We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham e-Theses
You are in:

Electrical properties of various single-wall carbon nanotube networks

JOMBERT, Alice,Stécy (2010) Electrical properties of various single-wall carbon nanotube networks. Doctoral thesis, Durham University.



This thesis investigates conduction mechanisms of covalently and non covalently functionalised single wall carbon nanotube (SWCNT) networks. Unlike previous strategies where diamines were used, a novel route to covalently bridge SWCNTs by organic molecular linkers is proposed. The bridging relies on using modified Sonogashira and Ullmann couplings, which have the advantage of using spectroscopic evidence to ascertain the success of the bridging. Platinum-enriched SWCNTs were produced by coordinating Pt to pyridine ligands grafted on SWCNTs. Networks of covalently bridged SWCNTs, Pt-enriched SWCNTs and their SWCNT precursors were fabricated by vacuum filtration. In addition to these networks, networks of non covalent ly functionalised SWCNTs were built up using layer-bylayer (LbL) deposition. This second approach required the wrapping up of SWCNTs by ionic surfactants to exploit their electrostatic interactions.
Electrical properties, such as current- voltage and the current dependence on temperature and electrode separation are discussed for both filtered SWCNT and SWCNT LbL networks. Combined analyses of these characteristics were carried out to identify dominant conduction mechanisms. In this study, a modified quantum tunnelling model was proposed to best describe the in-plane electrical behaviour of the filtered SWCNT networks. As for SWCNT LbL networks, the in-plane conduction was shown to be governed by the Poole-Frenkel mechanisms while direct tunnelling dominates the out-of-plane conduction. Furthermore, the charge storage capacity of cut-SWCNT LbL networks integrated into metal- insulator-semiconductor devices are discussed in view of organic memory device applications.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Keywords:Carbon nanotube; network; thin film; functionalisation; surfactant ; diazonium radical addition; homo-coupling; cross-coupling; platinum; coordination; molecular linker; molecular bridge; electrical characteristics; conduction mechanism; charge transport; 3D network
Faculty and Department:Faculty of Science > Chemistry, Department of
Faculty of Science > Engineering and Computing Science, School of (2008-2017)
Thesis Date:2010
Copyright:Copyright of this thesis is held by the author
Deposited On:04 May 2010 12:27

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter