We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham e-Theses
You are in:

Self - duality and extended objects

Robertson, Graeme Donald (1989) Self - duality and extended objects. Doctoral thesis, Durham University.



In 1986 Polyakov published his theory of rigid string. I investigate the instantons associated with the consequent new fine structure of strings in four dimensional Euclidean space-time. I reduce the self-dual equation of rigid string instantons to a simple form and show that (p,q) torus knots satisfy the equation, thus forming an interesting new class of solutions. I calculate by computer the world-sheet self-intersection number of the first few such closed knotted strings and derive a very simple formula for the self-intersection number of a torus knot. I consider an interpretation in terms of the first Chem number and discover the empirical formula Q = q - p for the inslanton number, Q, of torus knots and links. In 1987 Biran, Floratos and Savvidy pioneered an approach for constructing self-dual equations for membranes. I present some new solutions for self-dual membranes in three dimensions. In 1989 Grabowski and Tze pointed out a new class of exceptional immersions for which self-dual equations can be constructed and for which there are no known non-trivial solutions. By analogy with (p,q) torus knots, I describe an algorithm for generating a class of potential solutions of self-dual lumps in eight dimensions. I show how these come to within a single sign change of solving all the required constraints and come very close to solving all the 32 self-dual (4;8)-brane equations.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Thesis Date:1989
Copyright:Copyright of this thesis is held by the author
Deposited On:08 Feb 2013 13:37

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter