We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham e-Theses
You are in:

Multi-microprocessor power system simulation

Flaxman, J. W. (1987) Multi-microprocessor power system simulation. Doctoral thesis, Durham University.



This thesis presents the results of research performed into the simulation of electrical power systems using a set of microprocessors operating in parallel , The uses and methods of simulation on analog and single processor computers are discussed as well as on multiple processor machines . It then considers various methods already used in the field of simulation for both the dynamic and network sets of equations in detail and the problems of using them on parallel processors . Several possible methods of parallel simulation are proposed and the best of these developed into a detailed algorithm for simulating both the dynamic and network portions of the power system .The different types of multiprocessor system are looked at , both in terms of physical configuration and the type of hardware used to implement the different types of system .The problems inherent in parallel computing are discussed and a form of multiprocessor, suitable for the simulation algorithm, is then developed taking these problems Into account. The hardware is developed using widely available hardware and the algorithm Is then Implemented upon this hardware .The results obtained using the simulator show that the proposed system provides a more economical solution, both in terms of the time taken in producing results and in the cost of the system, when compared with a conventional single processor computing system such as a mini computer.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Thesis Date:1987
Copyright:Copyright of this thesis is held by the author
Deposited On:08 Feb 2013 13:47

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter