Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham e-Theses
You are in:

Shear Banding in Time-Dependent Flows of Complex Fluids

COOKE, ROBYN,LUCY (2013) Shear Banding in Time-Dependent Flows of Complex Fluids. Doctoral thesis, Durham University.

[img]
Preview
PDF - Accepted Version
4Mb

Abstract

We explore theoretically the time-dependent rheological response of complex fluids to step stress, shear startup and strain ramp deformations. We study soft glassy materials and entangled polymeric materials above and below the glass transition using the scalar fluidity, soft glassy rheology (SGR), rolie-poly (RP), Giesekus and glassy polymer (GP) models. For each deformation we investigate fluid-universal, deformation specific criteria for the onset of linear instability to shear banding.

In step stress, the shear rate response of the RP and Giesekus models is qualitatively similar to experiment, but only in the RP model does significant transient shear banding arise. Motivated by experiments, we explore `creep' and `fluidisation' in the glass phase of the SGR model. Finally, we show the GP model has similar behaviour in step shear stress as it does in extensional loading; we also explain why strain hardening reduces the magnitude of transient shear banding.

In shear startup, we explore `elastic' and `viscous' contributions to linear instability to shear banding. We use this to explain: the range of shear rates for which time-dependent shear banding arises in the RP model; why no significant time-dependent shear banding arises associated with the stress overshoot in the Giesekus model; the occurrence of age-dependent transient shear banding in the scalar fluidity model; and also why strain hardening again decreases the magnitude of transient shear banding in the GP model.

Finally, we investigate stress relaxation in the RP model after strain ramps with rates that probe the chain stretch relaxation rate. We show that after `slow' ramps (relative to this rate) linear instability to heterogeneity arises for strain amplitudes greater than 1.7, and that `fast' ramps of the same amplitude result in a delayed onset of linear instability, provided convective constraint release is sufficiently inactive.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Keywords:shear banding; rheology; soft glassy materials; polymer; linear stability; entanglements; complex fluids;
Faculty and Department:Faculty of Science > Physics, Department of
Thesis Date:2013
Copyright:Copyright of this thesis is held by the author
Deposited On:21 May 2013 10:36

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter