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Abstract 
Software systems are playing an increasingly important role in almost every aspect of today's 

society such that they impact on our businesses, industry, leisure, health and safety. Many of 

these systems are extremely large and complex and depend upon the correct interaction of many 

hundreds or even thousands of heterogeneous components. Commensurate with this increased 

reliance on software is the need for high quality products that meet customer expectations, 

perform reliably and which can be cost-effectively and safely maintained. Techniques such as 

software configuration management have proved to be invaluable during the development 

process to ensure that this is the case. However, there are a very large number of legacy systems 

which were not developed under controlled conditions, but which still need to be maintained due 

to the heavy investment incorporated within them. Such systems are characterised by extremely 

high program comprehension overheads and the probability that new errors will be introduced 

during the maintenance process often with serious consequences. 

To address the issues concerning maintenance of legacy systems this tliesis has defined and 

developed a new process and associated maintenance model, Inverse Software Configuration 

Management (ISCM). This model centres on a layered approach to the program comprehension 

process through the definition of a number of software configuration abstractions. This 

information together with the set of rules for reclaiming the information is stored within an 

Extensible System Information Base (ESIB) via, the definition of a Programming-in-tiie-

Environment (PITE) language, the Inverse Configuration Description Language (ICDL). In 

order to assist the application of the ISCM process across a wide range of software applications 

and system architectures, the PISCES (Proforma Identification Scheme for Configurations of 

Existing Systems) method has been developed as a series of defined procedures and guidelines. 

To underpin the method and to offer a user-friendly interface to the process a series of 

templates, the Proforma Increasing Complexity Series (PICS) has been developed. 

To enable the useful employment of these techniques on large-scale systems, the subject of 

automation has been addressed through the development of a flexible meta-CASE enviconment, 

the PISCES M ^ (MultiMedia Maintenance Manager) system. O f particular interest within this 

environment is the provision of a multimedia user interface (MUI) to the maintenance process. 

As a means of evaluating the PISCES method and to provide feedback into the ISCM process a 

number o f practical applications have been modelled. 

I n summary, this research has considered a number of concepts some of which are innovative in 

themselves, others of which are used in an innovative manner. In combination these concepts 

may be considered to considerably advance the knowledge and understanding of the 

comprehension process during the maintenance of legacy software systems. A number of 

publications have akeady resulted f rom the research and several more are in preparation. 

Additionally a number of areas for further study have been identified some of which are already 

underway as funded research and development projects. 
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F o r so it falls out 

T h a t what we have, we prize not to the worth 

Whiles we enjoy it, but, being lacked and lost, 

Why then we rack the value, then we find 

T h e virtue that possession would not show us 

Whiles it was ours 

Shakespeare ^^^^ Ado About Nothing, Act rV, Scene I 
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Chapter 1 

Introduction 

Proceed, proceed. We'll so begin these rites 
As we do trust they'll end in true delights 

Shakespeare As You Like It Act V, Scene IV 

1.1 Introduction 

The last decade has witnessed an explosion in terms of the abundance, size and complexitj' of 

software systems being developed such that they now play a key role in almost every aspect of 

today's society [167, 169, 241, 306, 322]. Indeed, the software industry may be seen as one of 

continual growth: in the industrial sector as automatic control of many systems, previously 

unrealisable due to hardware limitations, becomes possible through the transference of complex 

algorithms to a software base [392]; and in the business arena where software plays an 

increasingly central role in business process optimisation and redesign [6, 163]. Commensurate 

with the increasing reliance being placed on software is the need for cost effective, high quality 

software products that meet customer expectations, perform reliably and safely [44, 325], and 

which can evolve to meet the changing requirements of a dynamic population [241]. This 

expansion of the software industry has brought about two significant changes in the way diat 

software maintenance is perceived. Firsdy, it has emerged as a discipline in its own right within 

the software engineering field. Secondly, it has been integrated into the software Hfecj^cle such 

that maintenance is no longer considered to be purely an ad-hoc extension to the development 

process. Additionally, recognition of software as a key corporate asset is now becoming evident 

and the importance o f maintaining this asset is gaining momentum [73, 97, 163, 306]. The 

importance of investing in the maintenance and control of software is further substantiated by 

the fact that in many of today's computer systems the hardware expenditure can no longer be 

considered to be the major factor in any costing scenario [170, 348, 242]. 



This growing awareness o f the importance of software has precipitated an increase in the 

research being conducted within the software maintenance arena. This research falls into two 

main categories: that of investigating methods for developing new software systems with 

enhanced future maintainability, and that of finding ways to more effectively maintain 

operational or legacy systems. This thesis is concerned primarily with the latter. 

1.2 Purpose of the Research 

Unless an operational software system has been developed and maintained under strict 

configuration control i t is Likely that the cost of maintenance wiU be very high. Indeed surveys 

have shown that software maintenance may account for between 40 and 85 percent of a 

company's software expenditure per annum [10, 49, 165, 243, 405]. Tliis high cost may be largely 

attributed to the time spent identifying and understanding the parts o f a system potentially 

affected by proposed maintenance changes [306]. In large legacy systems the process of 

identification and understanding is gready compounded by several time-related factors which act 

individually or in combination to precipitate a 'loss of control of the system. These factors include 

[262]: 

• increased component and relationship complexity over time, 

• system version explosions, 

• lack or loss o f useful documentation, 

• personnel changes, and 

• maintenance induced errors. 

I f legacy systems are to be effectively maintained there is a need to regain control of tiie system 

and to minimise the time spent trying to understand and identify the parts of the system affected 

by a change. Software Configuration Management (SCM) is an already recognised discipline for 

controlling the evolution of complex software systems with the effect of successfully reducing 

costs for systems under development [65]. This discipline may also be applied during the 

maintenance process i f a software/system configuration is akeady known, however tiiis is rarely 

die case in legacy systems due to the reasons given above. Therefore in order to address 'out of 

control' legacy systems there is a requirement to re-identify the existent but often corrupted 

configuration together with its associated dependencies. This thesis defines a new process 

and maintenance model, Inverse Software Configuration Management (ISCM), and an 

associated method, the Proforma Identification Scheme for Configurations of Existing 

Systems ( P I S C E S ) , which enables existing (legacy) software systems to be returned to 

configuration control. 



1.3 Research Outline 

The ISCM process is primatily concerned with identifying and documenting die current 

configurations or software system architectures of legacy systems. Additionally, any knowledge or 

understanding gained in relation to the function of the affected parts of the system is also 

essential and must be recorded as part of the ISCM process. This knowledge arises from a 

combination of code analysis, associated documentation, domain knowledge [60, 234] and often 

a large proportion of detective work [46]. The entire process may be termed system 

comprehension and encompasses understanding at both the program and system levels. 

Successful configuration identification and knowledge eHcitation will enable subsequent 

modifications to the system to be made in a more efficient, controlled and cost effective manner. 

The ultimate goal o f the ISCM process is to enable future maintenance to proceed as i f die 

system was developed using SCM principles f rom the outset. Alternatively, i f the structure of a 

legacy system has degraded to such as extent tiiat i t is in danger of being "maintained to death\ 

ISCM provides a soHd foundation for the re-engineering of part or all of the system. 

I n order to drive the ISCM process, information about software system configurations must be 

systematically gathered and persistentiy stored. To meet this requirement the framework for an 

Extensible System Information Base (ESIB) has been defined. The ESIB contains 

information, rules and data related to numerous software system architectures and operating 

environments. After initial seeding, the information base evolves incrementally such that tiie 

greater number o f maintenance projects it encompasses the more accurate and more automated 

the ISCM process becomes. I n order to seed the information base this research investigated what 

constitutes a software system and hence what components need to be identified, traced and 

documented in order to reconstitute the software configuration description. This was achieved 

through a manual study of two U N I X applications, RCS (Revision Control System) and SPMS 

(Software Project Management System). To complement the study an approach to modelling 

abstractions of software system architectures was developed and a language defined for 

syntactically and semantically describing the resultant software configurations. 

A key objective o f the research is the meaningful representation o f the information held in tiie 

knowledge base. This is achieved through a series of abstractions of the system configuration 

documented via generic, tailored and specific natural language proformas. The benefits of 

such an approach are threefold. Firstiy, it increases the genericity of the ISCM model across 

operating platforms, application system types and languages. Secondly, it enables the presentation 

of a number of different views of the system at a level appropriate to clients, managers and 

maintainers, whilst preserving comprehensibility and rigour. Thirdly, by stricdy defining the 

structure o f the proformas and by providing guidelines for their completion through die levels of 



abstraction, a consistent and traceable set of documentation can be produced, enabling a more 

methodical approach to the maintenance process to be established. 

Identification o f the system configuration and its associated dependencies greatiy enhances tiie 

understanding o f a system about to be maintained. Combining aU these factors to obtain system 

understanding is often very time consuming and is generally repeated each time the same area of 

code is maintained. Therefore, i f significant savings in the cost of maintenance are to be realised 

there is a requirement to preserve the understanding of the maintainer such that they, and in 

particular different maintainers, do not have to go through the same process each time a system 

is to be modified. ISCM therefore places emphasis on the incremental documentation and 

updating of the system understanding recovered during the maintenance process. 

I n order to establish the role of the ISCM process within the global framework of software 

maintenance an ISCM maintenance process model has been defined. This process model 

represents the series of activities that occur f rom the inception of maintenance, tiirough tiie 

system comprehension process to completion of the requited modification. To assist in the 

production of the system architecture descriptions and to help standardise the ISCM process, an 

associated method, Proforma Identification Scheme for Configurations of Existing Systems 

(PISCES), has been developed. The method comprises a logical sequence of steps tiirough each 

of the activities defined in the process model until the system architecture reconstructions have 

been successfully determined. The PISCES method is centred around development of a series of 

pre-defined proformas which gradually become more complex and descriptive as tiiey are 

incrementally populated with system information. 

A n associated prototype meta-CASE (Computer Aided Software Engineering) environment, the 

PISCES M^ (MultiMedia Maintenance Manager) system, has been developed to assist in the 

implementation of the PISCES method. The PISCES system thereby semi-automates the 

ISCM process. Essentially the system consists of a set of tools linked togetiier through the M' ' 

interface. A t the centre of the system is the PISCES tool which consists o f a series of form-fi l l 

interfaces which in die first instance prompt the maintainer for background information about 

the system to be maintained. As a result of the data provided by the maintainer, details about the 

extraction tools available for configuration retrieval are returned to the maintainer, along with 

any pre-existing information regarding the function of that area o f the system. The maintainer 

may then choose to evoke these tools, which reside on the application system host environment, 

and download the resultant information onto the PC (Personal Computer) mounted PISCES M'* 

system. Alternatively, the maintainer may choose to browse the information already reclaimed 

during previous comprehension activities for a particular system. The PISCES M'^ system then 



acts as a sophisticated report generator producing visual representations of the system 

configuration, domain knowledge descriptions etc. The initial prototype tool utilised hypertext 

technology [99, 265] but more recent research has developed a hj^ermedia interface to the 

system comprehension process [291, 267, 268, 269, 270]. 

One o f die key features of tiie PISCES M"^ system is the use it makes of tiie operational 

environment of the application system. One of the common criticisms of CASE tools is tiie liigli 

initial investment that has to be committed prior to any tangible gains. This cost often acts as a 

barrier to the widespread uptake of CASE technology [200]. With tiiis in mind the PISCES M'^ 

system utilises, as far as possible, tools that akeady exist on the host computer, for extraction of 

information regarding the system architecture descriptions. In this way automated support can be 

delivered cost effectively. The primary roles of the PISCES M"* system are therefore to act as a 

front-end to the program comprehension process and as a specialised form of report co

ordinator and generator for the recovered information. 

The combination o f the extraction of dependency information, its visual representation, the 

PISCES method and incremental documentation of system understanding reduce the financial 

burden of program and system comprehension during software maintenance. I t has been 

estimated that the world cost of software development in 1995 amounted to |500 billion [359]. 

More recentiy, figures of £400 billion are being quoted as the additional world-wide cost of 

solving the 'Year 2000' problem [7, 406], representing approximately 20% of every commercial 

organisation's I T budget [54]. Hence even i f the ISCM process only realises a 1% reduction in 

the amount of effort expended on maintenance, potentially £4 billion on maintenance could be 

saved, thereby substantially increasing the investment available for new software development 

[16]. 

1.4 Thesis Aims and Objectives 

The primary contribution of tiiis research is the definition of a new process and maintenance 

model. Inverse Software Configuration Management (ISCM), and its associated method the 

Proforma Identification Scheme for Configurations of Existing Systems (PISCES). Surveys 

of the literature do not reveal other work that tackles the SCM process predominately f rom the 

inverse perspective, i.e. that of bringing 'out of controf systems back under configuration control. 

The originality of the ISCM approach also lies in its unique combination of a number of proven 

techniques in order to produce a low cost, generic, understandable, yet rigorous solution to one 

of the key problems of software maintenance today, that of program and system comprehension. 



Additionally, no other systems currentiy offer a Multimedia User Interface (MUI) to die 

representation o f knowledge reclaimed during the program comprehension process. 

I n order to define and describe the ISCM process, ISCM maintenance model and associated 

PISCES method a number of key objectives have been identified: 

• Objective 1: Definition and development of the ISCM process and its associated 

maintenance process model. 

• Objective 2: Description, guidelines and documentation for each phase of the 

PISCES method. 

• Objective 3: Modelling of software system architectures through the process of 

abstraction. 

• Objective 4: Definition and structure of the underpinning ESIB. 

• Objective 5: Definition of the Inverse Configuration Description Language (ICDL) 

for syntactically and semanticaUy describing software system 

configurations at a programming-in-the-environment (PITE) level. 

• Objective 6: Definition of the natural language representation of the model via die 

Proforma Increasing Complexity Series (PICS) of templates at the 

generic, specific and tailored levels of abstraction. 

• Objective 7: Implementation of the PISCES M'^ prototype system and 

demonstration of semi-automated support for the ISCM process and 

PISCES metiiod. 

• Objective 8: Practical application of the ISCM process, ISCM maintenance model, 

PISCES method and M^ system in the maintenance of a number of 

'real-world' systems. 

• Objective 9: Critical evaluation of the ISCM process, ISCM maintenance model, 

PISCES method and PISCES M^ system. 

• Objective 10: Identification of future extensions to die work in the area of Inverse 

Software Configuration Management and in associated fields of study. 



1.5 Thesis Overview 

Tliis section outlines the material that will be covered within each chapter of the thesis. A diesis 

road map linking chapter numbers to the objectives set in section 1.4 may also be found in 

Figure C l -1 at the end of this chapter. 

• Chapter 2 - The Software Maintenance and Software Configuration Management 

Processes: this chapter provides the background material for the thesis which, due to the 

'activity-combining' nature of the Inverse Software Configuration Management (ISCM) 

process, necessitates treatment of a number of different areas. Section 2.2 introduces the 

main activities o f the software maintenance process and explains why software 

maintenance is a persistent and difficult problem. I t also considers the key problem of 

program and system comprehension on which much of this thesis is based. Section 2.3 

defines the Software Configuration Management (SCM) discipline and discusses the 

notions, concepts and characteristics that underpin the ISCM process. I t also describes a 

number o f currentiy available utilities, tools and systems that can be used to control 

software system configurations. Section 2.4 addresses the key problems associated with 

identifying software system configurations in large legacy systems and how these relate 

to software maintenance and software configuration management. Section 2.5 introduces 

a number o f other related activities, namely reverse engineering, re-engineering, 

redocumentation and restructuring while section 2.6 discusses the relationships existing 

amongst these activities, the software maintenance process and die software 

configuration management discipline. Section 2.7 explains the importance of 

documenting all of die knowledge recovered during the software maintenance process 

and examines some of the currendy available methods for achieving this. Sections 2.8 

and 2.9 conclude the chapter with a summary of the key concepts introduced and by 

highlighting the contribution to be made in these areas by the ISCM process, its 

associated model and the PISCES method. 

• Chapter 3 - Managing & Modelling Software Configurations: tiiis chapter describes 

in more depth the key issues that impact upon the ability of a maintainer to manage and 

model software system configurations. Section 3.2 outHnes a number of existing process 

models for software development and maintenance and highlights the issues that remain 

to be addressed in future models. Section 3.3 examines die factors prevalent in modern 

computer systems that impact on the level of complexity of software systems. I t also 

discusses what constitutes the basic building blocks of a software configuration, and it 

critically reviews a number of current metiiods for describing such configurations. 



Section 3.4 outlines the process whereby software systems are composed from their 

constituent parts during the traditional SCM process, with a view to identifying key 

activities for use when reclaiming lost ' legacy configurations. The chapter concludes by 

discussing a number of methods by which software system configurations can be stored 

and organised. 

Chapter 4 - The Inverse Software Configuration Management Process: tins chapter 

forms the core of the thesis and presents the original concepts developed during the 

research. Section 4.2 proposes and defines a new process Inverse Software 

Configuration Management (ISCM) and expands upon the notions, concepts and 

characteristics of the Inverse Software Configuration Identification (ISCI) phase of tiie 

process which forms the foundation of the ISCM model. Section 4.3 describes tiie 

component stages of the ISCM process model and explains the role played by each stage 

in the reclamation o f configurations o f legacy systems. Section 4.4 describes more 

specifically the modeUing of software system architectures within the context of the 

ISCM process by detailing the different component types tiiat constitute a system 

configuration, tiie relationships existing between them and tiie levels of abstraction at 

which they may be viewed and understood. Sections 4.5 and 4.6 develop the Inverse 

Configuration Description Language (ICDL) and the Proforma Increasing Complexity 

Series (PICS) as machine-readable and user-friendly representations respectively, for 

describing legacy system configurations at a programming-in-the-environment (PITE) 

level. Section 4.7 justifies in relation to tiie traditional SCM building process a number o f 

key activities that need to be addressed i f the proformas are to be progressively 

populated during maintenance and 'lost' legacy configurations reclaimed. The chapter 

concludes by discussing how the ISCM discipHne extends the SCM discipline to assist in 

the maintenance o f large legacy systems. 

Chapter 5 - PISCES Prototype System: this chapter describes tiie implementation of 

the ISCM process via the PISCES (Proforma Identification Scheme for Configurations 

o f Existing Systems) prototypes. Section 5.2 describes the overall architecture o f tiie 

PISCES tool while section 5.3 briefly describes how this architecture was implemented 

in each o f the four prototypes developed during the course of the research. Section 5.4 

describes the functionality offered by each of the bespoke tools developed for the 

PISCES M4 system. The chapter concludes by describing how the PISCES M"* system 

can be used to realise the ISCM process. 



chapter 6 - Application: this chapter provides an account of how die ISCM method 

and PISCES tool relate to real-world applications. Section 6.2 describes four trial 

applications of increasing size and complexity plus die PISCES M'^ system itself Section 

6.3 describes on a process by process basis die application of the ISCM process model, 

PISCES method and M"̂  system to the maintenance of legacy software systems. The 

extent to which the modelling process varies according to the size and complexity of the 

system being maintained is also discussed. The chapter concludes with an assessment of 

the applicability and effectiveness of the ISCM process and PISCES method to the 

program comprehension process. 

Chapter 7 - Evaluation and Discussion of Objectives Set: this chapter evaluates and 

discusses the ISCM process and model and die associated PISCES metiiod and tool. 

Section 7.2 critically reviews the process, method and associated tool in relation to die 

objectives laid down in section 1.4 and improvements are suggested where appropriate. 

The chapter concludes with an overall assessment of the degree to which die objectives 

set within the thesis have been achieved and meet the needs of a modern industry. 

Chapter 8 - Conclusions and Further Work: this chapter reviews and draws together 

the research undertaken. Section 8.2 discusses the current state of software maintenance 

in general. Section 8.3 summarises tiie subject of the research, presents die major 

findings of the earlier chapters and formulates conclusions about die success of die 

work. Section 8.4 suggests farther work that can be carried out and future directions for 

the research. The thesis concludes by defining the role of the ISCM process and PISCES 

method in the field of software maintenance. 

1.6 Summary 

The importance o f and reliance placed on software in all sectors o f society has risen rapidly over 

the past decade. Much investment has consequendy been placed in software in terms of 

monetary value, business credibility and often human safety [244, 307, 324, 325]. There is 

therefore an overwhelming requirement to cost effectively and safely maintain software systems 

over their lifetimes, which may be in excess of fifteen to twenty years. Without adequate control 

during development or maintenance software systems can very often become 'out of controt. This 

has a twofold effect, program comprehension effort is very much increased and die degree of 

confidence with which changes may be made to a software system without adversely affecting 

other parts o f the system is vastiy reduced. A method is therefore needed to bring out of control 

systems back under configuration control. This thesis proposes such a process and model. 



Inverse Software Configuration Management (ISCM), and its utilisation through the 

Proforma Identification Scheme for Configurations of Existing Systems (PISCES) method 

and system. 
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Chapter 2 

The Software Maintenance and 

Software Configuration 

Management Processes 

Not what is dangerous present, but the loss 
Of IVhat is past 

Shakespeare Conolams, Act I I I , Scene I I 

2.1 Introduction 

This chapter presents the concepts that underpin the Inverse Software Configuration 

Management (ISCM) process. In particular the chapter outlines the software maintenance and 

software configuration management (SCM) processes and discusses the relationships that exist 

between them. I t also introduces the key software maintenance problem of program and system 

comprehension, and discusses how effective usage of SCM techniques can reduce the 

comprehension overhead. The chapter also establishes the foundation for how the ISCM process 

at the centre of this thesis may be integrated into the forward and reverse engineered software 

system Ufecycles. A review of current work relevant to the research topics is also undertaken. 

The chapter concludes by outlining a number of areas, regarding maintenance and configuration 

management principles and practices, which require further work i f tiie identified problems are 

to be solved and legacy software systems brought back under configuration control. 
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2.2 Software Maintenance 

Since the genesis o f software development many definitions of software maintenance have been 

put forward [109, 142, 151, 243, 300]. These range f rom the simplistic and outdated view of 

maintenance as purely a 'bug' fixing exercise, to its role as a complex combination of different 

activities encompassing enhancements, amendments and fixes. Lately, the recognition and 

definition of software maintenance as a discipline in its own right has lead to a far more uniform 

usage of the term 'software maintenance'. Software maintenance may thus be defined as: 

"the modification of a software product after delivery to correct faults, to improve performance 

or other attributes, or to adapt the product to a changed environment' [198]. 

That is, software maintenance may be said to encompass all activities that take place after a 

software product has been delivered to the customer. This emerging 'de facto' definition of 

software maintenance is however commonly further refined into four maintenance sub-

discipHnes, which more closely define and distinguish between the nature of the different 

software maintenance activities: 

• Corrective Maintenance: is concerned with making changes to code that result from 

inconsistencies between the specification of the product and the product itself [183]. I t 

is a reactive process [257] to correct faults and omissions, and primarily involves 

changes to the code itself Corrective maintenance is the 'traditional' view of software 

maintenance and yet only accounts for approximately 17% of total maintenance 

expenditure. 

• Adaptive Maintenance: is concerned with making changes to both the design and 

code in order to enable the software product to accommodate changes in its hardware 

and software operating envitronments [61, 184, 257]. This type of maintenance 

accounts for approximately 18% of total maintenance effort. 

• Perfective Maintenance: is concerned with improving the function of the software in 

response to user requests for improvement, enhancements to functionality'^, or 

customisation to new working practices. I t also encompasses changes in the processing 

environment due to changes in rules, laws and regulations. I t involves changes to the 

specification, design and code and accounts for 60% of maintenance effort. This liigh 

percentage reflects industrial statistics that show that around 10% of a software system 

wil l change each year in response to modifications to the user requirements [35]. 
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• Preventive Maintenance: is concerned with updating software in order to preclude 

future problems and facilitate future maintenance work [34, 183]. Although it accounts 

for only 5% of the maintenance effort and is largely associated with legacy systems it 

stiQ accounts for a significant proportion of effort when considered in monetar);^ terms 

and also in terms o f the savings which could accrue i f preventive maintenance is 

carried out effectively. I t is proactive in nature and has very close links with the re-

engineering aspect of the software Hfecycle. 

I n addition some authors consider that the definition of software maintenance should be 

extended to include user support and training of end users as well as actual changes and 

updates to the product itself [10, 151, 183, 233 ] . McCrindle has also proposed the term 'pre

emptive' maintenance to embody activities during development whose primary aim is to reduce 

future maintenance costs [267]. 

2.2.1 Software Maintenance as a Persistent Problem 

The myths o f software maintenance as being purely a 'bug fixing' exercise have now been largely 

overcome. This has resulted in expenditure on software maintenance no longer being seen as a 

failing o f the development team and the company as a whole. Indeed, Lehman has observed and 

stated in his law of continuing change, that a program in a real-world environment must change 

or become progressively less useful in that environment [239, 240, 241], a view concurred with 

by Parnas [306]. Correspondingly, technical personnel and senior management are now more 

inclined to talk about the real cost of maintenance within their organisations and to discuss dieic 

specific maintenance needs. This, together with studies into software maintenance [33, 119, 189, 

201, 233, 234, 405] is enabling the maintenance community to gain a more accurate profile of the 

spectrum of maintenance activities; a more realistic estimate of die real cost of software 

maintenance; and most importantiy, indicators of areas that must be addressed through research 

and development programmes [98]. The acceptance of software as an asset and maintenance as a 

necessary discipline is visible through its much higher profile than a decade ago [85]. For 

example, there are now an increasing number of national, European and international 

maintenance workshops and conferences, specialist maintenance journals, references to 

maintenance within the popular and computing press and a prohferation of papers addressing 

maintenance related issues in most computing journals. 

However recognition must not become an excuse for complacency. The costs of maintenance 

also serve as indicators that companies cannot hide behind the activities of software maintenance 

as justification for additional software expenditure. Indeed, the cost of software maintenance as a 
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proportion o f the software budget of a company has increased steadily during the past 20 years, 

rising f rom 35-40% in the 1970s to 60% in the 1980s and, is predicted to rise to more tiian 80% 

by the end o f the 1990s i f the maintenance approach is not improved [315]. Indeed, as well as the 

capital costs incurred, other problems arise due to the 'maintenance burden' such as lost market 

development opportunity [306], customer dissatisfaction and lower quaHt)'̂  software [315, 350] 

which cumulatively could prove fatal to some organisations. Emphasis must therefore be placed 

on performing the most cost effective maintenance possible, whatever the type of maintenance 

required. 

That maintenance costs are continuing to rise, may in some aspects be considered a surprising 

concept considering the advances made in software technology [322], analysis and design 

methods, programming languages, computer aided software engineering (CASE) tools and 

project management since the software crisis of the late 1970s and early 80s. However, increasing 

figures may be attributed to a number of factors such as tiie increasing proliferation of software 

into previously non-computerised disciplines; the increasing complexity of software as its Hmits 

are extended [393]; the increasing distributed and embedded nature of software [19, 345, 386]; 

and ultimately the ability to 'create chaos more quickly' with the plethora o f new CASE tools and 

rapid apphcation development (RAD) environments. Software is also unique in tiiat within a 

person's Ufetime, a software system can go through up to eight technological revolutions 

compared to only two in most other engineering discipHnes, such that the 'untiiinkable' becomes 

possible within twenty years [370, 406]. For example, the lunar module that first landed on tiie 

moon had less computing power than a Ford car of today and the astronauts within that module 

had never seen a microchip or pocket calculator [370]. Additionally, software products traverse a 

wide range o f disciplines such that they incorporate art, science, craft, fire-fighting and 

archaeological discovery skills as well as those of an engineering nature [261]. I t must also be 

remembered that each new software system of today is a legacy system of tomorrow requiring 

maintenance. Indeed, even the most successful software systems require maintenance as 

companies strive to retain their asset for as long as is economically possible [36]. Companies are 

therefore bound to adapt and enhance their systems to take into account upgrades in their 

operating environments, working practices and even movements f rom one millennium to tiie 

next [105, 284]. This is evident as a 10% growth in system size per year [365], a corresponding 

requirement for a 15% annual increase in programming staff just to meet the increased 

maintenance needs [209], and a resultant estimated shortfall of some 300,000 software 

professionals to satisfy this need [406]. 
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2.2.2 Maintenance vs. Development 

Some practitioners view maintenance as further development. Indeed this may be a valid 

assumption i f a product has been developed with maintenance in mind f rom the outset of 

development. However in general, maintenance, and in particular maintenance of legacy systems 

is far more complex than development of green-field software systems. The reasons for diis 

include: 

• Protracted timescales: development projects are undertaken within a timescale and to 

a predefined budget at the end of which they produce an identifiable and specified 

product [34]. Conversely, maintenance projects are normally open ended and may 

continue for many years, the objective being to extend the life o f a piece o f software 

for as long as is economically possible. 

• Masked evolution: i t is often difficult or impossible to trace the evolution of a legacy 

software system through its many versions or releases. Similarly, i t is also generally 

difficult or impossible to trace the process through which these versions and releases 

were created. 

• Comprehension difficulties: i t is often exceptionally difficult to understand software 

that was written by another programmer or team. This problem is often accentuated by 

the probability that the original programmer is no longer available for consultation 

[74]. Additionally there is often no recorded documentation [405], or the 

documentation that does exist no longer represents accurately die status of the system. 

• Change inflexibility: most legacy software has not been designed for change and it is 

therefore extremely difficult to incorporate even very small changes into the code 

without 'ficing o f f the ripple effect [151]. This leads to potentially more errors being 

introduced into a piece of software than have been corrected. 

• No choice acceptance: software to be maintained must be accepted as it is. In 

contrast, a client prior to delivery may reject unsatisfactory development projects i f 

they are of poor quality or are insufficientiy documented. Legacy systems must be 

accepted as they are, even i f they have become extremely degraded and out of control. 
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• Poor image: socially and technically, maintenance to date has not been viewed as 

glamorous work and has therefore not always received the recognition it deserves. 

AUied to this, capital investment in the maintenance of software as an asset has 

generally been low. However a shift is occurring as software maintenance managers 

learn to speak the 'language of business' [97, 234] and senior managers accept 

maintenance as adding value to a product [168]. 

• Immature discipline: the maintenance discipline is still in its infancy and hence die 

number of methods, tools and techniques are still lagging behind those o f development 

although this situation is now improving [52, 53, 405 ] . 

Whilst all o f the above factors contribute to the difficulties of maintenance, there is one intrinsic 

problem at the centre o f all software systems that has to be overcome before 'safe' maintenance 

of legacy systems can take place. This key problem facing maintainers of existing or legacy 

systems is that of program and system comprehension which may consume from 50% to 90% of 

maintenance time [122, 401]. Thus, i f the problems of comprehension can be alleviated, even by 

a small degree, then there is the potential for very significant maintenance savings to be made. 

2.2.3 Program and system comprehension 

For safe and effective maintenance to take place it is essential to understand the software 

product as a whole and the parts of the programs affected by a change in particular [63, 108, 

177]. The process o f program and system comprehension involves three key areas [368]: 

• Understanding what the system does and how it relates to its environment. 

• Identifying where the system change should be effected. 

• Deducing how the components identified for correction or modification work. 

That is, program comprehension is concerned with understanding the application system prior to 

making a modification. A person is said to understand a program when able to explain the 

program, its structure, its behaviour, its effects on its operational context, and its relationships to 

its enviconment in human-oriented terms rather than in the terminology and syntax of its 

program representation. That is, a natural language understanding is reached regarding the 

association between the unfamiliar program or part of the program and die formal 

representation of the code. This is known as the concept assignment problem [46]. 

There are two basic levels at which this may be acliieved. The whole program may be studied and 

understood in its entirety, or the affected parts of the program only may be studied and 
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understood as required [52, 245]. Given the size and complexity of today's software systems the 

latter option is generally considered to be the only real alternative. Indeed this view is supported 

by tiie fact that for many software systems the 80:20 rule applies, that is, 80% of maintenance 

activity is spent on 20% of the code. 

Biggerstaff describes program comprehension as a multifaceted process of analysis, 

experimentation, guessing and crossword puzzle-Hke assembly [46]. He suggests that this can 

only be fully achieved by studying domain concepts and realisations as well as the program 

structure and functions. Brooks in an earlier study emphasised the iterative nature of tiie 

program comprehension process. He also put forward a theory based on mapping knowledge of 

the problem domain to the program domain, laying particular emphasis on the need to maintain 

a history o f the decisions made during requirements analysis [60]. Other studies have also 

revealed the crucial importance of domain knowledge for the effective construction and 

maintenance o f large complex systems [1, 52, 214, 348, 379, 325]. 

A t the extremes, there are two opposing views regarding the most effective approach to program 

understanding, those of top-down comprehension [358] versus tiiose of bottom-up 

comprehension [309]. The top-down approach is generally considered to be most appropriate for 

familiar programs having available domain knowledge whilst the bottom-up approach is best 

suited when code is completely unfamiliar to the maintainer. However, in practice some 

combination of the two approaches occurs [75, 88, 387, 388, 389]. That it is vital to comprehend 

a program before modification takes place is however not in dispute, whatever the category of 

maintenance required. The problem of program and system comprehension can be very large 

and the associated costs of understanding the system and making a 'safe' change often 

prohibitive to the future maintenance of a software product [340]. This fact is substantiated by 

reported costs for the comprehension process during maintenance, for example costs may 

amount to $200 million per year [303], and 50% of total maintenance effort expended [108]. The 

comprehension part o f maintenance whilst essential may be considered to be 'unproductive' 

maintenance effort [271] whilst the process o f actually effecting the change may be considered as 

productive maintenance time since it is during this period that value is added to the software 

product. 

Many of the problems of controlling software development and its subsequent comprehension 

can however be alleviated through the use of software configuration management procedures 

and practices. 
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2.3 Software Configuration Management 

Software Configuration Management (SCM) is now a recognised discipline for controlling the 

evolution of complex software systems [376]. I t is acknowledged as adding considerable value to 

the control o f software development [138] such that reliable software is produced tiiat meets 

original design specifications on time and within budget. However, like many other key activities 

within software engineering, this view has taken time to evolve and adoptions of the techniques 

have parallels in older engineering disciplines. Indeed, the development of Configuration 

Management (CM) as a discipHne can be traced to the hard engineering discipHnes such as 

electro-mechanical engineering. These disciplines use change control techniques to manage 

blueprints and other design documents [22] and to specify how particular versions of specific 

components are combined to produce the final assembly [237]. These principles have been 

refined and tailored, initially to assist in the control of computer hardware production, and 

subsequentiy to assist in the development, production and maintenance of computer software. 

Configuration management traditionally treated each hardware component of a system as a 

separate entity, yet irrespective of size and complexity only considered the software as a single 

entity. I t is this superficial treatment of software that has been responsible for much of die lack 

of visibility and corresponding lack of management control often evident in the software aspects 

of the project. 

Additionally, attempts to directiy emulate hardware configuration management techniques in the 

software environment have often failed, because although the principles behind hardware 

configuration management are ditrectiy applicable, it does not follow that their implementation is 

directiy transferable. Indeed, there are a number of fundamental differences between the 

hardware and software components of a computer system, for example: 

• Software is more dynamic than hardware and therefore needs to change more rapidly 

[348]. 

• Software is easier to change than hardware and therefore can change more rapidly [2, 

168]. 

• Software progress, completion and correction is physically less evident and 'concrete' 

dian hardware. 

• Emphasis must be placed on die software deliverables and not just on the process of 

scheduling and managing the tasks to achieve an acceptable finished product [55]. 

• Emphasis must also be placed on the software that supports the production of the 

software end products as well as the product itself [65]. 

18 



• A finished software product may be distributed over more than one site [239], whilst a 

hardware product once manufactured is normally bound together within a single unit. 

• Software configuration management has greater potential for automation tiian hardware 

configuration management. 

Additionally, the increasing amount of 'firmware', defined as a hardware device and die software 

that resides on that device, where the software cannot be readily modified under program 

control, means that both the hardware and software practices and procedures must increasingly 

be considered in parallel. [65]. 

Advances in computer science have had two very profound effects on tiie configuration 

management discipline. Firstiy, until recentiy SCM was very much a manual set of procedures. 

This approach was acceptable whilst computer systems were relatively small, but witii the advent 

of larger and more complex systems it became apparent that manual techniques could not keep 

pace with the speed at which changes take place or with the volumes of data produced. Manual 

systems became cumbersome to use and easily corrupted. Barr & Stroud found tiiat manual 

methods "did not mrk in practice^ because they required ''perfect people', were difficult to prove, 

difficult to use and generated a vast amount of paperwork which required its own control 

strategy [102]. 

With the introduction of automated procedures greater control over factors such as who makes 

changes, where changes are effected and the general integrity of the resultant information could 

be made. The potential to automate almost all of the SCM process now exists, for example, 

identification, change tracking, version selection and baseltning, software manufacture and 

simultaneous updates. Indeed, looking at the size of software projects being developed today, 

automation in almost every aspect of the configuration management process is becoming 

essential [329]. 

Secondly, SCM was originally considered to be a purely management discipline but this has 

recentiy progressed into the software development arena. This has been facilitated by the 

increasing interest in integrated programming support environments (ipses). It appears, however, 

that a balance must be struck between the management-oriented approach to SCM, which 

provides project management information and control (release management, change control 

procedures etc.), often seen by programmers as unnecessary red tape, and development-oriented 

SCM which supports the programmer in developmental tasks but provides Uttie management 

information. An attempt to unifjr these two approaches in the form of an integrated toolset has 

been developed by Mahler and Lampen [253]. In an attempt to avoid confusion between SCM in 
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a management-oriented context and development-oriented context Mahler and Lampen have 

used die term Software Configuration Engineering. This emphasises die more technical aspects 

of SCM such as version control, configuration identification and system building. 

Software configuration management had been variously defined [41, 57, 190, 237, 260] ranging 

from simple definitions of SCM as a technique for controlling the evolution of complex software systems to 

those which are far more encompassing, for example: 

"SCM is the process of identifying and defining the configuration items in a system, 

controlling the release and change of these items throughout the system lifetycle, recording and 

reporting the status of configuration items and change requests, and verifying the completeness 

and correctness of configuration items" [17]. 

This IEEE (Institute of Electrical and Electronic Engineers) [17] definition shows that the 

discipline of Software Configuration Management (SCM) may be better described as an 

integrated set of four sub-disciplines: software configuration identification; software 

configuration control; software configuration status accounting and software configuration audit, 

which combine with the common goal of producing high integrity systems. Tlie activities of each 

of the four sub-discipHnes are outlined in section 2.3.2, however several key configuration 

management concepts regarding the constituents of a software system must first be introduced. 

Aspects of the sub-disciplines and key concepts directiy applicable to tiiis thesis wiU be expanded 

upon in Chapter 3. Additionally, treatment of the four sub-disciplines and the corresponding key 

concepts from a wider perspective may be found in [262, 263]. 

2.3.1 Key Configuration IVIanagement Concepts 

In any discipline where entities are subject to change tiiere are a number of fundamental 

concepts that underpin a system for managing these changes. Essentially tiiere must be ''units' to 

manage, Reference points' on which to compare progress, ^stores' for completed or semi-completed 

units, ''records' of how each unit was manufactured or altered and 'lists' of which units are held in 

die store and which make up particular products. The remainder of this section describes tiiese 

fundamental concepts in relation to software systems. 

2.3.1.1 Software Configuration Items & Configurations 

The increasing complexity and lengthy time-scales of software development projects have made 

it virtually mandatory for software to be decomposed into separate functional modules [275]. A 

Software Configuration Item (SCI) is therefore a 'manageable' software entity witiiin a 
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software configuration. Examples of SCIs include source code files, object code files, command 

files, database files, documentation files, project management charts, test procedures, user 

manuals etc. [72, 256]. In a more generic sense they may be simply described as any unit of 

information that is stored and managed [8]. SCIs are the fundamental building blocks of any 

system. Each SCI must be uniquely identified and should be able to change relatively 

independentiy of each other thereby allowing parts of the system to evolve at different rates. 

Aggregates of SCIs form the baselines tiiat represent configufations at determined points in 

time. 

2.3.1.2 Versions 

Versions arise from changes made to source components or SCIs as a result of tiie need to 

correct, adapt or enhance the software. A source version group is the collection of interrelated 

source components resulting from such changes. Versions may be revisions or variants [376]. 

2.3.1.2.1 Revisions 

A source component, 'b\ is said to be a revision of source component, 'a\ i f 'h' has been 

produced by changing a copy of 'a\ Revisions are sequential and cumulatively record 

development history such that later revisions are intended to supersede earlier versions [55, 249]. 

Perry describes revisions of this type as being 'successive' [311], and Narayanaswamy uses the 

term 'sequential' or 'vertical' variants [287]. 

2.3.1.2.2 Variants 

Source objects 'a' and '^' are said to be variants of each other i f 'a' and '^' are indistinguishable 

under a given abstraction, that is, variants have the same functionality for slightiy different 

situations and as such are intended to be alternative, interchangeable parts and thus are 

developed in parallel to each other [55, 249, 332]. Perry describes tiiese as 'parallel versions' [311] 

wliile Narayanaswamy uses the term 'horizontal variants' or 'alternatives' [287]. 

2.3.1.2.3 Composed Versions 

Configurations also exist as versions and as such must be controlled within the framework of the 

SCM system [177]. Perry uses the term composed versions [311] to describe structures resulting 

from the combination of several components, e.g. modules from syntactic components, sub

systems from modules [72]. Such structures are represented by a user defined list of unit 

components and the version to be used. 

21 



2.3.1.3 Program Families 

A software system is a complex product realised through the interaction of many components. 

Throughout its Hfe, software evolves to cope with new requirements, enhanced functionality, 

adaptation to new machines, new operating systems or new customers, or simply to fix bugs. As 

a result, a software system does not exist as a single 'monoHth', but as a family of closely related 

but distinct systems, each member catering for slightiy different requirements [55, 286, 287], and 

all of which must be rigorously controlled [256]. 

2.3.1.4 BaseUnes 

Baselines are reference points or plateaux in the development of a system. They should be 

formally defined at the end of each stage of the Hfecycle [65], and be associated witii the 

production of a physical item, that is, either a document or a version of code. Basehnes provide 

an inventory of the current state of a product at one specific point in time and capture both the 

structure and details of the product. In doing so they serve three connected functions as: a 

measurable progress point; a basis for subsequent development and control; and a measurement 

point for assessing quality and integrity of a system [64]. As such tiiey provide an infrastructure 

for traceabiHty throughout the project ensuring that the product being built conforms to 

specifications. 

Baselines are accepted only after review and audit. Their acceptance is based on the criteria that 

they meet the requirements contained in previous baselines or, in the case of code, that they are 

successfully tested against previously defined parameters. Once a baseline has been accepted the 

document or code should be 'frozen' to form a solid foundation for the next stage of operations. 

Any subsequent changes to items within the baseline must then be formally effected. The actual 

baseline itself is never changed, changes are made to copies, and once tested and accepted are 

recorded as a series of revisions to the configuration. These updates are then collectively 

assimilated into a new configuration baseline at the next reference point. Indeed, it has been said 

that the first requirement of change control is to ensure that baseHne versions remain inviolate 

[211]. 

Major baselines are struck during development at the analysis, design, implementation and 

operational stages, that is, as system development moves from one stage to the next. In a similar 

fashion there is a need to identify existing baselines prior to making changes and to establish new 

baselines at clearly defined points within the maintenance of a software system. 
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2.3.1.5 Library 

Software Ubrary systems provide a common and controllable store for all the elements of a 

software system. They provide a basis around wliich SCI sharing and change control can be built. 

They are essentially analogous to book libraries where books can be stored, checked out, read 

and returned using defined procedures [394]. Software libraries provide features for storing, 

naming, browsing and borrowing of SCIs as well as providing access security to SCIs. In addition 

tiiey are often responsible for the automatic or semi automatic production and updating of 

derivation histories for each SCI in the Hbrary [43]. The organisation and implementation of 

libraries may vary for different system environments and the particular tool being used. For 

example, some libraries may deal specifically with source code files, and otiiers with object files; 

some may hold files or functions specific to a particular function or set of functions; and others 

might be organised to reflect tiie different states of baselines or SCIs [236, 333, 356]. 

2.3.1.6 Derivation 

The purpose of the derivation or history of a module or program is to record precisely and 

accurately all the information tracing the evolution of a SCI. Each SCI has a derivation and each 

derivation references other SCIs and thereby other derivations rather like a family tree. 

Derivations should identifj^ the tool, the options, the author and the reason for the change [22]. 

The reasons for derivations are twofold, firstiy as an error detection mechanism and secondly to 

enable previous releases of the software to be reproduced. 

Derivations in source files and documents may take tiie form of a change log, created at the top 

of each file [372, 373] or may be held as separate files [45], to record why die new version was 

created and why subsequent changes were made. It is essential that any tool or input listed in a 

derivation is not deleted or altered. 

2.3.1.7 Master Configuration Index. 

The Master Configuration Index (MCI) is a list that uniquely identifies all configuration items 

and from which it is possible at any time to identify the current configuration and the 

documentation that represents and describes it [57]. 
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2.3.2 Software Configuration ISlanagement Activities 

The previous sub-sections have described the key physical elements that make up a software 

product and/or system for controlling the development of that product. However, for successful 

software product development there also needs to be emphasis placed on control of the process. 

This control can be realised through the sub-disciplines of software configuration management. 

2.3.2.1 Software Configuration Identification 

Proper control of a system cannot be effected unless the baselines of the system, the constituent 

components (SCIs) and any changes to these components are specified and uniquely identified 

[65]. Nor can software builds and rebuilds occur unless all die constituent parts of the system 

and where they are located is accurately known. The definition, labelling and representation of 

changes to software components and baselines are tiierefore the functions of software 

configuration identification. 

As mentioned in section 2.3.1.1, each baseline is a collection of software configuration items 

(SCIs) wliich evolve at different rates. As the system evolves tiirough its Ufecycle, SCIs wiU 

evolve in parallel, and identification where possible should reflect die name and SCI type, e.g. by 

the use of suffixes for design documents, requirements documents etc. Any versions created 

must also be distinguished via naming conventions and registration details. Additionally die 

baselines themselves should have two labels, the first to identify position in the Hfecycle, and the 

second to represent update level. 

Bersoff et alhken a system baseline to a 'snapshot of the aggregate of system components as they 

exist at a given point in time', and updates to the baseline as 'frames in a movie strip of the 

system Ufecycle' such that they collectively represent the evolution of the software during each of 

its Ufecycle stages. Correspondingly, the role of software configuration identification is to 

provide labels for the contents of these snapshots and the movie strip [42]. 

2.3.2.2 Software Configuration Control 

Due to the dynamic namre of software there will always be the need to incorporate new features, 

make corrections, and improve code efficiency. Once a basehne has been established and its 

corresponding SCIs and configurations are 'frozen', any farther changes made must be formally 

controlled and identified thereby allowing all relevant factors to, and effects of, a change to be 

considered. 
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The role of software configuration control is therefore to manage changes introduced into tiie 

software product, by providing the administrative mechanism for precipitating, evaluating and 

approving or disproving all change proposals [80]. This is essentially a three component process: 

• Documentation: to formally identify and define the change, why it is required, expected 

impact on the rest of the system etc.. 

• Organisational body: to evaluate and approve or reject the change. 

• Control procedures: to act as guidelines for implementing the changes according to 

company standards etc. [256]. 

Software configuration control is concerned with both document and code change management 

and encompasses three levels of regulation: change control, version control and configuration 

control. The aim of SCM systems is to control the revisions and variants resulting from changes 

made to the components of system configurations. The degree to which this is attempted and 

achieved depends somewhat on the method and tool adopted. Version control and management 

of the system evolution process have been the subject of much debate and research. However, it 

is generally agreed, that control is required at two levels, at the level of revisions of individual 

components (i.e. intra-version group control); and at the level of managing configurations (i.e. 

inter-version group control). Winkler [399, 400] discusses these in terms of managing program-

variations-in-the-small (i.e. changes applied to individual 'building blocks' or components) and 

program-variations-in-the-large (i.e. building systems out of the program building blocks). 

2.3.2.2.1 Change Control 

The role of the change control process is to ensure that changes to individual components are 

made and incorporated in a correct and ordered fashion. Changes to an item are generally 

instigated in response to requests originating from the user. These requests are documented as 

change requests or problem reports [104, 141, 223, 271, 329] and define tiie changes that need to 

be made. Changes are most commonly made and controlled via a 'check-out, edit, check-in cycle' 

[315]. A change history for each item within a system should be maintained, detailing 'what' 

changes have been made, 'when', 'where', by 'whom' and 'why'. The versions arising from a 

particular component in a system collectively form a version group, all members of which must 

be efficientiy stored within the system in a manner imposed by die configuration system. 
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2.3.2.2.2 Version Control 

Versions arising from changes to a particular component collectively constitute a version group 

or family [343]. As versions come into existence the relationships between them form a directed 

tree or acyclic graph structure. In the earliest stage version groups will generally consist entirely 

of revisions and as such will be represented by a single main branch or 'trunk'. As die version 

group develops, side branches representing the variants begin to appear. There are two distinct 

types of branches, namely 'alternatives' and 'elaborations' [147]. Alternative branches arise from 

modifications for reasons of parallel development (alternative design ideas or implementation 

details) and must generally be maintained in parallel to die original system. Elaborations arise 

from modifications for reasons of temporary fixes, distributed development and conflicting 

developments, and are generally intended for eventual incorporation into the final product, after 

which development will continue along the main branch. Whatever the reason for die 

modifications and the type of branch effected the addition of versions adds to the complexity of 

the overall program family structure. An alternative approach is being considered as part of die 

VOODOO project whereby variants and revisions of a whole product are managed rather than 

variants and revisions of individual components [331, 332]. 

Odier aspects of version control include the process whereby the elaborations are merged into 

the main branch [330] and the space efficient storage and reconstruction of different versions of 

a software component or configuration on demand. These two issues are outside the scope of 

this thesis, but are addressed in [66, 262, 263, 330]. 

2.3.2.2.3 Configuration Control 

A configuration is a collection of components that make up a system. As the individual 

components change and evolve to form version groups, it follows that die configuration of 

which they form a part must also change and evolve to form composed versions and program 

families. Mechanisms are therefore required to control the selection of components that 

constimte a specific configuration at a given instance in time, and the evolution of the system 

configuration descriptions over time. Both of these areas are die subject of much active research 

and the reconstruction of these system configuration descriptions for a system at a particular 

instance in time is one of the main concerns of this thesis. The process of configuration control 

is also often referred to as system synthesis or program building and may be defined as the 

management of complete versions and the interrelationships among the components. 

Approaches to tliis activity will be discussed in more detail in Chapter 3. 
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2.3.2.3 Software Configuration Status Accounting 

The function of software configuration status accounting is to provide the mechanism and tools 

for recording and reporting the identities and descriptions of all the SCIs in the system, together 

With records of the status of proposed changes and the implementation state of approved 

changes [386]. That is, status accounting provides an administrative history of the way in which 

the system has evolved. Typically reporting includes: 

• Descriptive information about each SCI & corresponding baselines. 

• The dates when baselines and changes from the baselines were established. 

• The date each item was brought under configuration control. 

• Change proposal status. 

• Descriptive information about each change proposal. 

• The current issue or change status of each SCI. 

• The status of proposed changes to SCIs. 

• Descriptive information about each change. 

• Status of technical and administrative documentation associated with a baseline or 

update. 

• Deficiencies identified by a configuration audit. 

Software configuration status accounting therefore enables tiie state of a system to be reported 

to a manager or customer at any stage in the evolution of the product. Its records also provide 

the means by which the master configuration index relating to any baseline can be reconstructed, 

and they act as a recording mechanism for configuration auditing [256]. 

2.3.2.4 Software Configuration Audit 

Software configuration auditing through a series of reviews and audits is essentially a 'find and 

report' process. The sub-discipline assesses the technical and administrative integrit)' of a 

product, by establishing that change control procedures have been adhered to; tiiat changes have 

been made in a controlled manner; that no inconsistencies exist; and that the actual content of 

die baseline is the same as the planned content. In doing so software configuration auditing 

makes the current status of the software system visible to management. 

Software configuration auditing therefore can be considered to serve two purposes: 

configuration verification and configuration validation. Configuration verification ensures that 

the specification for each SCI in one baseline or update is achieved in the subsequent baseline or 
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update, whilst configuration validation ensures that the SCIs serve theit correct purpose, that is, 

they meet the customer requirements. Both of these functions are achieved by inspection of 

• The project history (from the accounting process) to identify changes made to the 

system. 

• System baselines to identify relationships between SCIs and correlations between 

baselines. 

The successful completion of these two audit stages is the mechanism for estabHsliing new 

baselines. 

2.3.3 Software Configuration JManagement Systems 

As computer systems increase in size, paper based SCM procedures can no longer be considered 

adequate to control changes to the components and configurations within these systems reliably. 

Manual paper based systems are slow, restrictive, error prone and generate a substantial overhead 

for large computer based projects [256]. Additionally, for large computer systems there are also 

die problems associated with maintaining consistency, concurrency and security of code when 

teams of programmers are working on the same project. However, as stated in section 2.3, SCM 

has die potential for far more automation than hardware configuration management and hence 

offers great opportunities for SCM-based CASE tool exploitation. 

A number of SCM tools are emerging from commercial companies and academic establishments 

to address the issues of control during the development and maintenance of large software 

systems. These tools focus on automating areas such as configuration identification, change 

control, version control and system building. These tools range from simple coincidental utilities 

available on the host system, through dedicated configuration management systems to, at die 

most complex level, integrated project support environments. Additionally, tiiere is now an 

increasing number of languages being developed for the description of software configuration 

systems, these will be described in detail in Chapter 3. 

2.3.3.1 Coincidental Utilities 

Coincidental utilities are tools that are intrinsically available on the host system environment. 

They are not specifically provided for SCM purposes [208] but can be used to provide 

information regarding software system configurations and hence they can assist the program 

comprehension process. They must however be used within an established framework; often lack 
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a user-friendly interface and they generally involve a substantial degree of effort i f the results are 

to be usefully applied. Examples of such tools include: 

• awk: a pattern scanning and processing language designed to make many common 

information retrieval and text manipulation tasks easier to state and perform. Awk scans 

a set of input Unes in order, searching for lines tiiat match any of a set of patterns 

specified by the user [5, 208]. 

• cflow: generates a C flow graph. It analyses a collection of C,yacc, lex, assembler, and 

object files and attempts to build a graph charting the external references. 

• Cpp: the C language pre-processor. Using the ' -M' option it will generate a list of makefile 

dependencies and write them to the standard output. This list indicates that the object 

file which would be generated from the input file depends on the input file as well as die 

include files referenced. 

• grep: searches input files for Hnes matching a pattern. 

• leX'. a program generator designed for lexical processing of character input streams. It 

accepts a high-level, problem oriented specification for character string matching, and 

produces a program in the C language which recognises regular expressions. The regular 

expressions are specified by tiie user in the source specifications given to lex. The lex 

written code recognises these expressions in an input stream and partitions the input 

stream into strings matching the expressions. 

• lorder: finds ordering relations for an object library. I f given one or more archive files, it 

lists pairs of object file names such that the first file of the pair refers to external 

identifiers defined in the second. 

• yacc: a utility with more powerful pattern matching capability than awk. Yacc (Yet 

Another Compiler Compiler) uses a variant of context free parsing to automatically 

construct parsers for many programming languages. It can be used in combination with 

NewYacc to analyse and transform programs at die source level rather than at the level of 

the compiled object code [208]. 
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2.3.3.2 Function tools 

Rochkind's Source Code Control System (SCCS) [335], and Feldman's system build tool. Make [153, 

146, 364 ] , which were developed during the mid to late 70s may be considered as the pioneers in 

the field. The last decade has seen an increase in such tools, such as RCJ (Revision Control 

System) [373], and CMS (Code Management System) [394] for source code control and storage, 

and MMS (Module Management System) [394], Build [133] and several odier enhanced Make 

tools [21, 55, 93, 145, 152, 197], for automating aspects of the build process. Indeed Make and 

SCCS are stiU in widespread use today. 

SCCS, CMS, "KCS and its distributed counterpart. Distributed RCJ pRCS) [297] are tjrpical of 

simple change and version tools. Their function is to manage and control the changes made to 

individual SCIs. These tools store versions of text in a compact form (via deltas) and offer basic 

levels of access control. Products known as program librarians, such as LIBRARIAN and 

PANVALEJT also address the issues of change control. These tools provide central library 

management for the control, storage, recovery, reconstruction and audit of information [211]. 

Whilst tools such as SCCS conttol changes made to individual components of a system they have 

no concept of configuration control which deals with the interrelated collections, or 

configurations, of items. For example, a configuration might encompass design documentation, 

object code, source code, test data and JCL (Job Control Language). It is the primary functions 

oiMake and other such system bmld tools, to track the relationships existing between parts of a 

system, to ensure consistency of the constituent parts of a system and to ensure tiiat the end 

product is built correctiy. Tool combination such as SCCS with Make, and CMS with MMS go 

some way to resolving the problem of managing complete versioned systems. However, there is 

a lack of integration between these tool combinations because Make and MMS are built on top of 

SCCS and CMS respectively, rather than being seamlessly integrated with them. For example, it is 

not uncommon for ad hoc solutions to the implementation of die SCM process to be created 

using tools bound together with 'home grown scripts' [237]. The Shape toolkit [254, 253] offers 

some improvement by providing an extended and more generalised interface to the version 

control system. 
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2.3.3.3 Software configuration management systems & integrated project support 

environments 

Comprehensive configuration management systems such as CCC [356, 357], Lifespan [314, 378], 

Endevor [238], ClearCase [237] and its distributed enhancement MultiSite [12] offer in a single 

product all aspects of SCM, i.e. change and version control, configuration control, tracking of the 

status and change to files, increased security etc. In this way SCM systems offer the advantages 

of seamless integration between the SCM activities and enable increased emphasis to be placed 

on the more management-oriented activities of status accounting and audit than is generally 

possible with single function tools. Such tools may be said to represent the first generation in the 

evolution of configuration management tools [256]. 

At yet another level of functionality, the recent interest in integrated project support 

environments (ipses) has seen an increase in the number of project environments with buHt in 

SCM support. Examples include: USEE (Domain Software Engineering Environment) [235, 

236], Cedar [369, 366], Adele [135, 137], its distributed counterpart Mistral [158] and Gandalf[llS, 

295]. Ipses manage the complete product lifecycle and offer project management support 

facilities that go beyond those of configuration management [256]. As such, these second-

generation tools offer a cohesive and integrated set of tools to support the design and 

development of software systems throughout the entire lifecycle [341]. Feiler [143] discusses the 

effect of ipses on systems development in relation to product, process, resource and 

environment management. Madar [250] designs, implements and evaluates a set of ipse based 

tools for configuration management. Additionally third generation tools are now evolving which 

are characterised by their customisability and ability to encapsulate semantic knowledge of the 

components. This knowledge when coupled with a database query language allows a system bmld 

to be instantiated, based on component selection via the component attribute set [256]. A more 

in-depth discussion on the development of computer-based SCM tools may be found in [14, 79, 

263, 383]. 

2.3.3.4 Discussion of Current Tool Types and Systems 

Each category of tool has advantages and disadvantages, these are most readily seen as a trade off 

between comprehensibiHty and flexibility. Tools such as SCCS used in conjunction with Make 

provide the basic features of configuration management, but offer only limited support for 

complex tasks that require a broad information base and strict security access. Conversely, highly 

integrated or specialised systems such as Gandalf or Cedar, provide greater consistency 

enforcement and functionality. However, these tools may also result in inflexibilit}^, for example, 

by requiring that a programmer uses certain tools or by being language dependent. They tend to 
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be more expensive and aimed at large scale projects. This lack of flexibility and being tied down 

to particular tools is one of the major concerns of users of ipse based systems. Widi this in mind 

the Genos [140] ipse enables other tools to be used within its environment. Additionally the 

configuration management part of this ipse is available as a separate product. 

Developers of the configuration management systems Changeman [395] and CCC also 

acknowledge the importance of users wishing to tailor tools for their own use. Changeman can be 

customised through the Oracle reporting and development tools, and CCC has its own macro 

type language for customisation. The kernel approach of EPOS [101] attempts to provide a 

flexible infrastructure such that any method or tools for software development may be 

accommodated. Similarly, the Odin program development environment [90, 94] addresses die 

issues of extensibility through its specification language which can be used to integrate new tools 

into the existing environment. The Los Alamos Hybrid Environment [110] has developed an 

interface that combines features of the VMS operating system with the CCC configuration 

management tool in an attempt to exploit die full power of both the development and 

configuration management environments. Tailorable environments such as these are aiming to 

support the diverse range of languages, team sizes, development and delivery platforms, quality 

and localisation requirements exhibited by today's software teams [72, 323, 381]. Indeed the need 

for an open configuration management system becomes especially critical when dealing with 

distributed and heterogeneous systems [249]. 

2.4 Large Legacy Systems 

Whilst software configuration management has been successfully used to control systems under 

development and subsequentiy throughout their maintenance, for many existing or legacy 

software systems this is not the case. Legacy software may be defined as application software 

created in a previous traversal of a software lifecycle [6]. With these systems, maintenance 

personnel have to accept systems whose structure may have degraded significantiy over many 

years of fire fighting problems with patched code. The code has also generally grown in size and 

complexity over the years in which it has been maintained [32, 322]. In these legacy systems die 

problems of identification and program comprehension are particularly acute in comparison to 

changes associated with 'green-field' development or those systems produced under controlled 

conditions. This is due in part to the system degradation but is greatiy compounded by several 

time-related factors that act individually or in combination to precipitate a 'loss of control' of the 

system. These factors include: 
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Exponentially increased component and relationship complexity over time: as a 

project increases in size, its complexity increases in a manner that is based on more 

than just lines of code. Large software projects are invariably complex both in terms of 

the number and diversity of components, and the relationships existing between tiiem 

[406]. 

Systems version explosion: as a system evolves, new versions of components arise for 

reasons of adaptation to new hardware or operating systems, tailoring for individual 

customers, enhanced functionality, or to correct bugs. It can be argued therefore that 

software does not exist as a single monolith but as families of systems each member 

catering for slightiy different requirements [287, 305]. 

Lack or loss of useful documentation: as the system ages, there is a tendency for the 

documentation to fall out of step with the code changes. This means that even i f 

documentation is available it is highly probable that it is incorrect or misleading [52, 53, 

306]. 

Personnel changes: in all software projects there is die inevitable turnover of staff 

For systems with a long operational lifetime it is highly likely that many of the original 

development personnel wiU have left taking with them much of the knowledge about 

the system. There also appears to be social and technical difficulties associated widi 

recruiting younger staff to the maintenance discipline [234]. 

Monolithic nature: the system may have been developed at tiie time of early 

programming such that it is inadequately modularised and hence very difficult to 

decompose the system to a set of smaller more manageable units. 

Shifting technology: as the field of computer science advances new hardware, 

languages, techniques and environments are developed [Bennett95]. With 'old' or 

'geriatric' legacy systems it can be difficult to find maintainers experienced in tiiese 

earlier languages or environments [4]. 

Maintenance induced errors: as system complexity increases so does the probability 

of new errors being introduced as the system is maintained [34, 96]. This results in 

'ripple effect' induced system degradation. For example, it has been postulated, tiiat in 

connection with the Year 2000 problem, for every 10 million lines of code requiring 

updating 1,400 defects will be introduced [259]. 
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• Heterogeneous techniques: as systems are maintained over a lengthy period of time, 

consistency of approach and style to desigtung and implementing changes become 

apparent unless definite guidelines have been laid down [4]. 

Prior to any change being made there is a need to identify and understand the component parts 

of the system configuration of the system, the dependencies existing between these component 

parts and the likely impact of any proposed change. I f systems have become degraded there may 

be a need to repair parts of the system or to recapture as much information as possible about the 

system before these activities can take place. I f this is the case, there is a need to recover 

information about a system which can be done at varying levels of detail and abstraction in order 

that legacy systems can be better maintained in the future. This activity often takes the generic 

term reverse engineering, but this umbrella term actually covers a number of different activities 

which are described in section 2.5 

2.5 Reverse Engineering 

The concept of reclaiming information from existing or legacy software systems is not novel. 

Indeed, many legacy systems have become so complex and unmaintainable that full or partial 

reverse or re-engineering engineering is the only available option i f maintenance and 

management of the system is to be continued at an acceptable level. This is achieved through the 

potentially stabilising effect on the system of the reverse engineering process which can be used 

to cope with complexity, recover lost information, detect side effects of changes, synthesise 

higher or alternate abstractions and facilitate reuse [84]. 

Over the past decade numerous levels and approaches to the 'reversal' of the software 

development process have been proposed leading to a classification hierarchy concerning the 

reclamation of system information. Whilst there is still some argument over die exact definition 

and nomenclature of these processes [301], they may be broadly divided into the categories of 

redocumentation, restructuring, reverse engineering, re-engineering [84, 306], inverse engineering 

[283] and domain analysis [154, 179, 318] according to the degree of design recovery/ 

restructuring involved. However, reverse engineering, defined as [84]: 

"the process of analysing a subject system to identify the system's components and their 

interrelationships, and to create representations of the system in another form or at a 

higher level of abstraction " 
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is often used as the umbrella term to encompasses the entire activity classification hierarchy. 

More specific explanations of the terms are given below: 

• Redocumentation: is the simplest form of reverse engineering. Essentially it involves 

scrutiny of the program code in order to create an alternative, easy to visualise, 

representation of the program structure to assist the human understanding process. 

• Restructuring: involves transforming the representation of the system from one form to 

another at the same relative abstraction level, hence it can take place at die levels of 

implementation, design or requirements. Although it changes the appearance of die 

system i t does not alter the functionality or semantics in any way. 

• Reverse engineering: is a process that combines an element of redocumentation with 

that o f design recovery such that it enables a system to be represented at a higher level of 

abstraction [51]. I t achieves this through the combination of system reclaimed information 

with that o f domain knowledge, external information and fuzzy reasoning or deduction 

about a system. 

• Inverse engineering: is the term coined to describe the complete reverse engineering of a 

system f rom code to specification through the use of formal transformations [390]. 

• Re-engineering: involves an element of reverse engineering followed by a period of 

forward (traditional) engineering during which additional functionality may be added to 

the original system to correct, adapt or enhance it. 

• Domain analysis: may also be considered in this section since it involves identifying, 

understanding organising and representing the application context and working practices 

within which the system has been implemented [117, 234, 379]. Only through this 

understanding can the 'in-situ' impact of maintenance changes be considered. 
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2.6 The Interrelationships between Software Maintenance, 

Software Configuration Management & Reverse Engineering 

The disciplines o f software maintenance, software configuration management and reverse 

engineering discussed within this chapter do not operate in isolation, rather they are interrelated 

within the context o f the software development and maintenance lifecycles. The profile o f these 

interrelationships is largely determined by the developmental history of the software system. 

Additionally for systems that have become out of control through ad-hoc development or 

maintenance there is a requirement for an additional process to bridge the gap. This process, 

ISCM, is the subject o f this thesis. These interrelationships are summarised in Figure C2-1 and 

are discussed in sections 2.6.1 and 2.6.2. 

Development 

Green Field Sollwarc Svslem Conslruclion 

Siiflware Configuration Matiagemeni 

Identiiication Control Status Accounting Audit 

; Encinecring In%'crsc Enginccrinf; Re-engineenng 

Inverse Software Configuration Management 

Identification Control Aceoiuiting Audit 

Legacy Software System Uprake 

and •^^r represent interaction between prwesses 

Figure C2-1 ISCM within the global software development and maintenance framework 
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2.6.1 New Software Systems 

I n an ideal project scenario, a 'green field' software system wiU be developed using software 

configuration management principles f rom the outset, following a controlled development 

process, which is subsequentiy continued throughout tiie maintenance activities. Ef for t 

characteristics o f development: maintenance over the entire Hfecycle, will tend to exhibit a 33% : 

67% ratio. This is due to the continued need to maintain a successful system to enable it to 

evolve and remain economically viable for as long duration as possible. Even in this ideal 

situation, an element o f program comprehension will be still be required each time a change to 

the system is to be effected. However for a system developed and documented throughout its 

Hfecycle with maintenance in mind, the time spent on program comprehension wiU be minimised 

and the probability of adding errors to the system through maintenance significantiy reduced. 

For such systems developed and maintained under software configuration management (SCM) 

principles f rom the outset, the proportions of effort expended on the SCM sub-disciplines of 

identification, control, status accounting and audit should be roughly equal. The resultant effect 

of continual employment of SCM techniques will be a system that remains 'under control' 

thereby reducing comprehension time and easing development and maintenance. From tiiis it 

can be seen that software configuration management and software maintenance have a very 

strong bond connecting them. Software maintenance drives the software configuration process, 

in so much as, without maintenance there would not be the need to recreate new system 

configurations nor to compose a program family consisting of a series of viable configurations 

assembled f rom the members o f component version groups. Conversely, in the absence of 

software configuration management, the software maintenance process very rapidly gets out of 

hand and the software products spiral towards uncontrollable systems. 

As a system progresses throughout its Life, even with controlled development and maintenance 

there may come a point when the system structure starts to degrade and an element of 

redocumentation, restructuring, reverse engineering or re-engineering becomes necessary. In die 

case of controlled systems tliis may be minimal in terms of the proportion of the system affected 

and the process itself is facilitated through the provision of a solid foundation on which to base 

the reverse process. Evolution of the system wil l then continue as before with all changes to 

components identified, implemented and recorded in accordance with SCM guidelines and 

procedures. 
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2.6.2 Legacy Software Systems 

I t is a different scenario for legacy software systems. Legacy systems are entirely maintenance 

driven since their development phase has generally been completed many years earlier and often 

by a completely separate team. Maintenance therefore accounts for 100% of effort since even the 

addition of new features will be classed as perfective maintenance rather than new systems 

development. 

I f these legacy systems have been developed and maintained under SCM procedures, future 

maintenance can continue in a similar fashion to that described in the previous section for 'green 

field' systems. However, many legacy systems have become 'out of control' with the result that 

the system configuration has, at best become undocumented, and at worst has become corrupted 

or obscured with many missing or redundant SCIs. The level of program comprehension 

required before any changes can be safely made to these legacy systems is therefore often very 

high and hence maintenance of such systems very expensive. 

To enable these systems to be maintained safely and cost effectively, there is a requirement to re

establish a record o f what die system configuration is; to ensure that each component of a 

system configuration is uniquely and correctiy identified; and to assess the degree of dependency 

of each component on or to the other components of the configuration. I f the configuration can 

be regained program comprehension of a legacy system can be effected much more readily and 

control continued in a process akin to that of systems developed f rom the outset using SCM 

principles and practices. 

I t is in this area o f reclaiming the underlying system configuration that key advances can be made 

in die fields o f software maintenance and software configuration management. There is an 

identified need to create a process that wiU enable the reclamation and reconstitution of the time-

and-complexity-corrupted system configuration. Inverse Software Configuration Management 

(ISCM) is the process being defined in this thesis as the mechanism for enabling tiiis to occur. 

Whilst recognising the importance of incorporating the four sub-disciplines of software 

configuration management within die ISCM process, the relative proportion of effort expended 

on the identification sub-discipUne is much higher in the ISCM process than it is in die 

traditional SCM process. This is due to the significantiy increased proportion of comprehension 

work involved in re-identifying the configuration of a system corrupted and degraded over time. 

However, once identification is achieved, the other sub-disciplines of control, status accounting 

and audit can proceed in a manner very similar to that of the traditional SCM process. 
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Employment of the ISCM process may highlight, that part or all of the system is in need of 

'repair' through redocumentation, restrucmring, re-engineering or reverse engineering activities, 

the early stages o f which may, in themselves, contribute to the information collection process. 

The ISCM process and the newly identified system configuration subsequentiy provide a soUd 

foundation for the later stages of the reverse processes to proceed. Indeed, without the ISCM 

process, substantial re-engineering is very difficult i f not impossible due to the indeterminate 

starting point o f a corrupted configuration. 

Once control has been regained tiirough the ISCM process, evolution of the system can continue 

safely whether via forward or reverse engineering activities. 

2.7 Software Maintenance Documentation 

Whatever the type o f maintenance work carried out it can be argued that the process is only 

reaUy useful i f the knowledge gained during comprehension can be documented in such a way 

that i t can assist future main tain ers. I t has been shown [46] that, in order to maximise 

understanding, this documentation should be a mixture of information types encompassing both 

high level domain knowledge and low level program detail. Although development would ideally 

reaHse 100% documentation of the software creation process and resultant system, it has been 

widely stated that 80% of maintenance time is attributable to only 20% of the code. Hence, it 

may follow that retrospective detailed documentation need only be conducted on the parts of the 

system requiring maintenance. Additionally, many of the problems of system comprehension are 

compounded by the lack of reliable, up-to-date and maintenance-oriented documentation, due to 

the overhead o f producing or updating documentation in step with maintenance activities. These 

two factors lead to the concept of incremental documentation that is implemented in a number 

of systems [76, 148, 149] as weU as by the ISCM process [264, 265]. 

Traditionally, much of the comprehension process during maintenance has centred on scrutiny 

of the low level program code in an attempt to work out the 'what iP effects of changing a 

particular module on the other parts of the system. This process is termed impact or dependeng 

analysis and i f not conducted properly may result in many more errors being introduced into die 

system than were removed by the change sometimes with catastrophic consequences [187]. I t is 

therefore particularly important during maintenance that this impact information can be obtained 

as rapidly and as accurately as possible. Additionally, current-thinking postulates that this 

Imowledge, in order to be really effective, should be coupled with information types at a higher 

level o f abstraction and as a mix of informal, semi-formal and formal documentation types [225]. 

This is because comprehension difficulties may also be attributed to the loss of valuable domain 
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knowledge, historical data and co-ordinating information [225, 234], that occurs when an 

application crosses the 'time-space divide' [267] between development and maintenance. Tliis 

information is however fundamental in ensuring that all personnel are working to a common 

definition of what system they are building, what it should do, how it should be organised and 

how i t should be integrated with previous systems already in place. Indeed, mapping of the 

problem domain knowledge with the program domain functions and structure is considered 

essential i f fuU comprehension is to be achieved [368]. There is thus a need to study and 

understand the linkages at a level of abstraction higher than the source code and to be able to 

document this knowledge in an informative manner. 

The process of software maintenance and program comprehension in particular has only recentiy 

been given the attention it deserves, with theory, tools and techniques now being published 

alongside those for the development process. Many of the methods to aid program 

understanding, concentrate on identifying key structural features or 'beacons' witiiin a program 

[60] or on representing the structure of the code in the form of flow charts and graphs [293, 46]. 

Other methods concentrate on representing documentation such that the programmer gains a 

'wide picture' of the system. These methods include the 'book paradigm' which is an 

arrangement o f source code into an on-line book [298], and the use of hypertext to correlate 

program understanding with the human semantic network [52] or to link program dependency 

information with the syntactic structure of die code [302]. The ISCM method takes die approach 

a stage further by concentrating on linking the program dependency information widi 

documentation at higher levels of abstraction [264]. 

Whilst the use of hypertext has become common place for documentation in areas such as 

application help systems and is becoming increasingly popular as a means of documenting 

software development and maintenance [52, 159, 160, 202, 319], the use of multimedia and 

hypermedia in the software maintenance process has not yet been fuUy exploited. Aldiough 

program comprehension during the maintenance process necessitates a strong focus on the study 

o f the program code, i t appears that it may be useful to incorporate other information sources 

collated during the maintenance process. As mentioned previously, this information may be of an 

informal (personal, peer-oriented, unstructured communication), semi-formal (personal, fairly 

structured, review type communication) or formal (impersonal, written, structured 

communication) nature, the ratio of types depending on the application being developed [225]. 

There is thus enormous potential for multimedia technology to be used to capture this missing 

domain and co-ordinating knowledge in a unique way that exploits video, audio and animation, 

which when added to the more common textaal and graphical representation will provide a more 

productive and ^value added program comprehension/maintenance environment. 
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2.8 Role of Inverse Software Configuration Management 

There is no doubting the importance associated with today's role of Software Configuration 

Management (SCM). SCM is increasingly becoming mandatory in software engineering, is 

required by a number of standards and is considered as the major tool for controlling software 

production [138, 139]. What is now required in the maturing software engineering discipline is 

for the principles and techniques of SCM to be made truly applicable to legacy software ŝ '̂ stems. 

SCM for developing systems encompasses, in approximately equal proportions, the activities of 

identification, control, status accounting and audit. These activities also form the basis of the 

ISCM process, however within ISCM there is a sliift in emphasis towards the identification 

activity, since this forms the critical underpinning of the subsequent control and reporting 

activities. Indeed, enabling identification of legacy system components and their 

interrelationships wi l l in itself significantiy decrease maintenance costs due to the reduction in 

comprehension time prior to any maintenance change. 

As well as clearly defined activities, successful SCM systems have a number of fundamental 

physical concepts associated with them, namely: 

• Units to manage (components and configurations) 

• Reference points (baselines) 

• Stores (object base) 

• Records (administrative documents) 

• Lists (configuration descriptions). 

I t is therefore considered important that these elements are incorporated within the context of 

the ISCM process. As this thesis progresses it makes apparent how the ISCM process enables tiie 

components o f a legacy system and its surrounding environment to be identified and 

descriptions o f their corresponding configurations reassembled at varying levels of abstraction. 

This has the effect of enabling the operational baseline for a legacy system to be identified and 

used as a reference point for subsequent control and maintenance of the system. The 

configurations descriptions are documented by means of an Inverse Configuration 

Description Language (ICDL) developed as part of the ISCM framework. The I C D L essentially 

lists the components of a configuration, their attributes and their dependencies. In any 

configuration management system it is important that comprehensive administrative records 

are kept. The ISCM process therefore also encompasses tiie definition of a series of proformas 

and forms for incrementally recording tiie information reclaimed about a legacy system and tiie 

status o f any maintenance activities being conducted on tiiese components. Storage 
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mechanisms for the ISCM process rules and resultant reclaimed information are also 

implemented. 

ISCM provides the opportunity for an innovative approach to the configuration management o f 

legacy software systems. I t also approaches the program comprehension process f rom a different 

perspective in that i t combines traditional code level program comprehension techniques with 

technology-enabled video, audio and animation techniques to provide comprehension at a liiglier 

level o f abstraction. However, i t is not the intention of this research to investigate program 

comprehension per se, that is, at the level of program slicing, call graph generation etc. [87, 131, 

174, 363]. Rather, the aim is to study the application of SCM procedures and techniques to help 

enable the program comprehension and subsequent maintenance and control process. 

Additionally, through the use of hypermedia links between the different information tj^es, an 

original and enriched documentation interface and environment is created for the recording and 

reporting o f software system configurations which meets the needs of maintainers. 

A number of tools are emerging f rom commercial companies and academic establishments to 

address the issues o f SCM. Make and SCCS, developed during the mid to late 70s are considered 

to be the pioneering tools. These tools are still widely in use today and have also served as a basis 

for newer and more comprehensive configuration management systems. The deserved 

recognition of SCM as an integral part of the software development and maintenance process is 

evident f rom its inclusion in the majority o f ipses that are available today. However, whilst these 

tools offer the functionalities of SCM many of them lack the flexibility to be tailored expUcitiy 

for a customer's environment [323, 383]. They can also be very costiy [2]. With these two factors 

in mind a meta-CASE environment has been developed to assist and semi-automate the ISCM 

process. Provision o f a 'meta' environment enables incorporation of flexibility and cost 

effectiveness in terms of being able to make use of whatever host resident tools are akeady 

within the software system environment. 

SCM is not just concerned with the obvious components such as source and object code but also 

with all associated data and documentation. Examples include requirement documents, design 

documents, source code, binaries and executables, graphics files, control language files, test 

results and data, planning documents etc. Whole environments such as compilers, libraries and 

pre-processors must also be brought under software configuration management control [103]. 

This is reflected in the definition of SCM given by McCartiiy which states that configuration 

management, covers the management of 'every detail' of a software project through its lifecycle 

[260]. Indeed SCM may not just be limited to control of the products of the project lifecycle, it 

may also be extended to include the processes as well as the products occurring during the 

42 



project [65]. Correspondingly, ISCM may therefore be considered to cover the management of 

'every detail' and process activity associated with a software product during its maintenance phase 

[271]. 

Thus, although progress has been made in tiie adoption of SCM principles and techniques for 

control o f new software systems, there still exists a need for a process that addresses systems 

primarily f rom a legacy perspective. This problem is addressed within this thesis through the 

provision of an ISCM framework. The ISCM framework is centred around the definition of a 

new process which is integrated into the Ufecycle via a conceptual process model. The process 

model is brought into practical usage through the development of a clearly defined method 

which in turn is driven and semi-automated through the development of a meta-CASE 

environment. Development of the ISCM approach and its distinctiveness f rom current SCM and 

program comprehension methods wiU be described and discussed within the remaining chapters 

of this thesis. 

2.9 Summary 

This chapter has described the fimdamental principles of the software maintenance, software 

configuration management and reverse engineering disciplines. I t has also examined how tiiese 

disciplines exist, not in isolation, but as an interrelated mix of activities occurring in varying 

proportions throughout the Ufecycle of a software system. Detailed study of these inter

relationships has revealed a gap in the current lifecycle approaches to controlling changes to and 

further development o f legacy systems. This has thus laid the foundation for the creation of a 

new software engineering process, Inverse Software Configuration Management (ISCM). The 

purpose of ISCM is to bring legacy software systems back under configuration control. The 

resultant effect of this is that legacy systems may then continue to be maintained safely and 

effectively whether for corrective, adaptive, perfective or preventive maintenance purposes. 

Definit ion and development of the ISCM process is tiie primary aim of this tiiesis. The ISCM 

process and its unique features will be described in Chapter 4. However, Chapter 3 first explores 

in more depth some of the key issues associated with managing and modelling software system 

configurations namely maintenance process models, software configuration components and 

methods for modelling and constructing such configurations. I t is on these concepts that the 

ISCM process is based. 
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Chapter 3 

JManaging & IModelling Software 

Configurations 

This is as strange a maf^e as e'er men trod, 
And there is in this business more than nature 

Was ever conduct of. Some oracle 
Must rectify our knowledge 

Shakespeare '̂ ê Tempest, Act V, Scene I 

3.1 Introduction 

Software configuration management (SCM) has been successful in reducing costs for systems 

under development by enabling on-going control of die product. For operational systems, it 

follows that i f control can be regained, thereby emulating a system produced using SCM 

principles f rom the outset of development, then more cost-effective maintenance should be 

achieved. This thesis develops a new process, Inverse Software Configuration Management 

( ISCM), which may be defined as the process of bringing existing (operational or legacy) software systems 

back under configuration control The driving force behind the success of the ISCM process is the 

combinatorial effect arising f rom the application of traditional SCM principles and practices 

within a controlled software maintenance process framework. Chapter 2 introduced the 

fundamental concepts associated with software maintenance and software configuration 

management. This chapter extends and focuses the review in a number of key areas. Firstiy, i t 

outlines the current body of knowledge regarding maintenance process models, liigtdighting the 

individual strengths and weaknesses of each model and f rom this deduces a number of features 

for incorporation in the ISCM process. 
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Secondly, the foundation of the ISCM process and its associated method is the reconstitution 

and allied unambiguous representation of software system configurations or architectures. This 

chapter therefore also reviews the constituent components of a software configuration 

(architecture) and outlines a number of approaches for syntactically describing such 

configurations. I n forward engineered systems these architectural descriptions can be used to 

build or manufacture a viable software system from the possible component types and the 

respective versions o f these types. This chapter therefore also reviews the configuration synthesis 

process as a means of determining how to reconstruct the viable system configuration 

description f rom the chaotic and corrupted out of controlXtgTiZ^ software during the ISCM process. 

Thirdly, to understand the configuration and to model it accurately there is a need to reclaim as 

much knowledge about the system as is possible. However, as stated in Chapter 2, i t is likely that 

only part o f a software system will undergo comprehension during a particular change request 

[245]. Thus knowledge eHcitation about a complete software system architecture is generally 

progressive over the entire maintenance sub-Ufecycle and may be in the order of years. I t is 

therefore essential, i f maximum process efficiency is to be achieved, that information recovered 

during one maintenance change is not subsequentiy lost prior to the next required change. Hence 

there is a need to not only identify any information sources pertinent to system understanding, 

but to also store all reclaimed information within a data- or knowledge base, in such a way tiiat i t 

can be readily accessed and recomposed into a coherent and correct framework at a later date. 

The chapter therefore also outlines a number of possible structures for the underlying Extensible 

Systems Information Base (ESIB) created as part of the ISCM process. 

3.2 Software Maintenance and the Software Lifecycle 

Although the terms 'software process model' and 'software lifecycle' are often used 

interchangeably, a clear distinction may be made between the meaning of the two terms. A 

software process model may be defined as a series of activities whilst a software lifecycle puts 

this series of activities into a particular cyclic order [386]. A complete software lifecycle may 

therefore be composed of a software development process and a software maintenance process. 

Indeed, i f representation of the vital management aspects associated with the development and 

maintenance activities are also added, this may be considered to be a ''software engineering lifecycle'. 

Allied to this, a model may be considered to be an abstract representation [272] of a process and 

a method the abstract representation of the defined activities required to physically realise the 

abstract model. These terms wiU form the basis of tiie definitions used within this thesis 

concerning the ISCM process and its associated model and method. 

