Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham e-Theses
You are in:

Surface Freezing in Surfactant/Alkane/Water Systems

ASH, PHILIP,ANDREW (2011) Surface Freezing in Surfactant/Alkane/Water Systems. Doctoral thesis, Durham University.

[img]
Preview
PDF - Accepted Version
79Mb

Abstract

Surface freezing transitions in mixed monolayers of a homologous series of cationic surfactants, the alkyltrimethyl ammonium bromides (CnTAB where n = 12, 14, 16, 18), as well as a range of non-ionic, zwitterionic and biological surfactants, have been investigated ellipsometrically with a range of n-alkanes (Cm where m = 12 – 20, 28). Two distinct solid phases are observed depending upon the chain length difference between surfactant and n-alkane. Type I solid phases consist of a surface frozen mixed monolayer and are formed when this difference is small. Type II solid phases are bilayer structures with a frozen layer of neat n-alkane above a liquid-like mixed monolayer. Type II freezing was thought to occur via wetting of surface frozen n-alkane, as previously reported type II transitions took place in the presence of surface frozen n-alkanes. Thermodynamically stable type II solid phases have now been found in the presence of n-alkanes that do not show surface freezing at the air/alkane interface, however, and so this picture is incomplete. In the presence of pentadecane, for example, the biological surfactant lyso-OPC forms a stable type II solid phase 6.5 °C above the n-alkane bulk melting point. Such a large surface freezing range is unprecedented for a type II system.
Studies using external reflection FTIR (ER-FTIRS) and vibrational sum-frequency spectroscopies (VSFS) have been used to probe these novel behaviours. Results were fully consistent with the proposed structures of both type I and type II surface frozen layers. 2D correlation analysis of ER-FTIR spectra as a function of temperature showed that type II frozen layer formation does not proceed via a simple wetting transition, with the formation of a transient intermediate implied. Evidence for such an intermediate was provided by dynamic ellipsometry measurements on the type II C18TAB/n-eicosane system.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Keywords:2D correlation spectroscopy, FTIR, Monolayer, Phase transition
Faculty and Department:Faculty of Science > Chemistry, Department of
Thesis Date:2011
Copyright:Copyright of this thesis is held by the author
Deposited On:01 Jun 2011 10:46

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter