McCrindle, Rachel Jane (1998) Inverse software configuration management. Doctoral thesis, Durham University.
| PDF 10Mb |
Abstract
Software systems are playing an increasingly important role in almost every aspect of today’s society such that they impact on our businesses, industry, leisure, health and safety. Many of these systems are extremely large and complex and depend upon the correct interaction of many hundreds or even thousands of heterogeneous components. Commensurate with this increased reliance on software is the need for high quality products that meet customer expectations, perform reliably and which can be cost-effectively and safely maintained. Techniques such as software configuration management have proved to be invaluable during the development process to ensure that this is the case. However, there are a very large number of legacy systems which were not developed under controlled conditions, but which still, need to be maintained due to the heavy investment incorporated within them. Such systems are characterised by extremely high program comprehension overheads and the probability that new errors will be introduced during the maintenance process often with serious consequences. To address the issues concerning maintenance of legacy systems this thesis has defined and developed a new process and associated maintenance model, Inverse Software Configuration Management (ISCM). This model centres on a layered approach to the program comprehension process through the definition of a number of software configuration abstractions. This information together with the set of rules for reclaiming the information is stored within an Extensible System Information Base (ESIB) via, die definition of a Programming-in-the- Environment (PITE) language, the Inverse Configuration Description Language (ICDL). In order to assist the application of the ISCM process across a wide range of software applications and system architectures, die PISCES (Proforma Identification Scheme for Configurations of Existing Systems) method has been developed as a series of defined procedures and guidelines. To underpin the method and to offer a user-friendly interface to the process a series of templates, the Proforma Increasing Complexity Series (PICS) has been developed. To enable the useful employment of these techniques on large-scale systems, the subject of automation has been addressed through the development of a flexible meta-CASE environment, the PISCES M4 (MultiMedia Maintenance Manager) system. Of particular interest within this environment is the provision of a multimedia user interface (MUI) to die maintenance process. As a means of evaluating the PISCES method and to provide feedback into die ISCM process a number of practical applications have been modelled. In summary, this research has considered a number of concepts some of which are innovative in themselves, others of which are used in an innovative manner. In combination these concepts may be considered to considerably advance the knowledge and understanding of die comprehension process during the maintenance of legacy software systems. A number of publications have already resulted from the research and several more are in preparation. Additionally a number of areas for further study have been identified some of which are already underway as funded research and development projects.
Item Type: | Thesis (Doctoral) |
---|---|
Award: | Doctor of Philosophy |
Thesis Date: | 1998 |
Copyright: | Copyright of this thesis is held by the author |
Deposited On: | 09 Oct 2012 11:42 |