenvalue + 1 , 
' P P P 

i.e. d0(X ) = X . Let the curve y \ (-e,e) -* M ( f o r some s u f f i c i e n t l y 

small G > 0) be the unique geodesic defined on (-e,e) passing through p 

and having tangent vector X p at 7(0) = p. Then the curve <t>o7 has 

tangent vector d«t>(X ) = X at * 07(0) = <t>(p) = p. But <e i s an isometry 
P P 

of U, hence an a f f i n e transformation of U whence *o7 j (-e,e) -» M i s 

also a geodesic (through p with tangent vector X at *oy (0 ) =» p); by 
P 

the uniqueness of such a geodesic one concludes that <l>o7(t) = 7 ( t ) f o r 

a l l t e (-e,e). But 7(0) = P and P i s an isolated fixed point of 

hence y(t) * p f o r a l l t e (~€,e)> whence X p = 0, Therefore there exists 

no non-zero vector i n M with eigenvalue +1 f o r (d*) , i e e , (d*) does 
P P P 

not have +1 as an eigenvalue. 
This completes the proof of Theorem 1.9. 
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6, Jordan Algebras 

The books "Jordan-^Algebren" by Braun and Koecher [ l ]^ "'Structure 

and Representations of Jordan Algebras" by Jacobson [ l ] and "Symmetric 

Spaces" by Loos [ l ] serve as general references for, t h i s section; a l l 

the theorems quoted below are proved i n at least one of these references 

terminology and notation are basically those of Braun and Koecher [ l ] . 

In t h i s section some basic d e f i n i t i o n s and theorems concerning 

Jordan algebras are concisely presented: 

D e f i n i t i o n I,Ui 

(a) A Jordan algebra i s a commutative algebra A with u n i t element e, 

defined on a f i n i t e dimensional r e a l vector space such that the 

algebraic m u l t i p l i c a t i o n (denoted by juxtaposition) s a t i s f i e s } 

a 2(ab) =; a(a 2b) for a,b € A (k) 

where a 2 := aa. 

(b) The " l e f t m u l t i p l i c a t i o n by a e A" i s the l i n e a r transformation 

L(a) : A -* A defined by L(a)b:= ab for b e A. 

(c) The "quadratic representation of a e A" i s the l i n e a r 

transformation P(a) : A -> A defined by P(a) := 2L 2(a) - L ( a 2 ) . 

Theorem I,iQ: Let A be a Jordan algebra. 

For a,b e A : P(P(a)b) = P(a)P(b)P(a). 

This i d e n t i t y i s called the "fundamental formula". 
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D e f i n i t i o n 1.5: An element a i n the Jordan algebra A is said to be 

i n v e r t i b l e i f det P(a) 4 0; thus the set l ( A ) of i n v e r t i b l e elements 

is given by: 

1(A) = {a e A : det F(a) ̂  0} , 

Theorem I«11: For a Jordan algebra A, l e t a e l ( A ) . Then: 

(a) Defining a" 1 := P - 1(a)a, a _ 1a =» aa" 1 = e; 

(b) P-Ma) = p ( a - i ) . 

D e f i n i t i o n 1.6: Let A be a Jordan algebra. 

(a) For f e A the f-mutation of A i s the Jordan algebra A f defined on 

the same r e a l vector space underlying A but with the new 
I I . I I 

m u l t i p l i c a t i o n _ l _ defined by: 
F 

a l b := (af)b + a(bf) , (ab)f. 
f 

(b) I f f e I (A) the f-mutation i s called the f-isotope of A, 

Theorem I.12: Let A be a Jordan algebra. Then; 

(a) I f f £ l(A) then f - 1 i s the u n i t i n the f-isotope A f « 

(b) Defining, for a,b e A, P(a,b) ;= | {P(a+b) - P(a) - P(b) } , 

then P(a,b) i s b i l i n e a r i n a and b and f o r f e At 

P(a,b)f = a l b . 
f 

(c) The quadratic representation P̂  of the f-mutation A f s a t i s f i e s ! 

P-fa) = P(a)P(f) for a e A_ . 
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(d) For any f,g e A: A p ^ f j g = ( A f ) g ; 

i.e . f o r a,b e A: 

a b = (a l g ) J - b + a l ( b i g ) - ( a l b ) l g , 
P ( f j g f f f f f f 

I t i s remarked (with regard to P(a,b) defined i n (b) i n t h i s 

Theorem 1.12) that for t e I and a,b e A: 

P(a,tb) = tP(a,b); 

by cqntrast P(tb) = t 2 P ( b ) , 

F i n a l l y the following theorem (cf, Loos [ l j ) i s quoted: 

n 

Theorem 1.13? Let IR be the real vector space underlying a Jordan 

algebra A. Then the set I(A) of i n v e r t i b l e elements has a natural 

d i f f e r e n t i a b l e manifold structure as an open subset of 3Rn, Let 

I 0 ( A ) denote the component of l(A) containing the algebraic u n i t 

e of A. 

Endowed with the m u l t i p l i c a t i o n u ; I D ( A ) X I 0 ( A ) -* I 0 ( A ) defined 

by: 

u(a,b) := P(a)b - 1 for a,b e I 0 ( A ) , 

I q ( A ) i s a symmetric space (of order 2 ) , (Cf. D e f i n i t i o n 1TI.1 

with k = 2). 

This symmetric space I 0 ( A ) w i l l be called the "Jordan symmetric 

space of A". 
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CHAPTER I I 

HISTORICAL BACKGROUND 

PART A: SYMMETRIC SPACES 

1. Symmetric Spaces and Locally Symmetric Spaces 

The notion of syrametrio space evolved from the study o f 

Riemannian manifolds on which the curvature tensor (of the Levi-Civita 

connexion) remains invariant under p a r a l l e l t r a n s l a t i o n along any curve 

i n the manifold, The study of these manifolds may be said to have been 

i n i t i a t e d i n 1926 i n two notes by Harry Levy [ l j and [2] i n which he 

offered an erroneous proof that the only such manifolds were the 

Riemannian manifolds of constant sectional curvature and d i r e c t 

products of Riemannian manifolds of constant sectional curvature^ 

Apparently E l i e Cartan, however, had already studied the question i n 

some d e t a i l and he was quick tp point out (a l i t t l e l a t e r i n X9?6) i n 

Cartan [1] examples of Riemannian manifolds with curvature tensor 

invariant under p a r a l l e l translation but with non-constant sectional 

curvature. I n a series of papers Cartan [ l ] through [12] expounded more 

of the details of his work on these manifolds,, exploring t h e i r geometric 

properties and moreover demonstrating t h e i r unexpected but intimate; 

connection with the theory of Lie groups. 

Ponsider now the following d e f i n i t i o n s ; 

D e f i n i t i o n I I , 1 ; 

(a,) A (pseudo-)Riemannian l o c a l l y symmetric space i s a (pseudo-) 

Riemannian manifold on whioh the curvature tensor R (of the Levi-
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Civita connexion V) i s invariant under p a r a l l e l t r a n s l a t i o n along 
any curve i n the manifold ( i . e . on whjch ^ ss 0)^ 

(b) An a f f i n e l o c a l l y symmetric space i s an a f f i n e manifold with a 

torsion-free connexion V whose curvature tensor ^ s a t i s f i e s 

VR = 0. 

D e f i n i t i o n H T 2t 

(a) A (pseudo-) Rieraannian symmetric space i s a (pseudo-) Riemannian 

manifold M which admits at each point p e M an isometry whiqh i s of 

order two and which has p as an isolated f i x e d point, 

(b) An a f f i n e symmetric space i s an af f i n e manifold which admits at 

each point p e M an a f f i n e transformation which i,s of order two 

and which has p as an isolated f i x e d point. 

In statements v a l i d equally f o r a Riemannian, pseudo-Riemannlan and 

a f f i n e ( l o c a l l y ) symmetric space the adjective w i l l be suppressed and the 

simple term "(locally)symmetric space" w i l l be used, 

As observed i n Cartan [6] the l o c a l l y symmetric, spaces are 

characterised as follows (see also Whitehead [ l ] ) : 

Theorem I I . 1 : 

(a) A (pseudo-) Riemannian manifold M i s a (pseudo-) Riemannian l o c a l l y 

symmetric spaae i f f for each point p e M there exists a neighbourhood 

of p on which the geodesic symmetric about p i s a l o c a l isometry, 

(b) An a f f i n e manifold M with a torsion-free connexion i s an a f f i n e 

l o c a l l y symmetric space i f f f o r each point p e M there exists a 
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neighbourhood of p on which the geodesic symmetry about p i s a 

loc a l a f f i n e transformation. 

Borel and Lichnerowicz [ l ] gave a proof of t h i s theorem i n 1952 

f o r the Riemannian case; t h e i r proof was based on results of Ehresmann [ j ] . 

I n the a f f i n e case the theorem follows from results of Ambrose [ l ] apd 

Hicks [ l ] published i n the l a t e 1950's. (Further deta i l s may be found i n 

Wolf [1] , chapters 1 and 2 ) . 

The extension of the l o c a l isometries (affin e transformations) of 

Theorem I I . 1 to global isometries (affin e transformations) i s not always 

possible; nevertheless the global extension i s possible on a complete, 

simply-rconnected l o c a l l y symmetric) space - i n p a r t i c u l a r therefore the 

gimply-connected covering space of a complete l o c a l l y symmetric space i s 

a symmetric space. (Symmetric spaces themselves are always complete). 

Most s i g n i f i c a n t for the present purpose, however, i s the following theorem 

which shows that a complete l o c a l l y symmetric space i s i n fact l o c a l l y 

isometric (affinely diffeomorphic) to a symmetric space, thus j u s t i f y i n g the 

use of the term " l o c a l l y symmetric" : 

Theorem I I . 2 ; 

(a) Let M be a complete (pseudo-) Riemannian l o c a l l y symmetric space 

and p e M. Then there exist a neighbourhood V of p i n M, a 

(pseudo-) Riemannian symmetric space N, and a neighbourhood U i n N 

such that V i s isometric to U. 

(b) Let M be a complete a f f i n e l o c a l l y symmetric space and p e M, 

Then there exist a neighbourhood V of p i n M, an a f f i n p symmetric 

space N, and a neighbourhood U i n N such that V i s a f f i n e l y 

diffeomorphic to U. 



The results o f t h i s theorem seem i m p l i c i t i n the work of Gartan and 

appear i n the work of Whitehead [ l ] i n 1952 when Whitehead treated 

l o c a l l y symmetric spaces, giving e x p l i c i t proofs f o r certain results stated 

by Cartan about symmetric spaces but proved by him only i n the case of a 

Lie group manifold, A proof of the af f i n e case of Theorem 11,2 was given 

i n 195*1- by Nomizu [2], 

Cartan ( [ l ] and [2]) essentially posed the problem of the c l a s s i f i e a t i 

of a l l simply-connected Riemannian symmetric spaces, The solution to t h i s 

problem, b r i l l i a n t l y worked out by Cartan, properly belongs to the Lie 

group aspect of the subject and w i l l be discussed i n the next section. 

Given the c l a s s i f i c a t i o n of simply-connected symmetric spaces, one has 

(by Theorem I I . 2 ) a l o c a l c l a s s i f i c a t i o n of the complete l o c a l l y symmetric 

spaces; the global c l a s s i f i c a t i o n of these manifolds i s a covering space 

problem: i n t h i s regard cf. Wolf [ l ] page hk and Wolf [2] , Hence

f o r t h symmetric spaces w i l l be the objects of central i n t e r e s t , but i t i s 

Important to bear i n mind that the geometrical motivation f o r t h e i r study 

arose from interest i n the l o c a l l y symmetric spaces, 

Cartan's extensive studies concerned Riemannian symmetric spaces; 

his papers i n t h i s subject have been a source of i n s p i r a t i o n f o r a groat-

deal of work on the geometry of these manifolds i n p a r t i c u l a r and of 

homogeneous spaces i n general. A comprehensive survey c f the theory of 

Riemannian symmetric spaces was given by Helgason [ l ] i n 1962, Treatments 

of a f f i n e symmetric spaces are to be found i n Whitehead [ l ] , Nomizu [2] , 

Kobayashi and Nomizu [1], volume I I , Loos [ l ] , volume I , and also i n 

Berger [ l ] where a c l a s s i f i c a t i o n i s given. 
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i i 2» The Lie Group Characterisation, the Geometry and the Cartan 
Class i f i c a t i o n of Symmetric Spaces. 

( i ) Lie Group Characterisation 

Cartan (3] demonstrated that f o r a Riemannian symmetric space M, the 

group of isometries l(M) admits a Lie group structure (which i n modern 

terminology i s compatible with the compact open topology on l(M)) and that 

l(M) acts t r a n s i t i v e l y as a Lie transformation group on M, Thus (cf. 

Theorem I.h) a Riemannian symmetric space i s diffeomorphic to a 

homogeneous space of Lie groups; t h i s result i s of great importance i n the 

study of these manifolds. 

I n the case of any Riemannian manifold work by van Dantzig and 

van der Waerden [ l ] of 1928 implies that the group of isometrics admits 

the structure of a topological transformation group of the manifold. 

Extending these results Myers and Steenrod [ l ] showed that for any 

Riemannian manifold the group of isometries i n fact admits a Lie group 

structure with which i t i s a Lie transformation group of the given 

manifold. Nomizu [ l ] proved the analogous result for the group of a f f i n e 

transformations of an a f f i n e manifold, and from t h i s the result follows 

f o r the group of isometries of any pseudo-Riemannian manifold also, fdo, 

i n p a r t i c u l a r , on a symmetric space the group of isometries (of a f f i n e 

transformations i n the a f f i n e case) i s always a Lie transformation group; 

that t h i s group i s t r a n s i t i v e (on the symmetric space) follows f o r the 

pseudo-Riemannian and a f f i n e cases exactly as f o r the Riemannian case 

treated by Cartan. (An e x p l i c i t proof i s presented i n Kobayashi and 

Nomizu [ l ] ) . 

From the above results i t follows (cf. Theorem T.,h) that any 

symmetric space M may be diffeomorphically represented by a homogeneous 
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space G0/H where GQ can be taken as the i d e n t i t y component of the group 

of isometries (or af f i n e transformations) of the given symmetric space M; 

the isotropy subgroup H i n such a representation has the following 

characterisation ( i m p l i c i t i n Cartan's work, but for an e x p l i c i t proof 

see Loos [ l ] ) : 

Theorem I I ' . 3' 

With G0 and H as introduced immediately above^ consider the involutive 

automorphism 9 of GQ defined by 0(g):= s ogos for g e GQ *rhere p i 
Po Po 

the point i n M f o r which H i s the isotropy subgroup arid s I s the 
Po 

isome,try (or a f f i n e transformation) associated to p 0 (s having order 
Po 

two and having p Q as an isolated f i x e d p o i n t ) . Then the set 

J= {g e GD : 0(g) = g} i s a closed Lie subgroup of GQ; (G,o)0 denot 
6 

the i d e n t i t y component of G0 . The subgroup H s a t i s f i e s *r 

« # o C H C G* . 

Conversely, given a connected Lie group B 0, a continuous automorphism 

T of B 0 of order two, and a closed. Lie subgroup C of B D s a t i s f y i n g 

( B Q ) 0 C C C BQ (where the Lie group B J I= (b £ B Q I T(b) = b J and 

( B 0 ) 0 denotes i t s i d e n t i t y component^ then the homogeneous space B,-,/C! 

admits the structure of an a f f i n e symmetric space. 

This characterisation of the isotropy subgroup i s very important 

in the study of symmetric spaces; i t l i e s at the heart of the 

c l a s s i f i c a t i o n theory ( c f . part ( i i i ) of the present section A,2), 

( i i ) The Geometry of Symmetric Spaces 

Following Cartan's penetrating analysis i n the Riemannlari pase, the 

geometry of symmetric spaces has been developed i n considerable d e t a i l ; 
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the key factor f a c i l i t a t i n g an elegant description of various geometrical 

ideas i s the r e s u l t that symmetric spaces are diffeomorphic to 

homogeneous spaces of Lie groups as discussed i n the previous part ( i ) T 

i 

Indeed by presenting a geometrical question as an equivalent problem i n 

Lie group theory, the solution usually becomes more readily tractable and, 

i n many cases, can be reduced to simple algebraic considerations i n the 

appropriate Lie algebras. 

Emphasising the geometrical significance of Lie groups, Cartan (lO] 

pointed out that geodesies on a Riemannian symmetric space are exactly the 

orb i t s of the one-parameter subgroups i n the Lie group of isometrl.es, 

Cartan [2] (with Sohouten) studied invariant a f f i n e connexions on 

connected Lie groups, and Cartan [3] also showed how the (Levi-Civita) 

connexion on a Riemannian symmetric space M can be expressed i n Lie 

algebra terms. In more d e t a i l , representing the manifold as G0/i{ (as 

above) the connexion on M gives a G 0-invariant connexion on G0/H: 

decomposing g = h © m where g and h are the Lie algebras of GD and H 

respectively and m i s the (-l)-eigenspace of (d0 ) g (the d i f f e r e n t i a l at e 

of the automorphism B of Theorem I I . 3 ) , then m may be i d e n t i f i e d with 

M under the projection it : GQ -> G0/H where H i s the isotropy subgroup Po 
of GQ a t , say, the point p 0 e M. Thus X,Y,Z denote the vectors i n m 

corresponding to X,Y,Z 6 M ; Cartan [3] showed that the curvature 
Po 

tensor R on M s a t i s f i e s the following i d e n t i t y ! 

R(X,Y,Z) = -dn[[X,Y],Z] e T 

In 195^ Nomizu [2] demonstrated that a l l the above considerations 

extend d i r e c t l y tc the pseudo-Riernannian and a f f i n e symmetric spaces (the 

group of isometries being replaced by the group of a f f i n e transformations 

http://isometrl.es
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i n the a f f i n e case). He introduced the notion of a "reductive" homogeneous 

space G0/H as one for which the Lie algebra g of the connected Lie group GQ 

admits a dire c t sum decomposition g = h © m (h being the Lie algebra of H) 

such that Ad_ (H)m C_ m; symmetric spaces are a special class of G0 -

reductive homogeneous spaces. Nomizu further showed that i n the case of a 

G Q-invariant connexion on a reductive homogeneous space G0/H the curvature 

tensor could again be expressed i n terms of the appropriate Lie algebra; 

likewise f o r the torsion tensor. Moreover from his treatment of 

invariant connexions i t becomes clear that on a symmetric space GD/H the 

af f i r i e connexion V (of Levi-Civita i n the (pseudo-)Riemannian case and 

necessarily torsion-free also i n the a f f i n e case) i s distinguished i n the 

sense that there i s no other G Q-invariant torsion-free connexion on GQ/ H 

with the same geodesies as V . 

Another important contribution to the theory of symmetric spaces was 

Cartan's study of t h e i r t o t a l l y geodesic submanifolds (cf tCartan [5] and [h].) 

I n Gartan [k] he introduced the important notion of the "rank" of a symmetric 

space - namely, the maximal dimension of f l a t , t o t a l l y geodesic submanifolds. 

The significance of t o t a l l y geodesic Rubmanifolds of symmetric spaces may be 

appreciated by the insight they a f f o r d of the very nature of symmetric 

spaces: every symmetric space may be embedded as a t o t a l l y geodesic sub-

manifold of a certain Lie group (viz. the corresponding "group of 

displacements" defined i n Cartan [U]; see also Loos [ l ] ) . 

An almost complex structure on a manifold M i s a tensor f i e l d 

J e T*(M) such that (J ) 2 = - I f o r each p e M, A Riemannian manifold M 

i s called Hermit.tan i f J preserves the metric tensor g of M; i.e . i f 

g(jX, JY) = g(X,Y) f o r a l l X,Y e T X(M), and a Riemannian symmetric apace with 

such a Hermitian structure i s called a Hermitim symmetric space. The 
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Hermitian symmetric spaces were investigated by Cartan [12], who described 

t h e i r relationship with the bounded domains ( i . e . bounded, open connected 

subsets of Cn f o r various n). Further studies of t h i s relationship were 

made by Harish-Chandra f l ] and Borel [ l ] , [2]. 

At t h i s point i t seems natural t o mention the following more general 

investigations of complex manifolds, and of almost complex structures (on 

"r e a l " manifolds), The relationship between complex manifolds and aljnost 

complex structures was developed by Eckmann and FriJhlicher t l ] and 

Newlander and Nirenberg [ l ] ; a c l a s s i f i c a t i o n of homogeneous complex 

manifolds was given by Wang [ l ] i n 195^, and the same results were 

obtained by a d i f f e r e n t method by T i t s [ l ] i n 1962, 

An almost complex structure J on a homogeneous space G/H i s called 

G-invariant i f dgoJ^ « ^g(p) 0 d^p f o r e a c n S £ G, p e M. Such 

G-lnvariant almost complex structures have been studied by Hermann f l ] 

Passiencier [1] , Gray [ l ] through [6] , and Wolf and Gray [ l ] , 

( i i i ) The "Cartan" Cla s s i f i c a t i o n of Symmetric Spaces 

A very b r i e f sketch of the c l a s s i f i c a t i o n of symmetric spaces w i l l 

be given here; an excellent outline i s to be found i n Chapter XI of 

Kobayashi and Nomizu [ l ] and a complete treatment i n Wolf [ l ] (see also 

Loos [ l ] and Helgascn[l] ). 

The c l a s s i f i c a t i o n may be reduced to fi n d i n g the simply-connected 

symmetric spaces and t h e i r "centres" (cf. Loos [ l ] , chapter lv), and 

further reduced t o finding those which are "irre d u c i b l e " ( c f , Helgason f l l , 

chapter 8 ) . The c l a s s i f i c a t i o n depends on the Lie group characterisation 

of symmetric spaces mentioned i n part ( i ) above: v i z , that a symmetric 



space i s diffeomorphic to a homogeneous space of Lie groups G0/H where 

the isotropy subgroup H s a t i s f i e s the r e l a t i o n i n Theorem I I . 3 i n terms 

of a certain involutive automorphism of Gp. In fact the c l a s s i f i c a t i o n 

of irreducible simply-connected symmetric spaces may be i n turn reduced 

to a study of involutive automorphisms of simple Lie algebras. Haying 

a l i s t of the involutive automorphisms of the simple Lie algebras', one 

finds the corresponding irreducible simply-connected symmetric spaces by 

careful geometric and Lie group theoretic arguments to establish the 

correct isotropy subgroups (knowing t h e i r Lie algebras); the centre of 

the isotropy group i s determined from well-known results of Lie group 

theory and there follows the c l a s s i f i c a t i o n of the symmetric spaces 

covered by a given simply-connected one. 

To determine which of the so c l a s s i f i e d a f f i n e symmetric spaces are 

i n fact Riemannian or pseudo-Riemannian symmetric one applies nice 

arguments involving geometry and Lie group theory, For the Riemannian 

case the arguments were presented i n 1927 by Gartan [U]; the pseudo-

Riemannian case has been e x p l i c i t l y presented by Gray [6] i n 197It The 

general c l a s s i f i c a t i o n of the a f f i n e symmetric spaces was done by Berger 

[1] i n 1957. 



The "Algebraic" D e f i n i t i o n of Symmetric Spaces 

In the 1960's Ottmar Loos ( [ l ] through [5]) developed a novel 

approach to the study of symmetric spaces, an approach which i s algebraic 

i n flavour and by which the study of symmetric spaces proceeds i n a fashion 

elegantly analogous to the corresponding study of Lie groups. As i s a Lie 

group, a (Loos) symmetric space i s defined as a manifold admitting a smooth 

m u l t i p l i c a t i o n s a t i s f y i n g certain properties. The Lie t r i p l e system of a 

(Loos) symmetric space i s introduced and plays a role analogous to that of 

a Lie algebra i n Lie group theory; s i m i l a r l y the notion of a semi-simple 

and simple symmetric space i s considered and the concepts "rank" and 

"centre" are defined. The centre Z(M) of a (Loos) symmetric space M i s 

an abelian Lie group acting f r e e l y on M; analogous to the case of the 

centre of a Lie group, the importance of the centre of a symmetric space 

i s that the (Loos) symmetric spaces covered by M are exactly the quotients 

of M by discrete subgroups of Z(M). 

The f u l l d e f i n i t i o n of a (Loos) symmetric space i s now given; 

D e f i n i t i o n I I . y. A (Loos) symmetric space i s a d i f f e r e n t i a b l e manifold M 

endowed with a d i f f e r e n t i a b l e (C°°) m u l t i p l i c a t i o n u : M X M -» M 

(u(x,y) i s also denoted by x.y) sa t i s f y i n g the following four propertie 

for a l l x,y,z e M: 

(1) x.x = x 

(2) x.(x.y) = y 

(3) x.(y.z) = (x.y).(x.z) 

and (U) there exists a neighbourhood V of x such that f o r v e V , 

x,v =! v i f f v = x. 
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A symmetric space (as introduced i n Section l ) always admits the 

structure of a (Loos) symmetric space, the m u l t i p l i c a t i o n being determined 

simply by defining n(x,y) to be the image of y under the (geodesic) 

symmetry at x. The following theorem, a fundamental result established 

by Loos ( [ l ] and [3]) implies the converse, - namely that a (Loos) 

symmetric space always admits a symmetric space structuret 

Theorem I I A : Let M be a (Loos) symmetric space with m u l t i p l i c a t i o n n as 

i n D e f i n i t i o n I I . 3 and define for x e M the map : M -» M by 

s x ( y ) := n(x,y). 

Then M admits an a f f i n e connexion, with respect to which the map s^ ( f o r 

each x c M) i s an a f f i n e transformation of M. 

From t h i s theorem and the above remarks i t i s seen that the (Loos) 

symmetric spaces are exactly the a f f i n e symmetric spaces; i.e, the 

existence of an a f f i n e symmetric space structure on a given manifold M i s 

equivalent to the existence of a smooth ( i . e , G°°) m u l t i p l i c a t i o n on M 

sa t i s f y i n g properties ( l ) through (k) of D e f i n i t i o n I I . 3 . This equivalence 

having been established, the study of symmetric spaces by Loos proceeds as 

outlined i n the two previous sections of t h i s chapter; Loos's development 

of the subject and his expositions of proofs are presented, however, with 

a more algebraic flavour. His demonstration that the theory of symmetric 

spaces so closely p a r a l l e l s that of Lie groups reminds one of Cartan's 

powerful insight i n t o the structure of symmetric spaces, insight largely 

gained i t would appear from exhaustive studies of group manifolds. Also 

one remarks that the Lie t r i p l e system, which appears s i g n i f i c a n t l y I n 

Loos's algebraic treatment, was i n fact o r i g i n a l l y introduced by Oartan [3] 

i n connection with the t o t a l l y geodesic submanifolds of symmetric spaces. 
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F i n a l l y i t i s pointed out that the applications of Jordan algebras 

to symmetric spaces (cf. Part B of t h i s Chapter) are most naturally 

discussed i n the framework of t h i s algebraic approach to symmetric spaces 

developed by Loos. 
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k• Generalisations of Symmetric Spaces: 

( i ) k-sy mine t r i e Spaces 

The D e f i n i t i o n I I . 2 of a symmetric space M involves the existence 

at each point p e M of an involutive a f f i n e or (pseudo-)Riemannian symmetry, 

the symmetric spaces being l o c a l l y characterised by the vanishing of the 

covariant derivative of the curvature tensor. The consideration of 

manifolds admitting at each point a symmetry of some integer order k 

di f f e r e n t from two was i n t i a t e d by A.J.Ledger i n the 1960's! i n 1967 

Ledger [1] introduced "k-symmetric spaces" to the l i t e r a t u r e . For k = 3s 

a l o c a l characterisation of 3-symmetric spaces i n terms of the curvature 

tensor was given i n 1971 by Gray [6] , who was led to the consideration of 

these manifolds from quite a d i f f e r e n t point of view: namely, an interest 

i n manifolds admitting almost complex structures and i n the existence of 

invariant almost complex structures on homogeneous spaces^ Moreover, 

j o i n t work by Wolf and Gray [ l ] essentially provides the c l a s s i f i c a t i o n f o r 

3-symmetric spaces and indicates the procedure for classifying k-symmetric 

spaces f o r k > 3- Now a more detailed account of the theory of k-syirsi.'.etric 

spaces w i l l be presented. 

In 19'57 Ledger [ l ] introduced the following d e f i n i t i o n : 

D e f i n i t i o n I I . k : A generalised Riemannian symmetric space i s a connected 

Riemannian manifold M admitting at each point p e M an isometry s such 
P 

that: 

(a) p i s an isolated fixed point of s^ 

and(b) the tensor f i e l d S defined by S ;= (ds ) i s d i f f e r e n t i a b l e v / p p'p 
( i . e , , S e T^(M) ). 
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Ledger [ l ] also introduced essentially the next d e f i n i t i o n ! 

D e f i n i t i o n II.5'- Let k be an integer 2, 

A Riemannian k-symmetric space i s a generalised Riemannian symmetric 

space (as i n D e f i n i t i o n II.h) f o r which the isometry s has order k 

(for each p e M). 

The important res u l t presented by Ledger [ l ] was the proof that on 

a generalised Riemannian symmetric space the group of isometries i s 

t r a n s i t i v e ; hence, of course, the manifold i s diffeomorphic t o a 

homogeneous space of Lie groups. An alternative proof of the t r a n s i t i v i t y 

of the group of isometries i s due to F« B r i c k e l l ( cf. Ledger and Obata [ l ] ) 

t h i s second proof makes no use of condition (b) of D e f i n i t i o n I I 9 ^ , 

Consequently i n Ledger and Obata [ l ] the following d e f i n i t i o n and theorem 

are given: 

D e f i n i t i o n _ I I u . 6: A Riemannian s-manifold i s a connected Riemannian 

manifold M admitting at each point p e M an isometry s p f o r which p i s 

an isolated fixed point. 

Theorem II.5: On a Riemannian s-manifold the group of isometries i s 

t r a n s i t i v e . 

Ledger and Obata [ l ] and Graham and Ledger [ l ] made further studies 

of these manifolds; furthermore the notions of a f f i n e and pseudo-Riemannian 

s-manifolds were introduced: 

P®£Li}iii°I}_Iii2: A" a f f i n e (resp). pseudo-Riemannian) s-manifold i s a 

connected a f f i n e (resp. pseudo-Riemannian) manifold M admitting at each 

point p e Man a f f i n e transformation (resp. isometry) s such th a t : 
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(a) f o r each p e M, p i s an isolated f i x e d point of s^p 

and (b) the tensor f i e l d S defined by S := (ds ) i s d i f f e r e n t i a b l e 
p p p 

( i . e . , S e T*(M) ), 

The following analogue of Theorem I I . 5 i s essentially proved i n 

Ledger and Obata [ l ] ( c f . Graham and Ledger [ l ] ) ; (unlike the 

Riemannian case, the d i f f e r e n t i a b i l i t y requirement of condition (b) seems 

necessary i n the a f f i n e case): 

Theorem I I . 6 : On an a f f i n e s-manifold M the group G of a f f i n e 

transformations i s t r a n s i t i v e . 

(From t h i s result i t follows that the group of isometries i s t r a n s i t i v e 

on a pseudo-Riemannian s-manifold). 

The following d e f i n i t i o n (found essentially i n Ledger and O'bata L l j ) 

i s given f o r future reference: 

D e f i n i t i o n I I . 8 : Let k be an integer ^2 . 

An af f i n e (resp. pseudo-Riemannian) k-symmetric space is an a f f i n e 

(resp. pseudo-Riemannian) s-manifold M such that f o r each p e M the 

symmetry s^ has order k. 

Ledger and Obata further pointed out that for a compact connected 

non-abelian Lie group G and given integer k > 2, the Lie group Ĝ' (the 

k-fold direct product of G with i t s e l f ) admits a Riemannian metric with 

Which Ĝ  i s a Riemannian s-manifold (and, i n f a c t , a Riemannian k-symmetric 

space), but with t h i s metric Gk i s not a Riemannian symmetric space (indeed 

with the corresponding Levi-Civita connexion i t i s not even l o c a l l y af'fine 
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symmetric). Thus the n o t i o n o f s-manifold i s a n o n - t r i v i a l g e n e r a l i s a t i o n 

o f the n o t i o n o f symmetric space. Ledger and Obata also discuss the 

existence o f almost complex s t r u c t u r e s on c e r t a i n Riemannian k-symmetric 

spaces ( f o r k odd). 

One mentions here some studies o f k-symmetric (homogeneousJ spaces 

made by F i e l d [ l ] ; he considered r e l a t e d i n v a r i a n t a f f i n e connexions and 

decompositions o f the associated L i e algebras. 

I n Graham and Ledger [ l ] the n o t i o n o f an s-regular manifold was 

introduced: 

D e f i n i t i o n I I . 9 i An s-regular Riemannian (resp, pseudo-Riemanniap, a f f i n e ) 

m a n i f o l d i s a Riemannian (resp. pseudo-Riemannian, a f f i n e ) s-manifold M 

as i n D e f i n i t i o n I I . 6 (resp. I I . 7 ) such t h a t : 

(a) s o s = s / \os f o r a l l p,x e M, 
P x s p ^ x ' P 

and (b) the tensor f i e l d S defined by S := (ds ) i s d i f f e r e n t i a b l e \ / p p'p 
( i . e . , S e Tj(M) ) . 

For an s-regular a f f i n e m a n i fold Theorem I I . 6 has the following; 

refinement ( c f . Ledger and Obata [ l ] and Graham and Ledger [ l ] ) z 

Theorem I I . 6 * : Let M be an s-regular a f f i n e m a n i f o l d , A(M,^j| i t s group 

o f a f f i n e t r a n s f o r m a t i o n s . 

Define the f o l l o w i n g closed L i e subgroup o f A(M,V); 

G J= ( g e A(M,V): s / v = g o s o g - 1 f o r a l l x e M} . 
g\X.) x 

Then G i s t r a n s i t i v e on M. 



Hence denoting by H the i s o t r o p y subgroup o f G a t some p o i n t o f M, M i s 

diffeoraorphic t o the homogeneous space G/H, 

Graham and Ledger f u r t h e r introduced i n a n a t u r a l way the n o t i o n o f 

a l o c a l l y s-regular m a n i f o l d and showed t h a t the r e l a t i o n s h i p between 

s-^regular and l o c a l l y s-regular manifolds i s analogous t o the r e l a t i o n s h i p 

between symmetric and l o c a l l y symmetric spaces. They also obtained a 

characteristafcion o f l o c a l l y s-regular manifolds i n terms o f cond i t i o n s on 

the curvature and t o r s i o n tensors and a tensor analogous t o "S" i n 

D e f i n i t i o n I I . 9 ; t h i s was accomplished, by demonstrating ( i n t e r a l i a ) t h a t 

a l o c a l l y s-regular manifold always admits a new a f f i n e connexion V whose 

curvature tensor R, t o r s i o n tensor T" and d i f f e r e n c e tensor D ( w i t h respect 

t o the o r i g i n a l connexion) s a t i s f y VT = 0, = 0 and VD = 0. 

Before discussing the l i n k between s-regular manifolds and the 

studies o f Gray, two conjectures are presented; the f i r s t i s due t o 

A, Deicke, the second t o A.J.Ledger. These conjectures serve t o emphasise 

the s i g n i f i c a n c e o f the s-regular manifolds i n t h i s subject, 

Conjecture 1: Every s-manifold i s k-symmetric f o r some k. 

Conjecture 2: Every k-symmetrlc space i s an s-regular manifold. 



( i i ) A Local Charge o f s-regular 

pseudo-Riemannian ^-symmetric Spaces. 

On a pseudo-Riemannian ^-symmetric space M a tensor f i e l d J e T*(M) 

may be defined i n terms o f the tensor f i e l d S ( o f D e f i n i t i o n I I . 7 ) by! 

,T := - i ( l + 2S ) f o r p € M, 
P N/5 P P • 

J i s i n f a c t an almost complex s t r u c t u r e on M ( i . e . ( J p ) s = - I p f o r 

a l l p e M) - c f . Gray [6] or Ledger and Obata [ l ] ; J i s r e f e r r e d t p as 

the canonical almost complex s t r u c t u r e on M. 

The f o l l o w i n g i s e s s e n t i a l l y a d e f i n i t i o n due t o Gray [6]» 

D e f i n i t i o n 11.10: A pseudo-Riemannian holomorphically 3-symmetric space i s 

an a n a l y t i c pseudo-Riemannian manifold M endowed w i t h a pseudo-Riemannian 

3-symmetric space s t r u c t u r e (as i n D e f i n i t i o n I I . 8 ) such t h a t the 

m u l t i p l i c a t i o n | i : M X M -> M i s a n a l y t i c and such t h a t f o r each p e M 

the l e f t m u l t i p l i c a t i o n s i s "holomorphic" w i t h respect t o the canonical 
3? 

almost complex s t r u c t u r e J on M: i . e . , 

ds o J = J / \o (ds ) f o r a l l p.x 6 M. 
p x s p ( x ) P x 

I t i s observed t h a t the manifolds o f D e f i n i t i o n 11,10 are e x a c t l y 

the s-regular pseudo-Riemannian 3-symmet.ric spaces ( q f D e f i n i t i o n s I I * 9 -

11,8 w i t h k = 3)s the holomorphic c o n d i t i o n on the symmetries i s 

equivalent t o the s-regular c r i t e r i o n (note the l i n e a r r e l a t i o n s h i p between 

S and j ) ; the various a n a l y t i c i t y requirements o f D e f i n i t i o n I I , 10 were 

not s p e c i f i e d i n the d e f i n i t i o n o f an s-regular pseudo-Riemannian 3-symmetric 

space, but such a manifold always admits an a n a l y t i c s t r u c t u r e f o r which they 

are i n f a c t s a t i s f i e d ( i n t h i s regard c f . Graham and Ledger [ l ] ) . 
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One o f the important r e s u l t s presented "by Gray [6] i s the f o l l o w i n g 

l o c a l c h a r a c t e r i s a t i o n o f pseudo-Riemannian holomorphically 3-symmetric 

spaces i n terms o f t h e i r curvature tensors and canonical almost complex 

s t r u c t u r e s : 

Theorem II.71 Let M be an a n a l y t i c pseudo-Riemannian m a n i f o l d w i t h 

a n a l y t i c almost complex s t r u c t u r e 0' which i s almost Hermitian ( i . e . 

l e t t i n g g denote the me t r i c tensor on M, g(jX,JY) = g(X,Y) f o r a l l 

X,Y e T X(M) ). 

Define the tensor f i e l d S by S := ^ J - hi f o r p e M; i n terms o f 
p 2 p * p 

the m e t r i c tensor g and associated L e v i - C i v i t a curvature tensor R on M 

define the tensor f i e l d R e T^(M) by: 
R(X,Y,Z,W) := g(Z,R(X,Y,W)) f o r X,Y,Z,W c T*(M). 

Then there e x i s t s a pseudo-Riemannian holomorphically 3-symmetric 

space N such t h a t M i s l o c a l l y i s o m e t r i c t o N and such t h a t J corresponds 

t o the canonical almost complex s t r u c t u r e on N, i f and only i f the 

f o l l o w i n g three c o n d i t i o n s are s a t i s f i e d on M ( f o r a l l V,W X,Yj,Z e T x (M) )t 

(1) R(W,X,Y,Z) = R(JW,JX,Y,Z) + R(JW,X,JY,Z) + R(JW,X,Y,JZ), 

(2) VV(R)(W,X,Y,Z) + VV(S)(JW,JX,JY,JZ) = 0, 

and (3) a l l covarlant d e r i v a t i v e s ( o f a l l orders) o f J are i n v a r i a n t 

under S. 

(Condition (3) i s always s a t i s f i e d on a near l y - K t e h l e r m a n i f o l d ; 

i . e . when V x ( j ) X 0 f o r a l l X e l a ( M ) . ) 

Gray [6] furthermore shows t h a t the pseudo-Riemannian holomorphical'ly 

3-symmetric spaces ( e q u i v a l e n t l y s-regular pseudo-Riemannian 3-symmetric 
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spaces) admit a L i e group characterisation i n analogy with Theorem I I . 3 

for symmetric spaces; indeed using methods si m i l a r to those of Ledger 

and Obata [ l ] and Loos [ l ] , Gray established the following: 

Theorem I I . 8 : 

(a) Let M be a pseudo-Riemannian holomorphically 3-symmetric space, 

G Q the largest connected group of holomorphic isometries of M and 

H the isotropy subgroup of G 0 at a point p Q e M» s denoting the 
Po 

holomorphic symmetry at p Q , define 0 : G D -» G Q "by 

9(g) := s o g o s " 1 for g e G Q . Po "o 

0 Q Define the L i e group G Q := {g e G 0 : 0(g) « g} and l e t ( G Q ) 0 denote 
Q 

the i d e n t i t y component of G Q . 

Then: ( l ) 0 i s an a n a l y t i c automorphism of G Q of order three, 

(2) « # 0 C H C 4 > 

and (3) M i s diffeomorphic to G0/H. 

(b) Conversely, given a connected L i e group B Q, a continuous 

automorphism T of B Q of order three, and a closed subgroup C of 

B 0 s a t i s f y i n g ( B 0 ) 0 C C CC B q (where the L i e group 

B Q := {b e B 0 : T(b) = b ] and ( B Q ) 0 denotes i t s i d e n t i t y component), 

then the homogeneous space B Q/C admits the structure of a pseudo-

Riemannian holomorphically 3-symmetric space provided that, with a 

cer t a i n decomposition b = c © m (see Gray [6] for d e t a i l s ) with b 

and c the L i e algebras of B Q and C resp., the vector space m admit 
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a non-degenerate symmetric b i l i n e a r form invariant under 

Ad,, (C) and ( d f ) . tiQ e 

Moreover the following theorem of Gray [6] shows that the pseudo-

Riemannian holomorphically 3-symmetric spaces are reductive homogeneous 

spaces, and neatly characterises those which are "naturally reductive": 

i . e . for which the L e v i - C i v i t a connexion i s the canonical connexion of the 

f i r s t kind ( c f . Theorem 1.7(c) ) : 

Theorem II.9= With the notation of the preceding theorem (statement ( a ) ) , 

the homogeneous space G0/H diffeomorphic to M i s a reductive homogeneous 

space. 

GQ/H i s naturally reductive i f f the canonical almost complex structure 

J of M i s nearly-Kaehler. 

F i n a l l y Gray [6] presents a c l a s s i f i c a t i o n of the pseudo-Riemannian 

holomorphically 3-symmetric spaces. This c l a s s i f i c a t i o n depends on the 

j o i n t work o f Wolf and Gray [ l ] which treated the problem of finding for a 

simple L i e group a l l (continuous) automorphisms of a given order k; i n 

the case k = 3 a complete l i s t o f the possible (continuous) automorphisms 

i s given. Moreover for k = 3 Wolf and Gray examined the corresponding 

homogeneous spaces G0/H (where as above ( G 0 ) Q C H 1̂ G Q for B an auto

morphism of order three o f a connected L i e group G 0 ) ; they also determined 

which such spaces admit G 0-invariant (pseudo-)Riemannian metrics and which 

admit various types o f G Q~invariant almost complex structures. 

Gray [6] discusses the decomposition of pseudo-Riemannian 

holomorphically 3-symmetric spaces into "primitive" ones using r e s u l t s of 

Wu [ l ] which extend the de Rham decomposition of Riemannian manifolds to the 
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pseudo-Riemannian case. From these r e s u l t s and further observations Gray 

shows that the c l a s s i f i c a t i o n of pseudo-Riemannian holomorphically 

3-symmetric spaces may be reduced to ( l ) consideration of homogeneous 

spaces GQ/H where (GQ)0 <ZL H <^ G^ for some (continuous) automorphism 6 

of order 3 of a connected simple L i e group G Q and (2) the question of 

which such spaces admit G Q-invariant pseudo-Riemannian metrics. 

Consequently the r e s u l t s of Wolf and Gray [l]enable Gray [6] to give a 

complete l i s t of the "primitive" pseudo-Riemannian holomorphically 

3-symmetric spaces (and to decide which are i n fact Riemannian). 



( i i i ) Other Generalisations o f Symmetric Spaces 

Apart from the study of general r e d u c t i v e homogeneous spaces by 

Nomizu [ 2 ] and those p a r t i c u l a r ones mentioned i n the preceding p a r t s 

( i ) and ( i i ) o f t h i s s e c t i o n h} other s p e c i f i c g e n e r a l i s a t i o n s o f the 

n o t i o n o f symmetric space have been made. 

(a) F i r s t l y mention i s made o f the " r e f l e x i o n spaces" s t u d i e d by Loos [3]* 

[k]; these are defined e x a c t l y as symmetric spaces except t h a t the symmetry 

at a p o i n t p i s required simply t o leave p f i x e d , not ne c e s s a r i l y t o have p 

as an i s o l a t e d f i x e d p o i n t . These r e f l e x i o n spaces were shown t o be f i b r e 

bundles over symmetric space3. 

(b) I n a s i m i l a r f a s h i o n , Robertson has considered f o l i a t e d Riemannian 

manifolds which admit f o r each l e a f X a l e a f - p r e s e r v i n g isometry s^ l e a v i n g 

X pointwise f i x e d and such t h a t a t each p o i n t x e X, ( d s ^ ) x does not h9.ve 

+1 as an eigenvalue. Robertson e s t a b l i s h e d t h a t f o r a compact m a n i f o l d 

such a f o l i a t i o n i s i n f a c t a f i b r a t i o n over a Riemannian s-manifold 

( c f . D e f i n i t i o n I I . 6 ) ; s-manifolds themselves are considered, i n t h i s 

context, as the s p e c i a l case o f p o i n t leaves. 

(c) As p o i n t e d out by Kelwig [6] the canonical a f f i n e connexion on c e r t a i n 

symmetric spaces gives r i s e t o a n a t u r a l l y associated Jordan algebra 

( c f . Theorem IV.1 o f t h i s t h e s i s ) . More g e n e r a l l y on any r e d u c t i v e 

homogeneous space the maps "a : m X m -» m" introduced by Nomizu [2] 

( c f . Theorem I.7) also define algebras n a t u r a l l y r e l a t e d t o a f f i n e 

connexions, A. Sagle [ l ] , [ 2 ] made f u r t h e r studies along these l i n e s , 

i n v e s t i g a t i n g the types o f non-associative algebras r e l a t e d t o connexions 

on r e d u c t i v e homogeneous spaces; he also considered the r e l a t i o n s h i p 
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between L i e t r i p l e systems and t o t a l l y geodesic submanifolds o f these 

homogeneous spaces (thus extending t o a more general s i t u a t i o n the r e s u l t s 

obtained by Cartan [k] i n the ease o f symmetric spaces). 

(d) As noted i n s e c t i o n 1 i t i s a r e s t r i c t i o n on the curvature tensor 

(namely V.R = 0) which e s s e n t i a l l y characterises the symmetric spaces. 

Ambrose and Singer [ l ] and Singer [ l ] have presented a c h a r a c t e r i s a t i o n o f 

the curvature on Riemannian homogeneous spaces ( i . e . complete, connected 

Riemannian manifolds a d m i t t i n g a t r a n s i t i v e group o f i s o m e t r i e s ) , and they 

have posed t h e general problem o f c l a s s i f y i n g Riemannian homogeneous spaces 

I n t h i s s p i r i t one may consider the symmetric spaces ( o f Cartan) and the 

holomorphieally 3-symmetric spaces (treated by Gray) t o be two f a m i l i e s i n 

such a c l a s s i f i c a t i o n . As y e t no other f a m i l i e s have been s t u d i e d so 

thoroughly but the programme suggested by Ambrose and Singer provides a 

broad geometrical framework f o r f a r t h e r g e n e r a l i s a t i o n s o f symmetric spaces 
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PART B: JORDAN ALGEBRAS 

1. General Development o f Jordan Algebras 

Jordan algebras o r i g i n a l l y arose from i n v e s t i g a t i o n s o f po s s i b l e 

g e n e r a l i s a t i o n s o f t h e formalism o f quantum mechanics; i n the papers o f 

P. Jordan [ l ] , [2] and [3] appearing d u r i n g 1932-33 these algebras were 

introduced i n t o the l i t e r a t u r e . I n 193̂  a paper by Jordan, von Neumann 

and Wigner [1] t o g e t h e r w i t h a paper by A.A.Albert [ l ] completely resolved 

the c l a s s i f i c a t i o n o f a f a m i l y o f Jordan algebras c a l l e d f o r m a l - r e a l ( c f . the 

next s e c t i o n concerning t h i s c l a s s i f i c a t i o n ) . This e a r l y work formed a f i r m 

foundation on which f u r t h e r studies have been based. 

A.A.Albert and N. Jacobson have made important studies o f Jordan 

algebras from a p u r e l y a l g e b r a i c p o i n t o f view; a German school l e d by 

M. Koecher has developed a theory o f Jordan algebras having a st r o n g f l a v o u r 

o f geometry and a n a l y s i s . Two e x c e l l e n t books t r e a t these two approaches: 

namely "Stru c t u r e and Representations o f Jordan Algebras" by N.Jacobson [ l ] 

and "Jordan-Algebren" by H. Braun and M. Koecher [ l ] ; i n these books 

extensive b i b l i o g r a p h i e s are t o be found f o r work on Jordan algebras c a r r i e d 

out p r i o r t o the mid-1960*s. (The book "An I n t r o d u c t i o n t o Non-associative 

Algebras" by R.D.Schafer [ l ] i s mentioned as a r e l e v a n t general r e f e r e n c e ) . 

H. Preudenthal (e.g. [ l ] ) , T.A.Springer and J. T i t s have made 

c o n t r i b u t i o n s t o the aspect o f the subject concerning r e l a t i o n s between the 

exceptional L i e algebras and Jordan algebras. Also, Koecher has been 

responsible f o r the development o f calculus on Jordan algebras and o f the 

r e l a t e d connections w i t h complex a n a l y s i s , i n p a r t i c u l a r automorphic 

f u n c t i o n theory. (For references t o the work mentioned i n t h i s paragraph, 

c f . the b i b l i o g r a p h i e s o f Jacobson [ l ] and Braun and Koecher [ l ] . ) 
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The more geometrical approach t o algebras over the r e a l number f i e l d 

i s important i n the context o f t h i s t h e s i s , but i t should be p o i n t e d out 

t h a t r e c e n t l y ( d u r i n g the l a s t t e n years) the study o f Jordan algebras has 

been based on a very general f o r m u l a t i o n . Jacobson [5] and McCriramon [ l ] 

have developed a "quadratic theory" based e s s e n t i a l l y on p r o p e r t i e s o f the 

quadratic r e p r e s e n t a t i o n ( c f . D e f i n i t i o n I.h(c)), i n p a r t i c u l a r the 

fundamental formula i n a Jordan algebra ( c f . Theorem 1.10); i n t h i s approach, 

Jordan algebras over f i e l d s o f a r b i t r a r y c h a r a c t e r i s t i c ( i n c l u d i n g 

c h a r a c t e r i s t i c 2) may be given a u n i f i e d treatment. 

I t i s the recent advances i n the more geometrical theory which are o f 

i n t e r e s t here; these advances have been i n s p i r e d by work o f Koecher and 

concern b a s i c a l l y the i n t i m a t e r e l a t i o n s h i p between Jordan algebras and 

d i f f e r e n t i a l geometry ( i n p a r t i c u l a r symmetric spaces) and the attendant 

i n s i g h t i n t o c e r t a i n aspects o f complex a n a l y s i s . A l o t o f Koecher 1s 

r e s u l t s seem t o be unpublished or r e l a t i v e l y i n a c c e s s i b l e (e.g. the 19̂ 2 

"Lecture Notes" o f Koecher [ l ] ) - c f . , however, Koecher [2]. Some o f 

Koecher's r e s u l t s , summarised i n Loos [1] chapter V I I I , explore the 

connection between f o r m a l - r e a l Jordan algebras and c e r t a i n Hermittan 

symmetric spaces. F u r t h e r studies made i n t h i s area by U. Hirzebruch, 

0. Loos and K.-H. Helwig d u r i n g the 1960's w i l l be discussed i n s e c t i o n k. 

A school o f Roumanian mathematicians has also s t u d i e d independently 

connections between Jordan algebras and d i f f e r e n t i a l geometry. A recent 

p u b l i c a t i o n by Popovici, Jordanescu and T u r t o i [ l ] gives a d e t a i l e d survey 

( i n Roumanian) o f t h e i r r e s u l t s . As i n the case o f the geometrical 

a p p l i c a t i o n s t o be discussed i n Section k, one a p p l i c a t i o n i s the d e f i n i t i o n 

o f a f f i n e connexions (on d i f f e r e n t i a b l e manifolds) n a t u r a l l y r e l a t e d t o 

various Jordan algebras; t h i s approach developed from work o f 
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6. Vranceanu [ l ] and [ 2 ] . C e r t a i n Wagner spaces are st u d i e d from the view

p o i n t o f Jordan algebras by T u r t o i [1]; f u r t h e r references on h i s work and 

t h a t o f other mathematicians i n t h i s Roumanian school are t o be found i n the 

book by Popovici et a l . [ l ] . 

I n c l o s i n g t h i s s e c t i o n , one mentions t h a t K.-H. Helwig [ l ] presented 

i n I967 (as h i s h a b i l i t a t i o n s - s c h r i f t ) c e r t a i n r e s u l t s on semi-simple Jordan 

algebras, e l e g a n t l y demonstrating the analogy o f t h e i r theory w i t h the 

corresponding one f o r semi-simple L i e algebras: i n p a r t i c u l a r , he showed 

t h a t every semi-simple complex Jordan algebra i s the c o m p l e x i f i c a t i o n o f a 

f o r m a l - r e a l Jordan algebra; (thus a f o r m a l - r e a l Jordan algebra i s the 

analogue o f a compact L i e a l g e b r a ) . 
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2- Examples and C l a s s i f i c a t i o n s o f Jordan Algebras 

A d e t a i l e d p r e s e n t a t i o n o f the various c l a s s i f i c a t i o n theorems w i l l 

not be given here; an e x c e l l e n t treatment i s t o be found i n Braun and 

Koecher [ l ] chapter X - c f . also Jacobson [ l ] chapter V. 

I n the basic paper by Jordan, von Neumann and Wigner [ l ] a complete 

c l a s s i f i c a t i o n o f the f o r m a l - r e a l Jordan algebras was given, a " f o r m a l - r e a l " 

Jordan algebra A being one i n which a 2 + b 2 = 0 (a,b e A) i m p l i e s a = b - 0. 

These authors deemed such algebras s i g n i f i c a n t from p h y s i c a l arguments r e l a t e d 

t o the quantum mechanical questions which i n t e r e s t e d them; one remarks t h a t 

i t i s these same algebras which i n recent years have been shown t o have a 

c e n t r a l connection w i t h the Riemannian symmetric spaces. 

More g e n e r a l l y , as f o r L i e algebras, the semi-simple Jordan algebras 

have been c l a s s i f i e d : a n o t i o n o f semi-simple algebra i s introduced ( i n 

terms o f the non-degeneracy o f a c e r t a i n b i l i n e a r form) and these algebras 

are then shown t o be d i r e c t sums o f i d e a l s (the i r r e d u c i b l e ones being the 

simple algebras). The simple Jordan algebras (over the r e a l s ) are then 

c l a s s i f i e d up t o i s o t o p y (due t o Kalisch [ l ] , and Jacobson and Jacobson [ l ] -

c f . Braun and Koecher [ l ] chapter X, s e c t i o n h); over the f i e l d o f complex 

numbers, the simple complex Jordan algebras may be c l a s s i f i e d d i r e c t l y up t o 

isomorphism (due t o A l b e r t [2], [3] and [k] and Jacobson [5] - c f . Braun 

and Koecher [1] chapter X, s e c t i o n 3.3)« F u r t h e r d e t a i l s o f these 

c l a s s i f i c a t i o n s are also found i n Chapter V o f Jacobson [ l ] . ( i t i s 

p o i n t e d out t h a t a f o r m a l - r e a l Jordan algebra i s always semi-simple). 

Although f u r t h e r d e t a i l s o f the c l a s s i f i c a t i o n s w i l l be o m i t t e d , a 

b r i e f d e s c r i p t i o n o f the types o f algebras which occur w i l l be given; 

(reference t o Braun and Koecher [ l ] , e s p e c i a l l y chapter V I , provides a f u l l 

account o f the examples given h e r e ) . 
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Given any associative algebra A (over the r e a l s ; w i t h m u l t i p l i c a t i o n 

denoted by "o", a Jordan algebra A + may be defined on the vector space 

u n d e r l y i n g A by means o f t h e m u l t i p l i c a t i o n (denoted by j u x t a p o s i t i o n ) 

given by 

a o b + b o a 
ab : = — . 

2 

A Jordan algebra A i s sai d t o be " s p e c i a l " i f i t i s isomorphic t o some 

subalgebra o f such an A +. The quadra t i c r e p r e s e n t a t i o n i n such an 

algebra i s given by: 

P(a)b = a o b o a , 

and the m u l t i p l i c a t i o n "| " i n i t s f-mutation i s given by 
f 

I a o f o b + b o f o a a _Lb - - •• . 

f 2 

Several d i f f e r e n t "types" o f Jordan algebras w i l l now be defined: 

Type ( i ) : Taking A above t o be the algebra o f r e a l r X r matrices w i t h 

the u s u a l ( a s s o c i a t i v e ) m a t r i x m u l t i p l i c a t i o n , A + i s then denoted . 

The set o f symmetric matrices i n forms a subalgebra o f M*, denoted 

H r ( ' J K ) . H (3R) i s the Jordan algebra o f Type ( i ) . 

Types ( i i ) and ( i i i ) : Type ( i i ) : H r ( c ) and Type ( i i i ) : H" r ( ]H) are defined 

e x a c t l y analogously t o Type ( i ) on the set o f hermitean, resp. q u a t e r n i o n i c 

symmetric r X r matrices over the complex numbers C, resp.quaternions I I . 

Type ( i v ) : Consider a r e a l v e c t o r space V ( o f f i n i t e dimension) together 

w i t h a symmetric r e a l - v a l u e d b i l i n e a r form u on V and an element e e V 

such t h a t t>(e,e) = 1; then V endowed w i t h the m u l t i p l i c a t i o n : 

ab = V)(a,e)b + ,o(b,e)a - v>(a,b)e 
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i s a Jordan algebra (denoted [V, v>, e ] ) w i t h u n i t e. An element 

a e [V, \ ) , e] i s i n v e r t i b l e i f f u(a,a) £ 0 and i n t h a t case 

9. a" 1 = ~r—- . For v>(f,f) 4 0 the f - i s o t o p e o f [ V , u, e ] i s o(a,a; 

[V, v f , f " 1 ] where u f ( a , b ) - u ( f , f ) \s(a,b). 

Type ( v ) : The Jordan algebras o f Types ( i ) through ( i v ) are a l l , i n f a c t , 

s p e c i a l Jordan algebras (over the r e a l s ) . There i s one other e s s e n t i a l l y 

d i f f e r e n t type which i s not s p e c i a l : i t i s the exceptional Jordan algebra 

H 3(Cay) whose d e f i n i t i o n i s s i m i l a r t o t h a t of H 3(3R, C, or I H ) . One thus 

considers 3 X 3 matrices over t h e Cayley numbers; the Cayley numbers admit 

an i n v o l u t i o n x -» x (the analogue of complex or quaternion conjugation) 

and the set o f 3 x 3 Cayley number matrices ( x . . ) such t h a t x. . = x.. 

form t h e algebra H g(Cay) w i t h the m u l t i p l i c a t i o n 

a o b + b o a 
ab := - — — . 

2 

H_(Cay) may be considered as a (27-di2iiensional) Jordan algebra over the 
o 

r e a l s ; i t i s an exce p t i o n a l algebra i n the sense t h a t i t i s (up t o 

i s o t o p y ) the only simple Jordan algebra over the r e a l s which .is not 

s p e c i a l . This algebra was discovered by Jordan, von Neumann and 

Wigner [1]; t h a t i t i s exceptional was e s t a b l i s h e d by A l b e r t [ l ] s h o r t l y 

a f t e r i t s discovery. 
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5* The Automorphism Group o f a Jordan A l g e b r a ^ the S t r u c t u r e Group 

and Isotopes. 

A number o f L i e algebras (and corresponding L i e groups) may be 

associated w i t h a given Jordan algebra (see, f o r example, chapters V I and 

V I I I o f Jacobson [ l ] ) . Two p a r t i c u l a r L i e groups p3.ay an extremely 

important r o l e i n the theory o f Jordan algebras, and these w i l l be discussed 

now. 

Consider the set Hom(A,A) o f a l l l i n e a r transformations o f the vector 

space u n d e r l y i n g a given Jordan algebra A, and consider the L i e group 

GL(A) o f a l l non-singular l i n e a r transformations i n Hom(A,A). The 

automorphism group Aut A o f A i s defined by: 

Aut A :=* {W e GL(A): W(ab) = (Wa)(Wb) f o r a l l a,b e A} ; 

as closed subgroup o f GL(A), Aut A i s a L i e subgroup o f GL(A). 

One can define a l a r g e r subgroup o f GL(A) l e a v i n g the al g e b r a i c 

s t r u c t u r e o f A i n v a r i a n t i n a weaker sense than A.ut A: namely, the structure 

group T(A) o f A defined by: 

r ( A ) i s a closed L i e subgroup o f GL(A). The elements o f T(A) are 

"automorphisms up t o isotopy": i . e . , W e F(A) i s an isomorphism o f A onto 

some isotope o f A: the subgroup Aut A o f T(A) i s n e a t l y characterised thus: 

{W e GL(A): W(a.b) = WaJ_JHb F A 
i f y w 

(w i t h f *.a We 6 1(A)) 
w s ' 

f o r a l l a,b e A.} ; 

Aut A - {W 6 T(A): We = e} . 

One remarks here t h a t ( e s s e n t i a l l y as a consequence o f the 

fundamental formula) P(a) e T(A) f o r a e l ( A ) ; consequently P(a) e Aut A 
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i f f P(a)e a e, i . e . i f f a 2 = e. The group ^ ( A ) d T(A) generated by a l l 

the P(a) with a e I(A) i s called the inner structure group of A; F^fA) H Aut A 

i s the group of inner automorphisms. F i n a l l y the s p e c i a l structure group 

Sr(A) i s the subgroup of r(A) of elements with determinant +1. 

I t may be shown (cf. Braun and Koecher [ l j , chapter IX) that the L i e 

algebra of Aut A i s the derivation algebra Der A of A defined by: 

Der A :== {W e Horn (A,A): W(ab) = (Wa)b + a(Wb) for a l l a,b e A } ; 

moreover the L i e algebra of T(A) i s the direct sum Der A © L(A) where L(A) 

denotes the set of l e f t multiplications L(a) for a e A. (The L i e algebra 

mul t i p l i c a t i o n i n Der A and L(A) i s the usual L i e bracket [S,T] = S o T - T o S 

defined for any S,T e Hom(A,A).) The L i e algebras Der A and Der A © L(A) 

were treated by Jacobson [6] i n 1950 and Meyberg [3] i n I966; one very 

i n t e r e s t i n g r e s u l t i n t h i s area i s the following r e a l i s a t i o n of two of the 

exceptional L i e algebras (and hence of the corresponding exceptional L i e 

groups). For the exceptional Jordan algebra H 3(Cay), the L i e algebra 

Der (H g(Cay)) of Awt (H 3(Cay)) i s the exceptional L i e algebra f 4 ; the L i e 

algebra of Sr(H 3(Cay)) i s the exceptional L i e algebra e 6 . (One adds that 

the derivation algebra of the Cayley numbers themselves i s the exceptional 

L i e algebra g^.) 

An important property of the structure group i s the following r e s u l t 

( c f . Braun and Koeeher [ l ] Satz XI. 2.U): 

Theorem 11.10: (Recall Theorem 1.13 which assert s that the set l ( A ) of 

i n v e r t i b l e elements i n a Jordan, algebra A i s a topological space - indeed 

a differentiable manifold; I 0 ( A ) denotes the topological component of 

I (A) which contains, the algebraic unit e ) . 
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For a Jordan algebra A, the ident i t y component r o (A) of the structure 

group r(A) acts t r a n s i t i v e l y on I 0 ( A ) . 

Mention i s made of some work by Meyberg [2] on the relationship between 

the structure group and isotopes: namely, he proved that a centiral-simple 

Jordan algebra of given dimension i s determined up to isotopy by i t s 

structure group. (The centre Z(A) of a Jordan algebra i s defined by: 

Z(A) := {z e A: L ( a ) o L ( z ) = L ( z ) o L | 0 ':'or a l l a e A} ; 

a simple Jordan algebra i s c a l l e d central-simple i f Z(A) = 3Re. Simple 

formal-real Jordan algebras are always central-simple.) 

Further work on isotopes and mutations has been carried out by Helwig [ l ] 

and [k] - cf. also Braun and Koecher [ l ] , chapter V. 



65. 

k, Jordan Algebras and Symmetric Spaces 

( i ) Max Koecher discovered the relationship between formal-real Jordan 

algebras and Herraitian symmetric spaces; d e t a i l s of his r e s u l t s are given 

i n Koecher [ l ] , A paper by Koranyi and Wolf [l]provides a characterisation 

of those Hermitian symmetric spaces r e a l i s a b l e by Koecher 1s construction i n 

terms of Jordan algebras. Related studies of certain Siegel domains were 

made by C. Hertneck [ l ] and U. Hirzebruch [ l ] ; cf. also Resnikoff [ l ] , 

Kirzebruch [3] also studied the description of the two exceptional 

(Hermitian) bounded symmetric domains i n terms of Jordan algebras. 

A few r e s u l t s in t h i s area w i l l now be quoted. Consider a formal-

r e a l Jordan algebra A: the complexification of A i s defined by 
C 1 Q 

A := A + \A-1A; the map "exp" i s defined on A (and on A ) by 

exp a := e + a + ~y a 2 + i a 3 + . . . . I 0 ( A ) denotes, as i n Theorem 1.13, 

the topological component of l(A) containing the algebraic unit e. Then 

exp>/^lA i s a compact Riemannian symmetric space whose non -compact dual i s 

simply exp A = I Q ( A ) (with metrics naturally defined on these manifolds 

i n terms of the Jordan algebra structure of A.) Moreover i n t h i s case 

the "half-space" A + V/^TI o(A) admits a Riemannian metric with which i t i s 

a non-compact Hermitian symmetric space; the work of Koranyi and Wolf L l j 

shows that, i n terms of complex analysis, exp -J-lk may be interpreted as the 

Bergmann-Shilov boundary of the bounded symmetric domain corresponding to 

the half-space A + </^Il 0(A). 

The r e s u l t s j u s t mentioned are a sophisticated generalisation of the 

following exceedingly sp e c i a l case: A = "SR. exp 'M i s the unit c i r c l e 

whose non-compact dual i s exactly exp 'SR - I C(3R ) = {x e ]R : x > 0} ; the 

half-space ]R + \/^Tl 0(]R) i s j u s t the usual "upper h a l f " of the complex 

plane. Via stereographic projection t h i s upper half-plane i s r e a l i s e d as a 

file:///A-1A
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hemisphere (without equator), which may be mapped onto the i n t e r i o r of the 

unit disc i n the complex plane; the Bergmann-Shilov boundary of t h i s ( d i s c ) 

domain i s exactly the unit c i r c l e , i . e . exp-Z-T IR. 

( i i ) I n I965 U.Hirzebruch [2] presented r e s u l t s on the correspondence 

between formal-real Jordan algebras and compact Riemannian symmetric spaces 

of rank one. For a formal-real Jordan algebra A consider the set I^A) 

of "primitive idempotents" i n A defined by: 

I X ( A ) := {c e A: ( l ) c 2 = c 

and (2) i f c = c x + c 2 with = 0, 

c ^ = c x and = c 2 , 

then c = 0 or c = 0 } . 1 2 

Hirzebruch showed that for a simple formal-real Jordan algebra the set 

I j ^ A ) i s a connected differentiable manifold admitting a Riemannian metric-

defined i n terms of the "trace form" X on A (for a,b e A, X(a,b) :=TrL(ab)); 

on a formal-real Jordan algebra X i s positive d e f i n i t e . Since, moreover, X 

i s Aut A-invariant, i t may be shown that automorphisms of A are isometries 

of the Riemannian manifold I X ( A ) ; furthermore, I X ( A ) i s a Riemannian 

symmetric space with multiplication u ( i n the sense of Loos) given by; 

u(c,d) := P(e - 2c)d, 

i . e . the symmetry at c e I X ( A ) i s the automorphism P(e -• 2c) . Hirzebruch 

showed that I 1 ( A ) i s i n fact a compact Riemannian symmetric space of 

rank one. 

Conversely, by e x p l i c i t construction he demonstrated that each compact 

Riemannian symmetric space of rank one could be represented as I X ( A ) as 

above for some simple formal-real Jordan algebra A. Hirzebrueh makes some 
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remarks about the geodesies of these p a r t i c u l a r symmetric spaces, using the 

Jordan algebraic representation to e x p l i c i t l y study a given geodesic. 

To give one example of the correspondence j u s t discussed, consider 

for r ^ 5 the simple formal-real Jordan algebra H (]R ) defined on the set 

of symmetric r X r r e a l matrices (cf. "Type ( i ) " i n Section 2); by standard 

r e s u l t s on Jordan algebras the corresponding compact Riemannian symmetric 

space of rank one I^H^ClR)) i s the (n-l)-dimensional r e a l projective space 

( i i i ) An elegant and comprehensive investigation of the interplay between 

Jordan algebras and symmetric spaces i s given in a paper by Karl-Heinz 

Helwig [6], who i n t e r a l i a constructs i n a unified way v i a Jordan algebras 

a l l the Riemannian symmetric spaces treated by the authors mentioned i n 

parts ( i ) and ( i i ) above (with the exception only of the two exceptional 

bounded symmetric domains considered by Hirzebruch [5]). Indeed Helwig 

r e a l i s e s ( i n a manner to be explained i n more d e t a i l below) a l l the 

c l a s s i c a l Riemannian symmetric spaces of non-compact type, a l l compact spaces 

of rank one, a l l the Grassmannians, the compact duals of the Siegel domains 

of types I , I I and I I I , and the (compact) unitary, orthogonal and 

symplectic groups. 

The method of Helwig's construction i s as follows: given a Jordan 

algebra A together with an involutive automorphism J of A ( i . e . J e Aut A 

and J 2 = i d ^ ) , one defines the following subset of the set l( A ) of 

i n v e r t i b l e elements i n A: 

I (A, J ) := {a e l ( A ) : a " 1 = J a } . 

I t may be shown that l ( A , j ) i s equivalently defined by the zeros of a certain 
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set of polynomials (naturally related to the Jordan algebra structure of A), 

whence l ( A , j ) i s shown to be a differentiable manifold - indeed an algebraic 

variety i n the r e a l vector space underlying A. The topological component 

of l ( A , j ) containing the unit e of A i s denoted I Q ( A , j ) . In terms of the 

quadratic representation (cf. Definition I.k(c)) a smooth multiplication u 

i s defined on I 0 ( A , j ) by |i(a,b) := P(a)b" 1, and I- (A,j) endowed with H i s 

i n fact a symmetric space i n the sense of Loos (cf. Definition I I . 3 ; also 

Theorem I.13). 

Consider now an element W e r(A), the structure group of A (cf. 

Section 3); then, defining w (We) - 1, W i s an isomorphism of A with i t s 

isotope A ; also J := JP(w) i s an involutive automorphism of A . Now w w w 

the following natural L i e subgroup of T(A) i s introduced: 

T(A,J) := {W e T(A): WoJ = J^oW} ; 

r Q (A,j) denotes the i d e n t i t y component of T(A,J). 

One r e c a l l s that Der A © L(A) i s the L i e algebra of T(A) ( c f . 

Section 3)5 i t s subalgebra which i s the L i e algebra of r Q (A,j) turns out 

to be the following: 

Der(A,j) © L(A_) 

where Der(A,j) :=* {D e Der A: DJ = JD} 

and L(A-) := { L ( a ) e L(A): Ja = - a j . 

Helwig establishes that YQ (A,j) i s a t r a n s i t i v e L i e transformation 

group of I 0 ( A , j ) , the isotropy subgroup at e being K := Aut A 0 r ( A , J ) , 

and I Q ( A , j ) i s diffeomorphic to the homogeneous space of L i e groups 

r Q(A,j)/K, This representation plays a useful role i n studying the 

symmetric space I 0 ( A , J ) . 
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Being a symmetric space i n the sense of Loos, I Q ( A , J ) admits a 
canonical affine connexion (cf. Section A.J, Theorem I I . U ) . Helwig 
proceeds to show how t h i s connexion V, i t s curvature and geodesies may be 
expressed i n terms of isotopes of A; i n p a r t i c u l a r , h is interpretation of 
V i s exactly that presented i n Theorem IV.1 of t h i s thesis (cf. remarks on 
Chapter IV i n the INTRODUCTION). One remarks that for a e I 0 ( A , j ) the 
(geodesic) symmetry s i s given by: 

s (b) = P(a)b - : L = P(a)jb = J P ( a ) _ 1 b = J -(b). 
a a x 

I n general, of course, I Q ( A , j ) i s not a Riemannian symmetric space; 

but further r e s t r i c t i o n s may be placed on the algebra A such that I Q ( A , j ) does 

admit a Riemannian metric with which i t i s Riemannian symmetric. The 

Riemannian metrics constructed by Helwig are defined i n terms of the trace 

form X - namely, the symmetric b i l i n e a r form defined on A by 

X(a,b) := Tr L(ab); the analogous form on the f-isotope A^ i s denoted X_̂ : 

in fact X f(a,b) = X(a,P(f)b). A Jordan algebra i s semi-simple i f f X i s 

non-degenerate; i n p a r t i c u l a r , for a formal-real Jordan algebra X i s positive 

definite. Therefore, for example, given a formal-real Jordan algebra A, a 

Riemannian metric g on I Q ( A , j ) may be defined as follows: for a point 

q e I Q ( A , J ) <Z I q ( A ) , the tangent space to I 0 ( A ) at q i s i d e n t i f i e d 

naturally with A _ x and the tangent space to I Q ( A , J ) at q i s i d e n t i f i e d 

with the (-l)-eigenspace of A . under the involutive l i n e a r transformation 
q. 

J ^ _ x = JPdgf 1); then 

g (X,Y) := X _ X(X,Y) for X,Y e ( I 0 ( A , J ) ) 
h. q q 

defines the Riemannian metric g on I Q ( A , j ) . I Q ( A , j ) endowed with g i s then 

a Riemannian symmetric space: for each a e I Q ( A , j ) the (geodesic)symmetry 

J i s an isometry with respect to g (this follows from standard properties a 
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of X: cf. for example Chapter V of Braun and Koecher [ l ] ) . Actually a 

construction s i m i l a r to the above may be applied to y i e l d a Riemannian 

symmetric space structure on I 0 ( A , j ) for a wider c l a s s of algebras than the 

formal-real ones; the d e t a i l s are given i n Helwig [6], 

Helwig [6] studies extensively the Riemannian symmetric spaces of the 

form I 0 ( A , J ) . He presents algebraic conditions s u f f i c i e n t that I Q ( A , J ) 

be an irreducible symmetric space and conditions s u f f i c i e n t that i t be 

simply-connected; he also gives a (Jordan) algebraic characterisation of 

those Riemannian symmetric spaces I 0 ( A , j ) which are Hermittan symmetric. 

From i t s d e f i n i t i o n I Q ( A , j ) i s shown to be a submanifold of a sphere; Helwig 

considers the question of when I 0 ( A , j ) i s minimally embedded i n t h i s sphere 

( i n t h i s regard cf. the occurrence of Jordan algebras i n minimal immersion 

problems considered by K u i p e r f l ] ) . F i n a l l y Helwig shows by e x p l i c i t 

construction that a l l the Riemannian symmetric spaces mentioned i n the f i r s t 

paragraph of t h i s part ( i i i ) can indeed be r e a l i s e d i n the form I D ( A , J ) for 

some Jordan algebra A and some involutive automorphism J of A. 
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CHAPTER I I I 

SYMMETRIC SPACES OF ORDER k 

1, Basic Def i n i t i o n and Statement of Results 

Generalisations of the notion of symmetric space have been made by 

several mathematicians, as discussed i n Section A.h of the previous chapter. 

I t w i l l be noted, however, that generalisations of the algebraic treatment 

developed for symmetric spaces by Loos ( c f . Section I I A.3) have not been 

examined; the present chapter develops t h i s hitherto unconsidered topic. 

Throughout t h i s chapter k denotes a fixed integer >2. The following 

basic d e f i n i t i o n i s introduced: 

Definition I I I . l : (k i s an integer 5 2 ) . 

A symmetric, space of order k i s a connected differentiable (C°°) manifold M 

endowed with a smooth (0°°) multiplication n : M X M -* M s a t i s f y i n g 

(with the def i n i t i o n of s : M -» M by s (q) := n(p>q) for p,q e M) the 
P P 

following four properties for a l l x,y e M: 

(1) s x ( x ) = X 

(2) s k (y) = y (where s k denotes the k-fold composition of s ) 
X X X 

(3) S O S = S / v O S „ 
v ' x y s x ( y ) x 
(h) x i s an is o l a t e d fixed point of s x . 

Definition I I I . 1 encompasses as the special case k = 2 the (connected) 

symmetric spaces as treated by Loos [ l ] , [3] ( c f . Definition I I . 3 ) ; indeed, 
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a l l the definitions and r e s u l t s of t h i s chapter reduce i n the case k = 2 

either to simple observations on symmetric spaces or to the corresponding 

important definitions and r e s u l t s appearing i n the works of Loos. The 

preceding comment having been made, i t w i l l not be repeated throughout the 

subsequent pages. 

Before stating the r e s u l t s to be proved i n t h i s chapter, some remarks 

and definitions are i n order; throughout the whole chapter, M denotes a 

symmetric space of order k with multiplication j i , as i n Definition I I I . l . 

F i r s t l y , the defi n i t i o n of the " l e f t multiplication by p", s , introduced i n 

Definition I I I . l , w i l l be restated together with the corresponding de f i n i t i o n 

of the "right multiplication by p": 

Definition I I I . 2 : With the notation of Definition I I I . l for a symmetric space 

of order k: 

(a) For p € M the " l e f t multiplication by p" i s the map s^ : M -» M 

defined by s^(q) := n(p,q) for q e M. 

(b) For p e M the "right multiplication by p" i s the map r : M -» M 

defined by i" p(q) := u(<l>p) for q e M. 

I t follows from property (2) of Definition I I I . l that for each x e M 

the l e f t multiplication s i s an i n v e r t i b l e mapping; i t s inverse s 1 i s 
x x ( k - l ) / oo given by s v the ( k - l ) - f o l d composition of s . By the C nature of the 

X X 

multiplication n, s x (for each x e M) i s a (C°°)differentiable map; so, 

( k - l ) / oo therefore, i s s v ' and hence s i s a transformation ( i . e . , C diffeo-
X X 

morphism) of M. A consequence of the preceding remarks i s that for a 

given x € M the d i f f e r e n t i a l (ds ) : M -» M / \ i s defined at each point 
X p p 
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p € M, and the following de f i n i t i o n i s made: 

Definition I I I . 3: The (C°°) tensor f i e l d S e T*(M) i s defined by 

By property ( l ) of Definition I I I . 1 (namely, s (x) a x ) , (ds ) i s 
X X X 

indeed a l i n e a r transformation of M into M : moreover, (ds ) i s 
X X ' v x'x 

( f i n x because the multiplication i s 0°°. Thus S i s well-defined as an 

element of T*(M). 

Notice further that S i s non-singular for each x e M; i n f a c t , 

property (2) of Definition I I I . l implies that (S ) k = I , the ident i t y 
X X 

l i n e a r transformation of M , and hence (S ) ^ k - 1 ^ i s the inverse (S ) _ 1 

X X X 

of S^. From property (k) of Definition I I I . l and Theorem 1.9 i t follows, 

moreover, that (for each x e M) S has no eigenvalue +1; hence 
X 

( I - S ) : M -* M i s a non-singular l i n e a r transformation and the following 
X X X X 

definition i s made: 

Definition I I I . U : Let x e M and Z e M . •• ••• x 

Define Z := ( Z ) ~ := ( i ^ - S X ) _ 1 ( Z ) . 

Analogously to the case of the l e f t multiplications, i t follows from 

the C°° nature of the multiplication n that (for each x e M) the right 

multiplication r i s a LrmiufuimuLiuu uf M, and hence the d i f f e r e n t i a l 
x A 

(dTi ) : M -» M / \ i s well-defined for each q e M. x x'q q r x ( q ) 

The next definition introduces, for any given vector i n any given 

tangent space of M, a related vector f i e l d on the (whole) manifold: 



Definition I I ] ; . 5: Let Z e M . Define the vector f i e l d Z* e T 1(M) by 

( Z * ) y := { d r B - i ( y ) } (Z) f°r 7 e M. 

Z* i s indeed a well-defined C vector f i e l d : f i r s t l y (Z*)_ as defined 
if 

i s an element of M because r , . .(x) = n(x, s ~ 1 (y)) Y s x
 x ( y ) v ' x v j r " 

= s ( s " 1 ( y ) ) 

= y, 

and secondly (Z*) i s C°° i n y because the multiplication \i i s C°° . 
y 

I n order to demonstrate the v a l i d i t y of the next definition, now i t 

je shown, as a lemma, that given Z 

f i e l d ( Z ) * at x y i e l d s exactly Z i t s e l f : 

w i l l be shown, as a lemma, that given Z e M the evaluation of the vector 
X 

Lemma: Let x e M and Z e M̂ . Then ( ( z ) * ) x = Z. 

Propf: F i r s t i t i s shown that for any W e Mx : 

S X(W) + dr x(W) = W. 

r i i n 

Let n denote the dimension of M and choose l o c a l coordinates tu / 
i = l 

defined on a coordinate patch U containing x (cf. Section I . l ) and define 

WJ := WuJ f o r j = 1,2,...,n; then W = W1 ^ ~ j ^ . Now for any f e F(M.) 

{Sv(W) + dr (W)}f = {ds (W) -i- dr (W)}f 

= W(f o s ) + W(f o r ) 
X X 

a W3, f ~ ) ( f o s + f o r ) 
X 
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- * { ( A ) c ^ - ^ } ( £ ) a> 
x 

But r e c a l l that |i(y,y) = y for a l l y e M by property ( l ) of Definition I I I . l ; 

that i s , defining the C°° map A : M X M -» M by A ( y ) := (y,y) for y e M, 

uoA = i d M . 

For y £ U, n oA(y) = y e U, so that \x o A ^ maps U onto U and, the 

coordinate functions u J (for j = l,2,...,n) being defined on U, one 

obtains: 

u ^ o n o A l y = u ^ o i d j j ^ 

- u^ o idy ; 

a? hence ( — r j (u^ o n o A) = 5 J 

\ du 1 / i 

i i (where &\ = 0 i f i ?£ j and b± = 1 for i = l,2,...,n). 

I t now follows from the d i f f e r e n t i a b i l i t y of u J , |J, and A that: 

S \ • • i 
~ r ) (u J o s + u J o r ) = 5? j (2) 
Su 1 y

x
 x i 

i n more d e t a i l , observing that u J o|ioA(y) = u J o|i(y,y) for y G M and 

r e c a l l i n g that |i(x,y) = s (y) and n(y,x) = r ( y ) , the term 

• a N . 
( — - r ) (u J o s ) i n (2) a r i s e s from d i f f e r e n t i a t i n g the expression 
V o V / X 

u J oji(y,y) with respect to the "second y" leaving the " f i r s t y" fi x e d at the 

value x and the term ( — r ^ ( u ^ o r ) a r i s e s from d i f f e r e n t i a t i n g the same 
V ^n 1 / x 

x 

expression with respect to the " f i r s t y" leaving the "second y" fixed at the 
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value x; that the sum of these two p a r t i a l derivatives gives the value of 

( T T ) (u^ouoA) follows from the theory of differentiable functions of 
\ du / 

x 

several variables ( c f . , for example, B u r k i l l [ l ] ) . 

Using ide n t i t y (2) i n ( l ) i t i s immediate that: 

{S X(W) + dr x(W)}f . wV ( - 3 ) 

x 

. / Sf N 

ou J 

x 
= Wf . 

But t h i s l a s t r e s u l t holds for each f € F(M) and so indeed: 

S (W) + dr (W) m W for a l l W e M . (3) 
X X X 

This r e s u l t having been established, the proof of the lemma proceeds 
as follows: from (3) i t i s cl e a r that: 

( I x - S x)(W) = dr x(w) for a l l W e Mx . (k) 

Recalling now that ( l x - S^) i s a non-singular l i n e a r transformation of Mx 

and that Z e Mx, put W • ( l v - S v)~ 1(z) i n (h) to obtain: 

Z = d r x { ( l x - S ^ - ^ Z ) ] 

« d r x ( Z ) by Definition III,k 

((2)*) by Definition I I I . 5 and the f a c t that 
rx 

s _ 1 (x) = X. 
X x ' 

This completes the proof of the lemma. 

In the following d e f i n i t i o n juxtaposition of vector f i e l d s has the 

(conventional)meaning as described i n Section 1.1. The notation introduced 

i n t h i s d e f i n i t i o n i s suggestive of an af f i n e connexion: t h i s i s j u s t i f i e d 

i n Theorem I I I . 1 . 
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Definition I I I . 6 : Let X,Y £ T 1 ^ ) . 

Define V XY e T 1(M) by: 

(V XY) :-- X xY - Y x ( ( X x ) ~ ) * for x e M. 
X 

Using the above lemma, i t i s now shown that V Y i s well-defined as 

an element of T^M). F i r s t l y i t i s shown that for X,Y e T X(M) and x e M, 

(V VY) e M . As i n the proof of the lemma choose l o c a l coordinates {u"*"}11 

* x x i = l 

on a coordinate patch U containing x, and define for i = 1,2,...,n the 

functions X 1 : U -» IR, Y 1 : U -> IR, A 1 : U -» 3R by X x(u) := X u 1 , 
u 

Y*(u) := Y u 1 and A*(u) := (((X ) ~ ) * ) u 1 for u e Uj then: 
U X u 

*»" x i ( u ) ( i ? ) 
u 

Y = Y ^ u ) ( ~ ^ 
XL 

( ( ( X x m u = Ai(u)(X) for u e U . 
^ du ' 

u 

Because X,Y and ((X ) ~ ) * are elements of T^M), the functions X 1, Y 1, A 1 

X 

are elements of F(u) for i = l,2,...,n. 

Observe (cf. Section I . l ) : 

/ \ • / \ / & \ 

v = ^"(s) ( | l w(?)(s) 
x x x 

/ d 2
 x . / oTJ \ / d 

" l l W x J ( x ) ( i ? i ? ) + x l w ( 5 ? ) ( i ? J ' 
x x 
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because the "dummy" indices " i " and " j " i n the f i r s t term can be i n t e r 

changed without a l t e r i n g the value of the f i r s t term i t s e l f ; t h i s i s the 

oase because, considered as d i f f e r e n t i a l operators on F(U), 

5 2 N / o 2 

X X 

Also: 

/ 3 2 \ . / dA"3' \ / d \ 
Y x ( ( X x D * = Y ^ x j A ^ x ) ( - r — : j + Y ^ x ) ( - r ) ( ) 

x x x 

, / d 2 \ . / 3AJ N / d N 

= Y ^ x J X ^ x ) ( ~ r — - ) + Y X ( x ) ( — r ) ( — r ) 
V S u 1 ^ ' J V Su 1 / V duJ / 

X X 

because A°(x) = ( ( 0 ^ D * ) X u j 

= X u J by the lemma x J 

xJ(x) . 

Hence as defined i n Definition I I I . 6 (V Y) i s given by: 
j\ X 

/ S 2 x . / SY-3 \ / o N 

Y ^ x j x ^ x ) ( ) + X l ( x ) ( - T ) ( - - - J 
X X X 

a 2 \ . / dAJ x / ^ 
. Y ^ x ^ f x ) ( - T - ~ r ) - Y ^ x ) f — r ) ( ) 
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Thus (VYY) 1 3 seen to be an element of M . A x x 

i i i 
Moreover, as pointed out above, the functions X , Y and A are 

i n F(U) f o r i = l,2,...,n, and therefore from the expression j u s t derived 

f o r i t i s seen that (VVY)„ depends on x i n a C°° fashion. Thus 
A X A X 

V̂ Y i s well-defined by D e f i n i t i o n I I I . 6 as a C°° vector f i e l d on M -

i.e. as an element of T 1(M). 

The basic de f i n i t i o n s and notation f o r t h i s chapter have been 

introduced i n the preceding few pages; the results to be established are 

now stated i n the form of two theorems, the proofs of which occur i n the 

subsequent sections of t h i s chapter. 

Theorem I I I . l : Let M be a symmetric space of order k. Then: 

(a) M admits an a f f i n e connexion V defined (by D e f i n i t i o n I I I . 6 ) i n 

terms of the m u l t i p l i c a t i o n u on M; moreover for each p e M the 

l e f t m u l t i p l i c a t i o n i s an a f f i n e transformation of M with 

respect to V . 

(b) M endowed with the a f f i n e connexion V i s an s-regular a f f i n e 

k-symmetric space; conversely, every s-regular a f f i n e k-symmetric 

space admits the structure of a symmetric space of order k. 

(c) M endowed with the a f f i n e connexion V i s a f f i n e l y diffeomorphic 

to a reductive homogeneous space of Lie groups GQ/H endowed with 

the canonical connexion of the second kind; hence, i n p a r t i c u l a r , 

V i s a complete a f f i n e connexion on M. 

In the proof of part (c) of Theorem I I I . l the group GQ i s e x p l i c i t l y 

taken to be the i d e n t i t y component of the Lie group of those V-affine 
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transformations of M whose d i f f e r e n t i a l s commute with the tensor f i e l d S 

(of D e f i n i t i o n I I I . 3 ) ; t h i s group GQ acts t r a n s i t i v e l y on M (cf. the 

proof of Theorem I I I . l ( c $ and H denotes the isotropy subgroup of G Q at 

some point p Q e M. Consider now the automorphism 9 of G Q defined by 

9(g) := s o g o s - 1 for g e G Q; 6 i s an automorphism of order k. 
Po Po 

Q 
G0 := {g e G Q : 0(g) = g}, called the "fixed point set of 0", i s a closed 

8 0 Lie subgroup of G Q; l e t ( G Q ) 0 denote the i d e n t i t y component of G Q . 

Then i n the representation of the sjrmmetric space of order k as the 

homogeneous space GQ/H, the isotropy subgroup H i s characterised by the 

second theorem thus: 

Theorem I I I . 2 : 

(a) Let M be a symmetric space of order k. Then with the notation 

introduced above: 

( 0 ? ) 0 C= H c= G J . 

(b) Conversely, given a connected Lie group B Q, a continuous automorphism 

T of B 0 of order k, and a closed Lie subgroup C of B 0 s a t i s f y i n g 

(where the Lie group BQ := {b e B D : r(b) = b} and (BQ) q denotes the 

i d e n t i t y component of B Q ) , then the homogeneous space BQ/C admits 

the structure of a symmetric space of order k. 
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2, The Aff i n e Connexion V Admitted by M. 
(Proof of Statement (a) of Theorem I I I . l ) . 

( i ) To prove the f i r s t part of Statement (a) of Theorem I I I . l i t must 

be shown that D e f i n i t i o n I I I . 6 defines an a f f i n e connexion on M. Since 

VXY e T 1(M) for X,Y e T 1(M), i t remains to show that conditions ( l ) 

through (h) of De f i n i t i o n 1.2 are s a t i s f i e d ; these conditions on V are 

successively checked and shown to be s a t i s f i e d by showing that f o r a l l 

X, Xx, X?, Y, Yx, Y 2 e T 1(M) and a l l f e F(M) the appropriate vector 

f i e l d s coincide at each x e M: 

Condition ( l ) : 

{V X(Y A + Y 2 ) } x = X x(Y x + Y 2) - (Y, + Y 2 ) x ( ( X x n * 

• x x Y i + v . - friWT" ( Y * > x « x
x n * 

- { ¥ l ] x + {V xY 2} x . 

Condition (2^: Using the fact that the operations s i g n i f i e d by "~" 

and "*" (of Definitions I I I . U and I I I . 5 ) are H - l i n e a r one obtains: 

- ( x ^ y + (x 2) xy - Y x ( ( ( X i ) x r + ( ( x 2 ) x n * 

= (X X) XY + (X 2) xY - Y x ( ( ( X l ) x f ) * - Y x ( ( ( X 2 ) x ) ~ ) * 

= { \ Y ' x + { \ Y } - ' 
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Condition (;$): Again using H - l i n e a r i t y of the "~" and "*" operations: 

= {f(x)x xJy - Y x { f ( x ) ( x x ) ~ } * 

- f(x){X xY] - Y x { f ( x ) ( ( X x ) ~ ) * } 

- f ( x ) (XxY} - f ( x ) { Y x ( ( X x ) ~ ) * } 

= f ( x ) { V x Y } x . 

Condition (k): The derivative nature of juxtaposition of vector f i e l d s 

(cf. Section I . l ) implies the required derivative nature of V Y i n Y, 
A 

as follows: 

{ V x ( f Y ) } x = X x(fY) - ( f r ) x ( ( X x D * 

- ( n ) Y + f ( x ) { x Y} - [f(x)Y)((xrf 
•A A A X X 

» ( X f ) x Y x + f(x){X xY} - f ( x ) { Y x ( ( X x D * } 

= { ( X f ) Y ) x + f ( x ) { V x Y ) x . 

This completes the v e r i f i c a t i o n that conditions ( l ) through (k) are 

s a t i s f i e d , so completing the demonstration that D e f i n i t i o n I I I . 6 defines 

an a f f i n e connexion V on M. 

( i i ) To f i n i s h the proof of Statement (a) of Theorem I I I . l i t must be 

shown that f o r given p e M, s^ i s an a f f i n e transformation of M with 

respect to V. 

Given two vector f i e l d s X,Y 6 T 1(M) the d i f f e r e n t i a l operator F(X,Y) 

(acting on elements of F(M)) i s defined i n terms of the a f f i n e connexion V 
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by T(X,y) := V Y - XT; as remarked a f t e r D e f i n i t i o n 1.2 a transformation 
T V 

* : M -» M i s an a f f i n e transformation of M with respect to V i f and only i f 

{ r ( x , Y ) } x f o * = { r ( d * ( x ) , &*(Y))}^x)f (5) 

f o r a l l X,Y e T 1(M), a l l f e F(M) and a l l x e M. E x p l i c i t l y i n the 

present case: 

{ r ( x , y ) } x - - T x ( ( X X D * , 

and now the i d e n t i t y (5) w i l l be v e r i f i e d f o r * = s . 

The left-hand side of (5) i s given as follows f o r <t> = s p : 

{ r ( X j Y ) } x f o s p - { ~ Y x ( ( X x ) ~ ) * } ( f o s p ) 

- - Y
x U ( x x n * ( f o s p ) } . 

The function enclosed i n the braces w i l l now be examined; i t s value at a 

point y e M is given as follows: 

( ( ( X ) 1 * ) (foO = (X ) ~ ( f o s o r .) x' 'y v P' x.J K p s~ x(y) 

• ( X x r ( f o r
5 - i o s p ( y ) ° SP ) ( w h 6 r e q ! = S p ( x ) ) t 

P x s q
x o s p ( y ) 

^ The D e f i n i t i o n 111.2(b) of r i g h t m u l t i p l i c a t i o n and repeated application 
of property (3) of D e f i n i t i o n I I I . l show that f o r a l l z e M: 

s o r _•, . >(z) = s o s o s _ 1 ( y ) p s x
x ( y ) v p z x 

- S_ f \ O S o s~~ (v) SpVZj p X y j J 

3s ( z ) O S q k 1 ^ o s
p f y ) P i t t i n g q := S p ( x ) 

= s S p ( Z ) 0 S q l 0 3 P ( y ) 

s n s ' J P 
q " p w 

that i s , s o r _ v = r _•, / \ O S P s x
A ( y ) \ 1 o s p ( y ) p 
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Thus defining a e F(M) by 

o(y) :̂  ds ((X ) ~ ) ( f o r ) (6) P X S ( 1 - 0 3 p ( y ) 

for y e M, the left-hand side of (5) with t> = takes the form: 

{f(X.Y)} f o a «= -Y a. (7) 
X p X v 1 ' 

Computing now the right-hand side of (5) with * = s : 
P 

{r(ds (X),ds fY))} , vf = "ds (Y ){((ds (X ) ) ~ ) * } f v p ' p- " s \xj p x x p x y / ' 

= - d S p ( Y x ) { ( ( ( d s p ( X x ) ) ~ r ) f } 

= "Y [ ( ( ( ( d s (X )D*)f}os } . x p^ x' ' p 

The function enclosed i n the outer braces w i l l now be examined: i t s 

value at a point y e M i s given as follows: 

( ( f ( % ( X x ) D * ) f ) o S p ( y ) - ( ( { d 3 p ( X x ) ) ~ ) * ) S i ) ( y ) f 

= dr „, , , ((ds (X ) ) ~ ) f by Definition I I I . 5 s 'o s (y) p x • 
q P of "* " and 

r e c a l l i n g q = a (x) p 
= ((ds (X ) ) ~ ) ( f o r , J . P x s ^ 0 s p ( y ) 

Thus, defining 3 e F(M) by 

P(y) := ((ds (X ) ) ~ ) ( f o r _., ) f o r y e M, ( 8 ) P * s q - o s p ( y ) 

the right-hand side of (5) with 4> = takes the form: 

[r(ds (X),ds (Y)} , N f -Y 3 . (9) P P s w X 

Now s i s an a f f i n e transformation provided that the l e f t - and P 
right-hand sides of (5) are equal ( f o r <t> - s ): from (7) and (9) i t follows 

P 
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that t h i s i s indeed the case provided that a and 3 denote the same function 

i n F(M). From the de f i n i t i o n s of a and P i n (6) and (8), t h i s i s seen to 

be the case i f i t can be shown that 

d S p ( ( x x r ) - (%(x x ) )~ ; 

a proof of t h i s i d e n t i t y i s now given. 

More e x p l i c i t l y ( r e c a l l i n g the D e f i n i t i o n III.U- of " ~ " ) what must be 

shown i s that: 

ds { ( I - S ) _ 1 ( X ) } = ( I , x - S . O _ 1 o d s (X ). 
p v x x v x S p ^ x ' s p ( - x ) P x 

I n fact the following (stronger) i d e n t i t y w i l l be established: 

d £
P ° ( l x - = - % ( x ) r l ° ( d S

P
} x ' 

Because ( l - S ) i s a non-singular l i n e a r transformation of M N z z' ° z 
(fo r each z e M), i t s inverse ( I - S ) _ 1 can be represented as a linear 

Z Z 
combination of the i d e n t i t y l i n e a r transformation I r and the f i r s t ( n - l ) 

positive powers of ( l - S ); t h i s follows from the Cayley-Hamilton 
z z 

Theorem (cf. Birkhoff and. MacLane L i ] ) . Hence ( i - S ) _ 1 can be 
z z 

represented as a li n e a r combination of I and the f i r s t ( n - l ) positive 

powers of S^, thus: 
( I z - S z ) ^ , o 0 ( ! ; ) l i ! + a i ( z ) 8 B + . . . + a n . 1 ( E ) B j n - 1 ) , (10) 

where the coefficients a . (2) depend upon 2; i t w i l l now be shown, however, 
J 

that f o r z = x and z = s ( x ) , S and 3, / \ each s a t i s f y (10) with 
p 

a (x) = a ( B (x)) for j = 0,1,2,...,(n-l). <J J P 

Because (ds ) : M -> M , v i s non-singular (notice that indeed p'x x Spix) 

((d.s ) ) _ 1 = ( d s ^ ^ ) i \ ) . therefore a basis {F. ) of M i s mapped v v p'x y v p ' s - J x ) " i i = l x 
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under (ds ) int o a basis {ds ( F . ) } n of M / \. Furthermore notice P x p v i ' i = , i s p ( x j 

that property (3) of D e f i n i t i o n I I I . l implies that d s o S = S / \ ° (<ls ) , 
P x s p ' x ' P x 

i.e. ds oS o (ds ) ~ x = S , ». ( l l ) 
P x p'x s p ( x ) 

From ( l l ) i t follows that i f the li n e a r transformations S and S / \ be 
P B-p\x) 

expressed i n matrix form r e l a t i v e to the bases {J 1.)? , and {ds ( F . ) } D 

1 i = l p 1 1=1 
respectively, then they are i n fact represented by the same matrix. I t i s 

manifest that i f S s a t i s f i e s (10) with z = x with coefficients ex.(x) then P J 
so does i t s matrix, but moreover t h i s shows that the matrix representing 

8B ( \ and hence S / v i t s e l f s a t i s f i e s (10) with z = s (x) with •p\ x^ sp\ x/ P 
coefficients a (s (x)) = a.(x). Thus, setting a.(x) = a (s (x)) = a., 

J P J 3 3 P 0 
J » 0,l,2,...,(n-l), 

\ W - * + V S p W
 + - + V i \ M ' ( n _ 1 ) . 

(13) 

The following computation i s now made: 

ds o ( I - S ) _ 1 « ds o ( a Q I + a,S + ... + a , (S ) ^ n _ 1 h by (12) 

(n-l) } 

by repeated application of ( l l ) , 

= (a I / v + a.S / v + ... + a 1 (S , v ) ( n _ 1 ' ) o (ds ) o S p ( x ) 1 s p ( x ) n-V s p ( x ) y v p y 
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Thus the desired i d e n t i t y has been established, completing the proof 

that s i s an a f f i n e transformation of M with respect to the a f f i n e 
P 

connexion V . 

This completes the proof of Statement (a) of Theorem I I I . l . 
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3. The Relationship with s-regular Affine k-symmetric Spaces 

(Proof of Statement (b) of Theorem I I I . l ) 

( i ) F i r s t i t w i l l be shown that M endowed with the a f f i n e connexion V 

(defined i n D e f i n i t i o n I I I . 6 and examined i n the previous section) i s an 

s-regular a f f i n e k-symmetric space. 

By the results of the preceding section (summarised i n Statement (a) 

of Theorem I I I . l ) , the connected manifold M admits at each point p e M an 

a f f i n e transformation, namely s , with the following two properties: 
3? 

(1) s has order k (by property (2) of D e f i n i t i o n I I I . l ) 
P 

(2) s has p as an isolated f i x e d point (by property (k) of 

D e f i n i t i o n I I I . l ) . 

Moreover, the tensor f i e l d S defined by S := (ds ) f o r p e M i s indeed a ' p p p 
d i f f e r e n t i a b l e (extensor f i e l d (cf. D e f i n i t i o n I I I . 3 and the remarks 

immediately following that d e f i n i t i o n . ) Hence M endowed with the a f f i n e 

connexion V i s an a f f i n e k.-symmetric space (cf. Definitions I I . 8 and I I . 7 ) . 

Furthermore condition (3) of D e f i n i t i o n I I I . l is exactly the 

characteristic property of s-regular manifolds (cf. D e f i n i t i o n I I . 9 ) * and 

so M endowed with V i s indeed an s-regular a f f i n e k-symmetric space. 

( i i ) Conversely, consider a given s-regular a f f i n e k-symmetric spans M. 

As follows from Theorem I I . 6 * , M i s diffeomorphic to a homogeneous 

space G/H of Lie groups, where the isotropy subgroup H i s a closed Lie 

subgroup of G and G := {g e A(M,V) : s / \ = go s. o g" 1 f o r a l l x e M} , 
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A('M,V) being the group of a f f i n e transformations of M. Id e n t i f y i n g M 

and G/H, G being a Lie transformation group of G/H (cf. Sections 1.2 and 

I . 3 ( i ) ) > one observes that the symmetry I - at a point aH e G/H acts on 
aH 

G/H as follows: 

s _(bH) = s / T-r\(bH) where i d - = i d e n t i t y e of G. 
a H

v a(eH) x M 

= ao s^-oa^fbH) because a e G, 

- a o s _ o a - 1 o b ( e H ) eH 

= (as - a~xb)K f o r bH e G/H . eH 

Define £ : (5/ H) X (G/K) -» G/H by: 

iI(aH,bH) := s ^ (bH) 

= (as^g a - ib)H f o r aH,bii e G/Hj (1^) 

i t w i l l now be proved that M endowed with t h i s m u l t i p l i c a t i o n (I i s a 
symmetric space of order k. 

Properties ( l ) , (2) and (k) of D e f i n i t i o n I I I . l are immediately 

v e r i f i e d by a glance at D e f i n i t i o n I I . 8 of an a f f i n e k-symmetric space; 

M being s-regular, property (3) of D e f i n i t i o n I I I . 1 i s s a t i s f i e d because i 

i s exactly condition (a) of the s-regular c r i t e r i o n i n D e f i n i t i o n I I . 9 . 

The manifold M i s connected (cf. D e f i n i t i o n I I . 8 of an a f f i n e k-symmetric 

space and D e f i n i t i o n I I . 7 ) ; so to complete the proof that M endowed with 

i s a symmetric space of order k i t remains to show that the m u l t i p l i c a t i o n 

p. i s a d i f f e r e n t i a b l e map. 

To show that pi i s d i f f e r e n t i a b l e at a point (aH,bH) e (G/H) X (G/H) 

consider l o c a l C°° cross-sections : V -» G and i]r, : V, ~> G where 
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V , V. are neighbourhoods i n G/H of ail, bH respectively and i|f , f are 
8| D EL D 

such that Tto\|f = id^. , Tt o ̂  = idy where ft : G -* G/H i s the C00 map 
EL "b 

defined by it(g) := gH f o r g e G; such cross-sections exist (cf. Theorem 

1.3(b)). I t follows from (lh) that on V X V (a neighbourhood of 
EL d 

(aH, bH) i n (G/S) X (G/H)), p i s given thus: 

S l v x V " ""o0°(*,xV (15) 
a b 

where \5 : G x G -* G i s defined by >3(c,d) := cs - c - 1 d f o r c,d e G. 

Observing that 5 i s d i f f e r e n t i a b l e and r e c a l l i n g (as noted above) that t 

and if , \|r, are d i f f e r e n t i a b l e (C 0 0), i t follows from (15) (and from the 
El D 

fact that the composition and direct products of d i f f e r e n t i a b l e maps are 

d i f f e r e n t i a b l e ) that jaLr T. i s d i f f e r e n t i a b l e , and hence that £ i s 
V a X V b 

d i f f e r e n t i a b l e at (aH, bH). Therefore jl i s a d i f f e r e n t i a b l e 

(C00 s "smooth") m u l t i p l i c a t i o n , and the proof that M endowed with jl i s a 

symmetric space of order k i s completed. 

This finishes the proof of Statement (b) of Theorem I I I . l . 
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k. Symmetric Spaces of Order k as Reductive Homogeneous Spaces 

(Proof of Statement (c) of Theorem I I I . l ) 

( i ) I t i s f i r s t shown that M i s diffeomorphic t o a homogeneous space of 

Lie groups. 

A(M,V) denotes the group of a l l a f f i n e transformations of M endowed 

with the a f f ine connexion V discussed i n Section 2; A(M,^) has the Lie 

group structure (mentioned i n Section I.3) with which i t i s a Lie 

transformation group of M. Consider now the subgroup G of A(M,V) defined 

by: 

G := {g e A(M,V) : ( d g ) p o S p = S g ( p ) o (dg) p f o r a l l p e M} ; 

since (cf. Theorem 1.6) two af f i n e transformations of a connected manifold 

coincide i f t h e i r d i f f e r e n t i a l s have the same action on at least one tangent 

space, i t follows ( r e c a l l i n g that S := (ds ) ) that G may also be described 

thus: 

G - {g e A(M,S7) : go s p = s
g^) 0 6 f o r a 1 1 P e M} . 

From t h i s description of G, condition (3) of D e f i n i t i o n I I I . l and the 

result of Theorem I l T . l ( a ) proved i n Section 2, i t i s clear that f o r each 

x G M the l e f t m u l t i p l i c a t i o n s i s a member of G. Moreover i t follows, 
e x 

because A(M,V) i s a Lie transformation group of M, that G i s a closed sab-

group of A(M,V); by remarks i n the l a s t paragraph of Section I . 2 ( i i ) and the 

f i r s t paragraph of Section I . 2 ( i i i ) , G therefore admits a natural Lie group 

structure with which, as a Lie subgroup of A(M,V), i t i s a Lie transformation 

group of M: from now on G w i l l be considered a Lie group with that structure. 

I t w i l l now be shown that G i s l o c a l l y t r a n s i t i v e on M; i.e. that f o r 

given p e M there exists a neighbourhood (of p) which i s contained i n G(p), 
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the G-orbit of p. Given a point p e M consider the r i g h t m u l t i p l i c a t i o n r ; 
3? 

as shown i n the proof of the Lemma i n Section 1 (cf. i d e n t i t y (*0): 

(dr ) =1 - S , a non-singular l i n e a r transformation of M (cf. the P P P P P 
remark preceding D e f i n i t i o n I I I . U ) . Hence, by the inverse function 

theorem (cf. Theorem I . l ) there exist neighbourhoods and V 2 of p such that 

r I : V -•> V i s a diffeomorphism. P Y1

 1 2 

But observe that: 

V 2 - r p ( V j 

= { r p ( x ) : x e V x} 

= ( S
X ( P ) : x e v i ) because r p ( x ) = u(x/p) = s^(p) 

<^Z. G(p) because s e G for each x e V d. M. 
x 1 

So V 2 i s a neighbourhood of p and V 2 ^ G(p); i . e . , G i s l o c a l l y 

t r a n s i t i v e on M. 

Now Theorem 1.2 implies that therefore G i s t r a n s i t i v e on M. Moreover 

Theorem I.h implies that i n fact GQ, the i d e n t i t y component of G, i s a 

t r a n s i t i v e Lie transformation group of M. Selecting a point p Q e M, define 

the isotropy subgroup II of GQ at p Q by : 

H := {h e GQ : h(p Q) = p Q } ; 

because Gc i s a Lie transformation group of M i t follows that H i s a closed 

subgroup of G0 and H w i l l be considered as a Lie subgroup of GQ (with the 

natural Lie group structure mentioned i n Section I . 2 ( i i ) f o r a closed sub

group of a Lie group). Then Theorem I . ^ implies that M i s diffeomorphic t o 

the homogeneous space GQ/H (endowed with the d i f f e r e n t i a b l e structure 

described i n Theorem 1-3). 
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From now on M and GQ/H w i l l be i d e n t i f i e d under t h i s diffeomorphism, 

which i s e x p l i c i t l y given (cf. Theorem I.h) as the map r\ ; G0/H ~* M 

defined by: 

l(gH) = g(p 0) f o r gH e GQ/H ; 

T ] - 1 ( X ) = g'H for x e M where g' i s an element 

of G such that g 1 ( p Q ) = x. 

With M and GQ/H SO i d e n t i f i e d , the various structures on M are transferred 

to G0/H; i n p a r t i c u l a r , G0/H is thus endowed with the structure of a 

symmetric space of order k (given already on M). The various maps, tensor 

f i e l d s , the a f f i n e connexion, etc. thus induced on G0/H by the 

corresponding objects given on M w i l l be denoted by the same symbols; f o r 

example, i f T)(gH) = g(p 0) = p for gH e G0/H, p e M, then 

T J - 1 o S p O t ] w i l l be simply denoted by s ^ , 

dTj" 1oS^odTj w i l l be simply denoted by , 

and d i f M v ^ ^ d T ^ Y ) } for X,Y e T 1(G Q/H) w i l l be simply denoted by V̂ Y. 

( i i ) I t w i l l be shown i n t h i s part ( i i ) that the homogeneous space QQM 

introduced i n part ( i ) i s i n fact a reductive homogeneous space 

(cf. D e f i n i t i o n I . l ) . 

Consider the Lie algebras g and h of G Q and H respectively; since 

H i s a closed Lie subgroup of G Q, i t follows that h i s a subalge'bra of g 

and that i n fa c t : 

h = {X e g : exp tX e H f o r a l l -«» < t < «J . (17) 
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Recalling that p Q i s the point i n M = GQ/H for which H i s the 

isotropy subgroup of GD and that s i s the l e f t m u l t i p l i c a t i o n by p Q, one 
Po 

defines the following group automorphism of GQ: 

Def i n i t i o n I I I . ' J : With Gn and s as above, define 0 : G» -* G by: 
. , i , i Po ° 

0(g) == a ogo s" 1 for g e G . 
Po Po ° 

Clearly 8 = Ad_(s ) L (cf. Section I . 2 ( i v ) ) ; because Ad_(s ) i s 
« Po Go G Po 

a diffeomorphic group automorphism of G (and maps the group i d e n t i t y e i n t o 

e i t s e l f and consequently maps the i d e n t i t y component GQ onto GD i t s e l f ) , 

therefore 0 i s a diffeomorphic group automorphism of GQ. 0 i s of order k, 
because s i s of order k. Notice also that 0 leaves the subgroup H Po 
pointwise fixed ; for i f h £ H, then: 

h o s = s, / \oh because h e Gn d G, 
Po h(Po) ° 

«= s oh because h e H =?> h(p 0) - p D , Po 

whence s o h o s 1 : = h ; 
Po Po 

i f e . 0(h) = h. 

Before proceeding further notice that h may be characterised i n terms 

of 0 as follows: 

h = {X e S : d0(X e) = X e} (18) 

For i f X G h then exp tX, the in t e g r a l curve of X (defined for a l l 

-- co < t < oo), l i e s completely i n H by (17); therefore, by the remark i n the 

preceding paragraph, exp tX remains pointwise fixed under 0, and consequently 

d0(X g) a Xg. Conversely i f for X e g, d0(X e) = Xg, consider the i n t e g r a l 
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curve exp tX i n GQ; the action of s on the curve {exp tx}(p D) i n 
Po 

M = GQ/H is given by: 

s o{exptX}(p Q) = a o {exp t x j o s ' ^ p ) because s" 1^ ) = p_, Po "o Po Po 

= {0(exp tX)}(p Q) 

= {exptde(X)}(p G) 

= {exp tX}(p D) because d9(X) = X, 

where the last two equalities are obtained by noting that because 9 is an 

automorphism of GQ, d0(x) is an element of and recalling that such a 
left-invariant vector f i e l d i s determined by i t s value at e (and in this case 
d0(Xe) = Xe by hypothesis, whence d9(x) = X). So the above equality shows 
that the curve {exp tx}(p Q) i s pointwise fixed under s.̂  , whence by the 
faet that p 0 is an isolated fixed point of s (cf. property (h) of 

^o 
Definition I I I . l) i t follows that {exp tx} (p 0) = p Q for < t < «> and 
consequently {exp tx}. e H for -« < t < °o ; therefore, by X e h. 
This completes the verification of ( l 8 ) . 

C C 
Denote by g and h the complexifications of g and h respectively. 

(d©)e, the dif f e r e n t i a l of 0 at e 6 GQ, may be considered as a linear 
transformation of _g by the standard identification of g with (G Q) e; 
interpreting (de) e in that way, denote i t s C-linear extension to JJc by 0: 
thus for a typical element (x + N^I Y) e g c (where X,Y e g) ? 

9(X + ^ y ) B (d0) e(X) + J-L (d9) E(Y). Observe that the results of the 
preceding paragraph imply that: 

h° » {Z e./ : G(Z) = Z.} 
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Because Q, and therefore (d0) e, is of order k, i t follows that 
k C 6 - I , the identity linear transformation on g . Note that 
9 k - I = (e - l ) ( 0 - a 2 l ) ... (9 - o^l) where a g, a g, ..., .0̂ . are the 
distinct k t h roots of unity different from +1; i t is then clear that: 

(0 - I ) (9 - cc2l) ... (0 - o^l) = 0; 

therefore (cf. Birkhoff and MacLane [ l ] ) jsp is the direct sum of the 
eigenspaces corresponding to the eignevalues +1, c*2, a 3, ..., cĉ  of 9. 
From the remark i n the previous paragraph, h^ is exactly the (+l)-eigen-
space; the following notation is introduced for the other eigenspaces: 

Definition I I I . 8 : With g c, 9 and cĉ  = 2,3,...,k) as above, define the 
vector subspaces of fp by: 

mjf := {Z e g c : 9(z) = cx̂ Z } for I = 2,3,...,k. 

n 

Then the 9-eignespace decomposition of j ; described above is expressed 
by the identity: 

gc

 a h c © m2 © ... ® . 

Hence, since h = h c 0 _g and g •= g c D g: 

g = h 8 {(m 2 © ... © n^) n g) , 

and the following definition is introduced: 

Definition I I I . 9 - With the above notation define the vector subspace 
m of jg by: 

m : = (m2 © ... © m̂ ) f i g . 

Then g = h © m; i t w i l l be shown now that Ad., (H)m C m, thus - - u Q - -
establishing that G0/H is a reductive homogeneous space (cf. Definition I . l ) . 
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Consider a vector X e m; i t is (uniquely) expressible as: 

X = x 2 + ... + Xjc 

where X̂  e m̂  D g for I = 2,3,.,.,k. Now for a fixed value of I and for 
a given h e H the action of Ad^ (h) on X̂  w i l l be examined: exp tX^ is a 
curve through e (at t = 0) with (X^) g as tangent vector at t = 0 . 

Now Ad_ (h)(exp tX.) = h(exp tX.)h" ^o * 1 

therefore 0{Ad^ (h)(exp tX^)} = 0(h)0(exp t X £ ) 0 ( h ) _ 1 because 0 is an 
automorphism of GQ 

= Ad (0(h)){e(exp tX.) } 
o 

= Ad G o(0(h)){exp t.dGfr^) } 

= Ad^ (h){exp t.d0(X £)} because 0(h) = h. 

Consequently: 

(d0) eoAd G o(h){(X J,) e} = Ad^fhjo ( d 0 ) e { ( x p g j 

whence e{Ad Q (h)X^ } = Ad Q (h ) {e(X £)} 

= Ad̂ , (h){a fX|) because X̂  e mf , 

a £{Ad G o(h)X £J 

whence Ad G (h)X^ e . 

Of course Ad- (h)X. e g, so that: 
uo 1 

Ad Q (h)X^ e m& Ci g for each I = 2,3,...,k. 
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I t follows that: 
k 

Arl G (h)X = \ Ad G (h)X£ e m for each h e H and X e m: 
& ° 

i.e. Ad« (H)m C m. 

Thus a subspace m of f* has been defined such that _g = h © in and 
Ad_ (H)ra C m; therefore Gn/K is a reductive homogeneous space. GQ - ° 

Remark: 
Notice f i r s t l y that the restriction 9| of 9 to g is given by: 

& 

e\s - (d0) e . Ad C T( S p Q) : fi - B ; 

notice also that the restriction ©| of 0 to m C g preserves m (m consisting 
of sums of eigenvectors of 6 lying in g). Consequently Ad„(s ) preserves m; 

• Po 
i.e. Ad_(s )rn d m . 

G p 0 -

(Of course i n the case when s e H c GnJ this l a t t e r result follows 
Po ° 

directly from the Ad_ (H)-invariance of m established just above). 
Go 

( i i i ) In this part ( i i i ) the proof of Statement (c) of Theorem I I I . l w i l l 
be completed. 

Under the diffeomorphisrn T] : G0/H -> M the affine connexion V 
defined on M induces an affine connexion (also denoted V) on CJQ/H 
(cf. remarks at the end of part ( i ) of the present section); GQ/H 
M are then affinely diffeomorphie. I t w i l l be shown here that this 
connexion on G0/H is i n fact the canonical connexion of the second kind on 
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G /H, a reductive homogeneous space with the Ad„ (H)-invariant 
o 

decomposition § = h © m of the Lie algebra _g of GQ as introduced in 
part ( i i ) above. 

In order to examine the connexion V on G0/H i t i s necessary to obtain 
explicit expressions for the l e f t and right multiplications and the tensor 
f i e l d S on G0/H related to i t s structure as a symmetric space of order k. 
For notation refer to the concluding remarks i n part ( i ) above. F i r s t l y the 
l e f t multiplication s ^ by a point aH e G0/H maps a point bH e GQ as 
follows: 

s a H(bH) . T f i o s ^ o T K b H ) 

= TI" 1 o a o s oa - 1oT](bH) because a e G C. G P0 ° 
•̂ =5> S / v = a o s o a"1 , a(P 0) P0 

= t ) " 1 o a o s oa^obfp.) because Tj(bH) = b(p„) , Po 

= i i ^ o a o s o a ^ o b o s ' ^ j j ) because s _ 1(p ) = p, , PD P0 ° P0 ° "° ' 

= (as a-^s-^H 

because i ) " 1 o g(p Q) => gH for g e Gc; with regard to the last line notice 
that (as a^bs" 1) is indeed an element of G_ even i f s (eG) is not an Po Po ° Po 
element of Gc: for the map Ad^s^ ) : G ~» G is differentiable and 
consequently maps the connected component GD into i t s e l f (as pointed out 
after Definition 111.7)* whence Ad.(s )(a - 1b) = s a~Hi s"1 is in G„ 

I* Po Po Po 
(a and b being in G ) and so therefore is (a s a _ 1b s"1) i n C- . 

B o' Po Po 0 
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In particular, therefore, for a = e, b = y in (19): 

consequently: 

s p H(yH) = (s y s ^ H for yH € G0/H ; (20) 

and indeed by induction: 

sm„(yH) = ( s m ys m)H for any integer m ̂  0. 
e H Po Po 

Hence, recalling that s^"*) = s"1 , i t follows that: 
Po Po 

s"£(yH) = ( s ^ y s )H for yH e G /H . (21) 
e n Po Po 

Also from (19) i t is seen that: 

= (as a^bs^jH for aH.bH e G /H. (22) Po Po 0 

Before examining the tensor f i e l d S on G0/H some notation to describe 
the relationship between G0 and G0/H is needed; reference to Section 1.2 
w i l l further elucidate the remarks about to be made. By definition of the 
differentiable structure on G0/H, the map it : GQ -» GQ/H (defined by 

:= gH for g e G0) is differentiable; moreover i t has a differentiates 
local inverse: in particular there exists a neighbourhood V of eH in G 0/li 
and a different iable map a : V -» GQ such that o(eH) = e, da((G 0/H) e H) = m, 
and TIO a = id^. (m is the vector space defined in Definition I I I . 9 ) . Under 
the linear transformation (da) „ and i t s inverse ((die) )l , the vector 

v ' eH x e ' m' 
spaces (G0/H) y and m are identified. 

SeH = ^dSeH^eH wi-1-1 n o w "*3e cP mP u t e d-« F o r a vector Z e (G0/H) , 
consider i n GQ/H the curve rc(exp t.da(z)) = {exp t.dcr(Z)}H which has tangent 
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vector Z at t = 0 (because (diroda) e H = I e R ) ; the image of this curve 
under the l e f t multiplication s g H is given by (20) thus: 

s u(n(exp t.da(z))) = {s (exp t . d a ^ s " 1 )h" 
e" Po Po 

= 7t{s (exp t.da(Z))s~ 1} , 
Po P 0 

whence: 

^dseH^eH(Z^ = du o Ad G(s p^) o da(Z) for each Z e (GQ/H)^; 

therefore: 
SeH " ^ o A d G ( s p o ) o ( d c r ) e H . ( 2 5 ) 

Recalling that ( d a ) ^ : (G 0/H) e ] fj -» m has inverse ( ( d 7 0 e ) l m
 a n d 

recalling also the remark at the end of part ( i i ) asserting Ad G(s p )m c 

i t follows that: 
dor o duo Ad_(s )| = Ad„(s )| , GX p D"ra GV p 0' 'm ' 

whence together with (23) the following useful identity is obtained: 

^ e H o S e H = A DG ( sp 0> 0 ^ e H ' ^ 

Finally before coming to an examination of the connexion on Gc/K, 
the operation "*" of Definition I I I . 5 must be translated e x p l i c i t l y a 
an operation on tangent vectors to (G0/H). Let Z e (G0/H)ep.. Now 
7(t) := n(exp t.da(z)) is a curve in GQ/H which has tangent vector Z at 
t = 0 (because (duo do) « I „). Also, by Definition I I I . 5 the 

eH eH 
vector f i e l d Z* on G0/H is given as follows: 

( Z * ) y H = { d r s . 1 ( y H ) } ( z ) for yHeG Q/H; 
eH 

consequently (Z*) „ is the tangent vector at t = 0 to the following eurv 

V 3 1 MAY 1972 
v fi|orian „ 
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defined for t in some neighbourhood (-e,e) of 0 in IR (e > o): 

r -1/ v\ = r -1/ v\ (o(^(t))H) (because cr(7(t))H = 7 ( t ) 
e H e H for t e (-e,e)), 

= r , (o(7(t))H) by (21), 
( s P o y S P O ) H 

- {(cro7(t))s_ ( a o r f t J J V ^ j H by (22) , Po 

7i{(ao7(t))s ( a o 7 ( t ) ) _ 1 s 1 y } by definition of n Po Po 

evaluating the tangent vector to this curve at t = 0 one obtains (with the 
differentiable map R : GQ -* GQ defined by R (g) •.= gy for g e G ) : 

(Z*) = {dr _ w }(Z) y« s e H(yH) 

» dTrodR (da(Z) -Ad_(s ) o do(Z) } y G Po 

d i r o d R y o { l e - Ad^fs^ )}oda ( z ) 

d^odRyOdaod^ - S e H)(Z), (25) 

by (2k). 

Now for Zi e (GQ/H)^, Z± = { l e H - S ^ ) - 1 ^ ) b'.V Definition 111.1+ 
and from (25) with Z = one obtains for yH e GQ/H: 

- ^ ( ( ( d a f Z j ) ^ ) , (26) 

where (dff(Z^)) is the right-invariant vector f i e l d on GD which has the 
same value as da(Z 1) at the identity e e Gc. 
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By means of Definition I I I . 6 and (26) the expression for V on GQ/H 
is now derived: for vector fields X*,Y' e T 1(G 0/H), the vector f i e l d 
VX,Y' e TX(G0/H) is given by: 

^X' Y , )xH " X k ( V ) ~ Y x H ^ X x H n * f 0 r ^ e G o / H 

where in the particular case xH = eH (as needed below): > (27) 

( ( X e H ) ~ ) * = duCCdff fX^)) 8 ) by (26) . 

To show that this connexion on the reductive homogeneous space GQ/H is the 
canonical connexion of the second kind, one proceeds as follows, u t i l i s i n g 
the results and notation described i n Section I . 3 ( i i ) : the neighbourhood V 
of eH i n GQ/H w i l l be considered as a manifold with the affine connexion V+, 
the restriction of V to vector fields in T^V) (the neighbourhood V has 
already been mentioned in the paragraph following (22) above). To show 
that V is the canonical connexion of the second kind i t suffices (cf. 
Theorem 1.7) to prove that for any two vector fields X,Y e m c § C ^{G0) 

the following identity holds.: 

( V + + Y + ) e H = 0, where X+,Y+ e T 1^) are defined 

in terms of X and Y as i n Section I . 3 ( i i ) > e x p l i c i t l y : 

(X +) = dTt(X / J v 'p a(p)' 

(Y +) = dn(Y / v) P o(p) 
} for p e V, 

where a : V -* a(v) <Z GQ is the diffeomorphism of V onto the submanifcld 
a(v) in Gp defined by the local cross-section \|r : V -» 'GQ (for p e V, 
cr(p) := \|/ (p)). (For details refer again to Section I . 3 ( i i ) ) . 
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Consider the action of (\7*+ Y +) on a function f e F(v); by (27): 

( V X + Y + ) e H f - ( X + ) e H ( Y + f ) - ( Y + ) e H ( ( ( ( X + ) e H D * f ) • (28) 

Noting that the value of the function (Y +f) at p e V is given by: 

(Y +f)(p) = ( Y + ) p f 

= d n { Y c r ( p ) ) f 

- Y a ( p ) ( f O W ) 

= (Y(fon))oo(p), 

the f i r s t term in (28) is computed thus: 

( X + ) e R ( Y + f ) = dfl.;x , „0{(Y(f o n)) o a } 

= dit(X ){(Y(f o n)) o a] 

a doo dn(X ){Y(fo it)} 

= X (Y(fos)) because for X e m, 
do o dn(Xe) = Xg ; 

= (X eY)(fon). (29) 

Noting that the value of the function ({({X ) )~ ) * f ) at p e V is given by: 

( ( ( ( x + ) e H n * f ) ( P ) = ( ( ( / x M e H r ) * ) p f 

e p 

d ) r ( ( ( d t f ( ^ ( X e ) ) ) R ) o / p v ) f by (26) and noting 
that p = ff(p)H, 
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because for X e m 
dwo dit(X ) = X , e e ' 

= (x"1) / v(fou) reoallinr the definition of 

- ( ^ ( f o i t ) ) o a ( p ) , 

3^ for X g m cZ S 
(cf. Section I . 2 ( i ) ), 

the second term of (28) is computed thus: 

(Y +) e H((((X +) e H)'»f) - d7t(Y a ( e H ))fe R(foT0)oc:J 

= dTt(Y g){(X R(f o 7 t ) ) o cr} 

= dao d7u(Y H x ^ f o * ) } 

- Y e{X R(fon) } because for Y e m, 
do o dTt(Ye) = Ye , 

* ( ? a X R ) ( f o i ) , (30) 

Combining (28) , (29) and (30) one obtains: 

( V
x
+
+
Y + ) e H f B (X eY)(fcn) - (Ye ^ ( f o ^ ) 

= (X T Y X11) (f o ir) 

[ X R , Y ] e ( f ore) for a l l f e F(V) (31) 

because (X R) = X and (Y) « Y . 
y 'e e 'e e 

But (cf. Theorem I.5) the Lie bracket of the left-invariant vector 
Y and the rig! 

therefore from (31): 

f i e l d Y and the right-invariant vector f i e l d XR necessarily vanishes at e; 
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(V+ Y +) „f = 0 for a l l f e F(v), 

i.e. (V +
+ Y + ) e H = 0 (for a l l X,Y e m). 

Consequently the connexion V is indeed the canonical connexion of the 
second kind on GQ/H. 

From Theorem 1.7 i t follows that V is a complete affine connexion on 
G0/H; the corresponding affine connexion V on M is therefore also complete 
(M and G0/H "being affinely diffeomorphic). 

This completes the proof of Theorem I I I . l . 
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5. A Characterisation of the Isotropy Subgroup H. 

f i ) Proof of Statement (a) of Theorem I I I . 2 

Let M be a symmetric space of order k and i t s associated structures 
and notation be as in the preceding sections of this chapter. 

Consider the automorphism 6 of Definition I I I . 7 and define the subgroup 
Go ofG 0by: 

GQ :« {g e G 0 : 0(g) = g}. 

Beoause 8 is a (differentiable) transformation of GQ (and hence i n 
Q 

particular continuous), i t follows that G 0 is a topologically closed subset 
Q 

of G Q ; G D w i l l therefore be considered as a Lie group, endowed with the 
natural Lie group structure mentioned in Section I . 2 ( i i ) for a closed 

8 8 subgroup of a Lie group. Let ( G Q ) 0 denote the identity component of G Q . 
8 8 8 Observe that the Lie algebra g of ( G Q ) 0 (and of G 0) Is given by: 

Q Q 

g = {X e jg : exp tX e GQ for -°° < t < °°} 

= {X e g : 0(exp tX) = exp tX for -°° < t < «>} 

« (X e g : d9(Xe) = X e) . 

Recall that H denotes the isotropy subgroup of GQ at the point pc, £ M; 
in Section ^ - ( i i ) i t was shown that the Lie algebra h of H is given by: 

h = {X e g : d0(Xe) = X e) , 

Q 
whence h = g . Consequently (cf. Section I . 2 ( i i ) ) the identity component 

8 8 
HQ of H coincides with the identity component (G 0) 0 of GQ. Therefore: 
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But, as remarked following Definition I I I . 7 (in Section *+(ii) ), 
Q 

0(h) » h for h e H, i.e. H C GD; therefore: 

This completes the proof of Statement (a) of Theorem I I I . 2 . 

( i i ) Proof of Statement (b) of Theorem I I I . 2 

Consider a connected Lie group B Q with a continuous group automorphism 
T : B D -» B 0 of f i n i t e order k; recalling the remark at the end of 
Section I . 2 ( i ) , observe that T is a diffeomorphism (in fact an analytic 
diffeomorphism) of B Q. Consider also a closed subgroup C of B Q 

satisfying (BQ) q ^ C C BJ where BQ := {b e B D : f(b) = b} - (BQ is a 
Lie group as a closed subgroup of B 0: cf. the remarks i n part ( i ) just 
above concerning G0) - and where ( B 0 ) Q denotes the identity component of B D. 
Considering the homogeneous space BQ/C as a differentiable manifold with 
the natural differentiable structure as described in Section I . 2 ( i i i ) , 
observe that the manifold BQ/C is connected because B Q is connected and 
the projection n : B Q -» BQ/C (defined by Tt(b) = bC for b e B Q) is a 
differentiable (hence continuous) map. 

Define on the connected manifold BQ/C the multiplication 
P : (BQ/C) x (B0/C) -» B0/C by: 

£(aC,bC) := {aT(a) _ 1T(b)}C for aC,bC 6 BQ/C ; (32) 

{T is well-defined because T is an automorphism and T ( C ) = c for c e C: 
for i f (ac')C = aC and (bc")C = bC for c',c" e C, then 

ff((ac»)C,(bcn)C) = {(ac»)T(ac»)- 1T(bc , ,)}C 
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= {ac'T(c')" 1T(a)- 1T(b)T(c , , ) } c 
= {ac ,(c ,)' 1T"(a)" 1T(b)c" } c 
= { a r C a J ^ T d j J l c 
= ja(aC,bC). 

To show that u is a differ-entiable map f i r s t consider the map 
S : B0 X B 0 -» B Q defined by u f a ^ ) := a.t(a.)~lr(b) for a,b e BQ and the 

projection u : B—» BQ/ C as defined above; B is a different iable map 
because T, group multiplication in B Q and the operation of taking the 
inverse in BQ are each differentiable maps, and IT is differentiable by the 
definition of the differentiable structure on BQ/C (cf. Section I . 2 ( i i i ) ) . 
Now the proof that p! is differentiable is exactly the same as the proof 
i n Section 3 ( i i ) with the substitutions jl -»?, 5 -» T5, G q -•> BQ, H -* C, 
n -» it . 

I t w i l l now be verified that (i satisfies the properties ( l ) to (k) of 
Definition I I I . l . The map for aC e B0/C is defined by: 

s a C(bC) := ia(aC,bC) 

= {aT(a) _ 1T(b)}C for bC e B o /0. 

Property ( l ) : 

8 a C(aC) = {aT(a)- lT(a)}C 

= aC for aC e B0/C. 

Property (2): 
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= { a T C a r M a H ^ a j r ^ C b J l c 

= U(t2(a))~:i-v2(-b)}c for aC,bC £ B0/C; 

and by induction: 

sa
k
c(bC) = { a ( T

k ( a ) ) - ^ k ( b ) } C 

= {aa "Ma} C because T has order k, 

= *>C for aC,bC e B0/C. 

Property (3 ) : 

= {aT( a)- 1T(b)T(T(b)- 1)T(T(d))} C 

= { { a T f a J - ^ l b j H x f T f b J - O H T f T f a J J r f a J - ^ f a j T ^ a ) ) -

x {T 2 C d ) } } c 

= {{aT(a)- 1T(b)}T{a-r(a)- 1T(b)}- 1T{aT(a)- 1T(d)}}G 

= \ c ( b C ) ° ^ C ^ ^ f o r aC,bC,dC e BD/C ; 
U e ' SaC° SbC = S£ (bC)°SaC f o r *C,bC eB 0/C. 
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Property (k): 

To show that aC i s an isolated f i x e d point of s ^ f o r each aC e B0/C 

i t suffices to prove the result f o r s ^ : f o r , considering B 0 as a Lie 

transformation group of Bo/0 and observing that*. 

3 a C(bC) = {aTCarMbMc 

= {aTta'^tOlC 

= a o s e C ( [ a ^ } c ) 

= ao s e C o a - 1(bC) fo r aC,bC £ B0/C, 

i t follows that i f a neighbourhood U Q of eC contains no f i x e d points under 

s ep except eC i t s e l f , then the neighbourhood a(U 0) of aC contains no fixed 

points of "3^ except aC i t s e l f . 

I t w i l l now be shown that such a neighbourhood U Q does indeed exist. 

Observe f i r s t of a l l (cf. Section I . 2 ( i ) ) that there exists a neighbourhood 

U 2 of e i n B Q such that: 
k 

i f an element d e U 2 s a t i s f i e s d = e, then d = e. 

Also there exists a neighbourhood \J of e i n B G such that: 

b~ 1x(b) e U £ for a l l b e ; 

the existence of such a neighbourhood U 1 follows from the d i f f e r e n t i a b i l i t y 

(and hence continuity) of T, group m u l t i p l i c a t i o n i n B 0 and the operation 

of taking the inverse i n BQ. 

Also because (cf. Theorem 1.3) there exists a differentiab.le cross-

section <Xg from a connected neighbourhood of eC i n B0/C in t o a (connected) 

neighbourhood of e i n B Q, i t follows that there exists in. BQ/C a connected 

neighbourhood U D C V1 of p Q = eC such that there corresponds to each 
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point p e U 0 a unique point °b(P) G a^Jo^ *~ U j _ : f o r whie*1 P = {°g(p))C. 

Consider now a given point p e U Q and suppose that: 

s_ (p) = p ; 
Po 

that i s , defining b := o^(p) (whence p bC): 

s e C(bC) = bC, 

i.e. {-r(b)}c = bC (for (32) implies that 

s e C(bC) : = n(eC,bC) = {r(b)}c) 

therefore b - 1 T ( b ) = c for some c e C, where i n fact c e U 2 

because by the above remarks p e U Q b = <Xg(p) e JJ^ 

s ^ b ' M b ) e U . 

But becaiise c e C =p T(C) = c therefore: 

e = r(c) = r 2 ( c ) - ... = T ^ - 1 ^ ) : 

consequently: 

C K = C T ( c ) T 2 ( e ) ... T ^ ^ f c ) 

= b - ^ C b J - r ^ T f b J ^ f b ^ T f b ) ) ... T ( k " 1 \ ' b - 1 r ( b ) ) 

= b - ^ f b j T ^ j - ^ C b y r 2 ^ ) - ^ 3 ^ ) . . . T ^ - V r ^ C b ) 

= b - ^ b ) 

rr. b _ 1b 

= e, 

(because t i s an automorphism (of Br,) of order k ) . 
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Thus the point c e U 2 s a t i s f i e s c e, whence by.the d e f i n i t i o n of 

U 2 one concludes that c = e; i . e . , f ( b ) = b, therefore b e Bg. Thus 

b £ B Q fl a^(\JQ); but because U Q i s connected ^(UQ) i s connected, and 

because BQ ( a s a closed Lie subgroup of B 0) has the subspace topology, so 

also i s B Q 0 a B(U Q) connected i n B 0 - whence b e ( B
o) 0» t n e i d e n t i t y 

component of BQ. Because ( 3 Q ) 0 CL G, therefore b e G which implies that 

p = bC = eC = p Q. Consequently i t has been shown that f o r the neighbourhood 

U 0 of p 0 : 

i f an element p e.U s a t i s f i e s s (p) = p, then p = p Q ; 
Po 

that i s , p 0 = eC i s an isolated fixed point of the map = . 

This completes the proof th a t , endowed with the m u l t i p l i c a t i o n £ of 

(32), B0/C i s a symmetric space of order k. 

This completes the proof of Theorem I I I . 2 . 
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CHAPTER IV 

SOME OBSERVATIONS CONCERNING JORDAN ALGEBRAS AND 

DIFFERENTIAL GEOMETRY 

1• The Canonical Connexion on a "Jordan Symmetric Space" 

The notation introduced i n Section 1.6 w i l l he assumed here: i n 

par t i c u l a r , A denotes a Jordan algebra with u n i t e defined on the r e a l 

vector space IR n, l(A ) denotes the set of i n v e r t i b l e elements of A, P(a) 

denotes the quadratic representation of the element a e A, and A^ denotes the 

f-mutation of A with respect t o an element f e A (A f i s called the f-isotope 

i f f £ l(A) ). By Theorem 1.13 l ( A ) i s naturally a d i f f e r e n t i a b l e 

manifold; moreover, the topological component I 0 ( A ) of l ( A ) containing 

the u n i t e may be endowed with the m u l t i p l i c a t i o n | i defined by 

v(v>l) PfpJq. - 1 f o r p,q e I q ( A ) , and I Q ( A ) SO endowed i s a symmetric space 

(of order 2) - called the Jordan symmetric space of A. 

I Q ( A ) admits two a f f i n e connexions. F i r s t l y , as an open subset of 

IR n (cf. Theorem 1.13), I 0 ( A ) admits the a f f i n e connexion ^ induced by the 

standard f l a t connexion on IR n. In terms of the standard basis {e. } " , of 
i i = l 

IR n the vector f i e l d ( — r ^ e T^IR 1 1 ) i s defined for i = 1,2,...,n: 
V ou 1 ' 

as a d i f f e r e n t i a l operator on F(lR n ) , ^ ^ - r (IR0 ) ^ i s simply the 

p a r t i a l derivative i n the d i r e c t i o n e^, evaluated at the point x e 3Rn ; 

the r e s t r i c t i o n of — r to I Q ( A ) gives a vector f i e l d i n T ^ I Q C A ) ) , 
du 1 

denoted E ̂ f o r i = l,2,...,n. Now V on I 0 ( A ) i s given by: 
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(V xY) p = X i ( p ) ( E i Y J ) p ( E 3 ) p for X,Y G l a ( l 0 ( A ) ) 
and p e I Q ( A ) , 

/ oT^ \ / d N 

« X^p) ( - — ) ( — ) , (1) 
V du 1 /, V ou J / P p 

where X 1(q) := X^u1 and Y1(q.) := Y^u1 for q G A N D i = l>2,...,n. 

Secondly, as a symmetric space (of order 2), I 0 ( A ) admits the 

(canonical) a f f i n e connexion V defined i n D e f i n i t i o n I I I . 6 (cf. Theorem 

I I I . l ) . Because I Q ( A ) i s a symmetric space of order k = 2, the tensor f i e l d 

S of D e f i n i t i o n I I I . 3 i s given by =» - I at each p e I Q ( A ) ; for since 

i n t h i s case (S ) 2 = I and S has no eigenvalue (+1) (cf. remarks preceding 
j? 1? j? 

D e f i n i t i o n I I I . ^ ) , i s diagonalizable over the reals, a l l i t s eigenvalues 

being (-1) (cf. Birkhoff and MacLane[ 1 ] ) , whence = - I as asserted. 

Hence from D e f i n i t i o n I I I . 6 i t follows that V i s given by: 
(V v) = XY - j Y (X ) * (2) v X 'p P P P 

(where "*" denotes the operation of D e f i n i t i o n I I I . 5 ) . 

Consider now the difference tensor D G T p ( l Q ( A ) ) defined by: 

D(X,Y) := ^Y - VXY for X,Y G T 1 ( I Q ( A ) ) ; (3) 

the following theorem provides an i n t e r p r e t a t i o n of D (and hence of V) i n 

terms of the isotopes of the algebra A: 

Theorem IV. 1: Let P : "JRn -•» ( l n ) be the natural i d e n t i f i c a t i o n of 

3Rn with the tangent space (.IR N) at x e ]Rn ; (3 i s a l i n e a r 

isomorphism with inverse denoted by ?>~x : (3Rn ) -* 3Rn . 

Then the tensor f i e l d D defined above admits the following description: 
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given a point a e I Q ( A ) , then 

W a > " P . O W - l r l W »»• X..T. « t l 0 ( A ) ) o , 
a 

where 1 , denotes the m u l t i p l i c a t i o n i n the a - 1-isotope A of the 
a - 1 

Jordan algebra A. 

Proof: Because D e T * ( l (A)), D i s completely determined by i t s action 

on a basis of the tangent space ( l Q ( A ) ) : considering the vector f i e l d s 

defined above { ( E
i ) a } " _ 1 i s such a basis of ( l Q ( A ) ) a ; V ^ V a ' ( E j ^ 

w i l l now be computed f o r 1 =S i , j ^ n. 

Notice f i r s t l y that f o r the connexion V : 

because (E.) a E. = 0: cf. ( l ) and the d e f i n i t i o n of E., E. ; thus: 

D ((E.) ,(E.) ) = (D(E.,E.)) D a v v i ' a , v o'a.' v v i ' o a 

= -(V V.)a by (3) and (U), 

= - (E.) E. + i ( E . ) ((E. ) ) * by (2), 

= i"(E.) ((E.) ) * again because j s i si 
(E.) E. = 0. 
' i a j ' 

• K n ) 
v ou,J 'a 

(5) 

where * e F ( I Q ( A ) ) f o r k = 1,2,...,n i s the k' component of the vector 

f i e l d ((E.) ) * : namely * k a ((E.) ) * u k , uK being the k^ 1 coordinate 
1 81 X 3. 

function, 
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i . e . * k ( y ) = ( i T ) a ( u k o r ^ a > y ) ) f o r y e I 0 ( A ) : 

t h i s l a s t step follows from D e f i n i t i o n I I I . 5 (of " * " ) , the remark that 

because I 0 ( A ) i s a symmetric space: s ~ 1 ( y ) = s
a ( Y ) = V-fatf)) and the fact 

that (E.) = f — T J as d i f f e r e n t i a l operators on P ( l (A)). 

Using the d e f i n i t i o n of p a r t i a l derivative and other basic analysis 

on 3Rn one obtains: 

* k ( y ) = f ~ u k o r , x 

= l i m o i { u k o r M ( a ? y ) ( a + te.) - u k o ̂  ( ^ y ) (a) } 

I f . * . . . , . , f _ u k 

by D e f i n i t i o n 111.2(b) for r ^ a y j . 

l i i n i { u ' o f i ( a + te , u(a,y)) - u'ou(a, u(a,y))} 
t-*0 t 1 

lira T { u oP(a + te,) - u Ko P(a) }(|.L(a,y ) ) _ ; L 

t-»0 * 1 

by d e f i n i t i o n of u on I _ ( A ) , 

= u k o l i r n i {2P(a,te. ) + P(te.) J (n(a,y) ) _ 1 

cf. Theorem 1.12(b), 
t-*0 * 

u K o l i m \ {2t(P(a,e.) + t 2 P ( e . ) } ( u ( a , y ) ) _ 1 

t-»0 1 1 

by the remark following Theorem 1.12, 

2 u k o P ( a , e . ) ( i i ( a , y ) ) - 1 . (6) 

Recall that u(a,y) = P ( a ) y - 1 , 
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whence 

(n( a , y ) ) _ 1 = P~ 1(P(a)y" 1)oP(a)y- 1 by Theorem 1.11 (a) 

= r 1 ( a ) p - 1 ( y - 1 ) p - 1 ( a ) o P ( a ) y - 1 

cf. Theorem I.10 

= P ( a - 1 ) P ( y ) y _ 1 by Theorem I.11(b) 

= P(a~ 1)P(y)P" 1(y)y by Theorem I.11(a) 

= P(a- X)y. (7) 

Substituting (7) i n t o (6) one obtains: 

<t>k(y) = 2u koP(a,e.)P(a" ; L)y for y e I Q ( A ) . (8) 

d* k 

Now the p a r t i a l derivative ( .—: ) may be evaluated: 
ou J A 

a<i)k 

( — ? ) = l i m i{<D k(a + te.) - * k ( a ) } 
V duJ A t-*0 * 2 

= 2u o P(a,e.)o P f a " 1 ) o l i m r { (a + te.) - a J 
1 t-»0 % 0 

by using (8), 

= 2u 1^oP(a,e.)oP(a" 1)e. . (9) 
1 J 

Therefore,substituting (9) into (5) one obtains: 

D a ( ( E . ) a , ( E . ) a ) = ( u k o P ( a , e . ) o P ( a - 1 ) e . ) . ( E k ) a 

= 0 {u koP(a,e.)oP(a - 1)e,)e. } by d e f i n i t i o n of 0 
8. 1 J K 8 

* 0 {P(a,e ) o P ( a " 1 ) e . } . (10) 
a X J 
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Now P(a,e.) o P(a - 1)e. = a L... _ e. where j 
. denotes 

1 J P(a _ 1)e. 1 P(a" 1)e. 
0 J 

the algebraic m u l t i p l i c a t i o n i n the P(a - 1)e .-mutation of the Jordan algebra 
A (cf. D e f i n i t i o n 1.6(a) and Theoran 1.12(b)). But by Theorem 1.12(d), 

Ap/ - i \ = (A - i ) = the e.-mutation of the a~ 1-isotope of A; so r[a a e^ j 

denoting the algebraic m u l t i p l i c a t i o n i n A - i by @ ( f o r convenience, i n 

place of _ L ): 
a - 1 

P(a,e.) oP(a - 1)e. = (a @ e.) @ e. + a @ (e. @ e.) - (a @ e.) @ e. 
i t] J i *] i J 

cf. Theorem 1.12(d), 

= e. @e. + e. @ e. - e. @ e. , 
3 1 1 J 1 .1 

because a i s the unit i n A . Because A , i s a commutative algebra, 
a a 

therefore e.. @ e^ = e^ @ e_j and consequently: 

P(a,e.)o P ( a - 1 ) e . = e. @ e. . ( l l ) 

Substituting (11) into (10) one obtains: 

because f3 - 1((E.) ) = e. and 3 _ 1((E.) ) = e. . 
a v i ' a ' i a v x j ' a ' j 

Because D i s b i l i n e a r (over the reals) and P and P"1 are ]R-linear, a a a ' 
i t follows that: 

^ V W = P a { ^ < X a > 4 ! C < Y a > } *>r a l l Xft,Y e ( l Q ( A ) ) . 
a 

This completes the proof of Theorem I V . i . 
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2. Coriformal Transformations and Jordan Algebras of Tyge ( i v ) 

I n t h i s section i t w i l l be shown that Jordan algebras of type ( i v ) 

arise n a t u r a l l y i n d i f f e r e n t i a l geometry when one considers conformal 

transformations. 

Recall the remark at the end of Section I A : given two conformally 

related Riemannian metric tensors g and g on a manifold M (say 

g = f g with f e F(M) ) , then the difference tensor D of t h e i r respective 

Levi-Civita connexions V and V s a t i s f i e s : 

where f = (log f ) e F(M) (note that f o r each x e M, f ( x ) > 0) and V f 

denotes the usual gradient of f (with respect to g) - namely V f is- the 

unique element of T 1(M) sa t i s f y i n g g(Z, V f ) = Zf f o r a l l Z e T X(M). 

Thus: 

exist provided f i s not constant on some connected component of M); then 

i n terms of the symmetric p o s i t i v e - d e f i n i t e b i l i n e a r form g_ : M x M ~* M 
* °p p p j 

define: 

D(X,Y) = i { ( X f ) Y + (Yf)X - g(X,Y)Vf} 

D(X,Y) = £{g(X,tff)Y + g(Y,Vf)X - g(X,Y)Vf} . (12) 

Consider now a point p e M f o r which ( V f ) 4 0 (such points 

l l ( V - f ) p | | :- { g p ( ( ^ f ) p , ( * ? > p ) J * (13) 

and 

E P 
( V f ) 

I I ( V f ) I I 
Then: 

D (X , Y J 

I I ( V f ) J | 
VYP + EP)XP • s'V VEP • (15) 
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By glancing at the d e f i n i t i o n of Jordan alebras of type ( i v ) i n 

Section II.B.2, i t i s seen that (15) defines on a Jordan algebra of 

type ( i v ) : namely [M ,g ,E ] where E given by (lk) i s the algebraic 
Jr J? 1? 1? 

u n i t . 

Thus, given two conformally related metric tensors on M as described 

above (g = f g ) , then at each point p e M f o r which ( ^ f ) p ^ 0 the Jordan 

( V f ) 
algebra [M ,g_,E ] with unit E = i s defined by (15) i n terms 

P'*P P P ||(V f ) p | | 

of the difference tensor D of the two Levi-Civita connexions f o r the two 

conformally related metric tensors. 
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CHAPTER V 

CONCLUSION AND FINAL REMARKS 

I n t h i s chapter I s h a l l b r i e f l y summarise the results obtained and 

suggest those directions i n which farther research should be pursued i n 

t h i s subject. 

1. B r i e f Summary of Results 

. The main resu l t of Chapter I I I on symmetric spaces of order k 

(namely, Theorem I I I . l ) establishes that basically the "algebraic" approach 

which Loos applied to symmetric spaces may be successfully applied to the 

s-regular k-symmetric spaces. . I n view of Conjectures 1 and 2 of 

Section II.A.U(i) i t i s very interesting to notice that the s-regular conditi 

arises naturally i n t h i s approach. I t was also proved i n Chapter I I I 

(Theorem I I I . 2 ) that i n a homogeneous space representation G0/H of a 

symmetric space of order k the isotropy subgroup H may be characterised i n 

terms of an automorphism of G0 of order k; t h i s r e s u l t (as do a l l the 

, results of Chapter I I I ) generalises the analogous resu l t f o r symmetric 

spaces. 

The main resu l t of Chapter IV (namely, Theorem I V . l ) presents an 

in t e r p r e t a t i o n of the canonical connexion on a "Jordan symmetric space" 

I Q ( A ) i n terms of the isotopes of A. The observation i n Section 2 of 

Chapter IV indicates how Jordan algebras are associated with certain 

confonnal transformations o i Riemannian manifolds. 
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2. Programme f o r Further Research 

( i ) Although the relationship between Jordan algebras and symmetric spaces 

has been developed extensively the following two studies remain to be 

pursued. 

F i r s t l y , the work that the Roumanian school of d i f f e r e n t i a l 

geometers has done concerning applications of Jordan algebras to d i f f e r e n t i a l 

geometry seems to be l i t t l e known and i t s connection with the other recent 

studies discussed i n Section I I . B . ^ has not been examined. Investigation of 

the extent to which the various results overlap or complement one another 

would be a useful and probably f r u i t f u l endeavour. 

Secondly, i t should be determined whether the observation i n 

Section 17.2 (which associates Jordan algebras of the type [x, o, e] with 

certain conformal transformations) gives r i s e t o any s i g n i f i c a n t information 

about conformal transformations. 

( i i ) I n Chapter I I I the fundamental aspects of an "algebraic" approach to 

symmetric spaces of order k have been established; i t remains, however, to 

pursue fur t h e r studies i n t h i s context: 

(a) For example, i t should be investigated whether a meaningful "centre" 

of a symmetric space can be defined, generalising the notion of the 

centre of a Lie group or symmetric space (of order 2) - cf. Section II.A.3. 

There also remain the Conjectures 1 and 2 of Section I I . A . U ( i ) . These 

questions would e n t a i l examination of the homogeneous space 

representation of a symmetric space of order k, p a r t i c u l a r attention 

being paid t o the structure of the isotropy subgroup. 
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A fascinating problem i s the search for a construction of symmetric 

spaces of order k (fo r k > 2) i n terms of Jordan, or possibly other 

non-associative algebras, i n analogy of course •with such a construction 

for symmetric spaces as outlined i n Section I I . B . U ( i i i ) ; i n t h i s regard 

the work of Sagle [ l ] , [2] i s of in t e r e s t . At f i r s t sight i t might 

appear that the methods of Helwig [6] would naturally generalise f o r 

symmetric spaces of order k > 2, but t h i s does not seem to be the case; 

a h e u r i s t i c approach to the problem probably l i e s i n developing the 

"algebraic" approach to symmetric spaces of order k. The 

j u s t i f i c a t i o n f o r such a suggestion i s the following: Loos's 

"algebraic" approach to symmetric spaces reveals an i n t r i g u i n g f a c t ; 

namely, the embedding Q : M -» G of a symmetric space i n t o i t s group of 

displacements (ef. Section I I . A . 2 ( i i ) ) s a t i s f i e s Q(Q(x)y) = Q(x)Q(y)Q(x) 

which i s formally the "fundamental formula", s a t i s f i e d by the 

quadratic representation of a Jordan algebra (cf. Theorem I.10) and on 

which the whole theory of Jordan algebras can essentially be based 

(cf. Section I I . 3 . 1 , fourth paragraph). (That Q sa t i s f i e s the above 

i d e n t i t y i s proved i n Loos [ l ] , chapter 2). Consequently I suggest 

that further study of the "algebraic" approach to symmetric spaces of 

order k might well provide insight into the type of algebra appropriate 

to the study of these spaces. 

A second means of t a c k l i n g the question of which algebras are relevant 

i s suggested by Theorem TV.1. Thus a study of difference tensors 

between the canonical connexion on a symmetric space of order k (as 

defined i n D e f i n i t i o n I I I . 6 ) and the connexion induced when the space i s 

embedded i n t o various Euclidean spaces may well provide a clue as to the 

type of algebras sought. 
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(c) I point out that a comparison of Table V i n Gray [6] and the 

c l a s s i f i c a t i o n by Boothby [ l ] of certain compact homogeneous complex 

contact manifolds reveals that the manifolds i n Boothby's c l a s s i f i c a t i o n 

are Riemannian symmetric spaces of order 3. Further exploration of 

t h i s phenomenon (f o r example, a c l a s s i f i c a t i o n - f r e e proof of t h i s very 

observation) would shed further l i g h t on the geometry of symmetric 

spaces of order 3 (and of homogeneous complex contact manifolds); also 

the existence of weaker structures (e.g., almost contact) should be 

investigated on the other symmetric spaces of order 3» Moreover 

analogous in q u i r i e s can be made f o r symmetric spaces of order k i n 

general. 

The re a l i s a t i o n of symmetric spaces of order k as f i b r e bundles should 

be examined; i n the case k = 2, f o r instance, every symmetric space i s a 

vector bundle over a compact symmetric space (cf. Loos [ l ] , chapter U). 

Furthermore along these lines one can examine generalisations of the notion 

of r e f l e x i o n spaces (cf. Section I I . A . U ( i i i ) ) - obtained by relaxing the 

condition i n D e f i n i t i o n I I I . 1 that x be isolated as a fixed point of the 

l e f t m u l t i p l i c a t i o n s . 
x 

5 1 MAY 1972 
JSOTIO& 
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