W Durham
University

AR

Durham E-Theses

Multi-microprocessor power system simulation

Flaxman, J. W.

How to cite:

Flaxman, J. W. (1987) Multi-microprocessor power system simulation, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/6762/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses
e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk


http://www.dur.ac.uk
http://etheses.dur.ac.uk/6762/
 http://etheses.dur.ac.uk/6762/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

HYLTI-KICROPROCESSOR POVER

SYSTER STHULATION

A Ph.D. THESIS

by

J.¥. FLAXMAN

UNIVERSITY OF DURHAM

SCHOOL OF ERGINEERIEG

A¥D APPLIED SCIERCE

1987

The copyright of this thesis rests with the author.
No quotation from it should be published without
his prior written consent and information derived

from it should be acknowledged.




This thesis presents the results of research performed into the
simulation of electrical power systems using a set of microprocessors
operating in parallel . The uses and methods of simulation on analog and
single processor computers are discussed as well as on multiple processor
machines . It then considers various methods already used in the field of
simulation for both the dynamic and network sets of equations in detail
and the problems of using them on parallel processors . Several possible
methods of parallel simulation are proposed and the best of these
developed into a detailed algorithm for simulating both the dynamic and
network portions of the power system .

The different types of multiprocessor system are looked at , both in
terme of physical configuration and the type of hardware used to
implement the different types of system . The problems inherent in
parallel computing are discussed and a form of multiprocessor, suitable
for the simulation algorithm, is then developed taking these problems into
account . The hardware is developed using widely available hardware and
the algorithm is then implement:,ed upon this hardware .

The results obtained using the simulator show that the proposed
asystem provides a more economical solution, both in terms of the time
taken - in producing results and in the cost of the system, when compared

with a conventional single processor computing system such as a mini

computer .

™



I would like to express my thanks fto those people, without
whom my research and this thesis would have been impossible;
Professor M.J.H. Sterling for his help and guidance . Dr. ¥.R
Irving and the O.C.E.P.S. research group at Durham for their
assistance . Heather, my wife, for her encouragement, support
and endless supply of coffee . My parents for the hours of
proof reading and constructive comments and finally my

grandparents for helping to finance the purchase of my word

processor .




1.

11

1.1.1

1.1.2

1.14

1.2

12l

1.2.2

1.2.3

1.3.1

1.3.2

1.3.3

134

14

1441

14.2

15

1.6

2.

2.1

CHAPTER

Introduction:
Simulator uses
Energy management system development
Transient studies
Operator training
Teaching
Methods of simulation
Analog and hybrid simulators
Load flow type simulators
Combined dynamic/algebraic simulators
Simulator hardware
Mainframe and supercomputers
Midi and minicomputers
Array processors
Microprocessors and multi microprocessors
Multiprocessor simulation
Hardware support
Software support
Research objectives

Thesis layout

Generation and load modelling

Generating equipment models

PAGE HO.

11

13

14

16

17

19

20

20

22

23

24

25

26

27

28

30

31

32

33

34

36

37



o

1.4

s}

15

£
[

2.2.1

2.2.2

3.1

3.z

3.3

3.4

4.1

4.2

4.2.1

4.2.2

4.3

44

5.

5.1

5.1.1

5.1.2

Supply system

Prime mover modelling

Shaft modelling

Synchraoncus machine modelling

Excitation system modelling
Load modelling

General load model

Dynamic load model

Network solution
Gauss method
Newton-Raphson method
Diakoptics

Direct method

Simulator theory
Generator representation
Load representation
Synchronous load model
General load madel
Network representation

Matrix alteration algorithm

Multiprocessar software design
Master processor software
Simulator initialisation

Broadcast control

38

40

43

47

48

48

49

50

50

55

61

68

70

71

76

76

77

80

87

91

91

93

94



5.1.4

S.2.1

5.2.2

5.2.3

5.24

5.2.5

5.3.1

53.2

5.3.3

5.4

6.1

6.1.1

6.1.2

6.1.3

6.2

6.2.1

6.2.2

6.2.3

6.2.4

6.3

6.3.1

6.3.2

Result corruption and transfer
Simulator control
Slave processar software
Slave initialisation
Generator routine
Load routine
Network routine
Householder routine
Software functions
Sine and cosine
Arctangent
Square root

Host software

Multiprocessor hardware design

Multiprocessor components
Multiprocessor Emulation

Transputers

M88000 and M68020 microprocessors

Multiprocessor configurations
CM* multiprocessor structure
Linear multiprocessor structure
Radial multiprocessor structure
Grid multiprocessor structure
Processor communication
Common memory systems

Bus connected systems

25

97

98

99

101

103

104

107

110

110

112

112

113

116

116

117

120

123

1285

126

128

129

131

132

133

133



6.4

6.4.1

6.4.2

7.1

7.1.1

7.1.2

7.1.3

714

7.2

7.2.1

7.2.2

7.2.3

7.2.4

7.3

7.3.1

7.3.2

7.4

7'401

7.4.2

7.5

g.1

Development hardware
M68000 system with IEEE bus

M68020 system with floating point hardware

Results

Numerical results
Load outage test
Line cutage test
Generator outage test
Multiple event test

Timing results
Generator and load routine timing
Network routine timing
Householder routine timing
Communications timing

Overall timing
Steady state solution time
Network change time

Simulation timing estimates
Load model comparison timings
Multiprocessor size comparison timings

Simulator hardware requirements

Conclusions

References and bibliography

References

134

135

137

144

146

148

155

161

166

173

173

174

179

181

182

184

185

187

187

188

190

192

199

199



Q.2 Bibliography

10. Appendices
Appendix
Appendix
Appendix

Appendix

[

Diakoptic cut line matrix
Test system parameters
Timing results

Code examples

206

208

208

210

2183

215



FIG.

2.1

2.2

2.3

2.4

4.1

4.2

4.3

5.1

5.2

53

5.4

598

6.1

6.2

ILLUSTRATION

Coal supply system
Prime mover string
Approximate generator vector diagram

Excitation system block diagram

Example network divided into areas
Connecting lines replaced by loads
Network divided through buses

Network representation for direct method

Turbine-generator representation
Governor model block diagram

General load representation

Master routine flow chart
Slave routine flow chart
Generator routine flow chart
Network routine flow chart

Householder routine flow chart

Transputer architecture

Structure of a CH* multiprocessor

PAGE EO.

39

42

45

45

57

57

60

60

72

72

79

92

100

102

105

108

121

127



L2

S,

6.4

6.5

5.6

6.7

7.1

7.2

7.3

7.4

~3
)

76

7.7

7.8

7.10

7.11

7.12

7.13

7.14

7.15

7.16

7.17

7.18

7.19

7.20

7.21

Linear multiproc

essor configuration

Radial multiprocessor configuration

Multiprocessor grid configuration

Weitek floating point architecture

Block diagram of floating point board

IEEE 30 bus test network

Voltages at bus
Power and speed
Power and speed
Power and speed
Voltages at bus
Power and speed
Power and speed
Power and speed
Voltages at bus
Power and speed
Power and speed
Power and speed
Voltages at bus
Power and speed
Power and speed

Power and speed

5 and 28 during test 1

of generator 1 during test
of generator 3 during test
of generator 5 during test
5 and 28 during test 2

of generator 1 during test
of generator 3 during test
of generator 5 during test
5 and 28 during test 3

of generator 1 during test
of generator 3 during test
of generator 5 during test
5 and 28 during test 4

of generator 2 during test
of generator 4 during test

of generator 6 during test

Speeds of generators 2,4 and 6 during test

Network routine
VNetwork routine

Network routine

speed with 2 generators
speed with & generators

speed with 15 generators

—

s

127

130

130

139

141

147

149

152

153

156

158

159

160

162

163

164

165

168

169

170

171

172

175

175

176



~3
&
W

7.25

7.26

7.27

¥etwork routine speed with 30 generators
Network routine speed with 60 generatars
Network routine speed with 120 generators
Householder speed with varying number of buses
at, using constant impedance loads

At using general load model

1786

177

177

180

189

189



SYNBOL MEANIRG

§ Generator rotor angle

At Iteration time step

E* Voltage behind generator transient reactance
E, Voltage at generator terminals

Fo System frequency ( 50 Hz >

Foat Generator frequency set point

H Generator inertia

I Generator current

Iing Current injection into network

K Generator governor gain

P Generator electrical power produced
P, Generator output power

P, Generator input mechanical power
Poeat Generator power set point

(P + jQ) Complex power

(R + jX5) Generator transient reactance

T. Turbine time constant

w Generator speed

V. Voltage at node p

i, Injected current at node p

Yea admittance between nodes p and gq

_10_



Simulators are pieces of equipment which accurately model the
behaviour of some form of physical system . They bave been used in
several engineering fields to allow control systems to be developed or for
operators to learn about them : most often in cases where a mistake in the
handling of the physical system would prove dangerous or costly . A prime
example is the use of flight simulators in the training of commercial
pilots : such simulators provide a realistic model of the cockpit of the
aircraft in which the pilots sits . The view of the external terrain, which
is modelled by computers, is projected onto screens outside the windows of
the cockpit . The simulator relates the manipulation of the controls inside
the cockpit to the effects on the view outside and allows the pilot to be
subjected to emergency conditions, such as engine failure, without

endangering lives or expensive equipment .

The physical system to be modelled for a power system simulator is
made up of various items of equipment, linked together to supply power
over a particular area . Electrical generators, driven by some form of
prime mover such as a turbine, produce power which is transmitted to the
consumers via lines and transformers . There are two distinct types of

control on the system, operating on different time scales:
First the control which takes place locally and acts very
quickly . For example, the mechanical governors and vaoltage

regulators on generator sets . These attempt to regulate respectively

.- 11 -



the speed and voltage produced by the generator to some set points .
They begin to act as soon as the generator deviates from its set
point . The set points themselves may come from some porticn of the

second type of control provided in the system .

The second type of control is the global operating scheme . This
is the control of the system as a whole at regional or naticnal
level, rather than each individual item of equipment . The sorts of
function performed centrally are the prediction of the amount of load
in the near future and the scheduling of generators to produce the
power required for the predicted load . The regional control must
also reduce the likelihood of equipment failures, which can
drastically affect the performance of the entire system, and cope

with the effects of such failures if and when they occur .

In the U.K. the regional control system gathers its data from the
network through a SCADA (Supervisory Control And Data Acquisition)
computer system which is connected to many measuring devices and
transducers throughout the system. The SCADA computer collects the
measurements and presents them to the operators and to the control
computers . Because of the amount of data that has to be collected it
takes some time for the control centre to receive the data and act upon

it: this means that the global control cannot act as quickly as the local

control .

The OCEPS (Operational Control of Electric Power Systems) research

group at Durham has been developing computer software to perform many of

_12_.



the control functions periormed in the control centres, both at regional
and at national level . To test the algorithms produced a simulator is

required which models the power system as accurately as possible .

Simulators have been produced in various forms for power system
analysis for several years now . The bhasic problem is to model the
dynamic components of the power system, such as the power station
generators and the consumer loads, and compute the flow of power along the
transmission lines connecting them. The simulator must be as controllable

as the real system and respond to the controls in as similar a way as

possible .

The uses and methods of simulation are varied and the accuracy and
speed of the simulator depend on its intended purpose . The presentation
of the calculated results and the input of changes to the system (referred
to as the man-machine interface) also vary according to the use for which
the simulator is designed . In general they are used much as flight
simulators are used; tc allow things to be done to the model which could

prove costly and hazardous on the real system and to monitor the effects

of those actions in detail .

Power system simulators can be used for a variety of different tasks,
each task requiring the same end result - an accurate dynamic model of
the power system . The presentation and time scale of the model vary,

depending upon the type of task . Four main areas of importance can be

_13_




distinguished : =nergy management system development, transient studies,
aoperator training and teaching . Each of these is described and discussed

in turn below .

The development of efficient power system control strategies is
a field where large amounts of money can be saved by a small
percentage decrease in operating costs . For instance the annual fuel
cost of the C.E.G.B. is some £4000 million, so even a %% reduction
would amount to a saving of £20 million per year. Of course, the
power system cannot be run safely on an economic least cost basis
but account also has to be taken of the service to the consumer . Any
control strategy must therefore balance the costs of running the
system with the reliability and tolerance of the system to faults

such as partial loss of generation, voltage reductions and so on .

A simulator is an essential tool for the development of a
computerised control strategy - or energy management system ( EMS )
It enables the computer programs to be tested under both normal
running and emergency conditions without affecting the actual power
system or the consumers it supplies . It is essential that the EMS
should be thoroughly tested before it is used on the real system
because mistakes and accidents can be costly to both the generating

board and the consumer if the power supply fails . For this reason

...14_



the simulator must model as accurately as possible the response of

the actual system to the controls applied by the EMS

Several types of simulator have been produced as test beds
using both digital (M. Rafian et al. {11)> and analog (R. Joetten et al.
(21> technology. To test the latest computer control algorithms the
simulator should be as realistic a model of the system as possible,
providing real time simulation and also representing the short term
transients . However, the data produced by the simulator should
correspond to the rates achieved by conventional SCADA systems so
that the algorithms are not provided with more information than
would normally be available . The possibility of incorrect
measurements due to noise or failure of transducers should also be
incorporated so that data validation and state estimation routines

can be thoroughly tested .

The simulator for this type of use is accessed almost entirely
by other programs and the need for any man-machine interface is
minimal: all actions by operators would normally come through a
SCADA program with its own interface . The only actions which need
to go directly to the simulator are for debugging, which requires no
more than a simple monitor with access to variables and the ability
to run the programs step by step . All other instructions involve the
passing of commands from the SCADA to the simulator and the
returning of the simulated values . If the SCADA and the simulator
are running in the same machine this can be done via a global memory

area; if they are in separate machines a simple serial or parallel

data line is all that is needed.

_15_



4 A TRANG o

The next area in which dynamic simulation is useful is that of
examining the effects of transients in a system . Most SCADA systems
on power systems present new data to the operator at relatively long
time intervals ( up to 30 seconds ' and any short term effects are
not seen at all . This does not matter to the operator because the
effects are short term and he cannot do anything on so short a time
scale . However it is wuseful to know what transients occur in a
system when, for example, a circuit breaker is opened . For this type
of information to be gathered, tests can be made on the real system
or on a simulator . The simulator must have extremely accurate madels
of all the power system components and have a short enough time step
to catch the transients which are being studied . However there is
narmally no need for the simulator to run in real time because there

is no human interaction required.

Translent studies are useful in the design and tuning of the
short time scale control which is applied locally to elements of the
power system . The governor on a turbine can be altered to make the
generator less likely to go unstable when equipment failures occur,
but the tests on different governor parameters must be carried out
with the generator connected to the rest of the system . This is
because the response of the other generators and loads in the system

may alter the response of the machine under test .

The man-machine interface for transient stability analysis

consists of the ability to define the set of events to take place and

_16_



then, once the simulator has run, to view all the resulting data in a
convenient form such as trend graphs . It is important that the fests
should be repeatable so that the effects of altering of certain

elements in the system can be seen clearly .

¥ith the high reliability of modern power system components the
occurrence of major faults such as islanding (the power system
dividing into discrete parts) and large generation failures is rare .
However it is precisely at these times that a well-trained operator
may be able to play a crucial part in preventing or reducing the
catastrophic effects such failures can have . Some post-fault studies
have shown that the response of operators to serious system faults
was not ideal, and there 1is accordingly a need for improved
facilities for training operators to deal with major faults . Since
the mid 1970's there has been an increase in the interest in and
amount of work on operator ( or dispatcher ) training simulators (3-

9] . This is due to three main factors:

a) Rising fuel costs have increased the amount of money to be
saved by running the system closer to its operational limits
and, in the case of regions with more than one generating
authority, the exchange of power between authorities has become
higher, pushing line flows close to limits and making unexpected

outages of lines more important .

_17..



b) Environmental issues have faorced new generation plant to
be sited away from urban centres and hence away from the load .

This again adds to the problem of high power flows along

transmission lines .

c) The introduction of new types of equipment, such as pumped
staorage facilities, require the operator to be trained in the

abilities and limitations of such equipment .

An operator training simulator must provide the trainee with an
exact replica of the environment in which he is going to work., This
can be achieved by building a control room and driving all the
instrumentation and displays from the simulator instead of from the
system itself . In this case the simulator has to have the same
characteristics as the EMS development simulator so that the operator
is given exactly the same amount of data as in a real control room
in real time . As an alternative the dispatcher training simulator is
run on the back-up computers in a real control room to provide the
correct environment . This solution also saves the expense of
building a replica control room and utilises the computing power
available more fully . However, care has to be taken in such a system
to ensure that a trainee cannot accidentally influence the real power
system and that the back-up computer is always available for instant

use should the primary control computer fail .

The operator also needs access to all the tools he would

normally have at his disposal in the energy management system, such

- 18 -



as securitv analysis and generator rescheduling . Using such a system
the operator can be trained in the use of the system and the
software, starting with the normal operation of the plant, and then
in dealing with major faults which can be introduced as frequently as
the +trainer wishes, giving the operator an amount of experience

almost impossible ta achieve without a simulator .

Using a simulator for teaching purposes is really an extension
of the operator training problem . In teaching institutions such as
polytechnics and universities where elements of power system theory
are taught, practical work to back up the teaching is difficult
because of the diversity of problems to be looked at and the expense
of providing a small-scale low-voltage power system to be used as a
model. However a simulator with a suitable man-machine interface can
be used to give students a feel for the dynamics of the system and
how changes 1in topology ( network configuration ) and system
parameters can affect the running of the system. The simulator should
give as much relevant information to the student as possible, even if
this means that it no longer runs in real time, so that maximum

benefit is gained from the time spent on it.

The man-machine interface for this type of use must allow the
students to display all parameters of the system in an easily

interpreted form, and to repeat the same scenaric many times so that

_19._



all the effects of specific actions may be viewed . There should also
be pravision for the teaching staff to interact with the simulator at
the same time so that parameters may be changed and the results

viewed without having to restart the simulator with a new scenario

of events to occur .

There are three main types of simulator available . Each has its

advantages and can be used for different types of problem:

The first power system simulators were analog machines using
electrical components to model the various parts of the system
These simulators could run in real time because the models operated
in parallel . However, with the advent of digital computers it became
easier to model parts of the system and perform some of the control
and data collection using digital hardware . These digital/analog
machines are called hybrid simulators and are still used because of

their faster than real time capabilities .

The digital part of the simulator is normally interfaced to the
analog via a series of digital/analog and analog/digital converters

which allow the computer to vary certain parameters and collect the

- 20 -



data as a normal SCADA system would . There are two main problems

with both analog and hybrid simulators:

a)

b)

Even when the simulator is constructed out of modules,
each module representing one type of component in the power
system, the system topology is very inflexible . The hybrid
simulator is slightly better than the analog, but if a new
generator needs to be added to the system then another module
has to be inserted by hand . If a completely different power

system has to be simulated the simulator must be rewired in its

entirety.

The cost of producing the components is high and they can
be quite large . As a result the simulator for a large system
can be bulky and also extremely expensive ., For example the
simulator developed by R. Joetten et al. [2] has modules on
circuit boards 100 mm by 160 mm and it requires 12 such boards

to represent a bank of three single phase, two winding

transformers.

However for power authorities with small systems, hybrid

simulators can be useful because the system to be modelled is

reasonably static and, by using a base frequency higher than the

system frequency, faster than real time simulation is possible for

the study of long term dynamics of the system (G.E. Ott et al. [10D.

- 21 -



The most common type of digital simulator first uses a load
flow approach to solve the network equations and then solves the
dynamic equations such as the generator and load models using the
initial nodal voltages and powers produced by the load flow (4,

Keyhani [111) . This technique is widely used for three main reasons:

a) First, because 1load flow calculations have been an
important analysis tool for a long time . There are many well
developed methods for calculating the load flow which are both
fast and accurate . Methods such as the fast decoupled load flaow
(B. Stoutt and 0. Alsac [121) and the Newton load flow (V.F.
Tinney and C.E. Hart (131) can easily be adapted to work as the

network solution part of a simulator .

b) Secondly, because the generator and load models are
geparate from the network equations they can be varied in

complexity and accuracy depending on the type of work for which

the simulator is to be used .

c) Thirdly, the load flow method gives fast computation of
results, especially when the system is in a steady state
condition, and it is thus easier to develop a simulator to run

in real time .

_22_



Another time-saving feature of this technique is the fact that
the lopad flow element need only be run once every few seconds while
the dynamic model elements run far more frequently to give a more

accurate simulation of the transient state of the system .

G C/ 3

Combining the dynamic and algebraic equations of the network
into a single algorithm and solving them simultaneously also provides
a good method of simulation (¥. Rafian et al. [1], L. Elder and M.J.

Metcalfe [141) . It can take longer than the previous method but has

several advantages:

a) The method is highly accurate and stable: even if the
system is split into islands by a line outage the simulator
keeps going and automatically calculates the results for as

many islands as are formed.

b) The load flow method always has the results of the dynamic
and algebraic equations out of step by one integration whereas
the combined method is tightly coupled and there is nothing out

of step .

) Although the combined method takes longer than the load

flow methad the correct choice of models for the system

_23_



components can still allow the simulator to produce results in

real time .

The combined set of equations can also be split into those
which require frequent calculation and those concerned with longer
term dynamics . By removing the long term equations from the fast

iteration the simulation can be speeded up .

Many forms of hardware are used for power system simulation, ranging
from the circuit board modules used in the hybrid and analog simulators to
the various forms of digital hardware grouped under the heading ‘vector
processors'. H.H, Happ et al. [15] examined the possibilities of the future
technology while more recently D.M. Detig [16] and M. Takatoo et al. [17]
have 1looked at the effects of vector processors on power systen
applications . Processors are often classified into groups according to

their capabilities as follows:

al SISD - Single Instruction Single Data:- Machines which execute

one instruction at a time on one piece of data .

b SIMD - Single Instruction Multiple Data:- Machines which execute

one instruction at a time on a set of pieces of data .

..24_



oF ¥IMD - Multiple Instruction Multiple ©Data:~ Machines which
execute a set of instructions on a =set of pieces of data

simultanecusly .

All the forms of hardware have their pros and cons . Those of the
analocg and hybrid hardware have already been mentioned: those of the

digital machines available are as follows:

A A4 - -~ U

Mainframes such as the IBM 370 and supercomputers like the
CRAY-1 are digital computers with large memory areas and extremely
high computation speeds, ideal for large 'number crunching' operations
like simulation problems . Unfortunately they are also extremely
expensive and can be afforded only by large organisations and
computer bureaux . Access to such machines is often possible but, for
economic reasons, only in a time-sharing environment where a large
number of users have the computer time divided between them . So a
simulation task might run in real time if nc one else was using the
system but, under normal usage, the timing of the task would be much
slower and entirely dependent on the load put upon the machine by

other users .

Supercomputers often 'pipeline' instructions, that is they split
each instruction into its component parts; fetch from memoary,

arithmetic operation and then store in memory; and can fetch the next

-25_



piece of data while the last one i3 in the arithmetic stages, which
means that a far higher processing speed is obtained . Several
pipelines often run together in step performing the same instructions

on many pieces of data ¢ SIMD )

Coming down the price scale in digital computing hardware are
the midi and mini computers . These are more in the price range of
large research groups . Naturally the power of these machines cannot
compare to that of the supercomputers and the size of the memory
available is smaller, but they do give a viable way of simulating
power systems in real time, even if the systems that can be
simulated in real time are restricted in size due to the lower
computing power . These machines normally only operate as SISD
machines and although some degree of pipelining may be possible

there is normally only one pipeline in the machine .

One advantage the larger computers do have is that the
development and operation of software can all be performed on one
machine . Support for minicomputers in +terms of software and
hardware tools available is good and, with high level languages as

standard, software written for one machine can easily be transferred

onto a different machine .

_26_



To improve the performance of minicomputers, without the
expense of moving to a mainframe, array processars have been
developed to provide execution rates far higher than available on
minicomputers for certain types of operation . These machines require
a minicomputer as a host and are used for performing arithmetic on
vectors and arrays . The host computer normally loads the array
processor by direct memory access (DMA) and lets the processar
calculate the required result, for example a matrix multiplication,

and then obtains the answer by DMA again .

The array processor is similar to the processing element in a
mainframe, using a parallel, pipelined structure to give high
computation rates for certain types of mathematical operations. An
array processor is a form of MIMD machine but in a very restricted
way; having for example two pipelines, one for addition/subtraction
and the other for multiplication/division, and a processor dedicated
to integer and indexing problems . D.M. Detig (16]) suggests that
array processors will not realise large improvements for power
system applications . However recent developments such as cross
compilers for FORTRAN allow array processors to be programmed in
high level languages . This means that the effort required to put
algorithms on array processors has been reduced and programmers do

not need to know about the structure of the hardware or how to

program it directly .

_27_




Using a cross compiler, the simulator currently used at Durham
bas been transferred cnto a FPS 5205 array processor giving a speed-
up of 3-4 times and, with further tailoring of the algorithm to suit

array processor architecture, it is hoped to improve this .

The growth in power and reduction in cost of microprocessors
and their peripherals has led to a great deal of interest in using
them for power system applications . The development of affordable
microprocessors with high execution rates and 16 or 32 bit word
lengths has meant that they can provide performance nearing that of
minicomputers at a fraction of the cost . In addition, the software
support for them (including compilers for many high level languages)
means that code already developed can often be transferred onto
microprocessors with a minimum of effort . To give one example of
the high execution speeds possible, a benchmark run on a Motorolla
microprocessor with floating point maths hardware took 1.5 times as
long as a VAX 8600 which cost at least 30 times as much . While the
structure of this benchmark certainly favoured the microprocessor it

shows that for some types of application their value for money is

excellent .

A natural step forward with such cheap processing power is to
try to run several processors simultaneously on a problem . This

configuration enables different operations to be carried out on

- 28 -



various pileces of data at any one time (MIMD) . Several studies have
been made on the use of these multi microprocessor systems in power
system analysis . H.H. Happ {181, J. Fong et al. [19] and F.M. Brasch
et al. [20] looked at their application to power system studies in
general, while W.L. Hatcher et al. (211, R. Lopez-Lopez (221, S.N.
Talukdur et al. (23] and L. Dale et al. [24] looked at transient
stability studies and simulation . Many other researchers have
studied the general use of multi microprocessors, including H. Mukai
[25], S.H. Fuller et al. [26] and A.K. Jones et al. [27] . Vork on
modelling their effects was undertaken by J. Grosser and S.N.
Talukdur (28] who produced models to estimate the run time of

algorithms when put onto a MIMD machine .

The main difficulty with the use of multiprocessor systems is
that the problem has to be split into parts which can be solved
simultaneously . With most computing being a sequential set of
instructions this is not always easy . Some problems break down into
parts quite readily while others simply cannot be computed in
parallel and so no gain can be made by using more than one

processor.

Several systems have been built, or designed, to utilise this
type of architecture, the most widely known being the CMN* at
Carnegie-Mellon University on which several of the above papers are
based . However any system developed as a general purpose system
will not give optimum performance for a specific task and, with the

low price and relative ease of construction, it may well prove

_29_




advantageous to design the hardware around the software if it is just

to be used for one specific task.

The research group at Durham has been involved in the field of power
system research for over 18 years and recently some third year
undergraduates loocked into the possibility of producing a power system
simulator using a multi microprocessor system .First A. Perry (291 in 1982
and then J. Thomson (301 in 1983 carried out work which showed that it
should be possible to produce a simulator which would run on hardware far

cheaper than a minicomputer .

For any problem to be solved efficiently using a multipraocessor there

are three requirements which have to be met by the software :

a)l First, the problem must be split into parts which can be
computed in parallel on the separate processors . Some problems are
80 non linear that this is impossible but for many problems at least

part of the solution can be split up and performed in parallel .

b) Secondly, the amount of processing that has to be done centrally
by a single processor must be minimised. . The main advantage of a -
parallel processor is the speed of computation and any computing

carried out centrally does not take advantage of this .

_30_



o Thirdly, the time spent in communicating between the processors

must be minimised . There is a finite limit on the speed of data
transfer and this can be one of the major bottlenecks in any
multiprocessor system . Not only is the amount of data tao be
transferred important but the time spent on setting up each transier
can be significant . It is, therefore, preferable toc have a few

transfers with large amounts of data than to have many small

transfers .

Both Perry and Thomson used the TMS 9995 microprocessor for their
studies . However with the advent of chips with 32 bit data structures it
was decided to change to a more powerful processor . The main
requirements for the processor for the multiprocessor simulator were those

of processing power and support, both in hardware and software .

Two types of processor were looked at in detail, the Motorolla M68000
family and the Inmos Transputer . The processor that was finally decided
y P P y

upon was the M68000 for the following reasons:

Hardware support is available in two forms . First the
availability of a development system on which programs can be tested
and debugged before implementing them on the actual hardware
Secondly the availability of hardware compatible with the

microprocessor out of which a warkable system to run the software

can be built .

_31_



The M68000 had both these, a UNIX based development system
being available within the university while boards wusing the
processor could be designed and manufactured by the university . Also
the M68000 was the first of a family of processors and more powerful
versions would be available as the project went on . The Transputer
was still under development and systems which emulated it were only
just becoming available . It was, however, specifically designed for
use as a multi processor system and in the future may well become an
extremely powerful tool in parallel systems for all types of

applications .

Finally, in terms of hardware support, the processcr had to have
specialised hardware available to perform the mathematical operations
for floating point numbers because realising them in software is far
too time consuming . Motorolla were due to bring out their maths co-
processor for use with the M68000 family .However, other floating
point hardware is available which can be used with the Motorolla
microprocessor, some of which give far better performance than the

Motorolla co-processor .

The availability of high level languages such as FORTRAN and C
greatly helps the development of programs and makes them easier both
to read and to change . Also any programming done in a high level

language can be transferred onto other machines with a minimum of

_32_



effort so that the software does not become obsolete when the
hardware is out of date . However when developing hardware as well
as software it 1s quite often necessary to program 1In assembler as
well as the high level languages and the availability of development

software to facilitate this again saves time .

The Transputer was designed to be programmed using OCCAM, a
concurrent programming language for use with nmultiple
microprocessors. The M68000, using the UNIX development system had
access to some powerful development and debugging tools and a number
of different languages, some of which were also available on the
university's mini computers as well . Thus algorithms could be tested
on either the development system or a mini computer before they were

tried on the multiprocessor system itself .

The main objective of this research was toc develop a real time power
system simulator for wuse by the research team at Durham 1in the
development of an energy management system . This objective can be split

into a number of separate tasks :

al First, to design efficient software for the power system
simulation, capable of being used on its own as a research simulator
and, in conjunction with an EMS, as a dispatcher training and

teaching simulator . Also the simulator should, with the use of short

_33_




time steps, be able to simulate the transients in the system for

transient studies .

b Secondly, to develop microprocessor hardware to best utilise the
parallelism of the software developed and produce a working simulator
which was easily expandable to model different sizes of power

systems .

c) Thirdly, to examine the limitations of the simulator developed .
Both in terms of the size of system that could be modelled using the
hardware and the time step that could be achieved by using different

numbers of processors in the hardware .

The original work put forward in this thesis, which can be found
discussed in detail in the conclusions, is twofdld . First the production
of power system simulator software for use on parallel processors, in
particular a parallel algorithm for the solution of the set of algebraic
network equations, which minimises both the data transfer between
processors and the amount of computing to be done centrally . Secondly,
the implementation of the software on hardware suitable for exploiting the
parallelism of the algorithms and the timing of the resulting simulator

for various sizes of network .

The thesis itself can be split into four discrete parts :

_34_



aj

b

4

Chapters 2,3 and 4 deal with the methods of modelling the
various power system components, Chapters 2 and 3 cavering the
generator, load and network models suitable for parallel computation
while Chapter 4 looks at the theory finally used on the parallel

processors .

Chapters 5 and 6 deal in detail with the simulator that has
been developed, Chapter 95 containing the software details while

Chapter 6 describes the simulator hardware .

Chapters 7 and 8 present the results obtained, both the timings
of the algorithms and the results of certain test rums carried out,

and the conclusions drawn from the research .

The final part contains the references used in the thesis and

the appendices . Each appendix contains some material to expand on a

certain part of the body of the thesis .

- 35 -



The simulation problem can be split into two parts . Firstly, the
zolution of the equations relating to the dynamic parts of the system,
such as the generators and loads . Secondly the use of the results
obtained for the generation and load values to praduce a set of values for
the voltages and power flows around the network . This split between the
dynamic and network equations means that different generator and load
models and solution techniques can be used without affecting the network
solution . The only connection between the network and the dynamic
solutions are the parameters produced by one part for the other part to
use . Thus the only restriction placed upon the dynamic models is that
they utilise and produce the correct parameters to interface correctly

with the network model .

This possibility of changing +the dynamic models used by the
simulator means that different uses to which the simulator may be put can
be accommodated . For instance for transient studies the dynamic models
have to be extremely accurate and the time step very short in order to
show the full dynamic response of the system to any changes made . The
simulator may not run in real time with this sort of model, but this is
not as important as the production of highly accurate results . However
for training purposes the transients, over which the operator has no real
contrcl, need not be as accurately simulated but the results must be
produced in real time so that the operator is given the right amount of

time in which to respond .

_36_.



This separation of the dynamic and network equations means that any
dynamic model and solution technique can be used . By producing the
software in a modular fashion the interchange of dynamic models can be
made extremely easy . Several papers have been written on the affects of
various load and generator models on the results produced in simulators
(31-371 . These can help to give a guide in the choice of what complexity
of dynamic model to use for each of the different uses of the

multiprocessor simulator .

The models for the generating equipment in the system can be split

into five separate parts . These are:

D The supply, such as the boiler or reactor in thermal power
stations and the reservoir in hydro stations . The thermal stations
supply section must include elements such as the fuel supply to the

boiler .
2) The prime movers, either gas turbines, steam turbines or hydro
turbines and the mechanical governors controlling their rotational

speed .

3) The shaft which +transmits the mechanical power between the

turbines and the synchronous machine . This has torsional elasticity,

_3’7_



inertia and damping due to friction in the bearings etc. which affect

the dynamics of the system .

4 The synchronous machine itself, which converts the mechanical
power produced by the turbine intoc electrical power for transmission

across the grid .

5) Finally the excitation system which alters the field winding
voltage in the synchronous machine to control the voltage produced at

the machine terminals .

The most complex and important section of the model is the
synchronous machine itself . This is because of the speed at which
electrical transients can occur and the complexity of the interaction of
the electric fields within the machine . The turbine and mechanical
governor systems have slower time constants while the supply system
reacts very slowly to any changes in the system . The time constants in
the supply are of the order of minutes rather than seconds and those in

the turbine range between about 10 seconds to 200 milliseconds .

The supply system for a typical coal fired station is shown in
figure 2.1 . The coal is fed via conveyers to pulverisers, the coal
dust is mixed with air and blown through fans into the boiler

furnace, the boiler then produces the steam to drive the turbines .

_38_




CONVEYOR CARRYING COAL FROM STORE

5

IR X OO AKX

HOT AIR AND
BOILER

COAL DUST TO

HOT AIR
INTO MILL

FAN

_39_

O
%2050 %% %
o %0%0 %% %% %%

CXR
RRRAIRLRECHLIIRS
e
GG RLHLRLRERIRLHLLRKR
GSRRHKIIELHERL S

RS
CRLRLILS

%
SRS

Fugure 2.1) Coal supply system

MILL



There are several time constants involved in this sort of system: The
amount of fuel processed by the pulverisers takes time to increase or
decrease . The boiler heat output is slow to react to changes in the
amount of fuel injected and there is often a large volume of steam
reserve in the supply system so that changes in steam pressure occur

slowly .

In a hydro station the simplicity of the supply system means
that it bas far fewer time constants and the power station can react
far faster to changes in the demand . This means that large hydro
stations such as the Dinorwig pump storage scheme in North Vales can
be used to contrcl the system frequency by going from standby to

produce up to 1800 Meggawatts in only eleven seconds .

For thermal stations there are several different boiler models
available, these often model the control on the boiler as several
feedback loops using the boiler pressure, turbine steam flow and
turbine speed . These, when modelled using the various time constants
involved, give the boiler response to changes in turbine load . For
the hydro supply the only time constant to be taken into account is
that of the water supply to the turbine so the modelling is

simplified greatly .

The prime movers are the machines which produce the rotation

for the generators, this might be a series of steam turbines in a

_40_



thermal station as shown in figure 2.2 or a water turbine in a hydro
station . For the thermal turbines there is a time constant before
each of the turbines in the set corresponding to the steam chest,
reheater or storage time . For example any change in boiler pressure
first has to be passed through the steam chest before reaching the
high pressure turbine, then to reach the intermediate pressure
turbine the pressure change has to be relayed through the high
pressure turbine and the reheater . A similar process occurs for the
change to reach the low pressure turbines . Thus part of the pressure
change affects the low pressure turbine a significant amount of time
after affecting the high pressure turbine . These time lags should
all be represented in the turbine model if highly accurate results

are required from the simulator .

The other part of the generating equipment which is modelled
with the turbine is the mechanical governor controlling the power
input to the turbine in the form of steam input in thermal stations
or water in hydro stations . This can be simply represented by a
feedback loop with a single time constant representing the speed of
response of the governor, a governor gain representing the
sensitivity of the governor and upper and lower limits set on the
amount of power input to the turbine . The rate of change of the
input power can also be limited to model the speed of opening or

closing of the steam valve controlled by the governor .

-41_



STEAM CHEST F— X STEAM INPUT

STEAM FROM BOILER
VALVE
STEAM
—

REHEATER STORACE

*

; L

SHAFT J\\\\\\\QP///////
HIGH f--—-—-- INTERMEDF — == == = LoW

PRESSURE +— — — — — — PRESSURE} —— — = — - = PRESSURE

RETURN TO 4—— 1 conDENSER 1«
BOILER

Fugure 2.2) Prume mover string

_42_



The shaft which <connects the wvarious furbines to the
synchronous machines is usually an extremely large and heavy piece
of equipment rotating at quite high speeds . The shaft has elastic
properties inherent in its manufacture and damping due to the
friction in the bearings and the drag due to the rotation of the
shaft in the surrounding fluids . Thus the dynamics of the shaft
itself can be extremely complex and can cause certain harmonic

effects in the generating equipment .

For simulations in which the high speed aoscillations of the
shaft are not important the shaft can be modelled as a single lumped
inertia with a damping term . For detailed transient studies the
elasticity of the shaft has to be included to show the effects of

resonance .

For a Dbalanced, three phase power system the equations
governing the synchronous machine can be split into the direct and
quadrature axis . This is done by using Parks equations . From these
equations an approximate set of equations to represent the machine
can be derived . The assumptions used to create this set of equations
vary depending upon the use to which the simulator is to be put . For

use in EMS development, operator training or teaching environments

_43_




the

long term system dynamics are more limportant than the short

term transients . Taking this into account a set of simplifying

assumptions can be made tc the synchronous machine model . These

can give a representation as shown in figure 2.3 where:

this

al)

b)

E! voltage behind generator impedance

E, voltage at generator terminals

) N9 N direct and quadrature axes reactances

Ra generator resistance

I, generator current

In, I direct and quadrature components of generator current

The assumptions made to simplify the generator equations to

level are:

Neglect the modelling of all the harmonics of greater then
second order . The amount of high order harmonics in a modern
generating equipment 1is small so this 1is a reasonable

simplification to the model .

Assume that the magnetic circuit in the synchronous
machine performs in a totally linear way . For the modelling of
slow transients this is a reasonable assumption. However, for
transient studies needing high speed transient representation
the saturation of the magnetic paths should be taken into

account .

._44_



QUADRATURE
[ AXIS ,

DIRECT
AXTS

Fugure 2.3) Approxitmate generator vector duagram

UR(mox)
v N /—-E 1 £’ E
el Sy~ K fq ENERATORI—
= __/ 14TS
R(miun)

Fugure 2.4) Excitation system block duagram

_45_



c) The independence of the generator's parameters from any
frequency changes . Frequency dependence can be modelled if
required but any increase in the model complexity will cause the

simulation time to increase .

This model gives the following equations to govern the

electrical characteristics of the synchronous machine.

E, = B' - jXoIp - jXalg - Rala 2.1.1)

Ia

i

In + 31, 2.1.2>

If the further assumption that the direct and quadrature axes
reactances are the same is made (X, = X,) then equation (2.1.1)

reduces to:

E. = E' - iXolp - JXsolqa - Rala 2.1.3)

which, by incorporating equation (2.1.2),then reduces to:

E. = E' - I4 % (Ry + jX50 2.1.48

There are many assumptions that can be used to develop ways of
obtaining the value for E', the voltage behind the machine impedance .

The following equation couples the voltage with the field current :

E' =w*M+*I, (2.1.9)

where M is the mutual inductance between the field winding and the
armature winding and o is the rotor speed . This can be assumed to

be constant the voltage becomes a simple function of rotor speed and

_46_



field current . For a far more simple model the value of E' can be
fixed at a particular value governed by the initial conditions of the
model . [f any relation to the field current 1s used then a model of
the excitation system used by the synchronous machine must be

present to provide values of I,

On any synchronous machine there must be some form of
excitation system to provide the voltage to the field winding . This
voltage produces the magnetic flux in the generator which induces the

electrical currents in the rotor windings .

The field voltage is often controlled by an Automatic Voltage
Regulator (AVR)> . This piece of equipment monitors the +terminal
voltage of the synchronous machine and varies the field voltage
accordingly . This is, therefore, a simple feedback control system
and has various time constants assaociated with it . Typically these
time constants are shart enough to be ignored for uses which do not
require high speed transients to be modelled . A single time constant
is included to model the time lag between the altering of the field
voltage and the resultant change in the voltage behind the transient
reactance . Also there are upper and lower limits placed upon the
field voltage, this produces a model which can be represented by the
block diagram shown in figure 2.4 . Where T is the time constant and

K the gain in the feedback system .

_47_



The loads in the system also need to be modelled accurately to enable
the simulator to produce satisfactory results . There are various types of
load present in any network, from the simple lighting loads to the complex
dynamic loads such as industrial motors . Several papers have been written
on the effects of load modelling (34 - 371 and there are a series of
models available for the different types of loads or for modelling a more

general mixture of load .

One of the most commonly used load modelling techniques is to
represent the way in which the magnitude of the load varies with

changes in the supply voltage :

P+ 3Q =P * IVIM™ + jQo ¥ IVIV 2.2.1)

where P, + jQ. is the load power at per unit voltage and M and N are
constants for the particular combination of loads being modelled
This model can be expanded further to include variations of the load

due to fluctuations in the supply frequency :

P+ jQ="P, # (UVIM+A(F - Fu)) + jQ, # (IVIN4B(F - F,)) (2.2.2)

with A and B again being constants for the particular type of load, F

is the system frequency and F,, the standard system frequency .

_48_



Three special cases of equation (2.2.1) are often used for
simplifying the load model, these are: M=N=0 which gives a load with
constant power characteristics, M=N=1 which gives constant current

and M=N=2 representing constant impedance loads .

Another way of representing those loads in the system which are
dynamic, such as industrial motors, is to use a similar model as that
used for the synchronous machine in the generating station model.
This is normally done by representing a group of motors as a single
dynamic load with inertia and damping due to friction . The model
acts in exactly the same way as in synchronous machine model but the
input power from the turbine is replaced by a load on the motor (
this load may vary with speed ) . Alsc instead of producing
electrical power and injecting it into the network the motor removes

power from the system to satisfy the load .

..49_



The second part of the simulation problem is the solution of the
network equations to determine the voltages at the nodes and the power
flows along the lines . The network routine has to be performed twice for
each time step: this is because the generator routine needs an intermediate
network sclution before it can calculate the final generator solution . The
actual network values are then calculated by the network routine using the
final generator solutions . The time taken for each network soclution is,
therefore, critical because there have to be +two network solutions
performed: thus the algorithm must minimise, as far as possible, both the

amounts of data transfer needed and computing time taken .

There are several ways of solving the set of algebraic equations
which govern the network characteristics and several assumptions which
can be made to simplify the calculations . Some of these methods can
readily be used on parallel processors while others are too non linear or
involve too much data transfer to be split for parallel computation
Several methods were tried before one was developed which fully utilised

the parallel processor architecture .

The Gauss method is a basic iterative methad for solving a set of

equations and it has several variations, such as the Gauss-Seidel method .

_50_



The standard method i= simple to divide between a set oI processors for
parallel computation and the Gauss iteration alsoc has the advantage of
being very simple, both in mathematical technique and in programming

required .

The equations representing the system can be represented in matrix

form thus:

Y # - = . (3.1.

The exact formulation of this equation is covered in detail in the
theory section, Chapter 4, of this thesis . It is simply a matrix version
of Kirchhoff's current law which states that the sum of all currents
entering a bus must be zero . The equation (3.1.1) is constructed using
complex numbers, V. is the voltage at node p while I, is the injected
current at that node . The Y matrix consists of elements representing the
admittance and line charging of the lines connecting the nodes . Looking

at a single row of equation (3.1.1) we obtain :

) 3.1.2

I. is the current injected at node p due to any load or generation .
If the total generation minus the total load at node p is (P, + jQ.) then

I, can be written as :

(Bt 1Q2)
RY: (3.1.3)

I, =

_51_



the * indicating the complex conjugate of a quantity . Combining equations

(3.1.2) and (3.1.3) gives :

+ q=n
Lo + Q0D
~ = L (Y., ¥ V) 3.1.4)
o)+
q=1

This can bhe rewritten in a form suitable for Gaussian iteration by
taking the value V. out of the summation on the right hand side (3.1.5).
This equation is then executed iteratively for all nodes . The initial
guesses for V are put into the right hand side and a new estimate
calculated: the new estimate is then used on the right hand side until two
consecutive sets of answers agree within a given tolerance . If V.* is the

kt" estimate of the voltage at node p then the next estimate is calculated

by :
q=n b
+ ¥
o= Bt dQe) Ny (oo 2 an) (3.1.5)
i Y. ¥V _F)* 9#p Yor
9=1
The calculations can be speeded up further by using an acceleration
factor on the calculated voltages . This simply involves increasing the

size of the change in voltage at each iteration :

Y+l = Yk 4 (VR - ) (3.1.6)

where o 1s the acceleration factor . For load flow type calculations a
value of around 1.2 or 1.3 has proved to give the best results . This whole
algorithm can easily be divided into sections for parallel processing

Each processor is given a set of nodal voltages to calculate together with

_52_



a copy of the required parts of the Y matrix at the start of the
simulation . The values of (P, + jQ.)> have to be updated each time step
for those nodes with generators to incorporate the generated pawer
calculated by the generator algorithm . Then at each iteration the latest
values of V are passed to all processors and a new set calculated . This

method has several advantages:

a) The Y matrix has relatively few elements and this sparsity
helps to reduce both the memory requirements for the algorithm and
the amount of non zero terms in the summation portion of equation

(3.1.5)

b) Any changes in the network such as the outage of a line require
very little computation and the altering of only four of the elements
in the Y matrix . Load changes affect only the (P, + jQ.> value for a

node, which is easily updated .

c) The computing can also be reduced by calculating the values of

Y.o/Y at the start of the simulation as they remain constant

el Lo

throughout until affected by network changes .

d> The time for a single iteration is small and only one iteration

is required when the system is in a steady state .

e) Although all the voltages have to be updated in each of the

processors for each iteration the data transfer occurs in a single

-53_



block at the end of each iteration . This means that the time spent

setting up the communication is small .

£) Finally, all the computing can be done in parallel . There is no
need for any central calculation which would slow the algorithm down:
only the communication with the host computer need be done by a

central processor .

The Gauss method is well proven in its normal sequential form and
the parallel form gives the same results . However, with some network
configurations it fails to converge and simulation of the system becomes
impossible by this method . The amount of data transferred between
processors is quite large: all the nodal voltages have to be updated for
each iteration . Also, when transients were introduced into the system, the
number of iterations before convergence was achieved became large and the
time taken by the algorithm, both in communication and computation, was
far larger than the time step . This meant that real time simulation was

not feasible .

As has been mentioned, there are several variations on the Gauss
method . The most straight forward of these being the Gauss-Seidel in
which, instead of waiting for a full set of voltages to be calculated
before substituting them back in, the most recent voltage calculated is
always used . For example when a new value of V, has been obtained it is
used to help calculate V., and then both are used in V. and so on until V,

is calculated . From equation (3.1.5) this gives :

-54_



=n

; : q:p_l ‘ Loa q= x V.
Y et Q&—t—-l-Qu)— I et Vo Y T et (3.1.7)

Yr—*m b (Vr"h > q 1 Yv:"n’- q=p+ 1 Yﬁ-r:'

Vhen this 1is implemented in a parallel form the data transfers
between processors become spread throughout the algorithm instead of one
block at the end of each iteration . This increases the overheads on the

data transfers but reduces the number of iterations needed .

A compromise can be obtained by each processor using the latest
values it has computed but ignoring those calculated by other processors
until the start of the next iteration . This reduces the number of
iterations without altering the data transfer, but does not have a large

enough effect to enable real time simulation .

One possible solution to the problem of the time taken by the
network solution would be to have a variable time step depending on the
conditions . When the simulator needed several iterations to converge the
time step could be lengthened to allow real time simulation to continue
However, this would loose one of the main attractions of having a short,
fixed time step for the simulation ; that of modelling the transient

response of the system .

Another method of modelling the network is to use the Newton-Raphson
load flow method . This method relates the active and reactive power

mismatches in the system to the voltage angle and magnitude :

_55_



- l , . (3.2. 1)

The square matrix containing J,,J,,J» and J, is the Jacobian matrix
of the system (W.F.Tinney and C.E. Hart [131) . AP and AQ are the power
mismatches in the system with the present estimates of voltage while af
and AV are the changes in voltage angle and magnitude to be made for the
next estimate . This procedure is iterated until both 486 and AV are

smaller than a particular convergence value.

To divide the algorithm so it could be split into parts for parallel
computation the power system was divided into areas . The solution of each
area was then performed by a separate processor . The flow of power
between the areas was represented by calculating the power flowing along
the lines connecting the areas and including this power as an injection or
drain on the relevant buses as shown in figures 3.1 and 3.2 . Thus a
processor only needs to know the voltage of the bus at the far end of
each of its inter area lines before the start of each iteration . The

solution procedure is as follows :

1) Form the four submatrices J,,J.,J5 and J, from the parameters

of the system and combine these to give the complete Jacobian matrix

as given in equation (3.2.1)

_56_



LOAD 3 LOAD 4 LOAD 5

L ] 1

GEN 1
LOAD 1 LOAD 2
e
AREA 1 ﬁ__J | AREA 2
LOAD 3 LOAD 4 LOAD 5

Fiqure 3.2) Connecting lines replaced by loads

_5’7_



2) Calculate the power mismatches AQ and AP at all buses including
the dummy loads which represent the lines cut when the network is

divided into areas .

3 Solve the equation (3.2.1) using Zollenkopf bi-factorisation (28]
to produce A8 and AV . Update the old values of V and 6 using the

calculated changes .

4> Repeat steps 2-3 until the values of AQ and AP are smaller

than a given talerance .

When a line outage occurs the Jacobian matrix changes . However, the
Jacobian 1s only altered between time steps, never part way through a set
of iterations . To make the calculation of the Jacobian easier the right
hand column matrix is altered to contain AV/V instead of AV . This change
does not affect the convergence aor accuracy of the algorithm . This method

has several advantages over the Gaussian method;

The data transfer between areas for each iteration is limited to
the voltages of the buses at the ends of connecting lines . By
choosing the areas to minimise the number of tie lines the data
transfer is reduced . The transfers also all happen at once so both
the data transferred and the overheads on setting up the

comnunication are small

The number of iterations for convergence during transient

conditions 1s small and even though the calculation of the matrix

_58_



factors 1is quite lengthy this i3 anly performed once per network

solution .

The method does not have the convergence problems of the Gauss

routine: therefore it is far more robust for use in simulation .

The major drawback with +this method is the calculation of +the
relative phase angles between areas . Each processor calculates the
voltages in its area with reference to some reference voltage . To
calculate the power flow along the connecting lines the relative angles
must be known . The use of a generator routine which produces voltages
with respect to a constant 50 Hz all the areas effectively use the same
reference voltage . However, if an area is left without generation because

of an outage, problems can arise in the calculation and convergence .

One way of avoiding this situation is to split the system through the
buses instead of the lines ( figure 3.3) . This solves the angle problem
because any one bus must have the same voltage and angle in all the areas
in which it appears . The power flow in the lines between the areas is
again represented as loads on the split buses . Unfortunately, the
convergence of this method was found to be far worse than the initial

method because the power transfer between areas became problematical .

_59_



GEN 1

LOAD 3 LOAD 4 LOAD 3

J

Figure 3.3) Network divided through buses

GEN 1
E— — —
LC:D‘I LO:Z
.
AREA 1 L 1 | L | AREA 2
C——
LoAD 3 LOAD 4 o 2 LOAD 5

Figure 3.4) Network representation for direct method

_60_



Diakoptics is a method of solving parts of a prablem as separate
entities and then combining the partial solutions to help provide an
overall solution . The name derives from the Greek kopto meaning to tear
and so these methods are sometimes known simply as tearing or piecewise
methods . The method was first put forward by G. Kron and has been
applied to many fields of engineering including the solution of power

system network equations .

This technique is obviously a candidate for parallel processing since
it inherently divides the network into parts for separate solution
Several methods have been developed for solving load flow problems using
diakoptics (H.H. Happ (391> . The piecewise method looked at for the
simulator was based upon the diakoptic version of the fast decoupled load

flow (M. El-Marsafawi et al. [40D)

Starting with the equation (3.2.1) this method neglects the small cross
coupling between the real power and voltage magnitude ¢ J, in the Jacobian
) and between the reactive power and the voltage angle ( J, > . Further
simplifications are then made ( B. Stott and O. Alsac [121) to obtain the

following equations which have to be solved :

AP/vV A8

= B! ¥ . 3.3.D

and

_61_



aQ/v av

= B * - (3.3.2)

These equations relate the power mismatches at each node (AP is the
active and AQ the reactive power mismatch) with the changes in voltage
magnitude (AV) and voltage angle {(aB) . B' is made up of the 1/x terms for
the system ( x being the 1iine reactance ) while B" is the negated bus

susceptance matrix .

The system is split into areas and the B' and B" matrices are divided
into those parts which can be used in parallel and those which have to be
performed centrally . Both matrices can be split into parts corresponding
to the areas of the system . Each area is given a temporary reference bus
and the parameters for all the temporary buses are grouped together . The
B' and B" matrices for the system can both be divided into two . First a
set of submatrices which are relatively full and on the diagonal of the
original matrix and secondly a very sparse set of off diagonal elements

Looking first at the B' matrix :

B', X Y
X Y
B'w
(3.3.3
X X
X
B',, Y
X
Y

Y Y B'ew




B'., is the B' matrix for the area n of the torn system, B',. is the B’
matrix for the temporary buses in the torn areas and the X elements are
those representing the lines which join the areas and are cut when the
system is torn . The Y elements represent the lines connected to each of
the temporary buses in the system . Splitting the complete B' matrix into
three parts to separate the calculations that can be done in parallel and

those that have to be performed centrally :

BI - BI':.C’f + B'ia\l + B‘ctl:- (3.3-4)

B'..+ is the block diagonal part of the B' matrix containing the
submatrices B', to B'... . B'.., contains the B' elements for the cut lines
connecting the areas (the X elements in (3.3.3)), and B'.,. contains the
elements for the lines connected to the tie buses (the Y elements)

Substituting (3.3.4) into (3.3.1)

AP/V = (B'ug, + B',n, + B'..n) 48 (3.3.5)

Which can be rewritten as :

(B'ege B! (00 7PAP/V = T + (BB (u) 7B e 08 (3.3.6)

Then the Householder matrix inversion formula [41] can be applied to

the left hand side of equation :

B'rar ™ = Bluwr 7B iay t Blune )T B e 7YY AP/V =

(T + (B'ugetB'iu1) "B' L) AB 3.3.7)
If we let :
B'ear™' AP/V = A8, 3.3.8

_63_



and :

Bt . ' (BY ., ¥ BY YR L.t AP/Y = AR (3.3.9
Then
88, - AB., = (I + (B'yu, + B' 107 "B'.,) AB (3.3.10

Substituting equation (3.3.8) into (3.3.9) so that AB. is calculated

from A8,

BltAvdF_"(Blix;l + B'bcl?_.‘)wlael = Ae?, (3-3-11)

This means that 48, can be calculated from equation (3.3.8) and then
modified by (3.3.11) to give 4B, . These can them be used in (3.3.10) to

give the actual angle change a6 .

This process( equations (3.3.3) to (3.3.11) ) can be repeated with the
B" matrix to give equations similar to those above dealing with the
reactive power Q and the voltage V instead of the real power P and angle 6

as follows :

B"ows ' AQ/V = AV, (3.3.12)
B'ecs 7V (B" Lan t By ')AV, = AV, (3.3.13
AV, - AV, = (I 4+ (B"oqe + B, )7 'B" ) AV (3.3.14)

The equations can then be split for use on a parallel processor
system by giving each processor the B'..,, and B".,, for an area and

allowing the calculation of 48, and AV, for each area to be carried out in

_64_



parallel . One of the processors deals with the temporary buses instead of

an area using B',,.. and B",. .

The solution of the P-8 equations is done separately from the Q-V
equations and they are iterated until both the P and Q mismatches are less
than a certain tolerance . The solution process of all the equations is
done by matrix bi-factorisation rather than by computing the inverszes of

the matrices and iz as follows :

) Calculate the flow along the cut lines from the previous

voltages at the line ends and the line admittances .

2) Form the aP/V active power mismatch vector for each area
representing the power flows along the cut lines as additional loads

at the buses at each end of the cut line .

3 Solve equation (3.3.8) in all processors to produce values of
a8, . These values are then passed to a central processor for the

modification to AB. .

4) Solve egquation (3.3.11) in the central processor to give a value
for A8, and then solve (3.3.10) to produce the final angle changes a8.
( The matrices B';., and B'.,. are both very sparse and this reduces

the amount of calculation needed in arriving at a8 . >

5) Update the angles 6 in the system by adding the angle change 46

to the previous value .

_65_



7

Perform steps 1 to 4 using the equations utilising the B"
matrices and equations ¢3.3.12) to (3.3.14) to produce changes in
voltage magnitude rather than angle . Update the voltages by adding

the voltage change AV to the previous value .

Steps 1 to 6 are repeated iteratively until convergence is
achieved . Convergence is checked by ensuring that the largest values
of AP and AQ are both below a given tolerance: if they are not then

the procedure is repeated from step 1

The fast decoupled technique has several advantages compared to some

of the other diakoptic algorithms and the Gauss and Newton-Raphson

methads

ad

b)

The sparsity of the matrices used reduces the amount of memory
required for storage and saves execution time . By using bi-
factorisation there are no matrix inversions to be performed: this
saves both the calculation time needed to perform the inverse and the
starage requirements of the inverse which is a full matrix rather
than a sparse one . To save more space, the matrices containing the
parameters of the cut lines can be broken down further into a
rectangular tie line connection matrix and a smaller square matrix

containing the tie line elements (Appendix 1)

The results produced by this method are the same as those
produced if the system is left in one piece and then solved . There

is no penalty on either the accuracy or the convergence as a result

_66_




c)

d>

e)

£

of splitting the system intc areas . The timing of the split and
whole system solutions does wvary slightly, but this 1is not
significant compared to the speed up achieved by using a parallel

processor system for the split algorithm .

Unlike some methods there is no restriction on the selection of
the lines to be cut or the temporary buses . The selection of these
does, however, have an effect on the solution time . The less lines
that are cut the faster the solution . Also the problem is simplified
if the cut lines are not connected te any of the temporary buses
There is no restriction on the size of the network which can be

solved in this way .

The inclusion of the B',., and B",., matrices ensures that the
cut lines are modelled exactly in both the active and reactive power
mismatch problem . This also means that there is no difficulty
finding the relative angles of all the areas like that encountered in

the Newton-Raphson method .

The bi-factorisation is only carried out at the beginning of the
simulation and when there is a change made to the network, the
factors are always changed before a network calculation starts, never

part way through a calculation .

The communication between the processors is limited to the
central processor passing the new values of V and 6 to the slave

processors and then the slaves passing back their values for AV, and

_67_



88, . Thus there are only four blocks of data transfer for each
iteration, which means the overheads on the communicaticn lines are

small .

g) Even when transients are imposed on the system the number of
iterations required for convergence is small, thus the time difference
between steady state and transient calculations is far smaller than

for the Gaussian method .

The main drawback of this method is the amount of computing that has
to be done centrally . There is no way to avoid performing steps 4 and S
centrally without vastly increasing the inter processor communication
required for the solution . Therefore as the size of the network to be
modelled is increased the number of areas and cut lines also has to
increase so that the simulation can still be performed in real time . This
means that the time spent in calculating steps 4 and 5 of the algorithm
increases until the network can no longer be solved quickly enough for

real time simulation .

The method finally developed for the network solution is a direct
method using the Y matrix as given by equation (3.1.1) but inverting it to
provide a direct solution rather than an iterative one . In this method the

generators are represented as voltages behind a transient reactance and

_68_



the loads as elther constant impedances to ground, as shown in figure 3.4,

or as injected currents

The theory of this methed iz given in detail in the next chapter
which describes the theory of all the algorithms used in the final version

of the simulator .

..69._



The theory used for multiprocessor simulation has several differences
from that used upon standard hardware . The multiprocessor is used because
of the high computation rates that can be achieved; however, as with any
form of hardware, the multiprocessor bhas its limitations . The best
algorithms will have to be built taking the limitations and capabilities of
the hardware into account to produce a hardware/software solution to the
simulation problem which is as efficient as possible . Very few of the
methods of simulation used on standard hardware have both the parallelism
and low data transfer rates needed for successful implementation on any

multiprocessor system .

The final simulator algorithm developed for the muliiprocessor can be
divided into a number of smaller tasks, each of which can be split to run
on a set of parallel processors . The tasks run in series . All processors
must finish the first task before any can start the second, but the
communication between processors occurs only at the end of each task and
is kept to a minimum . For example, all processors run the network
algorithm simultaneously to calculate the voltages in the system . When
the processors have finished the network calculations the voltages are
broadcast to all the other processors before the generator algorithm is

started by all processors .

By splitting the theory, and the software using it, into modules
corresponding to the components of the power system, the theory can be

changed to produce as accurate a model of the system components as is

_70_



required . The generator module, for instance, can be replaced with any
other module which calculates the same parameter < voltage behind
transient reactance or generator current ) for output at the end of the
module . Initially the models of the generators and loads used are quite
simple but these can easily be expanded to simulate components such as
automatic voltage regulators on the generators and more complex couplings
between the load and the voltage and frequency . These enhanced models can
then be inserted instead of the generator or load modules in use at

present .

The models used in the simulator are presented here in the simple
form: these are fast but do not give a completely accurate model of the

components .

The generator algorithm is based upon one given in Stagg and El-
Abiad [42] . The electro-mechanical equations of the turbine and generator
represent them as a shaft or flywheel with an inertia H as shown in
figure 4.1 . The equaticns relate the input mechanical power P. and the
output electrical paower P,, to produce values of the changes of rotational

speed w and angle § with respect to time :

dé

at = w - 2nF, 4.1. 0
do _ nfo _
at = H * (P, P. ) (4.1.2)

_71._



ANGLE WITH

RESPECT TO
<; SYNCHRONGUS
SPEED
SHAFT ON
FRICTIONLESS
BEARINGS

INERTIA H

Fugure 4.1) Turbune - generator representatton

m{max)
Pset S TURBINE AND w
“’<+ — 14GT J GENERATOR
| Qs c
m{mLn) 1
A
211
) Fset
K

Fugure 4.2) Governor model block duagram

t
-
23]

]



where F, 1s the synchronous ftrequency in Hz . The Governor on the
generator is then represented as shown in figure 4.2 . The mathematical

equation which models this type of governor with a gain of K is :

( - y -
gf.,, _ Pou. + K # \TF . W/ 2N E.. 4. 1.3)

0f the five components of a generating unit discussed in chapter 2
only three are included in this model . Equations (4.1.1> and (4.1.2) give
the dynamics of the generator: this representation models the shaft as a
single lumped inertia without any elastic properties . Equation (4.1.3)
represents the turbine governor response to frequency and power deviations
from the set points ( F,... and P,.. ? and includes the turbine time

constant T,

The boiler is not represented and it assumed that the turbine is
always able to produce the necessary amount of mechanical power: there is
also no representation of the excitation system . Both these components
can be added to the set of equations to be solved if the use to which the

simulator is to be put requires a more accurate model .

The initial values of the generator variables when the simulator is
started are calculated from the values passed to the simulator from the
host: these values are the results from a load flow calculation on the host
computer . The initial values given to the generator program are P, the
generated power, E, the voltage at the machine terminals and the generator
impedance . All these values are complex . The generator impedance is its

transient impedance (R, +f6i;)\

_73-



The 1initial current at the terminals of the machine < [, ) is

calculated from Ohm's law by:

N
I, E,* 4.1.4)

The initial voltage behind the transient reactance (E") is:
E' = E, + ({(Ra + yxn) # I 4.1.5)

The initial power angle § is:

= w3
§ tan IMAG(E') 4.1.6>
The initial air gap power (P.) is:
P. = REAL(P_, + | Ra¥(I 0= 1) 4.1.7)

The initial mechanical power (P,) is set equal to the air gap pawer:

P, = P, 4.1.8)

After the calculation of the initial wvalues, the generator algorithm
executes a modified Euler solution for each time step, obtaining from the
master processor the latest value of the voltage at the bus to which it is
connected and updating its power and frequency set points if necessary
The modified Euler routine calculates an estimate of §, w and P, after
time At based upon the previous values, then the terminal voltage is
recalculated using those values . New estimates of §, w and P, are then
calculated and the average of the two results taken . The equations are as

follows :

_74_



To calculate the current and electrical power :

- Bl B0 (4.1.9)
Le (Ra + X0 4.1.9°
P. = REAL( I, % E'* > 4.1.10)

Then to obtain the first estimates for &, w and P, equations ¢4.1.1)
to (4.1.3) are used to obtain values of d&/dt, dw/dt and 4P, /dt which are

then used to update the previous values of §, w and P,

= * s .
& § + it At 4.1.1D
Wy =m+i‘f* At 4.1.12>
Pml = Pm + dt * At (4-1.13)

The network routine is then run to recalculate the terminal
voltage E, using the initial estimates of 6§, w and P, . Equations 4.1.9)
and (4.1.10) are recalculated and then the final generator values are

obtained thus :

§ =6+ Lgg T @ T 2nF, 0 x At 4.1.14)
2
3% R N Pk, = Pu ), At
0= + 4.1.15)
2
Wy
Pumt + ( K * (Fﬂﬁt— ))-Pml

gf“ + ¢ T e ) + at

P, =P, + i 4.1.16)

_75-



These values are then used in producing the generatar variable
required by the network routine . This variable is either the value of the
voltage behind the transient reactance E' or the machine output current I,
depending on the type of network solution . To calculate E' the magnitude
calculated initially in (4.1.5) is kept constant but the voltage angle is §:

having calculated E' equation (4.1.9) is used to obtain I,

Of the load models discussed in chapter 2 two were used in the
simulator, either to model a load as a current injected into the network or
as an impedance connecting the load bus to ground . The latter
representation will be covered section 4.3 dealing with the network . The
former can be split into two parts, the modelling of synchronous loads and

the modelling of general loads .

The modelling of dynamic loads such as synchronous motors is
very similar to that of generators, the loads being represented by a
set of differential equations such as (4.1.1) and (4.1.2). These
equations are then solved by the application of a numerical technique

such as the modified Euler used for the generator equations . The

_76_



result of the the numerical technique is a value for the current

drawn from the network by the load .

The parameters such as load inertia are lumped parameters far
all the synchronous load at the particular point . These parameters
can only be calculated by tests being performed on the real network .
The motor load does not need any form of governor representation
because its speed is entirely dependent on the frequency of the

supply and the load it is being used to drive .

Static loads, such as lighting and heating, are much simpler to
model . Often they are regarded as fixed current, fixed impedance or
fixed power or a combination of these three . They are modelled as a
current drain from the network whose value is dependent upon both
the voltage and frequency of the bus to which it is connected . The
load power (P, + jQ.) at voltage (V,) can be calculated from the
nominal load power (P, + jQ.)> at rated voltage (V,) and frequency
(F,) by the following equation :

1Val

v I)A+B(Fa—F0) + Q. * (J"Y‘J‘)‘:+D(FE,~FO) 4.2.1)

JQa = P # ( V|

where AB,C and D are constants used to model the particular type of
load required . Values for A,B,C and D can be ascertained for certain

types of load but the constants can be determined accurately only by

_77_



tests an the real system as the component parts of a load vary

widely .

Because of the length of time required to perform the raising to
a power function ¢ X™ ) on the microprocessor the load was modelled
in three parts using equaticn (4.2.1) . The three parts correspond to
the constant power ( A=C=0 ),constant current ( A=C=1 ) and constant
impedance ( A=C=2 ) +types of load with a variation added for
frequency changes . This means the only power that has to be

calculated is a square which can be calculated using multiplication .
The nominal load is split into three parts :

(P, + JQ) = (P, + jQod + (P, + jQy) + (Pn + jQ20 4.2.2)

and the following summation is used to give the total load power :

i=2
jQ, =z P, + (Hebysyp (F.-F) + jQ. # Al ip, F-F 4.2.3)

{=0 IV, 1 FVAI

The load model is shown diagrammatically in figure 4.3 . P, is
the constant power part (P, + jQ.,), I, is the constant current part
of the load (P, + jQ,) and the impedance to ground produces (P, +
JQz> . Each of the three parts of the load has its own values for the
constants B and D to represent the rate of change of power with
respect to frequency . Having calculated the power of the load the

current injection for the load bus is then calculated by :

I,.., =- P-*v—*—iQ* 4.2.4)

_78_



BUS AT UDLTAGE VU

PL IL L
X
L
P+ 10 P+ 1Q P+ Q@
OJO 1J1 2J2
POWER STAYS CURRENT STAYS REACTANCE STAYS
CONSTANT WITH CONSTANT WITH CONSTANT WITH
CHANGES IN VU CHANGES IN VU CHANGES [N VU

Fugure 4.3) General load representation

- 79 -



This injection 1is then used by the network solution which

calculates the voltages of the buses in the system .

This general load model is used more often than the synchronous
load model because the loads at a bus are normally a mixture of
different types . Equaticn (4.2.1) can be performed but the time taken
for the routine using (4.2.1) is over twice as long as if (4.2.3) is

used .

Figure 3.4 shows the way a network is modelled by the simulator with
all the loads regarded as constant impedances and all the generators as
voltages behind transient reactances . The generators are represented as
buses connected to the rest of the system by a line with the generator's
transient reactance . The voltages of these buses are obtained from the
generator algorithms and are regarded as fixed for the duration of each

time step .

The loads are represented as a line from the load bus to ground, the
line impedance being calculated to give the required load power at rated
voltage . This constant impedance representation is equivalent to the
general load model (4.2.3) with all the load in (P, + jQo) and no frequency

variation .

The network itself is made up of a series of buses connected by

lines and transformers . The lines are modelled as a T model with a

_80_



resistance and reactance in series and line charging capacitances at each
end of the line connecting the buses to ground . Transformers are
represented as lines with reactance equal to the leakage reactance of the
trapsformer . The buses at each end of a f{ransformer connection have
different per unit bases to account for the voltage change across the
transformer . An extra bus ( bus 0 ) is introduced as the ground bus, all
line charging elements and constant impedance loads are lines connected to

this bus .

From this representation a matrix of the system admittances, called Y

is built up where the off diagonal elements are given by :

Yoo being the admittance of the lines joining bus p and bus q . The
diagonal elements are given by :

q=n
You = ¥ t L Yoo (4.3.2)

q=0
¥. being the sum of the line charging to ground at bus p . This Y
matrix can then be used in a form of Ohm's law to calculate the system
voltages and injected currents . If V. is the voltage at bus p and I_ is
the injected current at bus p then, putting the voltages and currents in

the form of column vectars we get :

v, I,

Y * e = . 4.3.3)

_81_



The row and column corresponding to bus 0 (the ground bus) have been
eliminated because the voltage is zero and we are not interested in the
injected current: this also makes the Y matrix non singular so it may be
inverted . If the buses are numbered so that those representing the
generator voltages behind their transient reactances occur first then the

Y matrix can easily be divided into four submatrices :

...........

Y = : 4.3. 4

If ng is the number of generators in the system and nb the number of
buses then the matrix A is square {(ng#ng), dilagonal and contains the
generator admittances . The matrices B (anb#ng) and C (ng#nb) contain the
corresponding off-diagonal terms and the D (nb#nb) matrix contains the
line, transformer and load representations, in the form of admittances, for

the remainder of the system .

...........

: * = (4.3.5)
B : D v.#. Ik.

The voltage and current matrices are divided into two portions each:
one portion whose values are known V., (ng#1) and I. (nb#l) and one whose
values need to be calculated V., (nb#1) and I, (ng#1> . The known voltages

are those calculated by the generator algorithms as the voltage behind the

_82_



generator's transient reactance, while the injected current at all buses
without generators attached will be zera . Thus the equation can be
rewritten by moving the known and unknown values of voltage and current

onto separate sides :

..........................

* = : * (4.3.6)

where @ is an empty matrix and I is the identity matrix . To obtain an
equation with only the unknown column vector on the right hand side
premultiply both sides by the inverse of the right hand square matrix to

give :

I : CD- A: @ v, 1,
: * : * = 4.3.7)
. D! -B : I II»: Vu

And hence, by performing the multiplication of the two square

matrices in (4.3.7)

---------------

* = (4.3.8)

_83_



[f all the loads in the system are represented by a constant
impedance ccnnected to ground then all the known injected currents are
zero . Thus the [. matrix can be replaced by a @ matrix which means that
a large proportion of the terms in the s3quare matrix can be set to zero

and the problem is simplified

...............

* = (4.3.9)

The network algorithm needs only calculate the unknown voltages
since the injected currents are calculated by the generator algorithm
Hence all the network program has to do 1is perform the matrix

multiplication :

nbi#ng ng#1 nb#*l

(4.3.10)

|
<
w

This multiplication is further simplified by the fact that the B
matrix has only ng non zero elements and each column and row can have, at
most, one non-zero element. This means that the B and D' matrices are
held separately and their multiplication is done simultaneously with the

equation (4.3.10) each time the network algorithm runs :

ab#nb nb#ng ng#*l nb#l

B ' ' Vi l = v, 4.3.11)

|

_84_



The sparsity of B means that for each unknown voltage required only 2#ng
complex multiplies and ng complex adds are needed . However this assumes
that the inverted D matrix is always up to date, any topology changes or
load variation causes the entire D' to change . The computing of equation
(4.3.11> is very simple to split between processors: each processor is

given a fixed set of bus voltages to calculate ¢ v, ), the corresponding

part of the D' matrix ( d' > and the B matrix .
nba#nb nb#ng ng#l nbatl
l=—d~* | ¢ ' ¥ ' V. = |l_y, | (4.3.12)
B

where nba is the number of buses to be calculated by the processor .

Thus each time the algorithm runs the most up to date values of V,
are obtained from the master processor and equation (4.3.12) is performed
and the results sent back to the master processor . This model has several

advantages :

al It is fast and non iterative so the execution times for the
network and generator solutions are the same in both steady state

and transient conditions .

b) The computation is performed entirely on the slave processars:
the master is only required to communicate with the slaves and

transfer the results to the host computer .

c) The B matrix is so sparse that it only contains ng non zero

elements . Instead of the whole B matrix, each processor is given the

_85_



generator transient reactances and the bus numbers to which the

generators are connected .

There are also three problems with the model used by equation

4.3.12

a) First, the lpads are modelled as constant impedance loads
because they are included as part of the network . This is accurate

for certain types of load but not for others .

s Secondly, to alter the load the inverted matrix must be altered
The technique works well for small systems, but when larger
systems are simulated the overheads involved in altering the inverted

matrix become large .

c) Finally, the inverted matrix is full rather than sparse: this
means far more memory is needed than for other methods which can

use sparse matrix techniques .

To overcome the first two problem the loads can be modelled as
injected currents . This allows a load model such as equation (4.2.3) to be
used and reduces the amount of change to the matrix inverse . This means
that equation (4.3.8) must be solved in full: only those nodes in the
system without generation or load have =zero injected current so the
computation for the network solution rises . However the method is still
fast and non iterative . The parallel solution of this problem can be

simplified if the generators and loads both produce a current injection

_86_



onto the bus to which they are connected . This can be done by calculating
the value of the generator current (I,) at the end of the generatar

calculations . The equation to be solved can then be written :

nba#nb nb#} nba#l]

b =d-1 1| » } L. = b v, ! (4.3.13

Some of the injections will still be zero but the calculation is
larger than that required for (4.3.12) . However with the inclusion of a

variable time step it can easily run in real time .

The problem of the memory required by the method is far less
important now than it has been historically for iwo reasons . The price cf
memory is now very low compared to the price of the processors and other
system components, so large amounts of memory do not increase the price
of the system dramatically . Also with 16 and 32 bit processors the
amount of memory which can be addressed is large and a 32 bit address
bus poses no practical limit on the amount of memory which can be used .
The only real limit is set by the capacitance effects of the memory
slowing down the signals on the bus and this does not significantly affect

the system even when 1 or 2 megabytes of memory are used .

The simplicity of the network routine is due mainly to the fact that
it is assumed that an accurate version of the D-' matrix is always

available . When the simulator is started a copy of this matrix, the

_87_



inversion having been done on the host machine, is loaded 1into the
simulator along with the system topology . However as soon as a line is
removed or a constant impedance lcad altered the whole matrix changes and

must be recalculated .

The inversion of the D matrix is extremely lengthy for anything but
the smallest systems. It has to be performed once on the host machine
before the simulator can be run, but this does not affect the simulator
timings . However, because the changes to the D matrix involve a small
number of elements the inverted matrix can be altered, rather than
reinverted, to give the inverse of the new D matrix . Using the formula
given by Householder {41] which calculates the inverse of a modified

matrix using the inverse of the original :
(D + UXV™ " = D77 - D'UXX+XVTDUX) ' XVTD! 4.4.D

where U and V are rectangular and X is square and all the dimensions are

correctly matched .

Because the ground bus is removed from the matrix the alteration of
a load means that only one element of the D matrix is altered . A line
outage alters four elements of the matrix, two in the column representing
each of the connected buses . The line outage case is divided into two
separate passes, one for each column affected by the change, so both the
load and line cases can be handled by the special case when U and V are
column vectors u and v, and the square matrix X is a scalar equal to 1

which glves:

(D + uv™) =D - (D'WIWTD™"/(1 + vTD 'w 4.4.2)

_88_



This is further simplified by the fact that u and v have only one
non zerc element for a load change and two for a line cutage . If v has
the required complex values in it then the non zero elements of u must
bave the value 1 . Using this method a line outage needs two passes

through the routine but a load change needs only one pass.

The equation (4.4.2) is split between the processors so that each
slave modifies the portion of the D-' it contains for the calculation of
the bus voltages allocated to it . A certain amount of the calculation has
to be done on one slave and the results passed to all the other slaves for
the modification of their own sections . The calculation required centrally

is that of the divisor in equation (4.4.2)

S=(1 4+ vID'w (4.4.3)

Then the value of S and the column of D-' which corresponds to the
bus being altered are broadcast to all the slaves in the multiprocessor

and equation (4.4.2) is completed in each slave .

The Householder routine is needed only when the network is changed
Thus if no change occurs a lot of time is wasted because the master
processor waits for the correct time before starting the next time step.

There are two ways to minimise the amount of time wasted in this way:

The Householder routine can be prevented from running every
time step and only allaowed to run every few time steps: this reduces
the time wasted but does not eliminate i1t . This method also has the
disadvantage that the simulator may not respond as quickly to

control commands as the real system.

_89_



Secondly the time step used can be varied depending upon
whether or not the Householder routine is run: if the slave
processors receive no network change from the master processor they
use a short time step . When one or more passes through the
Householder routine are needed a longer interval is used for the next
time step . Both time steps involve a period for changes to generator
set points and separately modelled loads but these take an extremely
short amount of time compared to the Householder routine . This
means that very little time is wasted and the system responds more

quickly to commands .

The second method does not have the disadvantages that a variable
time step can have in iterative solution techniques . In an iterative
technique the time step is increased when a large number of iterations are
required to produce a solution: this occurs while the network is in a
transient state . In the direct method the time step is only lengthened
when a change cccurs . The rest of the transient can be modelled at the

shorter time step until another change occurs .

_90_



The software produced for the slave pracessors can be divided into a
number of routines corresponding to the sections of theory discussed in
the previous chapter . These routines are called by a coordinating routine
in a fixed order: each routine ends by broadcasting its results to all the
other processors in the simulator . The software for the master processor
deals with the communication, both between processors and between the
simulator and the host computer . The timing of the simulation is also
dealt with by the master processor so that the results are produced in

real time .

The master processor's main task is to control the data transfer
between the slave processors and the transfer of the simulator results to
the host computer . The master also deals with the initialisation of the
simulator and the addition of errors to the results before their transfer
to the host computer . The overall flow of the master processor software
is shown in figure 5.1 but each of the four main functions is described

below :

_91_



C START )

RECEIVE INITIAL ™~
DATA FROM THE
HOST COMPUTER

DIVIDE NETWORK
BETWEEN AVAILABLE
SLAVES

TRANSMIT iNITIAL SUPERVISE FINAL
DATA TO THE SLAVE GENERATOR ESTIMATES
PROCESSORS BROADCAST

SUPERVISE
SUPERVISE FIRST NETWORK VOLTAGE
GENERATOR ESTIMATES BROADCAST

BROADCAST

ADD ERRORS AND

SUPERVISE MEASUREMENT NOISE
NETWORK VOLTAGE TO RECEIVED VOLTAGES
BROADCAST
TRANSMIT RESULTS
TO HOST COMPUTER
RECEIVE DATA FOR
NETWORK CHANGES
FROM HOST
BROADCAST DATA
FOR NETWORK CHANGE
TO SLAVES

SUPERVISE
NETWORK ALTERATION
BROADCAST

Figure 5.1) Master routine flow chart




The first action taken by the simulator when it is started is
to request the network data from the host computer, this data
consists of the generator, line and load parameters as given in
appendix 3 and is transmitted along the serial or parallel line from
the host to the simulator . The host computer also transfers the
initial D~' matrix for the system to the simulator . The D matrix is
built from the system data and then inverted on the host . However,
this is only done once for each system: the inverted matrix can be
stored on the host (on disc or tape) for use whenever the simulator

is started .

Vhen the system data has been received by the master processor
the number of slave processors in the simulator is input . The master
processor then calculates the number of buses, generators and loads
that each slave is to be allocated . The system is split so that the
buses allocated to a processor include those containing the loads and
generators allocated to that processor . This reduces the

communication required for each time step .

The master processor then resets the communications bus
connecting the processors and transfers one area of the split system
to each of the slaves . Each slave in turn is sent the numbers of the
buses, generators and loads which it has been allocated . The slave
is also sent the columns of the D~' matrix which correspond to the

buses allocated to it .

_93_



Vhen the initialisation of the simulator has been completed the
master processor starts to control the use of the communications bus
to coordinate the slave processors . Most of the inter-processar
communication is in the form of broadcasts; one processor outputs
data onto the bus which is received by all the other processors . The
rest of the communication is simple data transfer between two of the

processors .

All the communication is done under the control of the master
processor . Each slave can be put into either ‘'talk' or ‘listen' mode
by the master processor . When a slave receives a talk command it
outputs its data onto the bus: all the slaves in 'listen' mode receive
the data . For a simple data transfer the master processor sets one
processor to 'listen' and one to 'talk' and then monitors the
transfer: when the transfer 1is over the master releases both

processars .

A broadcast is more complex . Normally all the slaves have data
to share with all the other slaves so the master allows each to talk
in turn . The master sets all the slaves to 'listen' and then,
starting with slave number one, sets each slave in turn to 'talk'
The master monitors each slave's broadcast and, when all the data has
been transferred, sets the talking slave to 'listen' and sets the next
slave to 'talk' . This process is repeated until all the slaves have

broadcast their data .

-94_



The broadcast control is also used to keep the simulator
running in real time . A timer on the master processor is checked at
the end of each time step and, 1f the simulator is ahead of real time
the broadcasts are held up until real time corresponds to the

simulator time .

The final task for the master processor is the transmission of
results to the host computer . However, to simulate the real system
accurately, the results sent to the host must have errors similar to
those due toc the transducers in the real network . If no errors are
impressed upon the data the simulater provides no test for any of
the state estimation and data validation algorithms needed in any

energy management system .
There are two types of error that occur in the real network

which have to be modelled by the simulator :

First, the inaccuracy of the measurement due to the
limitations of the transducers and the affects of noise on the

measurements .

Secondly, the errors caused by transducer fallure or

failure of components in the data acquisition system .

_95_



The first of these errors 1is simulated by imposing two
different multiplying factors upon all the data sent to the host
The first factor is a constant for any measurement and simulates the
calibration error of the transducer . The second factor is a random
percentage increase or decrease to simulate noise on the measurement

Thus each measurement M 1is obtained from the corresponding

calculated figure C by :

(100 + REDCD ) % (Y #C)
M = 100 B.1.1

where Y is the calibration error and X is the maximum percentage
noise variation . The RND is a mathematical function which
produces an evenly distributed random number but can easily be
changed to produce any sort of random distribution required .The
second type of error is represented in one o0of two ways: the
measurement can be fixed to any particular value or can be

transmitted as a random varying number .

Any measurement can be affected by either of these forms of
error by a simple command from the host to the simulator . The
calculation of the errors is done in parallel with the network
calculation on the slave processors and only the data to be

transferred to the host is affected .

The transfer of these measurements from the simulator to the
host is via a simple serial or parallel line connecting the two

machines . The simulator transfers the data in a fixed order to

_96_



correspond to the data scan on the real network and at a rate

similar to that achieved by SCADA systems .

Since the calculation required for imposing the errors upon
the data is small it can, along with the data transfer to the
host, easily be performed in real time . The master processor
deals with all the computing necessary while the slave processors

are calculating the next set of values .

The simulator receives control signals from the host computer
along the same connection used for the result transfer . The
master receives these control commands and acts accordingly . The
command from the host takes the form of a single byte which holds
the type of change required followed by a series of bytes of data
needed to implement the change . For example the command byte 01
corresponds to a generator set point change and is followed by
three bytes of data, the generator number, the new power set point
and the new frequency set point . The command byte 02 represents a
line outage and is followed by a single byte holding the line

number .

Vhen the master processor receives a command it takes one of

three actions :

_97_



For a network change, such as a line outage or change in
a constant impedance load, the master processor broadcasts
the command to all the slave processors and then controls the

broadcast during the matrix alteraticn .

For a change in the dynamic part of the model, generator
set points or load levels, the master processar sends the

change to the relevant slave .

For a change 1in the errors imposed on any measurement
the master simply updates the variables in its memory and

continues .

The master keeps count of the number of changes and allows
only a certain amount per iteration, so the simulator continues to
run in real time . If more changes are requested the master

postpones them until the next time step .

The slave processors perform most of the actual modelling of the
network components . The software written for the slaves can be divided
into sections which are called in order by a coordinating routine, each
section involving some communication between processors . The
communication not only transfers data between the processors but also

means that all the slaves are in the same section of the software at

_98_



any time . The overall pattern of the slave software is shown in figure
5.2 while some of the sections are shown in more detail in figures 5.3

to 5.5 .

Vhen the simulator is started the slaves all wait to be put
into 'listen' mode by the master processor . When this happens the
slave reads in the data put onto the communication bus by the

master .

The first items of data received by the slave are the size of
the network and the generator, load and bus numbers assigned to it
for simulation . From these the slave can calculate the amount of
data it i1s to receive in the form of generator and load parameters
and the size of its portion of the D' matrix . This data is then
also read from the bus and the master releases the slave from
'listen' mode and moves on to pass initialisation data to the next

slave .

The slave then calculates some of the constants used by the
simulator . For example the generator inertia H is inverted so
that in the generator calculations a multiplication can be used
instead of a division which 1s far slower . The slave then
performs the generator initialisation, <calculating equations

(4.1.4) to ¢4.1.8) from the initial set up data .

_99_



(" START )
RECEIVE INITIAL
DATA FROM MASTER
< PROCESSOR >

CALCULATE INITIAL
VALUES OF GENERATOR
VARIABLES

CALCULATE THE FIRST
ESTIMATE OF THE
GENERATOR VARIABLES

BROADCAST FIRST
ESTIMATE ALONG
THE BUS

USING FIRST ESTIMATE
SOLVE THE
NETWORK EQUATIONS

BROADCAST THE
NETWORK VOLTAGES
ALONG THE BUS

CALCULATE THE FINAL
ESTIMATE OF THE
GENERATOR VARIABLES

BROADCAST FINAL
ESTIMATE ALONG
THE BUS

USING FINAL ESTIMATE
SOLVE THE
NETWORK EQUATIONS

RECEIVE NETWORK
CHANGE DATA FROM
THE BUS

MODIFY THE MATRIX
INVERSE TO REFLECT
NETWORK CHANGES

Figure 5.2) Slave routine flow chart

- 100 -



Having performed the initial set up data the simulator
continuously loops through the following routines as shown in

figure 5.2 .

The flow of the computation in the generator routine is shown
in figure 5.3 . The routine is split into two parts, the initial
estimate calculation and the final value calculation . When the
routine is entered a flag is tested to determine which of the two
parts of the routine is to be performed . The initial estimate is
calculated by performing equations (4.1.1) to (4.1.3) and (4.1.9)
to (4.1.13) . A new value of E' is then calculated from the
constant magnitude calculated in +the initialisation and the
estimate of the machine angle §, . If the loads in the system are
not modelled as constant impedances the value of E' 1is used to
calculate the machine current ITI . This current is then used as
an injection by the network routine . The flag is then set to
indicate that the next pass through the routine is to calculate

the final values .

The slave then broadcasts its calculated values of E' (or
ITI) and receives the values of E' <(or ITI) for the other
generators in the system . The slave performs the broadcast by
poling the bus to find out whether it is in ‘talk' or 'listen'

mode, in 'listen' mode it receives the values broadcast by other

-101 -




<kSTART 4)

~
~7 IS IPASS T~ v

N
—-QQUAL TO >
1

CALCULATE THE FIRST CALCULATE THE SECOND
ESTIMATE OF THE ESTIMATE OF THE
GENERATOR ANGLE GENERATOR ANGLE

CALCULATE THE FIRST CALCULATE THE SECOND
ESTIMATE OF THE ESTIMATE OF THE
GENERATOR SPEED GENERATOR SPEED

CALCULATE THE FIRST CALCULATE THE SECOND
ESTIMATE OF THE ESTIMATE OF THE
GOVERNOR STATE GOVERNOR STATE

SET IPASS CALCULATE THE FINAL
VALUES FROM AVERAGE
IPASS = 1 OF TWO ESTIMATES
SET IPASS
IPASS = 0

IS IT THIS
SLAVES TURN TO

BROADCAST

RECEIVE A SET
OF GENERATOR STATES
FROM THE BUS

HAVE
ALL THE SLAVES
BROADCAST

Y
QRETURN)

Figure 5.3) Generator routine flow chart

BROADCAST THE
GENERATOR STATES
ALONG THE BUS

- 102 -



processors while in ‘talk' mode it puts its own values onto the
bus . The slave then performs a network solution to produce new

values for the voltages at the generator buses .

After the network solution is completed the generator routine
is re-entered . Since the flag was set at the end of the first
pass through the routine calculates the final values . This is
done by performing equations (4.1.14) to (4.1.16) . The flag is

reset and values for E' are produced and broadcast by the slave .

All the calculation in the generator routine is performed
without using any divisions . The divisors in all the equations
used are inverted in the initialisation part of the slave software

and multiplication is used instead .

If the loads in the system are to be modelled separately from
the network, not as constant impedance loads, a load routine bhas
to run alongside the generator routine . If a dynamic load such as
a predominantly induction motor load is required, the generator
algorithm can be tailored to use the modified Euler technique to
simulate the dynamic response . However for a more accurate model
of the general static loads such as 1lighting and heating a

separate routine is needed .

- 103 -



The general load routine simply has to solve equation (4.2.3)
to calculate the load power and then calculate the load current
which 1is used as an injection in the network routine . The load
routine is run at the same time as the generator routine, both for
the estimate and final value pass through . The calculated load
currents are broadcast with the generator currents at the end of
each pass so the network routine can use them to calculate the bus

voltages .

This routine is alsoc run without using any divisions, the
inversion of the nominal bus voltage V. having been performed in
the initialisation . There is no need for a routine to perform the
exponentiation ( X" ) because the powers used in the routine are
0,1 and 2 . The square is the only power that needs any

calculation and can be performed by a simple multiplication .

The network solution routine is run twice for each time step,
once during the generator solution and once to produce the network
voltages required . The routine involves the solution of equation
(4.3.12) if the loads are modelled with the network: if the loads

are modelled separately then equation (4.3.13) has to be solved .

The direct network solution is extremely fast in the
calculation of the voltages at the nodes in the network . The

computation required is small and, in a high level language, the

-104 -



C START )

INITTALISE GENERATOR
COUNTER
[ =1

SET K EQUAL TO NODE
NUMBER CONNECTED TO
GENERATOR |

INITTALISE NODE
COUNTER
J =1

—1 V(J)=
D " (JK)+E'(1)«GENADM(I)

+V(J)

J EQUAL TO
E NUMBER OF NODES
N THIS AREA

S | EQUAL TO
THE NUMBER OF
GENERATORS

INCREMENT J
J = J+1

INCREMENT |
= 1+1

IS 1T THIS
SLAVES TURN TO
BROADCAST

/ BROADCAST THE
¢ NETWORK VOLTAGES
ALONG THE BUS

/" RECEIVE A SET
OF NETWORK VOLTAGE
FROM THE BUS

HAVE
ALL THE SLAVES
BROADCAST

Y
CRETURN )

Figure 5.4) Network routine flow chart

- 105 -



size of the program required is also small . For example in
FORTRAN the central computation can be written in 3 lines
DO 100 I 1,NB

DO 100 J 1,NC
100 V{I> = V(1) + DIRV(I,J>#lIRJ(I)

{]

where NB is the number of buses, NC is the number of current
injections, V is the column vector of nodal voltages, DINV is the D!

matrix and IINJ is the column vector of injected currents .

If the generators are represented as a voltage rather than as
an injected current then a further multiplication is required
However, even with this representation the calculation can fit into a
small amount of memory which, for certain processors, can increase
the speed of computation . When the network routine has finished the
processor broadcasts the calculated voltages along the communications
bus to the master and the other slaves . The processor then receives
the voltages calculated by the other processors as they take their

turns to broadcast .

If there is a significant number of buses without current
injections in the network the routine can be speeded up both times it
is run . The network solution which occurs in the middle of the
generator routine only needs to calculate the voltages of the buses
with current injections . The other network solution also has to
calculate the buses with current injections and must calculate the
voltages at any other buses if they are to be transmitted to the host

processor for that iteration .

- 106 -



This technique is not available in most of the standard
iterative methods for the network solution and 1t can reduce the
solution time significantly . A small amount of extra calculation and
memory are used in order to determine which voltages are required at
each iteration but this is normally offset by the time saved in not

computing the voltages of all the buses in the network .

The final section of code in the slave processors deals with the
D' matrix . The network solution requires a copy of the matrix to be
available each +time it runs . The matrix must be up to date,
representing the current state of the network . The Householder
routine updates the section of the inverted matrix held by each slave

every time a change occurs in the system .

The flow of the Householder routine is shown in figure 5.5
After each iteration has produced a set of results to be sent to the
host, the master processor deals with the changes in the network
Each network change is sent to the slave processors involved, the
slaves walting to receive the type of change and the parameters

which follow .

There are two types of change which the slave processor has to
undertake, the alteration of generator and load parameters and the
alteration of the network topology itself . If the change is a

generator or load alteration the slave merely receives the parameters

-107 -



Q START D

RECEIVE NETWORK
\CHANGE DATA FROM
MASTER PROCESSO

{S NODE |
CONTAINED IN
THIS AREA

RECEIVE S AND
ROW | OF THE
INVERTED MATRIX

CALCULATE S=

14+ V1 .51(|,|)+v2~0_1(|,J)

TRANSMIT S AND
ROW | OF THE
INVERTED MATRIX
1

INITIALISE COUNTER

K=1

CALCULATE C(K)=

V1 .61(1.K)+v2.51(.1,|<)

INCREMENT COUNTER

INITIALISE COUNTER

L=1

UPDATE D (LK) =
D 1(L,K)—[5' 1(K,l)-C(K)

INCREMENT COUNTER

K=K+1

Figure 5.5) Householder routine flow chart

L=L+1

IS L EQUAL
TO THE NUMBER
OF BUSES

IS K EQUAL
TO THE NUMBER
OF BUSES

Y
C RETURN)

- 108 -



from the host and updates the variables in its own memory . If the
change 1is an alteration to the network the processors perform the

householder {nverse alteration algorithm .

The matrix alteration is carried out in two stages . The first
stage is performed by one slave and then the second is performed by
all processors in parallel . First the processor which contains the
column of the D~' matrix with the diagonal element representing the
node to be altered calculates the value of S as shown in equation
(4.4.3) . The inverse of S is then calculated and broadcast, with the
column of the D~' matrix of interest, to all the other slaves in the
multiprocessor . When all the slaves have all the information the new
values in the inverted matrix are calculated by substituting (4.4.3)

into (4.4.2) to give :

(D + uv™ = D' - (D-'w(vTD")/S B.2.1

By broadcasting the inverse of S the amount of division
performed by the routine 1is reduced and the execution time is
correspondingly reduced . When all the routines have completed the
calculation of the altered inverse the master processor starts the
slaves on either the next matrix alteration or the next time step of

the simulation .

-109 -



Because the floating point hardware can only perform the basic
mathematical functions ( multiplication, division, addition, subtraction and
the conversions between real and integer formats ) several of the more

complex functions have to be performed in software .

The functions required are the sine and cosine of an angle, and the
arctangent and square root of a number . Because some of these functions
are used frequently by the simulator the time spent in evaluating them is

critical .

The sine and cosine functions are performed in the generator
routine each time new values for E' or I, are calculated . To obtain
the values required as quickly as possible a look-up table is used .
The look-up table is simply a list of the values of the function held
in memory in the same way as in books of logarithmic tables . When
the cosine of a number is required the number itself is used as an
index to calculate the position of the table in which the required

answer is to be found .

The table used has 4096 elements and holds the cosines of
numbers in the range 0 to 360 degrees . The table is calculated on
the Perkin-Elmer 3230 in double precision and transferred onto the

development machine . For the calculation of the sine of a number the

- 110 -



same table 1s used and the cosine of the number + 90 degrees

calculated .

Vhen the routine is called with a number (x) in degrees of
which the cosine is required it first ensures that x lies between 0
and 360 by adding or subtracting 360 as necessary . The routine then

performs the following equations :

I = INTC x # 11.378 ) (5.3. D
C, = ACI) (5.3.2)
C. = ACI+1 ) - C, (5.3.3)
cos x = C, +C, ¥ ( x - I1711.378) 5.3. 48

Equation (5.3.1) calculates the index to be used in the table of
cosines which is held in the vector A . The two nearest values in the
table are then obtained A( I > and A( I+1 ) and a linear
interpolation between these values is used to calculate the final
value for the cosine of x (5.3.4) . The value produced by this method
is accurate to at least six decimal places and is obtained very
quickly . The multiplications and the conversion between real and
integer formats are all performed by the floating point unit: the
division is performed by using the reciprocal of the constant and

multiplying .

- 111 -



The generator routine also requires the calculation of an
arctangent during the initialisation procedure . However, since this
is only performed once and does not affect the timing of the
iterations, once the simulator is running the function can be
evaluated using a numerical approximation such as a Taylors series

expansion.

The calculation of the square root of a number is required in
both the generator and load routines to calculate the magnitude of a
complex quantity . Because it is so widely used the execution time of
this routine has a significant effect on the speed of execution of
the simulator . Unlike the sine and cosine routines there is no finite
range of values which have to be catered for, although the likely
range of numbers is between 0 and 2 because of the use of the per

unit system .

Due to the way floating point numbers are represented by the
computer the square root problem can be split into two sections . The
floating point representation used is to hold the numbers as a power

of two multiplied by a fraction between % and 1 :

x = 2n *f (5.3.5)

- 112 -



The square root is then calculated by :

x* = 2nwe g fw (5.3.6)

The routine takes the real number and separates the exponent
(n) from the mantissa () . If n is an odd number then n is
incremented by 1 and f is halved: n is then halved and stored in the
exponent of the answer while the square root of f is calculated and
stored in the mantissa of the answer . Since the values of f lie in a
fixed range the square root of f can be calculated by using a look-up
table in exactly the same way as the sine and cosine values were

calculated .

The possible values of f range from % to 1 and a table of 4096
values was calculated on the Perkin-Elmer and transferred onto the
development machine . The accuracy of the routine depends on the size
of the number whose square root is required . However for the range
of values 0 to 2 the routine still produces answers accurate to six
decimal places . Also the answers produced by the routine are always
normalised, that is the mantissa always lies between % and 1, which
is the most accurate way to store the numbers and helps in the use

of the floating point hardware .

The software required on the host computer splits into two parts

One part deals with the initialisation of the simulator and the calculation

- 113 -



of the initial D-' matrix: the other part has to deal with receiving
measurements from the simulator and passing commands from the control

software or operators to the simulator .

The initialisation software has to read the network data either from
a file or interactively from the operator . If the network has previously
been simulated the D' matrix can be read from the disc . If not, then the
network admittance matrix ( Y ) must be built up from the network data
and then the D-' calculated from it using matrix inversion routines . The
host must then pass the network data and the D' matrix to the master
processor in the simulator via the parallel or serial link between them
If the matrix inverse has to be calculated it should be stored on disc or

tape to save time if the network is simulated again .

Having initialised the simulator, the host computer then has to
receive the measurements from the simulator and pass these on to either
the control software or the operator, depending on how the simulator is
being used . The flow of control information from the host to the
simulator also has to be dealt with by the host, any instructions from the
operator or control software having to be translated into the correct

format and transmitted to the simulator .

The transmitting and receiving of data across the link between the
host and the simulator can normally be performed from a high level
language using standard input/output commands if the link is connected to
one of the host's standard ports . At present no checking is done on the
received data . Noise is not likely to be a serious problem to the data

transfers,( it is more 1likely to occur in the real network than in the

-114 -



gimulator ) and the data validation routines in the E.M.S. should filter

out any erroneous values that occur .

- 115 -



The hardware required for the simulator was designed in two stages .
First the processor on which the simulator was to be based was chosen
Then the software was developed and the design completed to allow the
software to run as efficiently as possible . By using this approach, the
software could be developed in a form suitable for the processor chasen
without a fixed multiprocessor design having any detrimental effect on the

software design .

Several previous researchers have looked at the parallel =olution of
power system problems, I. Durham et al. [43 & 441 and C. Pottle [45] . But
much of the work was done on existing hardware used for general purpose
parallel processing and not necessarily optimally configured for power

system problems .

The choice of microprocessor from among the wide variety on the
market was limited by the requirements of the simulator itself . The
floating point representation needed for simulation had to use at least 32
bits . Therefore to reduce the time spent in moving the data around, the
processor had to be able to cope with 32 bit data structures as easily as
possible . The number of processors which have 32 bit data words and can

deal with 32 bit words with a single instruction is still small and, of

- 116 -



these, two were chosen for closer study . These two were the Motorclla

M68020 and the Inmos Transputer .

Another method of developing multiprocessor algorithms was alsoc
looked at, using a standard minicomputer and simulating the performance of
a multiprocessor, and this method was used for the development of some of

the software in the early stages of the project .

A system of emulating the multiprocessor's performance was
developed on the Perkin-Elmer minicomputer to give an indication of
the suitability of different algorithms for solution by
multiprocessors . The system worked by having a central coordinating
task which shared the central processor unit ( C.P.U. ) time between
the tasks which would normally be run on separate processors . This
worked in much the same way as the part of the operating system
which shares the C.P.U. time between the computer users, giving all
users the same facilities as if they each had a smaller computer

dedicated to running their own problems .

The tasks were written in FORTRAN in exactly the same way as
if they were to be run on separate processors and had an interrupt
routine added . The central task could then start each task at any
time and the task would interrupt itself after a preset amount of
time and pass control back to the central task . The central task

would start all the tasks in turn, dividing the time equally between

- 117 -



them . WVhen the final task had returned control to the coordinator
the process started again with the first task unless all the tasks

had finished .

Communication between the tasks was done by using an area of
memory shared by all the tasks, which any of the tasks could write
to or read from . The area of memory was set up as a global common
block so that to read from or write to it the task merely had to use
the variables defined in the common block . The accesses to the
global common block could easily be counted so as to provide an idea
of the amount of inter-processor communication required . This method
of modelling the effect of a multiprocessor on an algorithm had

several factors in its favour ;

There was no need for specialist hardware, so the
algorithms could be developed and evaluated without the delay
involved in the design and production of a multiprocessor

system .

The use of the technique allowed the algorithm to be
tested before the hardware was designed: the bhardware could
then be designed to perform as well as possible with the

algorithm .

Because of the simplicity of the method and the use of

standard hardware any errors occurring in the algorithms could

- 118 -



be attributed to the software rather than the possibility of

hardware errors .

There were also some disadvantages with the system . In order
to emulate properly the affect of a multiprocessor on the algorithm
the time allocated to each task for each cycle of the coordinator had
to be very short . The tasks also had to return control to the
coordinator if they output any data to the global common block . This
was necessary so that the other tasks had a chance to read the data
before it was changed . All these control changes took time, so the
system was quite slow . The second problem was that in order to get
the tasks to run correctly they had to be run at a higher priority
than the time sharing system on the minicomputer so that they were
not interfered with . This meant that while the system was running
no other users were allocated any C.P.U. time and for them the

computer appeared to stop .

This method was used to help develop, and in some cases
discard, the methods discussed in Chapter 4 . However, having
developed the direct method the hardware was built so that the
algorithm could be fully +tested and developed on a true
multiprocessor system . Although the decision on which processor to
use had to be taken towards the start of the project, the development
of this system of emulating the effect of using multiple processors
was still useful . It allowed the software to be developed in a form
that could readily be transferred onto the final hardware . At the

same time the overall structure and the design of the hardware could

- 119 -



be left until the detail of the software algorithm had been developed

and tested .

One of the two processors looked at closely was the Inmos
Transputer . The Transputer is not strictly just a microprocessor
It is a single chip containing a processor, memcry and interfaces to
peripherals and other Transputers as shown in figure 6.1 . It has
been designed specifically for multiprocessing tasks and can use the
language OCCAM which supports the concepts of concurrent processes

communicating via interprocess links .

The Transputer is an extremely powerful processing element for
building parallel processing systems and has several points to its

advantage ;

The architecture of the Transputer is designed for direct
connection to other Transputers for parallel systems . The four
serial links can be used to connect one Tramsputer to up to four
others and , even though the links are serial, allow high speed

communication .
The processor has a 32 bit data structure and operates at
high speed ( up to ten million instructions per second ) and is

designed specifically to support concurrent tasks .

- 120 -



PROCESSOR

INTERNAL
MEMORY SERIAL LINK 1| &———

SERIAL LINK 2| K

SERIAL LINK 3| K

SERIAL LINK 4| K

PERIPHERAL
INTERFACE

Figure 6.1) Transputer architecture




The language OCCAM is a high level language which |is
closely coupled with the Transputer . OCCAM produces efficient
code both in terms of size and speed and facilitates the

programming of parallel tasks .

Each Transputer can support more than a single task, so
that a parallel algorithm can be run as a number of tasks on a
single Transputer or as a single task on a number of
Transputers . Both configurations run in exactly the same way

and produce the same results .

These advantages make the Transputer a very useful building
block for any form of multiprocessor system . However, for use in the
power system simulator there were two major problems with the

Transputer :

When the initial study was done the Transputer was still
being designed and the launch date was uncertain . Emulators
were available to enable software to be developed but the cost

and availability of the actual Transputers were uncertain .

No information about future development of the floating
point capability of the Transputer was available . The amount of
calculation required for the simulator suggested that some form
of external floating point hardware would be required for either

the Transputer or the Motorolla processor . Because the

-122 -



Transputer was not available the ease of using existing floating

point hardware could not be ascertained .

[t is 1likely that, given time, both these problems will be
rectified, the Transputer should soon become widely available and
further developments in the fileld are being planned . When these
events occur the Transputer will certainly become an extremely useful
component in the design of both standard computers and

multiprocessors .

The second processor to be considered was the Motorolla M68000
family and especially the M68020 . The M68000 family is a series of
microprocessors all of which have a 32 bit internal data structure .
Although the internal data size was 32 bits the size of data that
could be handled externally to the processor varied . The M68000
could only read or write 8 bits while the M68010 could handle 16 and

the M68020 32 bits .

The M68000 family, although it is not specifically designed for
use in multiprocessors, had several points in it favour at the time

of the study ;

-123 -



The M68000 was available immediately and, with the use of
a UNIX development system, could be programmed in a number of
high level languages including FORTRAN and C . The M68000 was
very widely used and the tools, both in hardware and software,

to aid development of M68000 systems were extensive .

Any code written for the M68000 would work on the M68020
whose release onto the market was imminent . The only
difference 1in the execution of the code would be the faster
execution time on the M68020 . The M68020 provided some
additional facilities which could speed up the execution time

still further .

There was floating point hardware being designed
specifically for the M68020 by Motorolla which would be
available before the end of the research project . Other
manufacturers were also developing floating point hardware for
the M68000 family so there would be a choice of components

when the system was designed .

The University had a M68000 development system and
produced its own processing board using the processor for use
within the University . Equipment was also availlable for the
design and production of printed circuit boards for any

hardware that had to be built .

- 124 -



The only disadvantage with the M68020 was that the method of
connection of the processors into a system would have to developed
to enable them to communicate at speeds high enough for the

simulation to be feasible .

The decision finally taken was to begin development on the
Perkin-Elmer, using the software to model the affects of a
multiprocessor, but also to use the M68000 development system to
produce code for the final simulator . The final simulator hardware
would be based upon the Motorolla M68020 using hardware floating
point and developing some form of communication between the

processors .

There are several methods of configuring the processors in a parallel
processing system . Each of the configurations has its advantages and
disadvantages, depending on the type of problem being solved on the
multiprocessor . Four configurations were looked at, three basic forms and
one more complex . The complex form was the CM* multiprocessor developed
at Carnegie-Mellon University in America on which much of the
multiprocessor power system work had been done . The simpler forms were

the linear, radial and grid configurations .

It is not only the hardware that has a configuration: any parallel
algorithm will also a particular form . The configuration is based upon

how the separate parts ( whether hardware or software ) are arranged and

- 125 -



how they communicate with one another . In general the form of the
algorithm and the form of the processor structure should match: if the
algorithm 1is radial in structure then the best results will be obtained on
a radial multiprocessor . If they do not match, the system will not be as
efficient as possible because the algorithm will have to be modified to fit

onto the processors .

The CM* multiprocessor consists of a series of processors
connected in a tree like structure . The processors are divided into
a number of clusters, each cluster containing up to 14 processors
The processors in a cluster are connected by a communications bus
which allows each processor to access the memory belonging to
another processor . The clusters are then connected in exactly the
same way, one cluster being able to access memory in another cluster
via the inter cluster bus . The controllers on the buses mean that a
processor simply issues a read command from memory and, whether
that memory belongs to the processor, another processor in the
cluster or a processor in a separate cluster, the controllers provide
the data . The time taken for a read or write to memory is longer if

the data has to travel from another processor or cluster .

The advantage of this type of connection is that information
which 1is accessed regularly is kept within the memory of the

processor . Less frequently used data is kept within the cluster and

- 126 -



INTER CLUSTER BUS

]

J

Kmap

J

Kmap

Kmap

CM

CM

CM| |CM

CM

CM

CM

CM

CM

CM

CM CM

CM

CM

CM

Figure 6.2) Structure of a CM™ multiprocessor

MASTER
PROCESSOR

f;

INTER PROCESSOR BUS

f;

{

iy

o5

SLAVE
PROCESSOR

SLAVE
PROCESSOR

SLAVE
PROCESSOR

SLAVE
PROCESSOR

Figure 6.3) Linear multiprocessor configuration

127 -




data which 1s only accessed occasionally is kept in other clusters
This means the the access time is, on average, quite small . Also the
system is expandable , more clusters can be added whenever they are

required .

The disadvantage is that if the problem requires data to be
transferred equally between all the processors some of the transfers
take much longer than others because of the distance between the

processors in the tree structure .

The tree structure for multiprocessors can be expanded further
than the two levels used by the CM* . Three or more levels can be
used but the more levels that are used the further some of the base
level processors are from each other . This means that the amount of
bhardware that is used in some of the data transfers increases and
the transfers between the processors in the base level clusters take

more time .

Each of the clusters of the CM* is connected in a simple linear
arrangement . This form of connection requires just one connecting
bus with all processors attached to it, as shown in figure 6.3
Often one processor (the master) has control over the bus while the
rest (the slaves) have to wait for instructions from the master to

allow them to use the bus . This system of connection has the

- 128 -



advantage that any processor can communicate directly with any other

processor in the system .

The disadvantages with a linear connection of processors are
that only one set of data can be transferred at any ocne time and
that if the communication bus breaks down there is no alternative
data path . Also there is often a restriction on the number of
processors that can be connected to a single bus, and therefore a
restriction on the size of the multiprocessor and the problems that

can be solved using it .

Some bus structures allow the broadcast of data, one processor
being able to pass data to all the other processors in the system
simultaneously . If this is possible and the algorithm requires large
amounts of data to be shared between processors the linear
configuration can provide a simple yet effective form of
multiprocessor arrangement . More than one bus can also be connected
in parallel to all the processors to provide an alternative data path

if required .

The second of the basic types of multiprocessor structure is
the radial arrangement as shown in figure 6.4 . A central or master
processor 1s connected via a number of buses to slave processors
The master processor has control over all the buses and can request

data from the slaves . This allows all the slaves to communicate

- 129 -



SLAVE
PROCESSOR

SLAVE
PROCESSOR

{

CENTRAL
OR MASTER
PROCESSOR

{

SLAVE
PROCESSOR

SLAVE
PROCESSOR

Fiqure 6.4) Radial multiprocessor confiquration

PROCESSOR PROCESSOR PROCESSOR

(1,1) ) (2,1) % (3.1) <
PROCESSOR PROCESSOR PROCESSOR
(1,2) ) (2,2) = (3,2) -
PROCESSOR PROCESSOR PROCESSOR
(1,3) B (2,3) @ (3,3) S
75 ZaN 7%

- -
- -

Figure 6.5) Multiprocessor grid configuration

- 130 -




directly with the master in a single transfer and communication
between two slaves only requires two transfers . Depending on the
form of the bus structure the system can allow more than one
transfer at a time, all slaves sending or receiving data at any time,

and the master can broadcast to all of the slaves .

The number of slaves connected to the master is limited but the
multiprocessor can be built in a series of levels . Just as the CM*
has two levels of linear connections, a set of master processors
could be connected via buses to a higher level master . If a bus or
slave processor fails in a radial network the master can redistribute
the tasks between the remaining slaves and the system keeps working
at reduced efficiency . If the master processor fails nothing can be

done .

This sort of configuration is ideal for some problems, for
example the diakoptic solution discussed in chapter 3 1s radial in
structure . A solution for part of the system is calculated by each
of the slave processors, the master then takes these solutions and

combines them to produce a solution for the entire network .

The final configuration looked at was the multiprocessor grid as
shown 1in figure 6.5 . In this setup each processor is connected to
its four neighbours and can communicate with them directly . There is

no master processor controlling the buses and any processor can

- 131 -



communicate with any other processor . To do this however the
processors have to be able to receive data from one neighbour, look
to see which processor in the network it is meant for, and then pass
it on towards the correct processor . In a large grid the transfer of
data between processors may have to travel through many other

processors on its way .

The distance between processors can be reduced by several
methods . The processors at the top and bottom of the grid can be
connected to form a cylindrical array and then the end processors
joined to form a torus . Alternatively the processors can have six
connections each and form a three dimensional box type grid . Having
six or more connections to each processor can cause problems in the

physical connection of the array .

The Newton-Raphson method discussed in chapter 3 possesses a
grid structure suitable for use with a two dimensional grid
multiprocessor . The network 1s split 1into parts which then
communicate with their neighbours to iterate until they produce a

solution for the whole network .

The other element to be decided in the design of a multiprocessor is
how the communication between is to be achieved . There are really two

options for the method of communication , either to use a system of shared

-132 -



memory areas or just to have a communications bus connecting the various

processors .

A common memory system will have some or all of the processors
possessing an area of memory which is accessible to the other
processors in the system . The processors are still connected by
some form of bus but the processors just have to issue a normal read
or write command to access the shared memory belonging to another

pracessor .

The advantage with memory connected systems is that the
communication between processors does not have to be synchronised
The processor with the shared memory can continue performing its
tasks while another processor is accessing its memory . However
problems can arise with memory contention - when more than one
processor is trying to access a particular area of shared memory -
and the hardware to cope with contention can be quite complex and

slow the system dawn .

In a bus connected system the bus between the processors can be

used in two ways, either as a synchronous link or as a channel for

-133 -



direct memory access between processors . Some buses require a
master processor to be constantly in charge of all communication

taking place .

For a synchronous link this means that for communication to
take place the sending and receiving processors both have to be
ready to undertake the transfer . In some cases where the master
processor is neither the sender nor the receiver it oversees the
transfer, therefore there must be three processors actively involved
in the transfer . For some applications the synchronisation between
processors obtained using this method is useful in keeping the

separate tasks in step .

Using the bus as a DMA link between the processors means that
one processor can halt the execution of another processor and
forcibly read or write to the halted processor's memory . This type
of transfer is useful for transferring large amounts of data between
two processors but is similar to the shared memory system and has

the same sort of problems .

Once the software had been developed on the emulator on the Perkin-

Elmer the design of the multiprocessor could be finalised . The structure

of the direct algorithm was such that most of the data transfers between

the portions of the algorithm were broadcasts to all pracessors rather

than simple processor to processor transfers . The linear multiprocessor

- 134 -



structure is the one which best deals with these data broadcasts because
each processor 1s directly connected to all the other processors in the

system .

Because of these broadcasts and because the quantities of data
transferred were small it was decided to connect the linear system with a
communication bus rather than using shared memory . This configuration
seemed to fit best the type of algorithm that had been developed on the

Perkin-Elmer .

Two separate multiprocessor systems were used to try the algorithm
on: an existing M68000 processor board design could be connected directly
into a linear multiprocessor while +the M68020 board and its extra

hardware were being developed and built .

All the development for both the multiprocessors was done on a UNIX
development system which allowed the algorithm to be written in C,
FORTRAN or ASSEMBLER or a mixture of all three . The resulting code could
be compiled and tested to some extent on the development system before

being downloaded onto the multiprocessor for final testing .

Vithin the University there existed a M68000 bpard design that
was used widely for various high speed computing requirements such

as control and data acquisition . A number of these boards contained

- 135 -



enough hardware to run the developed algorithm and be connected in a

linear fashion as required .

The processor board itself contained a M68000 microprocessor,
a quarter of a megabyte of RAM, two serial lines and in IEEE bus
There was also a small amount of ROM containing a monitor program
which allowed the board to communicate, via the serial lines, with
the UNIX development system and a terminal . The monitor also
contained debugging facilities such as tracing the execution of code
a single instruction at a time and setting breakpoints to halt the
execution at specific points . The quarter megabyte of memory was
enough for the code ( which only occupied a few kilobytes) and

enough data for quite large networks to be tested .

The IEEE bus is a standard communications bus: it allows the
connection of up to 16 digital devices of any sort which possess the
correct interface . The bus can transfer eight bits of data at a time,
so it takes four transfers to communicate a 32 bit word between two
processors . The bus allows any one device on the bus to transmit
data to any or all of the other devices simultaneously . One of the
devices, the master, has to have overall control of the bus and has

to oversee all the communication .

The master processor can, at any time, take control of the bus
and set the other processors to one of three modes; 'listen’, 'talk’
and ‘'passive' modes . If a processor is set to listen mode it can
receive data from the bus . In talk mode the processor can put data

onto the bus . Passive mode means that the processor can neither

- 136 -



receive nor transmit using the bus . When the master processor has
set all the slave processors to the required state it releases the

bus so that the communication can take place .

Only one processor can be set to talk mode at a time and this
processor places 1ts information on the bus . The handshaking (¢ that
is the protocol which coordinates the use of the communications bus
) on the bus ensures that all processors in listen made have
received the information before the next piece of data can be placed
on the bus . This method of communication keeps all the processors
synchronised because, unlike a shared memory system, all processors
involved in the communication must perform either read or write

instructions before the system can continue .

Using this system the direct algorithm was programmed in
assembler, using software floating point routines . The speed of
execution of the algorithms was not as fast as required because of
the length of time spent performing mathematical functions . However
the algorithms were optimised as far as pnzsible while the M68020

system was designed and built .

The M68020 processor board was simply an upgrade of the M68000
board used initially . Room was left on the board for the maths co-
processor developed by Motorolla and more memory was fitted . It was

decided not to use the IEEE bus because of the speed restrictions and

- 137 -



the 1limit of eight bit transfers at any time . The system at this
stage needed two further components to develop it into a system
suitable for the task of power system simulation, a hardware floating

point unit and some form of inter-processor communication bus .

For the hardware floating point unit it was decided to use the
Weitek WTL 1164 and 1165 chips . These gave far faster calculation
than the Motorolla co-processor although they did not perform the
more complex mathematical functions . The architecture of the Weitek
chips is shown in figure 6.6: there are two chips to perform the
mathematical operations, a multiplier and an arithmetic logic unit
Both chips have the same structure, having two input registers, A and
B, and an output register . The chips are controlled by a number of

inputs :

Six input lines are required to define what type of
function is required of the floating point chip, for instance

whether a multiplication or a division is needed .

Four inputs are used to determine the load type . Whether
the A or B register is to be loaded and whether the data to be
loaded comes from the data bus or from the result register of

one of the chips .

One input is used to signal the chip that the result is to

be unloaded onto the data bus .

- 138 -



POWER SUPPLY

| !

|

6 BHSi>> FUNCTION
4 BITS £>> LOAD
1 BIT i:> UNLOAD
4 ani;> CONTROL
<i14 BITS STATUS
CLOCK

Fiqure 6.6) Weitek floating point architecture

- 139 -



Four inputs are used to control the sequence of events
that make up each of the floating point operations . These
inputs have to be changed several times during each
mathematical operation so some hardware is needed to provide

the correct inputs at the correct time .

The chips are also connected to the power supply, clock, and the
32 bit data bus . Along with the data output onto the data bus the
chips also output 4 status lines which report underflaws, overflows

and errors in operations .

The board designed for the floating point chips is shown in
figure 6.7 . All thirty two bits of the data bus are connected, via
buffers and latches, to both chips so that data can be loaded and
unloaded directly onto the data bus . Only part of the address is
used . The board is mapped into a megabyte of memory space, which
means that when the processor reads or writes to any part of that
megabyte of address space it accesses the floating point board
rather than memory . Accordingly only twenty of the address bits

will ever change when the board is accessed .

0Qf these twenty bits, only eighteen are used and these are split
into two parts . Eleven bits go directly to the chips and are
attached to the function,load and unload lines . The other seven bits
are used to set up a 12 bit counter . This counter is driven by the
on board clock and counts up from the initial value set from the
address lines . The output of the counter is itself used to address a

microcode read only memory ( ROM ) which controls the remaining

- 140 -



DATA BUS

DATA
BUFFER
AND
LATCHES

32 BIT

12
BIT
COUNTER

1 BIT

MICRO
CODE
ROM

MUL ALU

7 BIT

ADDRESS BUS

ADDRESS
BUFFER
AND
LATCHES

11 BIT B

Figure 6.7) Block diagram of floating point board

- 141 -



inputs to the chip . The ROM is programmed with the sequence of
control inputs needed to perform the various operations . For
example, the multiply function requires different control signals from
the add function, so the code for each function 1s set up in
different parts of the ROM: the 7 bits of the address bus, which set

up the counter, determine which function is performed .

The micracode also controls the latches on the data bus . This
is necessary because the time that the result is available from the
chips is very small, so the time when it is latched onto the bus has
to be very precise . It is possible to program more complex functions
into the microcode ROM . Provision was made for the board to have
its own area of memory so that the floating point board could
perform complex  functions such as  polynomials while the
microprocessor was performing other tasks . The generator routine
could probably be calculated almost entirely on the floating point
board, but the time to develop the necessary microcode would be great
and the time saved would be small . Tests performed while the
simulator was running showed that the floating point processor was
active for up to eighty percent of the time during the generator and

network routines .

To drive the floating point board the processor merely had to
read or write the data to certain points in the megabyte of memory
area taken up by the board, the address accessed by the operation
determining the function performed . This could be performed from the

high level language C using some of the macro functions available, so

- 142 -



the simulator could be written in a high level language rather than

in assembler .

The problem of the communication between processors was solved
by using a bus similar in operation to the I[EEE bus . The bus had
the advantages that it could operate at 4 megabytes per second and
transferred 32 bits at a time instead of the 8 bits used by the IEEE

bus .

This final set of hardware using the M68020, floating point
board and high speed communications bus was the hardware on which
the final version of the simulator was written and fine tuned to
achieve as high a speed as possible . The only problem found with
the hardware was the heat dissipated by each of the floating point
chips when they were run at high speed . This meant that the air
flow through the rack in which the boards were mounted had to be
increased by using two fans . Both the microprocessor and the
floating point units were run at their rated speeds but a speed up
could be achieved by driving the M68020 at a higher speed . If this
is done the heat dissipation increases but for certain applications

it might prove worthwhile .

- 143 -



Most of the development of the algorithms was done on a standard
Perkin-Elmer 3220 minicomputer but, because the algorithms had to be
proved on a truly parallel machine, the final algorithms were then
transferred onto the M68000 system made up of one master and two slave
processors . In transferring the algorithms from the Perkin-Elmer they
were also translated from ‘'FORTRAN' into 'C' because of the ease of
producing code directly usable on the processor boards using 'C' . With the
development of the M68020 system the algorithms were rewritten to use the
floating point hardware so that the results for all three systems could be

compared .

These comparisons gave close numerical answers, but not as close as
expected . However, during the testing of the floating point board it was
found that the commercial 'C' floating point software used by both the
UNIX development system and the M68000 multi-processor system contained
an error . This error could affect the results slightly so a set of
routines was written to perform the floating point functions affected . An
exact match between these comparisons could not be expected because all
three machines used different formats for storing the floating point
numbers which altered the accuracy possible from the floating point
arithmetic . The comparisons were run with both the IEEE 5 and 30 node
test networks and the results obtained were all within the range possible

due to the format differences .

- 144 -



Having established that both the M68020 hardware and the parallel
algorithm worked, a series of tests was carried out to assess the

performance of the simulator .

The test results obtained can be split into two separate parts to
deal with the numerical results obtained and the time taken to simulate

different sizes of system :

First, a set of tests was run to compare the numerical results
of the parallel algorithm with those produced by a simulator used by
the research group at Durham . This simulator uses a Newton-Raphson
approach to solve the network equations and an implicit trapezoidal
technique to solve the differential equations . It was run with a omne
second time step to produce results in real time on a Perkin-Elmer
3230 mini computer . The parallel algorithm was run in real time with
a 20 ms time step so that both the transient and steady state

results could be compared .

Secondly, a series of tests was carried out on the M68020
system, using the floating point hardware, to produce timings for the
routines used by the simulator for different sizes of network . These
timings were then combined +to calculate the number of slave
processors that would be required to run the simulator in real time

for various sizes of netwark at different time steps .

The test system was based upon the IEEE 30 substation test network

which consists of 6 generators, 41 lines, 21 loads and 30 buses as shown

- 145 -



in figure 7.1 . The system parameters have been enlarged to include the
parameters of the generators in the system which were not needed for a
load flow solution but are essential for simulation . Also the inclusion of
a varying locad curve for the simulators means that the loads are different
from those presented in the original test network data for load flow
calculation . The load curve varies the load present in the system
depending on the time of day . The simulators were started from an initial
set of data corresponding to a midnight load pattern: this load pattern

and the rest of the system parameters are presented in appendix 2 .

Four different tests were performed to compare the numerical accuracy
of the two simulators: all the tests were started using the midnight load
pattern from the load curve . The first three tests were short term and
involved the altering of load,line and generator parameters respectively
The fourth test was over a longer period of time and covered several
changes in the system . This final test included the dividing of the

system into first two and then three totally separate islands .

All four tests were carried out without any control action from
outside the simulator after the alterations were made to the system . Thus
no attempt was made to correct any frequency errors by load frequency
control and no generator rescheduling or load shedding was performed . The
system was allowed to settle down to steady state according to its

internal control alone . The only control elements active in the simulator

- 146 -



- 4yl

BS1

BS14

m

LD17

ﬁ BS23

30
132 D21 (D20
D14 BS30 39 BS28
37
L36
BS15 —‘J 22 13 BS19 38
LD10 BS18 'E—E 8s27 Bs28
D9 TL24
n
20 23 D18 L35 (D19
tf‘_ BS20 g
w18 ————é:é. BS24
LD15 BS25 B8S26
L34
i BS22
29
. LD11 LD16
n1e B8 o ____'—J—ru 8S17  BS21 E n.28 TL40
.26
n27
as13 BS10
CEN 6 TL16 BS12 [T
N D8 25 Lo?
GEN 1 D2 s D3
BS4
n2 4
o5 T n7
L3
e LDS
BS7 10
A:én_e_, b
GEN 4
. LD6
BS2 s 833 858
]

Figure 7.1) IEEE 30

bus test network




are the gavernors on the turbines driving the generators . These governors

vary the mechanical pawer input to the generators depending on the power

and frequency deviations from the set points .

part

The tests were run with all the loads in the system represented as

of the network (constant impedances to ground): this meant that both

line outages and load changes required the Householder routine to be run .

The first test consisted of the removal of load number 4 . This
load represents almast a third of the active load in the system and
more than a seventh of the reactive load . Thus its removal should
have quite a large effect on both the frequency and voltage of the

system .

Vith the removal of a large amount of reactive load in the
system the voltage magnitude throughout the system should rise
Figure 7.2 shows the voltages at the bus containing load 4 (bus 95)
and another bus well away from load 4 (bus 28) . The graphs show the
load outage occurring after 3 seconds and both show the rise in
voltage expected, bus § being effected significantly more than bus 28
because of its proximity to generator 3 . The graphs also show the
similarity between the numerical results obtained from the +two

simulators .

- 148 -



UOLTAGE

1.0560
1.0440 +
1.0320 +
1.0200 +
1.0080 . } b | i
0.00 3,75 >.50 11.25 15.00
SECONDS
x Newton Raphson method
—Direct paraliel method
UOLTAGE
1.0300 —
>\/V\A/§(/\M/\sz__x_x_
1.0255
1.0210 4+
1.0165 4
1.0120 F——— 4 ' + !
0.00 3.5 7.50 11.25 15.00

SECONDS

Figure 1.2) Voltages at bus 5 (top) and 28 during test 1

- 149 -



The removal of active load from the system should cause a
change in the system frequency . Because no control action is being
taken ( apart from the governor on the turbine ) the rise in the
steady state frequency can be estimated . From the equation defining
the governor response (4.1.3) and locking for the steady state

frequency then :

in steady state

df.. _

dat = 7.1.1)
into (4.1.3)

0 = Ppwe - P, + K # (Fon, - w/21 (7.1.2)
and hence

Peowtr ~ P = K ¥ (0/21 - Foa) (7.1.3

Because all the generators in the system have a gain of 1 and
there are six generators in the system with governors on then the
left hand side of equation (7.1.3) can be set equal to one sixth of

the active power lost to estimate the new steady state frequency :

0.132 = (w/2m - 50.00) 7.1.4)

The value of «/2n thus produced <(w/2r = 50.132) is the
estimated frequency after the load has been tripped . This assumes
that the rest of the load remains constant which is not quite true;

because the loads are represented as constant impedances to ground

- 150 -



then the rise in system voltage after the load outage causes a rise
in the total load in the system . Thus the active load lost is less
than the active load shed by the outage and so the frequency rise

given by equation (7.1.4> will be an over estimate .

Figures 7.3 to 7.5 show the speed and power produced by three
of the generators, these all show that the per unit speed of the
system after the load trip increases to approximately 1.0024 . Since
the per unit frequency base for the system is 50.0 Hz this
corresponds to a frequency of 50.12 Hz which agrees with the

estimate given above .

The powers shown in figures 7.3 to 7.5 also show that the
reduction in generated power is shared equally among the generators:
any variation in the governor gain between generators will
distribute the power reduction unequally, but with all the governor

gains set to 1.0 the power drop is distributed equally .

The graphs also show that although the steady state values for
both simulators are the same the transients are quite different . The
parallel simulator using a much shorter time step shows the
oscillations of the individual generators and the interaction between
different generators . For example figure 7.4 clearly shows two sets
of oscillations superimposed on one another, the faster oscillations
of the generator have a period of less than a second, the longer ones
have a period of four or five seconds and are caused by the
interaction of the generators with different inertias and hence

different response times .

- 151 -



POUER

0.5180 Wx

0.4740 +
0.4300 +
0.3860 +
0.3420 — +— ' '
0.00 3. 75 7150 11.2S 15.00
SECONDS
x Newton Raphson method
——Direct paralle! method
SPEED
1.0040
1.0025 +
1.0010
}MMJ

0.9399S
0.9980 } = ; _
0.00 3.75 2.50 11.25 15.00
SECONDS

Figure 7.3) Power and speed of generator 1 during test 1




POUER

0.3120 —
0.2530 +
0.2060
0.1530 +
0.1000 f } } —
0.00 3.75 7.50 11.25 15.00
SECONDS
x Newton Raphson method
—Direct parallel method
SPEED
1.0040
1.0025 +
1.0010 +

e

0.9995 +
0.9980 ‘ I } J
398000 3,75 2.50 11.25 15.00

SECONDS

Figure 7.4) Power and speed of generator 3 during test 1

- 153 -



POUER

0.5100 7-_A,.___)t_._r
0.4685 +
0.4270 +
0.3855
0.3440 t 1 1 !
0.00 3.75 7.50 11.25 15.00
SECONDS
x Newton Raphson method
—Direct parallel method
SPEED
1.0060 +
1.0040
1.0020
1.00003
0.9380 | g + 1
0.00 3.75 7.580 11.2S 15.00

SECONDS

Figure 7.9) Power and speed of generator 3 during test 1

- 154 -



The Newton-Raphson simulator cannot show these short term
effects because of the one second time step needed to run the
simulator in real-time . Also the generator model using a one second
time step is not as accurate during transients as the parallel model
using a 20 ms time step: this inaccuracy causes the oscillaticns to
carry on far longer than they should . However this does not affect
the steady state results produced by the simulator once the
oscillations have been damped out . As a further test, the time step
on the Newton-Raphson simulator was decreased to 20 ms and the test
rerun: the oscillations on this second run damped out much faster but
the steady state results produced were the same as with the longer

time step .

The second test deals with the removal of 1lines from the
network . Two lines were outaged, one after the other, and the limes
were chosen so that when both are outaged one of the buses, which
had been tightly coupled to generation, becomes remote . The first
line outaged is line 40 and then, two seconds later, line 41 is also
removed . This causes bus 28 +to become remote from all the

generation, having been closely connected to generator 4.

Figure 7.6 shows the effect of the outages on the voltage

magnitude at two of the buses in the system, the first outage

- 155 -



UOLTAGE
1.0100 —

1.0080

1.0070
1.0060 ~— i ! ]
0.00 3.75 7.50 11.25 15.00
SECONDS
x Newton Raphson method
— Direct parallel method
UCLTAGE
1.0140 T
0.9880 +
0.3620 +
0.3360 +
0.38100 l[ e a )"iL Lo o \“i > X #.-Aﬁ;
0.00 3.75 7.50 11.25 15.00

SECONDS

Figure 7.6) Voltages at bus S5 (top) and 28 during test 2

- 156 -



occurring after three seconds and the second after a further two

seconds .

The first outage causes the voltage at both bus 28 and bus 5 to
drop slightly: this is because the power finds alternative routes to
bus 28 and the loads 19, 20 and 21 which it helps supply . The
alternative routes involve a slightly higher amount of line loss in

the system so the valtage drops throughout the system .

The second cutage causes a much larger drop in the voltage at
bus 28 . The bus has now become remote and has no power flow
through it: the transformer between bus 28 and bus 27 (line 36)
serves no purpose now except maintaining the voltage at bus 28 . The
voltage at bus 5 rises when the second line is outaged . Once again
the power flow has found an alternative path to loads 19, 20 and 21
and the line losses have increased . However, the voltages at buses
27, 29 and 30 have dropped along with bus 28 so the power of the
loads in that area bas also dropped . The overall effect is a
reduction in the total system load, so the voltage at bus 5 increases
. The difference between the voltages produced by the two simulators
for bus 5 is very small, approximately 0.0004 per unit . This is due
to the convergence on the Newton-Raphson simulator being set to

0.005 per unit so the results are well within the convergence .

Figures 7.7 to 7.9 show the power and speed levels of three of
the generators during the line outages . The power drops and the
frequency rises for both ocutages: this is caused by the load decrease

brought about by the change in voltage levels . The effect on both

- 157 -



POUWER

0.5140
>
0.5105—L
0.5070 —
0.5035 |
0.5000 1 L ! 4
0.00 3.75% 7.50 11.25 15.00
SECONDS
x Newton Raphson method
—Direct parallel method
SPEED
1.0010 T
1.0005 +
1.0000 4 N
3 x
0.9935 +—
0.39930 ; B — - i
0.00 3.75 7.50 11.25 15.00

SECONDS

Figure 7.7) Power and speed of generator 1 during test 2

- 158 -



POUER

0.3120 % x
w x
0.3030
!
0.3060 +
0.3030 +
0.3000 T t % i
0.00 3.75 7.50 11.2S 15.00
SECONDS
x Newton Raphson method
—Direct parallel method
SPEED
1.0010 —
1.000S +

1.0000 _W

0.9335 +
0.9330 - — ; ]
0.00 3.75 7.50 11.25 15.00
SECONDS

Figure 7.8) Power and speed of generator 3 during test 2

- 159 -



POUER

0.5100
ﬁ
o.so7s—fv}-4kﬂiﬂgljx
0.5050 +
0.5025 —+
0.5000 ! |
0.00 3. 75 750 11.2S 15.00
SECONDS
x Newton Raphson method
—Direct parallel method
SPEED
1.0010
1.00065 -

1.0000 ~

1 $§ I

0.3335+

e

0.93S0 } ] '
0.00 3. 75 > o 11. 25 15.00

SECONDS

Figure 1.9) Power and speed of generator 5 during test 2

- 160 -



power and speed is far smaller than that caused by the load outage
but once again the parallel algorithm shows the two frequencies of

oscillation superimposed .

The third test involved the outage of one of the generators
The generator chosen for the test was generator 6: although this
generates the smallest amount of active power it also generates the
most reactive power . Because the voltage magnitude of the system is
largely dependent upon the reactive power, the removal of this
generator should have a large effect on both the system frequency

and voltage .

Figure 7.10 shows the voltages at buses 5 and 28 . Both bus
voltages drop sharply when the generator is removed after three
seconds because of the loss of generated reactive power in the

system .

Figures 7.11 to 7.13 show the speed and power for three of the
generators left in the system . Although a generator has been removed
from the system the power produced by the other generators in the
system drops quite sharply and the speed increases . This is due to
the fact that generator 6 produced a lot of reactive power while it
was connected . When the outage occurs the loss of reactive
generation causes the voltages around the system to drop sharply and

this in turn reduces the system load . In this test the reduction in

- 161 -



UOLTAGE

1.01001—
1.0055+
1.0010 +
0.996S —+
0.9920 :x?x X X X %x x X Azg x_ % X |
0.00 3.75 7.50 t1.28 15.00
SECONDS
x Newton Raphson method
—Direct parallel method
UQLTAGE
1.0140
1.007S
T
1.0010 +
0.3345 + I
0.39880 e X L X X X1 % %X i
0.00 3.75 .50 11.25 15.00

SECONDS

Figure 1.10) Voltagés at bus O (top) and 28 during test 3




POLER
0.5160 -

0.5130

0.5100 +

0.5070

|

0.5040 | | — {
0.00 3. 75 2.50 11.2S 15.00

SECONDS

x Newton Raphson method
—Direct parallel method

SPEED
1.0010 +

1

1.0005 +

1

1.0000 -

0.9399S

0.9930 ; ; ; {
0.00 3.75 2.50 11.25 15.00

SECONDS

Figure 7.11) Power and speed of generator 1 during test 3

- 163 -



POUER
0.3140 T

3
0.3115-&\\ﬁv\ﬂ
X
X
0.30390 +

0.3065 4

0.3040 . I { |
0.00 3.75 .50 11.25 15.00

SECONDS

x Newton Raphson method
—Direct parallel method

SPEED
1.0010

1.0005—+

1.0000—:_#;_*_ﬁ/qw\/&/vrauNJky K ——pe—X
X el X
3

0.9995 -

0.9930 4 | ' |
0.00 3,75 750 11.25 15.00
SECONDS

Figure 17.12) Power and speed of generator 3 during test 3

- 164 -



POUER

0.5100
:‘\_,%/'K-—!x
0.5070 +
0.5040 +
0.5010 4
0.4980 y J % y
0.00 3.75 7.50 11.2S 15.00
SECONDS
%x Newton Raphson method
— Direct parallel method
SPEED
1.0010 +
1.0005 +
I-OOOO—W* e X3¢
0.9935 +
0.39930 ! | | 1
0.00 3.75 7.50 11.25 15.00
SECONDS

Figure T1.13) Power and speed of generator S5 during test 3

- 165 -



the active load power is greater than the loss in the generated
active power so the governors ( which respond only to active power
imbalances ) reduce the active power slightly so a balance |is

achieved .

The resultant changes in the speed and generated power are
similar to the load outage test, but the voltage response of the
system is very different . This test clearly shows the large coupling
between reactive power and voltage magnitude which, along with the
active power - voltage angle coupling, as used in the decoupled load

flow technique .

The fourth test carried out was over a longer period than the
first three tests and involved a series of events as set out in table
7.1 . The purpose of this test was to look at a series of changes to
the system and finish by splitting the system into a number of
totally separate islands . Some network solution methods develop
problems as soon as the system splits into islands, but the direct
method used for the parallel simulator continues and calculates the
simulation for all the islands . This simulation of islands is
entirely independent of the way the system is split into parts for

solution on the parallel processors .

The sequence of events is run on a simple scenario generator

which controls the simulator and causes the events at the required

- 166 -



times . Figure 7.14 gives the voltage forr two of the buses in the
network . These show small variations in voltage for the events up to
number 8 ( {.e. the removal of line 10 ) and then, after the system
islands the events only have an effect on certain parts of the
system . Figures 7.15 to 7.17 give the generator responses for one
generator in each of the three islands formed at the end of the test

These show that the three generators respond in much the same
manner until the system becomes islanded and they become separated

from one another .

EVENT | TIME
NUMBER| (SECS) EVENT
1 30 REMOVE LIKNE 41
2 50 REPLACE LINE 41
3 60 REMOVE LINE 24
4 70 REMOVE LINE 15
5 75 REMOVE LOAD 14
6 95 REMOVE LIFE 19
7 100 | REMOVE LINE 41
8 105 | REMOVE LIRE 10
9 120 | REPLACE LOAD 1i4
10 130 | REMOVE LINE 33(system 2 islands)
11 150 REMOVE LINE 32(system 3 islands)
12 155 | REMOVE GENERATOR 6
13 160 | REMOVE LOAD 4

For comparison, the speeds of these generators are shown
together in figure 7.18 . After the islanding, generator 6 is removed:
this causes one of the islands to have no generation and the voltages
in that island drop to zero . Generator 6 continues to try >tD

generate power because no new power and frequency set poilnts are

- 167 -



UOLTAGE
1.0120 +

m
0.39770 -+
0.9420
0.9070 4
0.8720 I 1 + y
0.0 45.0 30.0 135. 0 180.0
SECONDS
x Newton Raphson method
— Direct parallel method
UOLTAGE
1.0820 — ——\f———J\—\__\_J____F
0.8115 4
0.5410
0.270S -
0.0000 1 L y )
0.0 45.0 40.0 135.0 180.0
SECONDS

Figure 7.14) Voltages at bus 5 (top) and 28 during test 4

- 168 -



POUER

0.5540 T

l
{
|
0.4745 -+
! '.
i l
! |
ix |
o.3350—~:— |
| s
% |
! |
i |
O.SISST ‘}
|
i :
]i ! | 1 {Vi
0.2360
‘0.0 45.0 30.0 135.0 180.0
) SECONDS
x Newton Raphson method
—Direct parallel method
SPEED
1.00S0 +
M
1.0033 +
1.0018 +
0.9937 +—
0.9380 ! 1 1 |
0.0 45.0 30.0 135.0 180.0
SECONDS

Fugure 7.15) Power and speed of generator 2 durung test 4

- 169 -



POUER

0-5100"F——~—«-—V\_w
0.4545 +
0.3330 +
0.3435 +
0.2880 | | |
. 0.0 45.0  90.0 135.0 180.0
SECONDS
x Newton Raphson method
— Direct parallel method
SPEED
1.0050 —r
1.0035+
1.0020 +
1.0005 - J\/,_*-/L\J
0.9330 ~ p ] !
0.0 45.0 S0.0 135.0 180.0
SECONDS

Fugure 7.16) Power and speed of generator 4 duritng test 4

- 170 -



0.3360 -]"' ﬂ
0.2970 4
0.1980 +
0.0330
0.0000 ! } ' —
: 0.0 ds.0 30.0 135.0 180.0

SECONDS
x Newton Raphson method

—Direct parallel method

SPEED
1.0030

1.0005

VT

0.93980 +

1

0.98s5
|

0.393930

ot

1 1
S.0 30.0 135.0 180.0
SECONDS

Fugure 7.17) Power and speed of generator 6 durtng test 4

- 171 -



- ELT -

SPEED

Figure 1.18) Speeds of

. 0050 ++ 4
[ VAN
[ ?
.0020 + }—
6
»
. 9990 -+
. 9960 -+
. 9930 ] ' ] ]
0.0 45.0 30.0 135.0 180. 0
SECONDS

generators 2.4 and 6 during test 4




sent to it . When lcad 4 is removed the speed in the remaining two
islands moves together and control algorithms on the host could be
used to synchronise the islands to bring the network back into one

plece .

The second set of results were taken using the M68020 system with
the Weitek floating point processor board . These results record the time
taken by the various algorithms depending on the size of the system being
simulated . All the algorithms using the hardware floating point board
were written in 'C': some benchmarks were run on the hardware to compare
it's speed with the minicomputers in use . The timings for the simulator
are split into four parts, the generator routine, network routine,
Householder routine and the interprocessor communication . The timings
given for the software routines do not include any time for communication

between processors .

The timing for the generator routine to calculate the dynamic
response of a single generator is constant for any network,
regardless of the number of buses or generators simulated or the
number of slave processors used . The second order generator with a

first order governor equation as set out in chapter 4 ran in 0.28 ms,

- 173 -



this time was for one complete calculation, including both the initial
estimate and final estimate pass through the generator routine . Thus
the time spent calculating the generator dynamics for a single time
step is :

_ 0.28 * nga
= (7.2. 1

T, (sec? 1000

where nga 1is the number of generators solved by a single slave
processor . The timing far the type of static load representation
given by equation (4.2.3) is also constant regardless of the network
size . The routine rumns in 0.1 ms, so if nla is the number of loads
each area has to calculate :

Q.1 % nla

1000 (7.2.2)

T, (sec)

The speed of the network routine is dependent on two factors:
the number of generators ( and loads not represented as constant
impedances to ground ) in the system and the number of bus voltages
to be calculated by each slave processor . A series of timings were
carried out varying these factors and the results are presented in
figures 7.19-7.24 . These figures present the timings in graphical
form: the actual values are presented in Appendix 3, as a set of
points on graphs of speed against number of voltages calculated

Each graph is for a different number of generators in the system .

-174 -



SECONDS

0.008 ~
~| ~
~
P
e
x
0.006 ~
~
~
e
x
-
0.004] ~
~
~
~
~
-
0.002 x -
~
X
A
o
0.000 T T T T I T T S — T  NUMBER OF

VOLTAGES
© 10 20 30 40 S0 60 70 80 90 100 110 120 130 calculATED

Figure 7.19) Network routine speed with 2 generators

SECONDS
0.025

0.020 -

0.015 =

-
| -
0.010

0.005 A~

0.000 T T T 1 T T T T T T T T 1 N\L/'&ar?‘cagr
] 10 20 30 40 50 60 70 80 90 100 110 120 130 CALCULATED

Figure 7.20) Network routine speed with 6 generators

- 175 -



SECONDS
0.06

0.04 -~

0.03 — -

0.02 -

0.01 -

NUMBER OF
0.00 T T T T T T T 1 T I I T VOLTAGES

0 10 20 30 40 SO 60 70 80 90 100 M0 120 130 CALCULATED

Figure 7.21) Network routine speed with 15 generators

SECONDS
0.12
] >

0.10 -
0.08 — -~
0.06 —

0.04 e

0.02 - X

0.00 i T T T T T T T T T T MRy
© 10 20 30 40 50 60 70 80 90 100 MO 120 130 CALGULATED

Figure 7.22) Network routine speed with 30 generators

- 176 -



SECONDS

0.28 7
»
-
e
0.20 -
~
>(./
e
e
~
0.15 — _
4
P
~
~
0.10 — -
P
e
~
-~
0.05 e
X/
X/
x~
x~
6.00 — T T T | Bm— T 7 T | T 1 N e
v} 10 20 30 40 50 60 70 80 20 100 110 120 130 CALCULATED
Fiqure 7.23) Network routine speed with 60 generators
SECONDS
0.5 —
x
~
s
0.4 - -
~
//
~
0.3 1 -
~
x
-
~
i -
0.2 P
P
~
-~
e
0.4 5
/X/
x/
x~
0.0 T T T T T 1 T 1 T T T T 1 N&I’TTGE%F
0 10 20 30 40 S0 & 70 80 90 100 110 120 130 CALCULATED

Figure 7.24) Network routine speed with 120 generators

- 177 -



The dotted 1line on each graph represents a straight 1line fit
calculated by performing a fitting routine to the entire set of

results . The equation represented by the lines is:

Ng¥ + % + fngt
T.(sec) = 100000 (7.2.3

where ng 1s the number of generators in the system and nba is the
number of bus voltages to be calculated in the area . If either of
the variables is held constant this gives an equation of a straight

line .

If the loads in the system are represented as current injections
rather than constant impedances to ground the network time is
increased . However, the increase is less than would result from
including the loads in with the generators to calculate ng . This is
because using currents instead of voltages saves a single complex
multiplication in the inner loop of the network routine . Once loads
are represented as current injections the generators can also be
modelled in this way: this adds to the length of the generator
routine but reduces the time spent in the network routine . Whether
or not this saves time depends on the size of the network, but for
networks larger than the IEEE 30 bus network this technique should

be advantageous.

The equation corresponding to (7.2.2) but giving the time if all

loads and generators are calculated as current injections is :

¥ * + * t : +
T.(sec) = 100000 (7.2.4)

-178 -



where ngl 1is the number of generators plus the number of loads in
the network . The generator routine now involves an extra complex
divide ( the longest of the floating point operations ) and the load
currents also have to be calculated . However by calculating the
loads separately from the network, the need to use the Householder
routine for load changes is removed and it is only used in network

topology changes .

The speed of the Householder routine is alsoc dependent upon two
parameters, the number of buses in the network and the number of
buses contained in each area . A set of timings were carried out on
the routine varying these parameters and the results plotted in
figure 7.25 . These results are also presented in tabular form in
Appendix 3 . The series of lines on this graph is again drawn using
a straight line fit for all the points taken . Each line represents a
fixed number of buses in each slave processor's area while the number
of buses in the entire system is varied and plotted against the time

taken by the routine . The equation of the straight line fit is:

no¥nbat inba+t *nb+t+
T (sec) = 100000 (7.2.5)

where nb is the total number of buses in the system and nba is the
number of buses in an area . The Householder routine is only run when

a change occurs; either a change in load value if the loads are

- 179 -



S9SNQ JO JoquWnu DUAIDA UjiM pssds Jop[OUssSnoH (G¢ / o4nbi]
W3ILSAS NI ¢y

oL 0zl oLl 00l 06 08 0L 09 0S 0¥ o] 0z ol 0
40 w3gnnn | : _ . 1 : _ : : S——e— =2 &
e — — — — X lliH\..\\\MWh.N“\\\
- — % - — — = - T ¥ B - v
S = VAN — — — — * R I S g
e = W .- - \\\
0l = V8N 4 — — 7 \\\\.x - -7 7 \\ ‘0
— — -
- -0 P \\ s
\\\ 0 - Ve
0 = V8N g— — - 0\\ P
\\ ~ 7 .
- - v — 90°0
\\ - 7/
- ~ Ve
0f = VAN g~ — o e
- Ve
e
\\ / ﬁmo.o
- Ve
- Ve
\o\ 7
P Ve
- Ve
- @
-7 s AN
~ v
0S = VEN o s
e
Ve
v
v3dv NI e\\ L G10
g/ = S3sng

SANOJ3S
40 ¥38NWNN

- 180 -



represented as part of the network or a change in the network

topology .

The time taken in communicating between processors is the main
bottleneck in many parallel processor systems . As more processors
are added to the system, more time is consumed in keeping them all
supplied with the necessary data . The M68000 systems used an IEEE
bus to communicate which allowed each processor to send data to any
number of other processors under control of the master processor
For the M68020 system a bus has been designed, along the same lines
as the IEEE bus, using a 32 bit data bus instead of an 8 bit one .
Timings were taken for the IEEE bus and then modified to represent
the performance available from the new bus . Two types of data

transfer are used by the simulator :

First, any processor can send data to ome or all of the
other processors . This type of transfer occurs in the initial
set up and when the Householder routine runs because of a

change in the network data .

Secondly, each slave in turn broadcasts to all the other
processors along the bus . This happens during each pass
through the generator routine and at the end of the network

solution .

-181-



The first type of transfer is the simplest and the time spent

in the transfer is:

transfer to one processor :

. onw + 1
T., (sec) = 1000000 (7.2.6)
transfer to all processors :

_ DW * DS
T.>(sec) = 1000000 7.2.7)

where nw is the number of 32 bit words to be transferred and ns is
the number of slave processors in the multiprocessor system . For
the second type of transfer, if each slave has to broadcast nw words
along the bus to all other processors the total time is :

¥ (nwWt+2)-

Tea(sec) = 460000

(7.2.8)

Because the new bus is controlled by a direct memory access
controller, the processor can continue working while the data is
being input or output . However, during the broadcasts the processor
has to wait for all the new data before starting the new section of

code .

Using equations (7.2.1) to (7.2.8) the total time for simulating any

asize of network on any number of processors can be calculated .

-182 -



If the number of buses in the network is nb, the number of loads not
represented by constant impedances is nl, the number of generators is ng
and the number of slave processors in the multiprocessor is ns then the

total computation time for a single time step can be estimated by the

following method :

nga = INT ¢ B8 4 o5 ) 7.3. 1
ns

nla = INT ( B4 0.5 (7.3.2)
ns

aba = INT ¢ 224 0.5 ) (7.3.3)
ns

ni = ng, + nl, 7.3.4)

Equations (7.3.1) to (7.3.3) give the largest number of generators,
buses and loads that a processor will have to deal with when the network
is divided equally between the slave processors . Equation (7.3.4) gives
the number of current injections in the system: for this equation nl is
modified to be the number of loads represented which do not occur on
generator buses (nl,) . The number of generators is also modified to the
number of buses which contain generators (ng,)> .These modifications are
made because the injections at any bus can be summed to give a single

injection to save time in the network solution .

Using these values, the time for each part of the algorithm can be
calculated . These values are then used in the calculation of equations
(7.2.1) to (7.25) . The resultant times are then combined to give an

overall calculation time . The communication time is also dependent on

- 183 -



ng,nb and ns and can be calculated using equations (7.2.6) to (7.2.8) . The
timing can be split into two parts, the steady state time for solution and

the time required to perform a network change .

The steady state solution time is the time taken by the
simulator if no changes are made to the network: both the computation

time and communication time are included . The time is given by :

Taw = T, + Ty + 28T + 2#T_ 57 + 2#T 5= (7.3.%

where T_,T, and T,, are calculated from equations (7.2.1), (7.2.2) and
(7.2.4) respectively . T.,' 1s the result of equation (7.2.8) to
represent the data transfer at the end of the network solution which
is carried out twice . The number of 32 bit words transferred by
each processor ( nw ) is equal to nba#2 ( all bus voltages are
broadcast, each being a complex quantity occupying 2 words of
storage). T.»* 1is again the result of equation (7.2.8), this time to
represent the transfer at the end of each pass through the generator
and load routines . The number of 32 bit words transferred for this

broadcast is ngl¥2 .

- 184 -



The time taken for any change in the system depends on the type
of change performed . A change in the generator set points ( or load
level for a load modelled separately from the network ) is only a
matter of updating two variables in the particular slave processor
dealing with that generator ( or load ) . This means that the master
processor need only send the type of change required, the generator
number affected and the new power and frequency set points to one
slave . The timing is obtained from equation (7.2.6) with nw having a

value of four .

Ther = 5.0#%107€ (7.3.6)

The time taken for a pass through the Householder rautine is
governed by equation (7.2.8) and the data transfer part way through
the calculation . The data transferred is an entire column of the
inverted matrix and a complex scalar: this amounts to (2#nb + 2)
words to be transferred . Thus the timing for this type of network

change is :

Thez = Th + T2 7.3.7)

=2 =2

where T..' is the value of equation (7.2.7) using (2#nb + 2) as nw .
If the change is a line outage or replacement then two passes through
the routine are needed . If the change is to one of the loads

modelled as part of the network then only one pass is required .

- 185 -



The total solution time is a combination of the times calculated
from equation 7.3.5 and 7.3.7 . Because the time taken is different
depending on whether or not the Householder routine is run there are

two time steps for use in the simulator :

At, = Tae t X2#T,.., (7.3.8)
and
At., = At, + Y#2#T__. (7.3.9)

At, glves the time step used when no network changes are
required: it allows time for the alteration of a series of generator
set points or load changes if the loads are modelled separately from
the network . At, is the time step used when the network is changed
and allows time for a number of passes through the Householder
routine for the removal or replacement of lines or the alteration of

constant impedance loads .

The choice of the values for X and Y depends on the size of the
system and the length of T.,, . If T, is large then X and Y must be
made large enough to cope with as many changes as are expected to
occur in that time step . If more changes occur than can be
performed in the time step, some are perfaormed while the rest are

performed before the next time step .

- 186 -



A series of estimates was calculated for the values of aAt, and At
using the method described above, for different sizes of system and
numbers of slave processors . These estimates are listed in table 7.2
overleaf . The form of network routine used for the estimates 1is the
injected current form so that the loads can be represented separately from

the network .

Two sets of estimates were made . The first set compares the speed
af execution of the method using all the loads as constant impedances with
the method using the injected current loads . The second set of estimates
examines the effect of different numbers of processors on the largest

network .

The timings for the two types of load model were estimated for
five networks . Only the two extremes were examined . It is possible
to model some of the loads as constant impedance and some as
injected current, which gives a timing between the two presented in
table 7.2 .

The timings show that the difference in timing between the two
methods depends upon the number of loads which are not on their own
buses (nll) . If this is large compared to the number of generators

then the time increase for the second method is large .

- 187 -



nb| ng| nl| ns|nll{ngl| X Y Tae T At At
51210 1 0] 2 1 1 1.0446]0.96874| 1.0496|3.01307
5121} 4 1 3] 2 1 1 1.7796|0.96874| 1.7846]|3.74807
30 6 | O 1 0 1 1 8.406 [20.3223| 8.411 |49.1816
301 6 | 21] 1 191 6 1 1 |29.4635]30.3223(29.4685|70.2391
60f 20 0 | 3 0 18} 5 1 115.3858]28.8665|15.4108|73.3919
60| 20} 39| 3 32} 18} 5 1 138.9946,28.8665)39.0197)97.0007
150{117| © 10 0 |102] 10f{ 1 |60.2692|57.4772]60.3192|175.898
150117111} 10| 33(102} 10| 1 }79.1380}(57.4772}79.1880|194.766
400|300} 0 | 20] 0 |227] 10| 2 |170.697|192.059|170.747942.273
400{300{300| 20| 661227 10| 2 ]219.890)192.059{219.9401991.466

The timing estimates for the 400 bus network above were
repeated with a varying number of slave processors in the
multiprocessor . This was done for both types of load model and the
results are shown in figures 7.26 and 7.27: these results are also

presented in tabular form in Appendix 3 .

Figure 7.26 shows that the general trend is for an increase in
the number of processors to decrease the time taken in performing
the simulation . As the number of processors increases the amount of
time spent in communication between the processors increases, so the

decrease is not linear . The portions of the graph where the time

- 188 -



SECONDS
17.00

12.78

8.5 -

423 -1

0.00 T — T = ] NUMBER OF
] 80 180 240 320 a0g PROCESSORS

Fiqure 7.26) aAt, using constant impedance loads

SECONDS
17.00 —

1273

8.3

4.25

0.00 - — ; - | NuMBER OF
) 50 180 240 320 400 PROCESSOR

igure 7.27 i neral | l



increases when a processor is added are due to the number of buses,
generators and loads calculated by any one area (nba,nga,nla)
remaining the same . This means the communication time rises but the

solution time remains the same .

The memory requirements for data for each routine can be calculated
for any size of network and any number of processors . The size of the
program code for the slave processors is very small, less than 20
kilobytes, and is constant regardless of the size of the network or number
of slaves used . The master processor code is even smaller than the

slaves, less than 10 k .

The processors all have at least half a megabyte of memory which
would enable a single processor to run the largest of the systems given in
table 7.2 . Even 1if more memory 1is required the processors are easily
expandable and with a 32 bit address bus the theoretical memory limit is

4 gigabytes ( 2®*bytes )

The use of the floating point chips was also investigated . The cost
of these chips nearly doubles the price of each processor unit and this
cost could not be justified if cheaper, less powerful chips could perform
the same function . A logic analyser was connected to the floating point
board to see how often it was in use . During the computational parts of
both the network and Householder routines the board was 1In use

approximately 80% of the time . The generator and load routines both

- 160 -



showed over 70% usage of the board . Thus any decrease in the speed of
the floating point operations , through the use of different hardware,

would seriously affect the performance of the simulator .

-191 -



This thesis has covered the development of both the software and the
hardware for a new method for simulating the behaviour of electrical power
systems using multiple processors . Unlike much of the work in the field
of dispatcher training simulators the design is intended to be used on a
number of microprocessor based boards rather than two or three mini
computers . This means that the system is expandable as the size of the
power system to be simulated increases and can therefore continue to

produce accurate, real time results more easily .

The advantages of using multiple processors for computing tasks have
been utilised for some time in several fields . However only recently have
technological advances made it economically viable to connect several
processors in parallel for solving the complex sets of equations involved
in power system simulation . Research by D.M. Detig [16] highlights four
main problems with the use of special hardware faor power system

simulation which have to be overcome by any systems produced :

D The form of the hardware often does not fit easily into the
solution method used, especially since most of the algorithms used
are simply modifications of the standard sequential algorithms in use

on standard computers .

2) There is a lack of small, computationally intensive routines

which are the type best suited to running in terms of the increase in

-192 -



speed of execution obtainable by switching from serial to parallel

computing .

3 The communication between the processors is very expensive in
terms of time used but is an essential part of any parallel

processing system .

L The algorithms used in modelling various parts of the power
system are constantly being revised and this could cause large
changes in parallel systems because of the relative difficulty of

developing code for them .

Finally she suggested that the amount of work required to overcome
these problems would provide only a disproporticnally small increase in
speed . However with the increase in capability and decrease in cost of
microprocessor hardware in the last five years this position has changed

dramatically.

The use of a ready-designed multiprocessor, such as the CH* system,
was ruled out and the research was carried out in such a way that the
software and hardware designs evolved together to produce an overall
solution to the simulation problem . This method meant that the
inefficiency of forcing an algorithm onto a piece of hardware to which it
is not ideally suilted is largely avoided . The algorithm developed is
radically different from those used on single processor systems . Also,

unlike some of the parallel algorithms, the new method requires no central

- 193 -



computational stage, where all but one of the processors lie idle, except

for one part of the calculation if a line is outaged.

The program size of the computational loops of the generator,load and
network routines, when coded in C using the floating point hardware, were
all less than 256 bytes and therefore fitted into the microprocessors
internal high speed cache memory . Using this memory increased the
execution speed of the inner loops by approximately 25% . Within these
loops the floating point hardware was being utilised between 75% and 80%
of the time . Thus the main parts of the simulator were in a form that
was well suited to the hardware being used and utilised the available
resources to the full . Using a slower (¢ but cheaper ) floating point
processor such as the Motorolla M68881 would have a significant affect on
the overall performance of the simulator . The algorithm as a whole did
not use a large amount of pointers and data movement, as are required by
sparse matrix techniques, which cannot easily be economically split onto

multiprocessor systems .

Keeping the amount of communication between the processors low was
one of the prime objectives of the original software design specification
and the final algorithm required little inter-processor communication . The
communication between the host computer and the simulator is fixed
depending upon the type of simulator required . For example a training
simulator should produce the same amount of data as the telemetry system
on the real power system . The master processor which coordinates the
communication between the other processors and also communicates with the
host does not perform any of the simulation tasks . Even the data

corruption which the master does perform could be transferred to the host

- 194 -



computer if the speed became critical . The use of a communication bus
rather than shared memory also allows the master processor to control the
synchronisation of the processors very easily . This synchronisation is
simpler to achieve on a linear multiprocessar like the one used than on a

grid type multiprocessor .

The last of the points raised by D.M. Detig was solved by separating
the dynamic and static solutions, thus allowing the load and generation
sections to be coded separately from the network model . Thus the
generator or load model can be changed to reflect the latest requirements
and, providing the input and output requirements of the routines are met,
the new routines can simply be used in place of the existing ones . The
network routine could not be changed so easily but even the facility of
changing the dynamic models and being able to compare different solution
techniques and models is an advantage over those methods which combine
the dynamic and static portions of the simulation and require large

program changes to implement new models .

Two test power systems were used to compare the results obtained by
the developed multiprocessor algorithm and a standard sequential algorithm
on a minicomputer . These test systems were the standard IEEE 5 and 30
bus systems, the results show a good correlation between the steady state
results produced while the parallel algorithm modelled far more of the
transient effects of changes in the power system . This is due to the
faster execution of the multiprocessor simulator and hence the possibility
of using a far shorter time step for the simulation . By reducing the
sequential simulator's time step the correlation between the transients was

also found to be very good . The software developed for the multiprocessor

- 195 -



was also more robust when events such as islanding cccur . The sequential
system used for comparison could, at best, only continue simulating the
results in one island while the multiprocessor continued simulating the
entire system even when several islands were formed and then brought

together .

Comparing the algorithm to many of those produced to run a
decomposed algorithm on two or three minicomputers shows two main

advantages:

Firstly the major bottleneck caused by large amounts of
centralised computation normally required by the decomposed method
is avoided by the new algorithm . The only portion of central
computation required being one small portion of the matrix alteration

routine .

Secondly there are no rules to be followed over the dividing up
of the system between processors . Many diakoptic methods restrict
what types of buses can be connected to tie lines and nearly all
wark best when there are a minimum number of tie lines . The only
guidelines for dividing the network with the new algorithm is to keep
the simulation of the generatars and loads on the same slave
processor as that which simulates the bus to which they are
connected . This does not cause any further work in trying to divide
the system because it is natural to keep all of the functions of one

bus on a single processor .

- 196 -



The estimated simulation times produced from the results obtained
suggest that a realistic operator training simulator for a system of the
size of the C.E.G.B.'s, comprising 90 generators and 150 nodes, could easily
be solved on a multiprocessor . By using a simulator with 15 slaves a time
step of 150 milliseconds could be achieved even if a matrix change had to
be performed . With no matrix changes required the system could run with
a time step of less than 50 milliseconds . Even with this number of
processors the cost of building the multiprocessor hardware far such a
system would still be less than the cost of a standard mini-computer,
around £80,000 including the floating point hardware and communication

interfaces .

The algorithm is also suitable for any type of use . By relaxing the
need for real time simulation and including higher order generator and
load models the simulator can, by using a smaller time step, be used to
simulate the transients in the system accurately . The man-machine
interfaces required for any of the uses to which the simulator can be put
would all be resident on the host computer rather than on the
multiprocessor . Therefore they can use the full facilities, such as
graphics and mass storage media, available on the host through a high

level language .

With devices purpose-built for parallel computation such as
Transputers becoming more readily available the task of programming a
multiprocessor system is greatly simplified . By using Occam, programs can
be written in a high level language and have the interprocess
communication rigidly defined . However the algorithm developed would not

fit as readily onto a device such as the Transputer, which uses a grid

- 197 -



configuration, as onto the developed hardware which uses a linear
configuration . This 1s due to the fact that the bus connecting the
processors in the develocped hardware allows broadcasts to all processors
simultaneously . On a transputer system this can only be achieved by
passing the data through the grid: however the algorithm could still be

run on a transputer system successfully .

The new power system simulator described in this thesis makes use of
some of the latest computer technology . Its major advantages over
standard sequential simulators are; it is fast in producing results,
flexible in both the systems which can be simulated and the uses to which

the simulation can be put and finally economical in terms of hardware

costs .

-198 -



from

The following are books and papers which are directly referenced

within the text of the thesis:

N. Rafian, M.J.H. Sterling and K.R. Irving, "Real time power system
simulation”, Research report, Engineering department, University of

Durham, 1986.

R. Joetten, T. Ve, J. Volters, H. Ring and B. Bjoernsson, "A new real-
time simulator for power system studies", IEEE Transactions PAS-104,

No. 9, pp. 2604-2611, September 1985.

R. Podmore, J.C. Giri, M.P. Gorenberg, J.P. Britton and ¥.M. Peterson,
"An advanced dispatcher training simulator", IEEE Transactions PAS-

101, Fo. 1, pp.17-25, January 1982.

K. Saikawa, M. Goto, Y. Imamura, M. Takato and T. Kanke, "Real time
simulation system of large-scale power system dynamics for a
dispatcher training simulator", IEEE Transactions PAS-103, No. 12, pp.

3496-3501, December 1984.

- 199 -



10.

11.

J.R. Latimer and R.D. Nasiello, "Design of a dispatcher training

system", IEEE PICA Conference proceedings, pp. 87-92, 1977.

H. Biglari, E.E. Cashar, K. Hemmaplardh, D.K. Lee, H. Ramchandani and
S.A. Sackett, "A dispatcher training simulator design with multi
purpose interfaces", IEEE Transactions PAS-104, No. 6, pp. 1276-1280,

June 1985.

D. Magee, F. Flynn, P. Vehlage, J. Waight and R.K. Lehman, "A large two
computer dispatcher training simulator", IEEE Transactions PAS-104,

No. 6, pp. 1433-1438, June 1985.

I. Susumago, M. Suzuki, K. Miyama, T. Tsuji, K. Dan and A. Yamanishi,
*Development of a large scale dispatcher training simulator", IEEE

Transactions PVRS-1, No. 2, pp. 67-75, May 1986.

K. Sato, Z. Yamazaki, T. Haba, B. Fukushima, K. Masegl and H. Hayashi,
"Dynamic simulation of a power system network for dispatcher
training", IEEE Transactions PAS-101, No. 10, pp. 3742-3750, QOctober

1982.

G.E. Ott, L.N.Valker and D.T.Y. Vong, "Hybrid simulation for long term
dynamics", IEEE Transactions PAS-96, No. 3, pp. 907-915, May/June

1977,

A. Keyhani, "Development of an interactive power system research

simulator”, IEEE Transactions PAS-103, No. 3, pp. 516-521, March 1984.

- 200 -



12,

13.

14.

15.

16.

17.

18.

B. Stott and 0. Alsac, "Fast decoupled load flow", !EEE Transactions

PAS-93, pp. 859-869, 1974.

V.F. Tinney and C.E. Hart, "Power flow solution by Newton's method",

IEEE Transactions PAS-86, pp. 1449-1460, November 1974.

L. Elder and N.J. Netcalfe, "An efficient method for real time
simulation of large power system disturbances", IEEE Transactions

PAS-101, No. 2, pp. 334-339, February 1982.

H.H. Happ, C. Pottle and K.A. Virgau, "Future computer technology for
large power system simulation", IFAC, Vol. 15, pp. 621-629, August

1979.

D.M. Detig, "Effects of special purpose hardware in scientific
computation with emphasis on power system applications", IEEE

Transactions PAS-101, No. 2, pp. 265-270, February 1982.
N. Takatoo, S. Abe, T. Bando, K. Hirasawa, K. Goto, T. Kato and T.
Kanke, "Floating vector processor for power system simulation", IEEE

Transactions PAS-104, No. 12, pp. 3361-3366, December 1985.

HH. Happ, "Parallel processing in power systems", 7% PSCC

conference, Lausanne, 1981.

-201 -



19.

20.

22.

23.

24.

J. Fong and C. Pottle, "Parallel processing of power system analysis
problems via simple parallel microcomputer structures", IEEE

Transactions PAS-97, No. 6, pp. 1834-1840, September/October 1978.

F.X. Brasch, J.E. Van FNess and S.C. Kang, "Simulation of a
multiprocessor network for power system problems", IEEE Transactions

PAS-101, No. 2, pp. 295-301, February 1982.

V.L. Hatcher, F.M. Brasch and J.E. Van Ness, "A feasibility study for
the solution of transient stability problems by multiprocessor
structures", IEEE Transactions PAS-96, No. 6, pp. 1789-1797,

November/December 1977.

R. Lopez-Lopez, "Dynamic simulation of power systems on multiple
microprocessors", Ph.D. Thesis, Electrical Engineering Department,
Imperial College of Science and Technology, University of London,

November 1983.

S.N. Talukdar and D. Thomas, "Modular algorithms and multi processors
for simulating power systems", EPRI report EL-566-SR : Exploring

applications of parallel processing to power systems, pp. 325-334.

L. A. Dale, A. R. Daniels and I. A. Erinmez, "The real-time modelling

of the operation of complex power systems", Proceedings of the z21=*

universities power engineering conference, pp. 181-183, 1986.

-202 -



26.

27.

28.

29.

30.

31.

H. MNukai, "Parallel algorithms for solving systems of nonlinear
equations", Computing and maths with applications, Vol 7, pp. 235-250,

Pergamon press, 1981,

S.H. Fuller, JK. Ousterhout, L. Raskin, P.I. Rubinfield, P.J. Sindhu and
R.J. Swan, "Multi-microprocessors: An overview and working example",

Proceedings of the IEEE, Vol. 66, No. 2, pp. 216-228, February 1978.

AK. Jones, R.J. Chansler, I. Durham, P.H.Feiler, D.A. Scelza, K. Schwans
and S.R. Vegdahl, "Programming issues raised by a multiprocessor",

Proceedings of the IEEE, Vol. 66, No. 2, pp. 229-237, February 1978.

J. Grosser and S.N.Talukdar, "Models for MIMD machines", IEEE

Transactions PAS-101, No. 1, pp. 94-99, January 1982.

AJ. Perry, "A multiprocessor simulator for an electrical power
system", third year project report, Engineering department, University

of Durham, 1982.

J.C.H. Thomson, "A multiprocessor simulator for an electrical power
system", third year project report, Engineering department, University

of Durham, 1983.

T.J. Hammons and D.J. VWinning, "Comparisons of synchronous machine
models in the study of the transient behaviour of electrical power
systems" Proceedings of the IEE, Vol. 118, No. 10, pp. 1442-1458,

October 1971.

- 203 -



32.

33.

34.

35.

36.

37.

38.

S.R. HRacminn and R.J. Thomas, "Microprocessor simulation of
synchronous machine dynamics in real time", IEEE Transactions PWRS-

1, No. 3, pp. 220-225, August 1986.

P.L. Dandeno, R.L. Hauth and R.P. Schulz, "Effects of synchronous
machine modelling 1in large scale system studies", IEEE power

engineering society 1972 summer meeting.

G. Shackshaft, 0.C. Symons and J.G. Hardwick, "General purpose model
of power system loads", Proceedings of the IEE, Vol. 124, No. 8, pp.

715-723, August 1977,

C. Concordia and S. TIhara, "Load representation in power system
stability studies", IEEE Transactions PAS-101, No. 4, pp. 969-977,

April 1982.

M.H. Kent, V.R.Schmus, F.A. NcCrackin, and L.X. Vheeler, "Dynanmic
modelling of loads in stability studies", IEEE Transactions PAS-88,

No. §, pp. 756-763, May 1969.

M. Langevin and P. Auriol, "Load response to voltage variations and
dynamic stability", IEEE Transactions PWRS-1, No. 4, pp. 112-118,

November 1986.

K. Zollenkpopf, "Bi-factorisation - basic computational algorithm and
programming techniques", Large sparse sets of linear equations, J.K.

Reid (Ed.), Academic press, 1971.

-204 -



39.

40.

41.

42.

43.

44.

45.

46.

H.H. Happ, "Piecewise methods and applications to power systems", John

Wiley & Sons, New York, 1980.

K. El-Harsafawy, R.¥. KNenzies and R.K. HMathur, "A new, exact,
diakoptic, fast-decoupled load-flow technique for very large power

systems", IEEE power engineering society 1979 summer meeting.

AS. Householder, "Principles of numerical analysis”, McGraw-Hill, New

York, 1953.

V.G. Stagg and A.H. El-Abiad, "Computer methods in power system

analysis, McGraw-Hill, New York, 1968.

I. Durham, R.C. Dugan and S.N. Talukdar, "An algorithm for power
system simulation by parallel processing”, IEEE power engineering

society 1979 summer meeting.

I. Durbam, R.C. Dugan, AK. Jones and S.N. Talukdar, "Power system
simulation on a multiprocessor", IEEE power engineering society 1979

summer meeting.

C. Pottle, "Solution of sparse linear equations arising from power
system simulation on vector and parallel processors", Joint automatic

control conference, 1978.

L.L. Ferris and A.N. Sasson, "Investigation of the load flow problem",

Proceedings of the IEE, Vol. 115, No. 10, pp. 1459-1469, October 1968.

-205-



The following are books and papers which, though not referenced in

this thesis, are relevant to certain areas of the research:

A. Brameller, X.¥. John and H.R. Scott, "Practical diakoptics for

electrical networks", Chapman and Hall Ltd, 1969.

PL. Dandeno and P. Kundur, "A non iterative transient stability
program including the effects of variable load  voltage

characteristics", IEEE power engineering society 1973 winter meeting.

P.X. Dew, T.F. Buckley and M. Berzins, "Application of VLSI devices to
computational problems in the gas industry", Research report,

Computing department, University of Leeds, 1982.

Erisman, Neves and Dwarakanath, "Electrical power problems : The
mathematical challenge", A collection of papers for the Society for
Industrial and Applied Mathematics (SIAM) conference, Philadelphia,

1980.

C.A. Gross, "Power system analysis”, John Wiley & Sons, New York,

1979.

- 206 -



G.D. Hatchel and A.L. Sangiovanni-Vincentelli, "A survey of third-
generation simulation techniques", Proceedings of the IEEE, Vol. 69,

No. 10, pp. 1264-1280, October 1981.

J.K. Ortega and V.C. Rheinboldt, “Iterative solutions of nonlinear

equations in several variables", Academic Press, 1970.

K. Rafian, K.J.H. Sterling and HK.R. Irving, "Decomposed load flow",

Research report, Engineering department, University of Durham, 1984.

A, Ralston and H.S. Vilf, "Mathematical methods for digital

computers", John Wiley & Sons, New York, 1660.

AP. Sage and S.L. Smith, "Real-time digital simulation for systems
control", Proceedings of the IEEE, Vol. 54, No. 12, pp. 1802-1812,

December 1966.

B. Stott, "Decoupled Newton load flow", IEEE Transactions PAS-91, pp.

1955-1959, Sept/Oct 1972.

R. Vait, "The numerical solution of algebraic equations.", John Viley &

Sons, New York, 1979.

Y. Vallach, "Alternating sequential / parallel processing", Springer-

Verlag, New York, 1982,

"Power Engineering Review", IEEE monthly periodical.

- 207 -



The method discussed in section 3.3 of this thesis splits the B' and
B" matrices into three parts . To reduce the memory requirements for the
algorithm the matrices representing the inter area lines (B',., and B",_ )
can both be represented by a connection matrix and a square matrix

containing the elements of the corresponding B matrix . Locking at the B'

matrix :

B'ja1 = CN'C* (10. 1. >

where C is the connection matrix and M' the element matrix . The C matrix
is rectangular with the same number of rows as B',,, while the number of
columns is equal to the number of cut lines . All the elements C,; are
either 1 (first end of cut line j is at bus i), 0 {(cut line j does not
touch bus i) or -1 (second end of cut line j is at bus 1) . The ¥' matrix
is square with the number of rows equal to the number of cut lines: the

off diagonal elements are all zero while the diagonal element M';; contains

the 1/x value for line j .

This process can be repeated with the B" matrix: the C matrix is
exactly the same so does not need to be recalculated and is only stored
once . The M" matrix contains the negated susceptance terms for the tie

lines on the diagonal and the rest of the terms are zero .

- 208 -



The B'... and B".,, matrices are also very sparse and can be held as
rectangular matrices because only the columns and rows corresponding to
the temporary buses have any elements: since the matrices are symmetrical

only the column half need be stored and the transpose of this used for the

row section .

- 209 -



The parameters for the 30 bus system

(figure 7.1)

are

slightly

different from those given for the standard IEEE test network as presented

by L.L. Ferris and A.M. Sasson [46]

. They include typical generator time

constants and inertias and the load data used was taken from a midnight

load distribution on a theoretical load curve .

The system contains 30 buses, 6 generators, 41 lines and 21 loads

The data, on a per unit base of 100 MV is as follows :

GENERATOR PARAMETERS
GERERATOR| : : 4 . ;

NUiggR 1 2 5 8 11 13
POVER 0.50539 +|0.50000 +]0.30339 +|0.50000 -}0.50000 +{0.10000 +
J 0.28684|3 0.18027(3 0.12843}j 0.05873}j 0.28684|j 0.29043
TRANS 0.00000 +{0.00000 +|0.00000 +|0,00000 +10.00000 +|0.00000 +
REACT J 0.25000|3 0.25000{3 0.50000}(j 0.50000{j 0.50000{j 0.50000
GAIN 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
H 5.00000 5.00000 4.00000 3.00000 4,.00000 4.00000
TC 0.30000 0.30000 0.30000 0.30000 0.30000 0.30000
PSET 0.50539 0.50000 0.30339 0.50000 0.50000 0.10000
FSET 50. 0000 50. 0000 50.0000 | 50.0000 | 50.0000 50.0000

-210 -




LINE BUSES RESISTANCE REACTANCE LINE CHARGING
NUMBER| CORNECTED P.U. P.U. P.U.
1 1 -2 0.0192 0. 0575 0.0264
2 1 -3 0.0452 0.1852 0.0204
3 2 -4 0.0570 0.1737 0.0184
4 3 -4 0.0132 0.0379 0.0042
5 2 -5 0.0472 0.1983 0.0209
6 2 -6 0.0581 0.1763 0.0187
7 4 - 6 0.0119 0.0414 0.0045
8 5 -7 0.0460 0.1160 0.0102
9 6 -7 0.0267 0.0820 0.0085
10 6 -8 0.0120 0.0420 0.0045
11 6 -9 0.0000 0.2080 0.0000
12 6 - 10 0.0000 0.5560 0.0000
13 9 - 11 0.0000 0.2080 0.0000
14 S - 10 0.0000 0.1100 0.0000
15 4 - 12 0.0000 0.2560 0.0000
16 12 - 13 0.0000 0.1400 0.0000
17 12 - 14 0.1231 0.2559 0.0000
18 12 - 15 0.0662 0.1304 0.0000
19 12 - 16 0.0945 0.1987 0.0000
20 14 - 15 0.2210 0.1997 0.0000
21 16 - 17 0.0824 0.1923 0.0000
22 15 - 18 0.1070 0.2185 0.0000
23 18 - 19 0.0639 0.1292 0.0000
24 19 - 20 0.0340 0.0680 0.0000
25 10 - 20 0.0936 0.2090 0.0000
26 10 - 17 0.0324 0.0845 0.0000
27 10 - 21 0.0348 0.0749 0.0000
28 10 - 22 0.0727 0.1499 0.0000
29 21 - 22 0.0116 0.0236 0. 0000
30 15 - 23 .0.1000 0.2020 0.0000
31 2z - 24 0.1150 0.1790 0.0000
32 23 - 24 0.1320 0.2700 0.0000
33 24 - 25 0.1885 0.3292 0.0000
34 25 - 26 0.2544 0.3800 0.0000
35 25 - 27 0.1093 0.2087 0.0000
36 27 - 28 0.0000 0.3960 0.0000
37 27 - 29 0.2198 0.4153 0.0000
38 27 - 30 0.3202 0.6027 0.0000
39 29 - 30 0.2399 0.4533 0.0000
40 8 - 28 0.0636 0.2000 0.0214
41 6 - 28 0.0169 0.0599 0.0065

-211 -




The line charging given

charging for the line .

in the final column

LOAD BUS ACTIVE REACTIVE
NUMBER| NUMBER; POVER POVER
1 2 0.18221 0.10664
2 3 0.02015 0.01008
3 4 0.06381 0.01344
4 5 0.79096 0.15953
5 7 0.19144 0.09152
6 8 0.25190 0.25190
7 10 0.04870 0.01697
8 12 0.09404 0.06297
9 14 0.05206 0.01344
10 15 0.06885 0.02099
11 16 0.02939 0.01511
ie 17 0.07557 0.04870
13 18 0.02687 0.00756
14 19 0.07977 0.02855
15 20 0.01847 0.00588
16 21 0.14694 0.09404
17 23 0.02687 0.01344
18 24 0.07305 0.05626
19 26 0.02939 0.01931
20 29 0.02015 0.00756
21 30 0.08900 0.01595

-212 -

i

&}

half

the

total



The results for the tests giving the time taken in the network and

Householder routines are presented in graphical form in chapter 7 . They

are given here in tabular form :

Number of milliseconds for a network solution with

of generators (ng) and buses in each area (mba)

varying numbers

NUMBER QF GENERATQORS
2 6 15 30 60 120
oI5 | 03646 | 1.0216 | 2.542 | 5.088 10. 06 10.02
K| 10 | 0.6704 | 1.9065 4.743 9.486 18. 88 37.48
o1 15 | 0.90080 | 2.8300 | 7.000 13.03 | 27.72 54.74
R| 20 | 1.2800 | 3.725 9.207 18.31 37.63 72.10
ol 30 | 1.8880 | 5.500 13.61 27.32 | 53.96 107.2
750 | 3.13¢ | o9.035 | 22.36 44.36 | 88.72 176. 0
5 75 | 4.667 13.59 33.36 66. 44 132.3 263. 1
s| 100] 6.230 17.99 | 44.33 88. 30 176. 4 349.9
| 128 7.850 | 22.84 | 56.77 113.3 | 226.0 449.6

All these results were used to obtain the series of straight 1line

fits which are presented in the results section on the graphs and as

equation (7.2.1) .

-213 -



Number of milliseconds for a Householder inverted matrix alteration

for varying numbers of buses in the system (nb) and buses in each area

(nba)

5 10 154KuHBgg—QE_Bg%Es_lNE%XSIEHﬁg_—_?]ﬁf—___TEE_
g 5 |1.011 | -- - . - . - - -
K[10 |1.508 |2.939 | -- - - - = - -
g 15 |2.010 |3.932 |5.846 | -- -Z - - - .
R[20 |2.507 |4.939 |7.304 |90.737 | -- - - - -
030 |3.504 |6.896 |10.282|13.696|20.212| -- - - —
F150 [5.447 | 10.867]16.260]21.573|31.920|53.200] —- - .
3 75 |7.980 |15.820|23.475|31.080]46.500|77.600|116.29| -- -
s5{100{10.467|20.667|31.080|41.059|61.360|102.00|153.00|203.50] -
g 128]13.250|26. 400[39. 400[51. 733 77. 700] 129. 50 194.50| 258. 67| 330. 40

All these results were used to obtain the series of straight line
fits which are presented in the results section, both on the graphs and as

equation (7.2.3) .

-214 -



The first listing is the assembler listing for the master processor
in the M68000 multiprocessor system, it does not include the listing for
the floating point software or the IEEE interface drivers . The generator

algorithm is in two parts:

1) The initialisation of the generator variables which is the

section after the label "genint:" .

2) The main simulation algorithm which is the section after the

label "gen:" .

Similarly the network simulation is performed in two parts, the
initialisation after the label "netint:" and the main simulation section

after the label "net:".

The second, third and fourth listings are the 'C' programs written
for the M68020 system with the floating point hardware . These all use
macro definitions to access the floating point hardware, these macros (
FFPU and IFPU ) take three arguments . The first argument specifies

whether to use the multiplier chip or the arithmetic chip:

SEQ4 - means put a parameter into the arithmetic chip .

- 215 -



SEQ5 - means get an answer from the arithmetic chip .
SEQ6 - means put a parameter into the multiplier chip .

SEQ7 - means get an answer from the multiplier chip .

The second argument specifies which register in the floating point

chip to load or unload:

LAS - load the A side of the appropriate chip .
LBSF - load the B side of the appropriate chip and perform a
function .

UBLOAD - unload the answer register of the appropriate chip .

The final argument specifies which of the possible functions the
arithmetic unit is to perform (the multiplier will always perform a

multiply):

SA - single precision add .
SS - single precision subtract .

SD - single precision divide .

The second listing gives the algorithm used for the network
calculations, the third gives the generator algorithm and the final listing
gives the householder matrix alteration program . All these listings are
those used for timing calculations and do not include any interprocessor

communication.

-216 -









2316123 1937 cfAli?2177 2a3e 3

2

sudli sletemp?
D2 sacto
Jasr volout
Jra 32¢20
volout: nov! temolsd?
Istl 13,42
2331 fDusvol +dl
nov i 10e20
joasr Jutoeh
josr Jutoen
nov $0xDa,d0
trao 415
L. Lol 2
nov i t2npled0
adit t1e¢d42
cmot 1ndi
jnz 1oteql
nov | iNeydo
nayteg!l: novl 1J0stemnpl
rts
start: tran 15
e NIT 2 R
cmsd AR I
112 arountd
nov i iIdfffffffieial
Jhsr 1291t
rts
arouni: josr stenum
[+ T %] %640
Jj23 jonr i 3Nto na2nerator ~1312: rogtin-
ol BT} 31ed2
j23 lochr i 30to 1o2¢ change rogtina
ol il I £ 24933
Jj2a lichr t 3ot> lina crangm raJatine
sMman 23440
j23 sistoo i 3ot2 simulator stas routin-
Jjra start
conre: Josr jtenun
nov | 324933
rav) idealtne
Jhsr stenum i a3k for new psat
navl 2Dds 3¢
Jjosr stenu-r
saz! 11943
asit %42
3131 205332
novl 134272
nov i 1%eald i stourc pset
sus! 10520937
3321 fsagecn
novl 33437
nov i 139302 { stor: fset



lochr:

cfedlaz217°”

5401
ajat
nov |
Tovi
nov |
trap
«awWOl 3
noavi
nov!
trap
s WDl a
nov i
trap
ewWdrd
jra

Jjasr
Tov
nav!
Jdsr
novi
Josr
novt
5421
nov i
asit
1331
novi
nov i
nov |
Jjosr
novi
asi|
ajad
nov i
nav!
sudl
navi
v !
nav!
nav!
aov |
ravi
Jjoasr
navi
trap
s AT C
novli
novl
trac
" AT L
novl
trac
eNIIlZ
jrs

Piga2 &

“fsateg?
sicontrs+d3
13,20
¢t1¢ad2
#3stropeal’
Y15

o
faltnosal
14431

¥15

11
sastropsal
$15

12

start

stenunm '
30043

i%¢3ltno

gtenum

32+ temp

Jtenum

I2st2Mote

1443

13siel

£3443

§13dadnea’ H
13421
tanpea?
4vlea?
>onsub
i2led3
12+33

rzsnt H

)

find which

calculate gifferznce

get

us33at»>

v 3°2¢C

loac is to 2 altered

Ioa? bus

1333 adnittanz»

40 variiazstas for aousziat~. r

S5 0us210lZer ractin:

13Use



12:15:28 1987 cfA019217D Page 5

lichr:
nov | {lnapstsa3l
trap §15
ewW0Ord 10
Josr jtenum it find wnich fine is to be altered
novi 10+d3
novl J3saltno
sual ¥l1sd3
asi| #2443
nov | 130d4
1131 #iconed3 i find wnether lin2 is in or out
novi 33sa24
nov i 143+ inout
nov | ¥linotpsa3l
trap 15
eWOrQ 10
Jasr Jtenum
novi 30443
okOorl: zmai 143¢d3
Jjag start
novi 14+495
nov i 14436
adat §ienglyds
2a3dl| Biend2sdé6 i find busses at bota enas of the line
novi 15+a0
7oV 1592l
nov | 202+d5
sual £1445
novi 1Ssiel
nov | 213d»d6 i store puses-1 as i2! and i2? for T0uUse
sao1 41yd5
novli I%5sie2 :
asi| §1934
navi 16435
adil f1inadmedt
addt $liacryg.ds i set up vl anc v2?2 foar “ouse from
novl 3146920 ! lin admittance and Iina charging
nov | iSyal
nov | “ylea?2
josr >2nadd
novl 3103+,4v2 o vi=linatm(I)+linzr (1)
novi 20dev2¢s t v?=tinadm(])
novi 313s243
Jj23 cuttne
2ard *Ix80002000ev2
sori $Ox8000C0N0sv2+4
Jasr icont
ira 12xths ! one of vl and v? nust za negated
puttne: 20r1 £9x800C7003.v1 { ‘'depending on insartion or caletion
2o0r | ¥0x8000370035sv]+a
jbosr 1cant
nexths: mnavl! i2letemp
nov i i22+iel .
novi tanosie? | second zall ta hagsa with i=2l ana i22 swapao

Jasr j1cont



12:15:23 1937

oopst:

=fa2132177 Page o

sistoo:

i

~

D

-

erc:

‘D

i~

.

novl
trap
e WOT J
nov
novi
trapo
enNIT 2
zmoi
jeq
navli
trap
«WDrQa
jra
navli
trap
e nNdT L
jra

{rap
e ADIZ

novi
anz|
5401
asi!

nov !l
analt
J23

[ T I U W VY
a3 W et W
-1 fa W QU -

—_ o= —

roxti
roxrd
rts
nav |
rts

=l

-_— g
2.3 1w U
(L=

A

nov!
andli
ori

a3zl

$tstropsal
$13

10
taltnosald
3byd]

¥15

11
§lyinout
3005t
sistropea3ld
15

10

start
tostropsa3l
¥15

12

start

15
16

127,31 \ convart
IxTEFDONZ2JeG1
Idx?254C07030431

i2+31

10932

§O0xD2FfFfffeq2 i d2 contains fractional nart
zaroe

s1ledz

MxD1"37C22+d1

i24412 Vo normatisas numher

taosat

§dxCOFfFfffeq?

1ledC

il V r=assemhle in 27

ilede

e dl

23,31 ! zconvart i2z2 tp 2e.z2. forrat
zaro

E"x7fE00300¢d1

12Ix4090M02 35001

41431

INed2

s IxCCTFFffieql

¥xNOR’TICCACea2 i 3" czntains tnh2 fraztional
DdxNDGEIT3N 0441

narte



Oct 25 12:156:28 1987 fAC192170 Page 7

divoyésd: ostst $22+31
in2 Tormatl
otst ¥234+d1
jea ckasmb inarmatiss ths ngmoar
normal: 1sr| t1ed2
adal $0x0040000Csdl
Jra jivoye
ockasmbi: 5r ils42
asi| ¥14d40C
jco ratpe i reassembie into pez2. format
ssz2t 31902

retoe: rts

gatin: Josr stcoo
novl $Nnbeaé i input number of pusses
Jasr 12xin
novl nlvas { input number ~f JiAaez
Josr 12xin
novi ¥nlosas ! input number sSf Y5343
Josr 1axin
nov! *15eal i ingcut number of J2a2rator=z
Jasr izxin
Tavl shausvolsas
Tovl 1be 45
initcs: mavl §0x3f8000°0saba+
novl E0xDya4ad+ i Initialises nus valtages
sudi 41923
IRE initbs
nov ! fiendlsas
novl Aledd i inpJt o2th ends 3% 2acn jiAe
Josr arryin
novl tievd2ras
josr arryin
nov | linadmeas boinpat line 2amittance srray
Jjosr Arryczo
nov $linzrzeat i inzJt liner~ array
jasr :rryco
nav | fizoneat
initin: nav! 11262+ i 321 icon array to .
5431 $1¢32
Jjn:z ivitic
navl i losouratd ¢ irput load hus array
nov | A1)3e 3%
Jjbsr arryin
nav | ¥l1a3dzdmneas ¢ input lIoad 2crittaace ArFay
josr aIrrycn
nav i 19933
nov | “igeahue at { inpul c=2nerator 543 nuaber
Josr airryin
avl Y303AWNre3 s + input 3=neraftor opawor
Josr iTryso
nov ! 5323%admeas i input generztor adnittznce
Jasr arryco

nov i $33iNneae { input senerator 32in



Jet 25 12:15:23 1967

initct:

arryri:
arrlilo:

arryin:
arinla:

arryco:

cfADLS

JosrT
navli
Josr
novl
jbsr
nov !
jbsr
navi
Josr
novt
Josr
nov i
novl
sudal
FRE

novi
novi
nov i
novl
mul 4
navli
josr
novi
nov
nul J
navli
Josr
nov !
Josr
novi
novl
mul g
novl
JO5T
rts

qov i
idsr
nay!
Jnsr
™l
Sa3t
Jn2
v
rts

ndvl
Josr
5421

<

172

%age o

arryr|
$nya4
arryr |l
ttceaéd
arryr |
§ns52tsaé
arryri
$fseteas
arryr |
931 tateas
arryr
$icontreas
09243+
¥1,35
initst
$itinevas
¥Dyaba+
INDedG
10935
J6e 13
rdnateas
arry:-p
12034
Theds
34%ed3
¥bnateas
irryzo
¥cmateas
arrycp
13034
13935
14¢3°
Fanzteasd
arryzp

1%,3¢
Yaxin
21,42
arinios
3bed3

arryr |
arryr |

input generator 4

input generatoar tine const

input gener2ta3r poiwer 32t 20int
input generataor fraguency set goint
input Jenerator algorithm stan iengtn
set icontr=2

zerd> tine

input 3 matrix

inout o matrix

inpJdt c matrix

input 2 matrix

inpur 21 array Af real Agmoers
lan3th >f array i~ 43 in lzcocotien

p2oi~tad to

cnnvert fro-

dJagraemans

ingut an array
stored 2t a4

dascrz2m2nt counter

inout comoiax
array routine

Ty ab&

Dele U2

sounter

of iatejars fangtn ;7

2rr1y

i222

format

cy ?



Oct 25 12:15:23 198~

hexin:

aumar

numor

stcoc:
stnex:

retec:

nexno:

.

-

»

cfadivzlrn

cutpeahs

..

jasr
nov i
nov i
nov i
novl
trap
«AJl2
nov i
trap
e NJTJ
rts

navl
nov>o
e
s -

trap

jra
Tran
e NOl 3
2132
ol PR}
jnz
rts

navl
novl
novo
11 3n
Isrt

331k

(9]
=
[

(@]

[P B

et b L
(o (b O L2 Ll < LW, W
J

=3 e
Y DT

o)

) W
[ Bbe 4

[ of N VR SN
e S dit NG RS T S

.
U ow
- O0OJg

—. L
3 L
w v

navi
trap
aov i
tran
en)dlC T

wOT 32

age 9

Jlenun
14920
14922
310sae+
Y4041
$15

11
§naxteal
¥15

10

§3tinoeas
1SD+4+d0
ratec

415

r
&

i BT o N VY I
D D2 =t
et X X (VTN |
m N~ m
() LI .

-

a

[&]

3J3sal
Y6edl
2233930
¥0x¥Cear
thydl
*¥x3C.2"
i2%x25,00
AUNSr
TNIKQT7427
11,

-
7

273+4d9
eNxNfag2
32x3C40
¥I%x33,4d°
nuynorl
Y0xNT74.5"
¥15

Y
[
-
|5
-

AXNG

[RVIR 7 S L VI - A BN

writes a

waits for

raturning t

conmand t3 nost t5 star
datz transfer

W

on



Ict 26 12:15:28 1987 CcfADLI217D Page 10

gbenumn:
gcnarO:

gcharl:

endnum:

gotit:

gtenum:
gthar?:

gtnarl:

rts

nov i
trap
+WIrg
anilt
SugD
Jjmi
cnabd
Jjte
Sudd
cTMab
itle
jra
trap
«Wdr3
alat
ol L)
Jjea
suob
jni
ol T e
IE]
SJ435
ol (o }e)
Jla
navl
rts
Isll]
e Jo o)
ar)
jra

nov i
trap
e NIl 3
2131
SJ22
Jni
cMIo
Jla
5422
ol 1 o)
Jle
jra
trap
eWIIlJ
2131
ol 1 %o
Jeq
542D
Jni
cmoo
Jtz
$42)

$0s37
¥15

3
¥0x000Q007f +dO
$0x304d0
gcnar0
¥0x03,d0
jotit
¥0x07+dO
$0x0fqy dl
jotit
acnar0
¥15

3
$0x0000007f,d0
$IxT7f+d0
jcnartl
#0x35+dD
endnum
#0x03,4d0
jotit
#0xC74.d0
$0xNDfegon
jotit
37+4d0

{6ed7
$0x0Df+d0
1%.37
scnarl

$§Ne07
#1535

1
$0x2003007fFdn
$0%x30,49°
stnar?
E0x 534"
attit
¥0x07.4dC
40xO0fo+d2
3ttit
3tnar0
¥15

i
$¥0x000GCo07feqn
¥IxT7fedO
3tnarl
H0x30+d°
etdnum
¥0x03,4d2
attit
$0x37+00



Jct 26 12:16:28 1987

etdnum:

gttit:

genint:

ngenin:

netints

nnetin:

Snob
jle
novi
rts
Isit
a1do
ors
jra

navi
novi
nov i
nov |
asi!
novi
asi|
novli
Josr
nov |
Jjosr
novli
Josr
navl!
Jasr
novli
Josr
nov i
jbsr
novl
Jjasr
nav!
Josr
novl
josr
novl!
navl
s3al
asi!
navi
ibsr
adzl
213l
Jjnz2
Jjra

novl
nov i
navi
novl
adit
nov |
nov !
nov !
novi

cfAD19217D0 Page 11

¥0x0fsd0
Jttit
i7.d0

{64647
#0x0f s dO
10,47
gtnarl

#slgenosab
¥06d7
163++d6
37+d5
92445

15, d6
¥lede
¥gowreat
send8
¢gainsal
sends
¥da2ltat.al
sendé
thead
sends
“tceald
sendé
¥nseteald
sends
Yffsetsal
sends4
¥32nadmea”
sends
#igenbusald
sendes
¥igenbusald

102{0ec521) v gs

¥lede
¥2¢14
¢huysvol eal
s5end8
$1047
13037
132nin

Jen

#si{bsnosasc
£D4 45

€0, 37
260045

17+ 45
17estemp
$tampeal
36+40
itedl

- -

-

-—

initialise generator
to slave
gen no

a6 noint
d” holds
dé nolds
dS holds

d4 holds

send

send

send

send

send

send

send

send

send

send

slava

gpwr for
gain for
daltat for
h for
tc for cur

ps2t for

fset for currant

jJenadm for

surrant

nimber

nimnaer

gen no¥4

gen no%*B

programs

currznt zen no

gen no

zurrent jen no

current gen no

rant gen no

sJdrrent

sen

curra2nt gen no

cen no

np

igenbus for surrent 3zn no

busvol for

carrent

autamatically do 32n

initialise networ< programs
aé 20ints to no.
ds nolds
d? 1olds

ds ~oias

slave
nyausl

myous?2

5f busses
nanper

i32nous

far slaye



2Ct 25 12:15:23 1987

sen:

naen:

cfadli217n

Jjasr
nov
nov |
navli
novl
Josr
novli
navi
navli
Jbsr
nov i
nov i
nav i
jbsr
novi
nov!
1si
novl
josr
nav |
novi
asi!
nav i
iosr
navl
nov |
astl
navi
mala
ad3l
nov i
mutu
asii
wav i
Josr
navi
adil
zmold
Jinaz

jra

navli
novli
novi
novi
asi|
novi
asi!
navl
Josr
wovli
adzl
navli
navl

Page 12

itampean
16930
Y4441
>tscom
¥n3eald
16430
144931
ctscom
*1peal
164310
6911
ctscom
$ig2nbuvad
19+ 31
¥2931

354+ 30
ctscom
#32nadmeald
10y 31
£3,4]
35940
ctszcom
t3natcezal
17443
¥3,4d3

1be dl
31433
33,420

153 +4d2
12,41
13,41
3542
ctscon
15437
£1.d:
1Slave
Anatin

12t

Rl

"Jeab

-J W

s o® -

1o

TR R S En
QU= e Y N2V
[+l

i

+

-
[CURP RGN N TN v
\n e

. -
Q = = e
£

ontrsal

=)
d
5

vi

1K

c2ntrea’

ad?

[ e N
- % e

(@8
(W)

cutaut rybusl

outiut rybusZ

outout ng

outout npo

outdut entire ig2v3. array
autdut entire zenz2.n array

get start of relavant gmat in 40
lenjth = n9”*(nos 2.5 in this Araad)=
Jutout relevant dart of gmat
automiaticz2tly ue ~:ztsork czl:
send icont an<d busval

a% osoint to stava niahar

d7 holas n2n no

d4 nolzs stave numoar

d% 101d5 221 3%y

dé "z las gen np%3

send icontr far zurra2na<t ,2n nn



>t 26 12:16:28 1987 -f4al193217" Page 12

navi ¥igeadusald
navl 102 3+d5:1)ede
sJol 41934
ast | $2¢36
nov | ¢busvolsal
Jasr sendd v 32n7 busvol for zarrent igzncus
nov i 313434
novl ¥icontrea0
adil 35¢a0
novl 103,33
j23 10s52tp i go for next go2n if icontr=2o
nov i #0523t 4afd
josr sendé4 i send oset far zurrant g2n nn
navl ¥fsatsal
Jjosr send4 { send fset for zurr21t sen no
noseto: a3jdil 1437
>nol 19437
Jna 132an i do next gen
novl $513210+a5 i 25 20int t3 slav2 nuaber
novi 0,47 i 47 hoilds gen no
nleng2: noavl 153+4 0 i+ d% holcds siave nymoer
nov i 37«44
asi! $3,d¢ i 26 101ids gen n3%3
novl £3pwreal
ijosr races i ra2czive gen power
ad3v | Yitiead
Jasr cegce? i racz2ive gen czurranat
navl gajasheaC
Jjosr raced i racaives gen edasn
2331 41,47
mal 13937
RE) 132nge i+ do next gen=rator .
rts
net:
navl §2e¢d: i 3% 1c!1Ss slavae namoer
nnet: novl =3Jazhyal
wov i 19932
rov 13043
2st 13,31
Jasr ctscon ! sen? =23ash values
adcl $led2
ol ol | Islavesds
FRE 112t i 32 next 3lave
nov | *Slbsnoeas i a% noints t2 n2e 2f suss-= “.r
nav i idy943 ! 25 1atds slavs nynoer
navi ¥0437 i 347 ~21ds myousl
nnatl: azv 2bwe 3~
a3l 374742 ! a% 1oles Tyous2
a2v 4nJsvol +22
. nsvl 317425
asi! ¥2,43
add! 1342l i a” soints to asusvil(nyuusl)
nov i 253+43]




't 26 12:15:23 1987

<fAaNL3217D 23qge 14

ncont:
tmplab:

tmpla:

sends

rthroon:

sendi:

receb:

13511
navl
Jjosr
aovl
1331
-mal
jnz2

rts

Jasr
navi
Jasr
zmol
Jj22a
nav!
jasr
aav |
jbsr
navl
J25r
navi
J05r
nov i
josr
Jasr
Josr

2131
navi
navi
jra

1131
noyvi
navl
jra

a4t
nav!
Jra

novl
nov
Jasr
13311
cmol
pna

josr
rts

3941
16930
stczoom
154437
$1418
1slavesds
net?

alllis
#i21lea0
ctalle

Nxffffffffeiel

“tacon
ti224al
stalle
tyvleal
ctalle
Yvl44420
ctallc
Y2437
ctallc
iv2+h4ean
ctalle
anlat
statlece

inlat

15420
t4yq]
316440
stscom

169230
iRy 41
15430
ctscom

344920
1649 140
stcoonm

§J9133
33440
s2tin
¥1e43
A1siavesn3
allli?
o010t

dl nolds numnber
d0 holds stave numoer

32t busvo!

do next slave

2f bytes

from slave

send vliev?sieleiz?

set atl

outout

if =fffffff~

outout

outoau*t

Suiodut

oQutouLt

sutout

slaves t»>

iel

[R5

vi+e

V<

vZ2+e

release slaves

let slave containiag

release slaves

set all

slave to

listen

then 10 rchanga:

listen

izl talk to

return

all



25 12315328 1957 2fag13217n

ctallc:
stallc:
stall?:
a3dain?:
stall?:
incsta:

nov2
Jjosr
TovD
Josr
movDd
Jjosr
novI
Jjosr
rts

navli
nov
nov i
23231
a4
zmald
olz
navli
novli
novi
cmo i
Jel
as5r
addi
cmo |
Jnz
novi
novl
iosr
5401
123
rts

®zae 1°

1d3+,4dcC
>utout
101+,30
>utout
3034+,0d0
>utout
103++d3
3s52rtn

§0433
YoxfEffFfffoedT
¥slbsnosal
103+,43
£¥1¢37
i21+d3
stall?
$1leds
ERAR . I
124140
23,47
incsta
s52tin
$1,432
Aslaveyd3
stall3
37430
1Seal
stczcom
“1edz
132112

controiller outputs % hytes

one slave t3 alltinciuding ccntrollar)



Jet 25 11:27 1337 /usr/so:ol/Iolraquest/Xyzfjc—IDD “a1ge 1

#include <staip.h>
Bincluge "foyen"

/= test program for nztwork calculations %/

floag :usvr[lZB]'dnatr[16384]vganasr[ZS]veJasnr[LF]:
flzat Jusvi[1281o1nati[163841vgenaci[251;9333ni[ZF]T
flaat ¥D2re*p2i 90 3rexpljs

int it2n>5us(25]:

int nh=3)2:

int nn=s3

int A1=1300¢

i1t Neiexs

char rubs;

/= ma2in 1225 t> calculate -usvol =/
mrin()
{
register jJotcoretoiretiroetii;
registar flaa* L 9%¥DGi 9= lr e ol
/% initiatisa fag @/
satwtli(};
Tor{in=0in<azin++)
{
igencasiil=n;
Y
priftf("start ~atsn ang pra2ss return\ ")
stenfl™ L2 "y Srgyv)s
for{h=33in<atli++)
{
clr=susvr?
cli=ousvis
farli=2tidnbsive)
{
vSS{=plr) = 33
vSot=oli) = O
dlr++3
3li++?
}
22r=32na3zr:
2?i=g3enazi:
dAr=gdzsnr;
d2j=adashi;
forti=3:

i<ngii+e)
<
<=(i << 1)

24r = Ladmatri<]:
24i = Lomatilkis
31r = ypusvr?
31i = Cusvit

tadr= MSOl::xpzr)*

tp3r= 4SOU%p3ir):s

for(j=03,<nbs j++)
¢




>t 25 11:27 1987 /usr/soixol/ios/request/xyz/dG-100 Page 2

/% complex mult dmat(iek)%genaam(j) %/

11:

FEPU(
IFPUL
FERU(
FFPU(
FRPU(

FFEI2U¢(
tir -

FEPUI
FFauL
FEAUL
1F2U¢
F=aut

tli =

1=PU(
1=p Ut
FFaUL
F=P Ul
1F3U(
FEoyg

FE21(

FFIUY
*alr

152u¢
FE3U(
1EP U
1°3y¢
F =3¢

FE2UL(

FEa J(
%311

SEQS5 + LAS
SEQ6 +LBSF
S=Q4 s LAS
SEQ6 » LAS
SEQ6 +LBSF

e @ -

SEQ4
IFPUL

LB8SF,
SEQS .

SEQ6 +LBSF ,
SEQ4 4+ LAS
SSQ5 +» LAS
SEQ6 +LBSF .

"

SZQ4 o+ LBSF

IE3U( SEQS

SEQ5 4 LAS
SEQ6 +LBSF
SZQ4% » LAS
SEQ6 + LAS
SEQ6 +LBSE ,

L]

SEQ4 » LBSF

& o LAS »

(7]
m
0

mn

3 LBSF,

SENSE

Qs
eF

Pt

o d

+L3SF
+ LAS
» LAS
s L3SF
v LBSFy

mien man.m

OO DO D
> &

(P2 I V% I % B VAT V3 ]
S o

[= oo Ne R
R

SS)

UNLOAD

oo oo
- r

UNLOAD

oo wouo
- -

wr

Sad

(LI | I TR T R ]

complex multinly tl%*edasnl j)

*phr;
tp2r:
FFP UL
*p2is
=pae&is

SEQT

FFPU(
v 0 )3

Fphrs
FFPUI
*p4i s
tp2r:
FFPU(

v+ 0 )3

x/
tlrs
tp3r:
EFP UL
*p3is3
tlis
FFPUL

EFPUI

#plr?

v JNLDAD » 2 )3

TO OO
-t o

[}
~—

SA)

tirs
FFPUL SZQ7
tlis
to3r:
EFo UL

FFP LI

*plis

v JNLOAD » D )3

UNLOAD

UNLDA4D

UNLOAD

JMLOAD

UNLDOAD

UNLDAD

UNLDAS

uto2ad

JNLOAD

JNLOAD

Q






T 25 11:23

1997

nclude <stgioeh>

#incluge

/% test

"fDU. n"
pro3ram for

float

Jyenerator

for{n=Cindatine+)
{

/% §iti = (i2dasn~-iat)=yanady =
FEPUL 333 4 LAS & n ) =
FEDUL 3334 o L2TF, §3) =

3¢ LTAdi = FEOUL STQT . UKL
FESUC 5506 w Lias v 2y =
FEp 33¢ 4, L3SF, 33) =

i1z FEIUC 3304 4 LAT ., 2y =
FEPUL 53315 oLB3T , 0 ) =

122 FE2Ul 5524 4y LAS & 0 ) =
FE2L 3544 o LAT & 2 ) =
FEPUL 3534 40337 - 7 )

[

calcutations =

/usr/siddal/lo/rzouest/xyz/do-92 Raje 1

a

iedzzni;
ietis

A 2 )t
iadasnr:
iatr?
SEPUL SERE
Jenair:
EEPUL 331737
tempi

Jenalj

/

’

GHLTAD

LMLDAD

1aqrv|utr.netr.oedasnrvoaiasnr[751 »J,2023r

AR I

e

32 {251
float ceqaaisiitisvietisicedasnisoada shil?2%y252023211227;
ftoat ¢matrfl16384),dnatif16384];
float pevomsihsitcrigaineideltarideltats
float nitecicepifrgepifaZepstasfstpraiats
float Jitosdwdtewitosdpmdtepatp:
float sintad[4096)ycostanl4795]7;
flzat index = 47363
float t2morsytempis
float edasnmag,Pl}
float iditt2;
float “nere*psij:
ing =ol¢
int igendusf2Slemypus:
int ng=%3
17t nl=1292:
clar rubs

main()
{
register iyne<;
register fl1oat #0321 42pZis%pAre=nli;
/% assum2 i~itialisatisn has seen 3non2 v timing only for rsnnirgy lan
/% us2 22737t nat jenimps invert ih Siceitc D2forhanz ty avai Y Ajvi-e
£ RSt = idaltat/zs all tnis is Set up py initialiss s/
forli=2%icnniijss)
(
igencsuslil=i:
}
setNtllYs
printfi"starc s2tcn 213 press ragurn\n");
scanfl™ Zo oy lrun






¢5 11123 1987 /usr/soaoi/Iofraquest/xyz/30-53 D3ave

L

194 SEIYL 3526 4 LAS 4 N Y = EFEPLUL OSEQT o, UNLDAY
FEPUL SSQ% » LBSFs SA) = om:

168: omtcs = =FO9JL SEQS , JUNLZAD . Y )

/% witp = Wit + (dwdtZxideltat) =,
FEPUL 3526 » LBSF. 2 ) = 4wdt:

1165 FEIUL SEQ6 » LAS » 0 ) = =ZFPYIL SZ07 » . UMNLTAD
FESUL SZQ6 » LBSF, SA) = wit:

169 Nito = FEPU( SEQS JNLDAD » D)8

/% ditp = idetta2+(gdigtsideltat) %=/

FEPUC SE26 » L8SFy 0 ) = Ajidt:
116 FE2UL SEQ4 » LAS y» 0 ) = SEPUL <£Q7 , JNLDAD
FE2U( 3204 » L8SF, SA) = igelta:
17C: 3ito = SFOU( SENQS , UNLTAD .~ )
/% convert 27 anzle to look un table index =/
SE3)(0 3506 5 LAS 0 0 ) = Aqitp:
FEPUL 3508 o LBSFYy 0 ) = nHj™s
171 Landr = FEPUL 55Q7 o UNLOAD + - )¢
FEDUL 2304 o LASFLC21° ) = terors
FEYL STOL ATFs SFY = TEOYL "INs o, o, 2 o)
172: t2mei = TFPUYL 3TQ% , JNLIAS )
F=PUl 3534 4 LAS 4 Ny = tampr;
FEIUC 3206 + L3SFy S3) tempis
117 SEPUL SEGS ¢ LAS . Yy = SEPUL %225 , gML™AD
FE2J( SEI6 » L35Fs D ) = index:
1182 FE2JL STI6 o LASF9l21IS)= =EOUL 3:z07 v UMLTAD
i = FEPUL 5725 4 7 4 0 )
/% F £z21 292 Jsed ty imgex sintab and c3stab %/
/® i2dasn = caolxlzdashman cos(ditols2z2srmaz™sin{aitn)):
FERJL 3335 0 LAS b N ) = 232371348
FE2J0 8325 5 L3SFe 0 ) = 2gst2cTidl:
173 232877 = FEPUC 5337 o UNLSAL 4 3 ) °
FESUL IS5 e LETE. "Ny o= sintagTils
174 1233310 = FEPUY( 3T . UL . 2 )
/W oN9wW recalzalata tha nis voltage jebt =ty
z'=zjigenhgs;
02r=p232135r13
c*i=223ashiz
GXr=gaznadr*
s3i=zy2navit
“CS0 iati oy = (s
YS2(0 datr ) = o
forti=3tidngii++)
{
< = ¥pl:
<= h €< 7 ) £ myhys:
d24F = (dmatr(x<]:



11:22 1337 /dsr/sosol/io/reauast/xyz/10-32 %332 4

2401 = &Ldmatilkl]s
FF2U(0 536 s LAS » 0 ) = mp3r;
FEPU0 5S25 40357, 0 ) = #p2rt
116 FE2UL 52234 v LAS v 0 ) = FFDYL SENT UMLDAD v D )
FEPUC 535 v LAS v D) = mp3i;
FRPUL 5%Q% LLBSF » D ) = =#=p2j:
120: FEPUL 5224 4 LBSFy §5) = ©Royg SEQT .y UMNLOAY 4 D g
175: t2mor = =EPUL STQ5 . UNLDAD , 5 )%
FFPU{ 55Q5 +LBSF + 0} = =p2r;
i21: FE2Ul 53234 + LAS » N ) = FFEO2y( SENQT . JMLDADY 5 D )
F=2U( 3525 o LAS » 2 ) = “p3r:
F=2U( SZQ6 +LBSF , 0 ) = =p2it
122: F=3Ul 57Q4 4 LBSFy SA) = SFPU{ SSQ7 , JNLOADY » D )
1762 t2ampi = =2 SSQ% , JNLOAD . 3 )3
FE2UC 5206 4 LAS » 0y = ta2mpr;
FEIUL ST25 LLBSF » 7 ) = “p&r
123 FE3U0 3234 « LAS 4 C ) = EFPUL SZ0N7 v UMNLZAD o 0 Y}
FEPUL 53228 » LAT » 2 ) = tampi:
F=2UC 33C% »L3ST o 2 ) = =p4i:
124 S0 3T44% o LBSFY S3) = EFSDIL 5207, LAY . 2y
125 FEOUL SFQL 4, LAS » 2 ) EEOUL SZNS o, CNL™AD L, 1 Yy
FEIJC SIT6 o L3SFe SA)Y = jatr:
177 istr = SE24( SEDQS , JNLDAD 4 ° 3
FEPUC 32038 LL3SF & 2 wphrt
1261 FEAIUL 3224 o LAS » 2 ) = SFDyL <zn7 v SMLTAD o Yy
EE2UL 3Z0% ¢ LAS 4 ) = tempr
F=2UL SS45 «LRBSF 4 ° ) = zp4j:
127 FE3UL0 STQ4 . L3SFy SAY = EFPyr =07, JNLZAD Y Yy
12 FEIUL 3ET4 o LAS 4 ") = SEn( <zZas JMLCAY Ny
FRIJE 5706 9 L3SFy &) = jati:
173 iati = SEOY( SZ05 , UNLPAT . 1 Y
21+4;
22i+e?
re+
J.‘i*‘*v
Q’f“""

/E Pt o= (24259 -1et)%yenadn «/

Fepug

3% ¢ LAS v 2 ) = jadasni;
FE32U0 3774 o LASF.e S3) = jeti:
132 LIN0Q = =SOUY( 355 4 INLZAD 4 5 )t
FRIJL 2304 o LAS & " ) = jiadasnmrs
F=2Ut 25C4 + L3SFe S3) = jatr:
1232 EESUL OZTES o« LAS 4 M) = ZFIQC 5205 UMLTAD » 7 Yy,
FE2U( STQ48 #L35% o " Y = ganz-dr:
172C: FEIUC 37934 « LA v "~ ) = =FD3{ Szo7 , UNLPAD » 2 )
FE29(0 53056 o LAS & 2} tenpis
F=2U0 3305 L3237 o 2 ) = 3a=adijs



1987 /Jusr/scool/lo/raauest/xyz/3C-932 Page

[¢]]

vy

131: FEOUL S24 » L3SFy S3) = FRPYUL 2297 , UNLTAD 4 0 )
31 iitr = ==2U( SEQS , JNLDAD . A BH
FEPUL 5206 oLBSF 4 0 ) = jenair:
132: FZ2UC SZQ4 v LAS » 7 ) = SFPU( "E27 4 UNLCAD » N )
FEPJYL SEQ6 v LAS 4 O ) = tempr s
FEI2U( 5226 #LBSF 4, 0 ) = j3enaidi:
1332 FEI2UL S5ZQ&% » L2SFy SA) = FEEDUL SENT , UNLNAD . O 33
182: Piti = =2PyUl SEN5 4 UNLDAD 4 2 )
/% e = RTAL(CIiti=CINJSledasn) ) =/
FFPUL 55Q6 » LAS » 0 ) = iitrs
FE2UL 55Q6 +LBSF +» Ny = iadashr;
134: FE3UL SZQ4 » LAS » 0 ) = SFEDYL SENT 5 UNLDAY , 7 )3
FERUL0 5205 o LAS &« 2 ) = jitis
cEPUL 5FCS5 oLBSF o 2 ) = iadashis
133 FE2UL 3226 » L3SFy SA) = FEDUL SZOT7 , LVLDAY . I IH
183: 22 = SF%,0 SEQS 4+ UNLOAD . 0 )3
/% i33tta = i22ltasfaigt+nito-pifa2)=iztitets =/
FE2U0 3536 » LA v 7 ) = ~witp:
FEA2UL 125 9 L3SF. SZY = 5ifg2?;
135 FEPUL 306 » LAS » N ) = FFPUL SZ05 » _vL2aY v 7 ),
FEIUL0 3336 9 L3%F, Sa) = vidt:
137 FEI3UL 37365 o LATS , MY = SEOYL OSIONE 4, LNLTAY Ty
F=2U0 32G% » LESFE + 3) = iditt2;
13¢: FEIUL 3TLH 0 LAS 0 DY = EEPUL SZOT , JVL™AY .~ 3
FEPUL 3225 o L3SFs " ) = jz2altsa:
{Ba: idalt: =SDY( 557 , JialLOAD LR B

/% Wit = A EHUINIt Al lDpTES-C2)E0iFra)/in) V%Il tel  ramemser N s irvarted
FE2U0 STQ4 » LAT » "~ ) = amtp:
FEPUL 530% o L3SF. S$3) = na:

I25: FESUL STU5 » LAS 4 7 ) = FE2U1 5005 , UvL=a™ , 1 )
FI3UL 332& » L3SFe 2 ) = nifra;

6Ge FE2UL 5235 o LAS » Y ) = EEMUL TZ0T , JNLDAY 4 0 )
FEIUL S=Q05 & L3SFe 7 ) = in:

lel: TI2JE5%LA 0 LAT 4 T ) = REPUL SEIOT , UNLTAY 4 0 )
FE3UL 3204 o+ LOSEs SAY = Adwatl

leg: FEIUL STIS . LAS T ) = EEDULL SIAS , onpnan R I
FE2UL 3205 » L33Fe ™) = jdltt2:

163z FEIUL 3344 0 LAS » M) = TEOUL OSEIDT . UMLTAY .~ );
e G e LdSFy SAY = Nt

135: SIT = FEIYL SSLT ., ULGLCAD b 2 )

VA 3m=av+((13r:f+(psto¢(igainktfsta-(~it;/pi2))!-cnta)/itc)ﬁiﬂltt’) s/

mn

SIM LTU4 4 LAT « YY) = f5tpe
FE2J0 3329 AS s DY = witpoe
FE2U0 3235 o L33Fs 2 ) = gi?:
164: FEIUC 3335 « L35Fe S3) = SFRUL SS07 wNLTAY » 7 Y}
laez: F22U0 33454 « LAT & 2 ) = EFPjr 3203 y JNLD2AD b T )
FE2UL 2725 » LBSFy 3) = jgain:



Izt 25

11:22

o~
=

1917 /usr/sa)olll:)/re:uest/xyz/jo-f;g Sa23e o

leo: ==2UL 3Z24 4 LAS » N ) = EFDY( SEZD7
FE2U0 SZQ6 » L3SF, S3) = omtps

|67: FEPUL 55Q4 + LAS » 0 ) = FEPY{( Seds
FFPJL 52Q4 4 LBSF, 5SA) = 23tps

l6é: FE3UL 5225 o LAS 4w C ) = EEPY( 7IZN05
FE23L SEQS « L8SFe 2 ) = jtes

|4G: FEIUL S3EG4 5+ LAS + 2 ) = SEPUY SEQ7
FEPUL SZQ64 » L3SF, SA) = Ipmdts .

150: FEPUL 3ZQ6 » LAS 4, 2 ) = EERYY SZQ5
FE2U0 S2Q6 + LBSFy 0 ) = igitta:

151 FEOUL SEQ4 4 LAS 4 N ) = FEPUL SEQ7
FEPJL 55Q4 5 L8SF, SA) = am:

186: 3m = SFO2J0 SEQS 4 JUNLOAD + 1 1}

/% iedasn = V3L x( iedashnagszos{ideita),

/% convert 21 213le to look up table index
FEPUL 3EQ5 « LAS , ) = idelta:
FZOUL 55Q5 o L3SFe 2 ) = 5j2;

137: t2ndr = =SPYL SEQT . JNLDAT . 3 )@
FE20( 3224 4 LASFel21S ) = taemor:
FE2UL 5224 5 LASFe SE) = Efpy( SgEN5

13¢: T2n0i = STDYL 3EQT , UNLOJAT 4 5 )¢
FEIJL 3336 0 LAS o T ) = tampr:
TTI3UL 3ZQ6 4 LBSF. $3) = tanpis

152¢ FFPUL 52Q5 » LAS » 2 ) = ©Fnyr 3532035
FR2J( 3805 4 L3%Fs 2 ) = indax;

152: SE2U( STZ4 o LASF.I21S)= =FD( SenR?
i = F3P ) SE25 4, 0, N Yy

/%= 1 Zzan 22 4s27 to index sintab an? ~)5sta2p
FEAPUL 5704 o LAT , ~ v = 2dasymnag?
F=2Ul 3205 « LBSFy ° ) = z2pst2afils

1335 i123asr = FE2 )¢ ST . UNLSAZ b 2
FEIJL ZTA5 v LBSFe M) = sinrasfil:

125 12223571 = TEPY( STIT . UNLIAD L, 3 )

/ iiti = (iz3as~-jet)®aanain =/
FZ200 3726 o« LA « " Y = jedazhi:
TE2JL 334 4 LBSF. S3IY = jati

191: T2m0i = IT2Y( STOT . JNLIAL . I )3
SEPUL ITTH e LA 4w % ' = jadzsar:
FE2U0 3244 + LBSFs 33) = jetr:

| S« SE3JL 3Tu6 ¢ LAS , ") = EEn g 5275
F=2J0 3245 4183 , ~ ) = Jenazir®

153 FE2J00 3336 o LAS ) = FERL( SENT
FEIYUL 3278 4 LAS +» "y = te=oi;
FE2UL ST05 oLB3E , 7 ) = Tangdit

1862 FE2UL 5246 4 LBSF, §3) = =goyuy SZN7

178 ibtr = =3I34( SE05 , gyL"AnY . Y3
SE2J0 ST 4L83F ., Ny = Jenair:?

|57 FEOUL 5584 « LAS o 2 ) = ©gEnyy SI07

1

A

t

’

L]

UNLCAD

~NLOAD

JNLDAD

JNLOAD

JNLCAD

JNLDAD

ied2snmnags:

JNLOAS

yrLmad

JNLDAD

UMifaAR

v D
y D
~
¥ [
A
£l ")
~
,y N
o D
3s¢(
.
H
'S lal
« N
-
1]
. al
v N
~
v .

idelta)

)

=/



11223 1527 /usr/spsol/isf/request/xyz/33-38% Dage 7

FE2UC0 JEQ5 v LAS » 2 ) = tempr:

FE2U( 5235 »LB3= v 2 ) = 3enaii:
1582 FFPUL 5TQ& » LBSFs Sa) = SEDYU( SENAT , UMLOAY , 0 )
192z PTiti = =700 SE%5 » JNL2AD & Y )

/% de = REALUIiti®C2NJGledasn) ) =/

=E2U0 5225 « LAS o 30Y = jitr:

FE3U( SEQ5 +uLBSF » 0 ) = jadasnr;
159: FF2UC SEQ&%  LAS v 0O ) = FFPU( SEQ7 + uUN_CAY , N )3

FE2UJ{ SEQS6 » LAS » 0 ) = iitis

FE2U( 3SS45% +LBSF ,» D) = iedashis
160: FE2UL SS24 o+ LBSFy SA) = SFPUL SZNT7 , UNLDAY , D )
193: 32 = TFEIJC0 SEQS 4 JUNLJAD + 0 Yy

b2
printf("” s.23 tiniang \na")s
ift h <2

{

iflt n == -1) goto 11:

ifl n == =2 gots 12:

if( o == =3) cata 13

ifl n == =-¢) 3ctg (&3

if{ n == -3) goto I5;

ifl 7 == -5) 233tz (6

ifl 7 == <7Y 233%0 173

ifl n == ~-3) goto |R:

if( n == -3) goto 19

ifl n == -12) gota 110

ift 2 == -11) goto 111;

ifl N == -12) ;oto 112;

ifl n == =12) 5 oto 113;

ifl n == -16) 32t0 116;

ifl 2 == -1%) ¢s5tn 115

ifl n == -156) joto 115

ifl 7 == -17) goto 117

if{ 1 == -19) gaty 1193

ift v == =-13%) ,z:15 119

ift v == =20) z2to 1203

if{ n == =21) 3nto 121

ifl n == -22) ;g-~t2 122;

ifl n == =22) ;3tn 1233

ifl n == -Z24) gato 1243

ifl n == -23) Lct2 125

ifl o == =26) 35t~ 12%;

ifl N == <27y catn 127

ift n == =29) _ata 129;

iflt n == ~22) _oto 122;

ifl 2 == =3%) 5cia 1373

ifl 7 == =-31) y2ts 131

if( n == =32) gzt0 1532;

ifi n == =33) gogo 133;

ift n == =36) gyotn 134

ift n == =3%) zoton 13%;



tisl cs3cé
tCE| CacE
t¢¢| cack
tgZ) cacet
tefl cick
tGE| CacCF
tce) cack
tHF ) Ji1c®
tgf ] L1ct
CCEl CacE
t1¢t c3ct
[ vics
tell C3cCE
tel) c3cF
tell ocact
$GLl C©CE
tall Lac’k
t9l| cace
tgll CacE
t2L1 c3ck
t1lt cick
tCl| <ackE
teS| C1ckE
tBGIl C3CE
+LlQ} cach
$69| C1Qf
t¢9| ci1ct
$4G} cact
t¢G61 cact
tZ¢c1 cack
1%} cIctE
t{G] cac*
te2l 03ch
tgcf cack
2L cacéE
£1661 C3IcCE
t4c| cach
t9c| cack
tg<i cack
t2¢| cachk
$16) o012céE
$CS1 o0ackE
te%| ClCE
8% cact
tlv| ci1ch
$19%] 03CE
‘% | ©1cChH
t%9%| C1ckE
tgHl cach
tZ%1 0100
¢14%1 Cc3cE
tCY!1 C3cE
tegl cach
tg¢f ca10h
tL€t Ccack
$S¢1l Ccice

£-CF/ZAx/ysenceu cyy10CCS ) 180

(¢l-
(1L~
(Ci-
{ge-
(69~
(L6~
(59~
(g¢-
(9¢C-
(gc-
(G-
(15~
(Ce-
(6~
(g~
(Lc-
(g¢c-
{(nc-
(96~
[
(G-
(1¢-
(Ce-
(ev-
(pYy-
(L5~
(9%~
(GH -
(99~
(gH~
(2%~
(1%~
(CHy-
(eg-
(gg-
(lE-
(S¢-

L LI T N T { N Y T I T I T [
L 1 T { O T A Y TI { I { B 1]

Honown

nouwon
wonou

noawonon

- C (o CCCC e Cc COoeC e CCrr

[ Y A &

(ol ol i o

[l ol oK N S G i ¢

C rc e CC

cCccCcCcCCcCCcoCC o

[ad

T C

13
i
14!
|
1l
141
HPR |
Yal
P
Vit
Yal
Yt
it
14!
HF |
1Ny
Yal
13
141
\FR
1at
1INy
Y4t
| F
Vit
13t
13t
1il
14!
14
141
141
il
it
13!
148
(P
)it
IR
141!
14
14t
141
| PR
141
130
141!
13t
)it
)il
14l
14t
) FR
14
14t
IR




11:272

1987
)
s2tntl ()
{
/%
b
ioctit()

oA

if{ N
if{ N
ifl n

s

sa2t {iners

16294
I172U¢
I=2U¢
I1=2U(
[Fau(
[E3 U
1=3U¢
1=2U¢
zaznal

Hoon
o

A VA RN VA RN Vo B VA I Ve B Ve B Ve BRVE

[RRES S IR I B ) Bt BN BNR ) Bl

S

&

24 0D DO DO K~
[SAR SN S AN AN S AR R o)

)
NERNS]
[US IRV

—

MBOA.,
MBYA,
MB2A.
1834,
MQOM,
MB1IM,
M3 2 M,
M33IM,

cnips =/

Lv¥lD=
LMIDE
L42DE
LM2DE
LM2D"
LMIDE
LM2pE
L43D%

/usr/soyolb/iz/request/xyz/15-32

aje

[T

10
12
10
1C
10
10C
1C
1C

7

s ws ws we we



»inc lude
#inciuge

o

<staioe.n>
"fouen"

st proagram for

float
float

“Dlie%02i

/usr/sosol/lzc/raquest/xyz/du=-39°2

H

-
.

®age

ousencilder

1

calcuiations

~
=

IMatrl1632Ysvirsv2recri1231,dr0128);

float Jmatille324),vlisv2iecill?al,dill?3);

floa
int
int
int
int
int
char

T unitr=1.0%
sonoz=d;
nno=333
nl=130GC+
nha=30;
hejeielsied:
rubs

mainl)

<
ragister
register

iel = 35t
iez = 17
setwtl! ()

istanpretanoissresis

float

1P e ¥D2r ¥ p2r4un3is

printf(™ start ~atch and oress return \n");

scanf("¥
/7% wWoreg

/1% v

(%]

o

fortn=3C0

1

= i2
J = i

io= 04

slr = 44
cli = &=
=F01 5T
FE2( 3E
[ S AV
FEPYC ==
FERU( 5%
|?;::DQ(
12:%empr
FEPJ( 5%
a:=FoLH
FEPUL 3T
EEPUL 5%
15:5F201L

Z"eSrun)
out 5 first =/
atlie2syial) =

h<nlsines)

1 << 7y ¢
iegZz
iel 3
masr{jlt
Matiljie
«5 ¢« LAS Ty = ver s
<H L33 0 2 ) = =gl
SINe » LAS 4 0 ) = FFPYY =7
«5 9 LAY 5, 0 )Y = viis
Q5 eL2Z7 4w N Y = #H310%
TI0sF v LOSF, 3%) = =son( 3T7
= IF250 SS0S » UNLIAD » D Vg
35 +L35% 4 0 ) = mplrs
TIQ6 » LAS 4 L ) = FFPUL 53537
<E oy LARN 4 ) = var:
% WL33F 5, 0 Y = =91li
SENC 5, [ASF, S&) = FEPL( 3TQ7
= TRTJ0 SEQS » UNLZAD » Yy

JNLCAD

*

,e



7 Jusr/soool/infraguest/xyz/3u-92 %338 2

plr = &Ldmatrils
pli = ddnatilil:
FFPU{ SEQS + LAS » 0 ) virs
FFPU( SEQ5 #L3SF o+ C Y = =plr:
17T:FFPUC SEQ4 » LAS » T ) = SFPU(L ST27 .« JNLOAD » O
FFPU{ SEQ6 + LAS v O Y = viis
FEPU( SEQ5 +L3S% 4 0 ) = #plijs
I18:FFPUC SENG 4 L3SFy SS) = FFPUC SEQ7 . UNLOAD J
19:FFPUL SEOQ4 » LAS » C ) = FFPUIL SFQS , JNLDAD J
IFPUC SEQ4 + L3S7y SA) = tampr:
1103 FFPU( SEQ4 o LAS » 0 ) = FEPY( SENS , UNLDAD
FFPUL S=Q& » L3S"y SA)Y = unitr:
Il1lssr = T1F20( SZ0Q5 4 UNLDAD o 7 )3
FEPUL SEQ5 +L33% » 9 ) = #plrs
1123FEPULC SZy4s o LAS o 0 ) = FFPUC SEDT UNLJAY » )
FEPU( 5FQJ% 4 LAS o 0 ) = vyilrs
FEPUC SEQS L2337 4 C ) = =919
P13:FSPUYL 5S04 o L3SFy SA) = FEPU{ S=NT7 , UNLTA
1143FFPUYC SELL o LAS » 7 ) = FFDY( SZ23 , UNLIAD )
[€P3( S2%¢ » L3S, SA) = tampis
I122si = TF2450 SZNA5 4 yYNLIAD & ™ )3
/% negatz 3 to 1ive adcition in inner lasa #/
si = si * Ux8&0373202
SF = sr Ix822227307
/% 100p t2 proguzz c(i) =/
i = { iel << 7 ) % sono:?
J = U i22 << 7 )Y 5 seno:
plr = Zdnactr[il:
pli = &dnati(il:
p2r = Lamatr{jl:
p2i = Sdnatifljls
e3r = zr;
p2i = ¢is
for(i=Csicncativs)
{
FEPJL 3225 o LAS o 2 ) = =ples
SIEPUL IELS . R3F C ) = vir:
11s: FEPUL 5734 o LAS o« D) = SEPYL SI97 4 UVL"AD
FEPJL L3243 » LAS » 0 ) = =plis
FEPUC ZTLA #L33T 4 N Y = vl
117 FE3J90 332% o L3SF, S3) = TEMUL SZ77 4, GVL"A)D
118: tandr = I%2UC 35Q% 4 UNLCRAD » 2 )@
FEDUL 5304 4LBIF . N )Y = vir:
119: FEPUL SE%% +» LAS & ") = FFOG( 3227 o UVLTAS
FTPUL 3235 o LAS o ) = =plr:
EFPUL 53T5A ,L23% &« D) = vlis



t 25 11:25 1587 /usr/solol/lo/request/xyz/d0-32 9314 3

12C: FEA2UL SZ24 5 L3SFs SAY = =FDU( SENT JNLDAD
121: t2noi = [FPUC SEQ% 4 UNLOAD +» 3 )3
FFPUJL SS0Q6 4 LAS &« D) = #p2rs
FEPUL SEQ +LBSF & 0 ) = wv2r:
122 FE2UL 37Q& 4 LAS » 0 ) = FEPUYL SE07 UNLCAZ
F=PU( SSQ5 + LAS 4, D) = *p2is
FFPU( SE2U5 +LBSF & 0 ) = v2is .
123: FE2U( 32Q4 + L3SFy S3) = FEPUC SENT , UNLDAD
124 FEOUL SEQ4 + LAS o« O ) = SFPUL SENS + UNLDAD
IFPUC 55Q& + L3SFs SA) = tampr;
125: t2mor = IFPU( SEQS + JUNLOAD 4 0 )
FEPUL STQ6 sLASF 4, 0 ) = v2r:
125: FEPUL SEQ4 » LAS o D ) = SEPC S£Q7 +» UNLDAD
FEPUC 3235 4 LAS » 9 ) = =p2r s
FEIYL STI65 JLBSF 4 0 Y = v2i
127: FEA2UC 35Q4 + L3SF. SA) = FFEoyL( SEQ7 » uUMLDAD
1282 FEPUL 3524 » LAS & 0 ) = T©fFoy( <:zns s UNLDAD
I=2U1 3=2¢ 4 LE%F, Sa) = tempi:
1?29: t2noi = 152U STQ% » JNLOAS 4 3 )3
/7 tivit: ov o5 %y
IF2U00 3505 4 LAS » 0 ) = ta2mpr;
I=2J( 5235 4LR5F , Ny = srt
13C: FE2J0 3526 v LAS v Ny = FFAUl SEQT7 » UNLTAS
I=PUL 53%75 o LAS & 7)) = tempi s
[=PU( ZE2% 4LBST 4 2 ) = gij:?
131: FE29(0 3306 + LOSF, SA) = FFOUL SENT , uNLMAN
122 ¥53r = SFEOUL SEDS 4 JNLOAD . 7 H
IFPUL 5305 #L33% « N ) = sp¢
1332 FE2J0 S7%4 « LAS 4 ™ ) = FFOCL SETT » JLOAD
ISP 352% » LAT & 7 ) = tempr
IFPUL 2225 4135 » 2 ) = s35i°
342 SEEIYL 3TL6 4 L3SF. S53) = EFOLL SEZT » UNLTAD
122 ®33F 07 TEIL OSTTE , UNLDAD . N )
PFRNL ZTI5 e LAT s M) = e
[Z200 3734 o LEZTFe Y = Sr
135: ES3UC 323% o LAS » Ny = =Fo SE3%7 » JVvLTAD
IFPUL 3T40% » LaZ o M) = 50
IF2J0 5535 + L2%F, ° ) = g3ij:
1272 FE2JL 3334 4 L33Fe S4) = FFOUL SE27 , LvL™A)
132 t2anr = ISPUL 373% o JUNL2AD » 0 )t
FE2UL 5323% o LA » 9 = unitrs
IS3Y( 53964 4 LBCF. SD) = tampr
123: t2mor = I=PUL S35 » UNLCAD » 2 )3

F=2UL 33355 9 LAS & ) = mpap:

(W)

[}



25 11:286 1937 /usr/sodol/1n/request/xyz/3c-32 Page o

I[=PUC 5505 +» L3SFsy 2 ) = tampr:
1402 #233r = FEBUL SEQT » JUNLIAD & 3 33

FEPU( SEQ5% + LAS » 0 ) = =3l

IFPUC 3536 + LBSFy 0 ) = tampr,
161 #2371 = TEISLOSEQRT , UNLDADY 4 ) Y

/% incramant cointars %/

alr++1
o2r++41
O3r++3
oli+e+s
3201 ++%
31 ++

/% outzr 1odop of matrix alteration =/

p2r = cri
220 = Zis
for{j=03j<1oatj++)
{
i= 0§ << 7 s
olr = Zdmatr(il:
21 Sanatilil:e
c2r = 3rs
521 o= gi

/% innar 12330 */

for{i=Jtic<nbiie+)
{

=EA2UL 3TQ5 9 LAS 4 05 ) = mg2r:
SEPUL STQ5 #L2SF . Y Y = xpip:
1622 SEPUL 3204 » LAS 4 N Y = BRI TIZeT , gN_DAn
mEPUL 53228 . LAS Ty = =p2is
FEAUC 3735 w0257 Ty o= mpljs
[63: STPUL 5S4 9 LBSFe S5) = SEDY( SInT , Cwpern
| 44: SE2UL STL4 » LAT 4 Y Y = EEDUL CZaT o, mpnit
TEPUL 3Tee o LBSF. TAY = fplr
tas: olr = FFIYL SIZIC3 , SMLTAY . )
FERPUL 2236 +0215F o 2 ) = mprp
1e5¢2 SEPULC 3E3% 0 LAS & T ) = EEDY( TINT , sNLDAD
SEPUL 5245 » LAS o ° ) = mp2ps
ST 5TQ5 eL3SF ., T ) = gt
1672 EEPUL SEQ6 4 LofFe TA) = SFOUL SEDT 4 LNLOAN
143: SEPUL 3T23¢ 4 LAS Vo= SEPUL RELS . LNLTIT
SEPUL SEQ4 9 L3SF. T2) = =g91i°
149z ®oli = FFPUL S2N3 , UNLPAY » Y )

/% incr=2m2at 2o0intars %/

. e



11:25 13927 /usr/sciol/lo/request/xyz/30-92 Paqge 5

olr++s
Jli++s
23r++:
230 ++3
}

PR

C2r &+

>

>
printfl" stod Lining \n" );
tfl 45 <2

LI (I T { Nt B LR 1]
]
S
2
-~

{

ift j == -1 ) goto 11:
ift 4 == -2 ) goto 123
ift j == -3 ) goto 13%
ifl j == -4 ) 30to 14;
ift j == -5 1) goto 153
ift j == -6 ) gota t63
ifl § == =7 ) goto 17¢
ifl j == -3 ) goto 18:
ift j == -3 ) zoto 193
ift j == =17) 3oto 111;
ifl 4 == =-11) gzoto 112
if{ 4 == -12) ao0to 113;
ift j == -13) zoto Ilé4:
ifl j == =14) gato 1153
if{ j == -1%) goto 1153
ift j == -1€¢) 35to0 117
ift j == -17) Joto 118;
ifl j == -19) goto 1193
ifl 4 == -12) goto 120;
ift j == =22) 3ota 121
ift j == =21) goto 122
ifl j == =22) gato 1233
ife j == -22) 5oto 124,
ift j == -2¢) gotc 125;
ifl j == -2%) zoto 1263
ift 5 == -28) goto 127;
ifl j == =27) goto 1293
if{ j == -2¢) 33to0 129;
ifl j == =22y 3;o5to0 137;
if0 J == =37) ,oto 131
PFL 5, == -31) g3oto 132
if( j == -32) goto 133;
iflt 4, == =37} 30t0 1343
ifl , == =34) 3o0t2 135
ifFl 5 == =3%) 3o9to 13%;
ifl j == -38) gaoto 137
ift j == =37) ;n5to 139
ift 4 == =32) goto 139:
ifl 5, == =32) 9010 142,
ift j = 2) 532t el
Pf0 j == -61) gote 142;
ifl j == -42) goto 1433
ift §j = =4?) 3otoa s
ift j == -a6) 3nto 1453



25 11325 1987 /usr/soaol/iaf/r2nuest/xyz/3o-32

2twti ()}

W AU

a
i

set

>
ioct!()
{
}

1f( j == =-4%) goto
ift j == -46) goto
ifl j == =47) gote
ifl j == -48) gnrto
ifl J == -42) gotuo
}

tinars i1 23th
IF2U( 52024 4 MBNA,
I=PUL SEQ6 « MBlAas
IF2U( 5224 , v32,,
[F2UL 32Q6 » MB3A,
I=2JC 5%Q5 + M30M,
I=PUL SS0Q5 + MS1M,
[=2J0( 3ZQ8 4+ M32M,
15200 3S1s 4 MBIM,
cazna2():

tabs
1673
1483
1493
1103

21ios %/

LM2DE
LMIOE
LMI0DE
LMIDE
LMIDE
Lv2Dc
L42DE
LM30T

ot ek gk b b b ph y—t

OCOOuUODOoOO

s ws wr we we