45 



3.2.1 Traditional Software Process IVIodels and Lifecycles 

Software maintenance is now considered to be one of the key disciphnes within the software 

product lifecycle. I n recognition of this, awareness has begun to grow regarding the deficiencies 

of traditional software lifecycle approaches to the software maintenance process [256]. The main 

area of inadequacy o f many current models is the representation of software maintenance as an 

isolated operation after delivery of the system to the customer [227]. Tliis has had the effect of 

maintenance often being viewed as an adjunct of secondarj^ importance to die software 

development process. Consequentiy, maintenance is often considered to be a single step process 

rather than an ordered and planned sequence of activities. Indeed, close parallels may be drawn 

in process terms with the way in which the software within a system was treated as a single entity 

in the early days of SCM [22]. There is tiierefore an imperative need to redefine the global 

software lifecycle and corresponding models to accurately represent die complexities of the 

software maintenance process. 

3.2.1.1 Code-Use-Fix Model 

The traditional software lifecycle approach has in itself developed considerably over time [351]. 

Originally software development occurred via an 'ad hoc' two-phased process of 'write the code' 

and ' f ix or add to i t ' as required. This 'code-use-fix' model was feasible in the early days of 

software development when software was created by single programmers for their own use [368]. 

However, as greater reliance was placed on the software components of products and as product 

size increased to such an extent that development became a long term, team bmld activity for 

divergent customer groups, the need for a more ordered and accountable approach became 

evident. Consequentiy, this led to the development of the first in a series of 'waterfall' based 

lifecycle models [337, 361]. 

3.2.1.2 Waterfall Model 

Whilst the waterfall model adequately describes the main activities of the software lifecycle 

(requirements analysis, specification, design, implementation, testing, maintenance), i t may be 

considered misrepresentative in terms of the implied proportions of the effort involved at each 

stage. This is particularly apparent in the ratio of development to maintenance effort in that 80% 

o f the model relates to development activities and only 20% to those of maintenance. However 

in real terms these figures are reversed with maintenance activities accounting for up to 80% of 

expenditure over the lifetime of a software system [10, 243]. Hence there is a need to review die 

way in which maintenance is represented within this model. 
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Additionally, the waterfall model even with the incorporation of the validation and verification 

feedback loops, essentially implies a sequential ordering o f development activities each occurring 

once only, followed by a period of maintenance. In essence, all software is considered 

evolutionary in nature, continually adapting to fit tiie needs of its environment [239]. I t is more 

representative of the real-world process to view maintenance as an iterative sequence of 

development processes with a period of program comprehension associated with each one [361]. 

3.2.1.3 Evolutionary Development 

Other models o f software development have been proposed which reflect the evolving nature of 

software products. These models include the evolutionary and incremental prototyping 

approaches [26, 191]. Both models may be considered closer to the paradigm of maintenance as 

they involve an iterative cycle of small phased developments that build towards the final product. 

However, there is still an important distinction between the development and maintenance of 

software products. Prototyping approaches have goals of a pre-specified product to be built 

within a finite amount o f time with clearly allocated resources, whereas maintenance is usually 

open ended and much less clearly defmed. A risk associated with prototyping models is that the 

documentation may not be kept concurrent with the development of tiie product, tiiereby 

creating maintenance difficulties f rom the outset. This is particularly problematic m the 

evolutionary approach where it may be argued that the product may change quite significantiy 

f rom one cycle to the next. 

3.2.1.4 SpiralModel 

Boehm's spiral model [50] goes some way to addressing these problems. The spiral model 

combines the prototyping approach (or indeed other approaches) with the traditional stages of 

software development by responding to feedback f rom earlier activities in order to reduce risk in 

later ones. Importantiy, by putting the option to prototype within tiie more strictiy defined 

framework o f the traditional lifecycle stages, control over documentation and development can 

be more closely monitored. 

3.2.1.5 Automatic Programming and Transform Model 

This model has been developed to account for tiie likely increase in the number of automated 

software development tools in response to economic pressures and tiieoretical advances [24, 

256]. The aim of this model is to represent the automatic process of specification capture and 

validation, followed by automatic conversion of the specification into source code. This may 

have far reaching repercussions on maintenance in the future as it involves a paradigm shift f rom 

changes being made to the source code, to changes bemg made to the specifications. However, 
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whilst the approach would be effectively reversed, the processes would be analogous in terms of 

die requirement to recompile the system following a change [256]. 

3.2.1.6 SEX Capability Maturity Model 

The Capability Mamrity Model (CMM) is a meta software lifecycle model that has developed 

f rom a software technology transfer programme at the Software Engineering Institute (SEI) at 

Carnegie-Mellon University [115, 339]. This project, funded by the United States Department of 

Defence, was initiated as a study into how to improve the capabilities of the United States 

software industry. I n particular i t was aimed at assessing the capabilities of contractors bidding 

for projects. This model is rapidly growing in stature as a way of improving control of 

development and as such should have advantageous 'knock-on' effects for facilitating future 

maintenance particularly when combined with techniques such as Defect Causal Analysis [77]. 

The model has been exceedingly influential in convincing the software engineering community to 

take process improvement seriously and has already produced highly encouraging results [167] 

although not without some cost and effort [194]. The C M M is based on adaptation of the quaHtj' 

principles o f Deming, Juran and Crosby [113, 124, 210] to the software process [320]. This high-

level model provides a framework for identifying five levels of mamrity that lay successive 

foundations for continuous process improvement. As such the model centres around 

determining the current state of the production process and providing guidelines for deciding 

which areas should be improved and the order in which these improvements should be 

addressed. I t is thus a management oriented model ranging f rom the 'Initial Level' (very poor 

management) through to the 'Optimising Level' (very high management and quality). 

3.2.2 Process JModels for IVlaintenance 

Although development models are moving towards a more accurate representation of system 

characteristics and natural evolution patterns, there is stiU a need to take into account the 

maintenance specific characteristics caused by the 'time-space-divide' [267] between the 

development and maintenance processes and personnel involved. This is particularly important 

for legacy systems whose quality and structure have generally degraded over many years of 

service and preservation, thus necessitating special attention during the maintenance process. 

Models o f the maintenance process are therefore continually being developed in an attempt to 

more accurately capture and control die maintenance process and depict net maintenance 

activity. 

I n order to address adequately the maintenance process, models need to define the activities that 

occur during maintenance, at a lower level of detail. Various maintenance process models already 
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exist [27, 34, 48, 49, 76, 228, 299] which address the maintenance process f rom a number of 

different perspectives (e.g. economic, task-oriented, iterative, reuse, request driven, reverse 

engineering). Although these models describe the maintenance process in varying levels of detail, 

they all centre on the evolutionary nature of software. I t must be stated however that these 

models are still in a state of flux as they are not yet so fially developed or as well understood as 

the models for the development process [368]. The following sections describe a representative 

sample o f such maintenance process models. 

3.2.2.1 Quick-fix Model 

The most ad-hoc of maintenance models is the inadequate but frequentiy necessary 'quick-fix' 

approach. This model is characteristic of the 'fire-fighting' approach which involves adding 

emergency patches to a piece of code to keep it operational with minimum disruption to the 

customer base whose business relies on constant availability of the system. However, this model 

is also representative of 'ripple effect' problems and the increased need for fiiture maintenance. 

Such a model can only work i f i t is encompassed within or coupled to another more rigidly 

defined model [230]. 

3.2.2.2 Boehm's Model 

Boehm has put forward two models of maintenance. His original model is a tiiree phased 

approach consisting of understanding the existing software, modifj^ing the existing software and 

revalidating the modified software [48]. Economic models and principles have subsequentiy been 

added to form the foundation of his later model [49]. Tliis model views tiie maintenance process 

as a closed loop cycle driven by management decisions. Changes are approved on the basis of 

cost-benefit evaluations. Essentially, changes continue to be made until the point of 'diminishing 

returns', that is, the stage when a product has reached its maximum usefiilness and any additional 

change is no longer deemed cost effective [368]. 

3.2.2.3 Osbourne's Model 

Tliis model is based on continual iterations of the software lifecycle with the provision for 

building in maintainability as required. Particular emphasis is placed on ensuring there are 

adequate management communications, control, verification and feedback within the cycle [299]. 

The model combines elements of the traditional development approach with expUcit review and 

audit procedures at the end of each lifecycle stage. Although reminiscent of the traditional 

development approach in that the activities of the model appear successive in nature, tiie 

evolutionary nature o f software is represented by the repeated iterations of the activities witiiin 

the cycle during the period of maintenance. 
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3.2.2.4 Reuse Oriented Model 

This model [27] is based on viewing software maintenance as re-use oriented software 

development. As such it has four main steps: identifying candidate parts of the old system for 

reuse; understanding these system parts; modifying old parts to satisfy new requirements and 

integrating modified parts into the new system. This model is likely to gain in popularit)'^ as reuse 

of components, designs and specifications becomes more widespread within the software 

engineering community. I t is not unreasonable to assume that eventually 'plug and play' software 

development and maintenance wil l reach analogous levels to those utilised by current hardware 

systems [290, 344]. Indeed, significant advances are already being made in diese areas due to the 

introduction of Component-Based Software Engineering (CBSE) [292, 120], Commercial-off-

the-Slielf (COTS) products [25, 62, 380] and die establishment of standards and component 

frameworks such as O L E (Object Linking & Embedding) and CORBA (Common Object 

Request Broker Architecture) [3]. Such models are becoming realistic as the object-oriented 

software development and maintenance paradigm becomes more widely adopted [173, 242, 276], 

particularly in areas such as graphical user interface development. 

3.2.2.5 Request Driven Model 

The request driven model [34] acts in response to requests f rom customers for changes to the 

software. I t consists of three main processes: request control, change control and release control 

and is tiierefore heavily influenced by elements of the configuration management process. The 

initial request control step concentrates on the help desk collection of proposed change details, 

cost-benefit assessment of these changes and prioritisation of accepted changes. The change 

control activity necessitates analysis of the existing code to understand the system and to ensure 

Hmited ripple effect, plus design and implementation of the change within a quality control 

framework. This is followed by release control of the product into the live environment, again 

with emphasis placed on quality control and audit of the process. Another model with a similar 

emphasis on the maintenance process is that proposed by Harjani and QueiUe [183]. Tliis model 

is again triggered by change requests, although it differs widi regard to its more prescriptive 

approach to the activities which must be carried out to effect the change and re-insert the 

corrected module into the overall system. 
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3.2.2.6 CONFORM Model 

This model [76] also centres around die configuration management process. The CONFORM 

(CONfiguration management FORmaUsation for Maintenance) method provides guidelines and 

procedures for a change control framework, again with an emphasis on incorporating quaHtj'̂  

control into the change control process. This model is based on the waterfall lifecycle and hence 

has some similarities to Osbourne's [299] model. However, it includes a specific change 

evaluation phase and tracks the status and visibility of a change through a series of change related 

documents that are produced as the output of each lifecycle stage. In this manner, the model 

builds up a maintenance history of the operational system. This history however is at an abstract 

level as it does not deal with the source code at all. 

3.2.2.7 The 7-Level Model 

This model concentrates on mapping an organisation's approach to maintenance into layers 

ranging from high level 'asset' and 'portfolio' management, to 'topic' (maintenance function) 

management at the lower levels of the model. This enables viewpoints to be isolated and 

particular aspects of a problem to be addressed [150, 151]. Central to the model is die 

maintenance unit or team and the emphasis placed on the functions performed by the team. As 

such, this approach can be abstracted to model teams of widely differing sizes, since it makes no 

assumptions about the mapping of duties to actual people or groups of people. Again the model 

is that of a front desk / help line support but differs from other models in its tight linkage to a 

'change store', which locates already documented solutions to reported problems or change 

requests prior to generating new solutions to uniquely reported problems. 

3.2.2.8 Reverse Engineering Model 

This model has been proposed in response to the draft IEEE standard for software maintenance 

[199], wliich failed to address the issue of reverse engineering [228]. The reverse engineering 

model uses language-specific code-level (metrics, static analysis information etc.) and language-

independent code-level (control-flow complexity, entity relationship information, derived object 

classes, code fragments etc.) to build up design and specification information via tiie reverse 

engineering process. This model essentially involves a process of abstraction whereby the 

program code is translated to a procedural intermediate language and subsequentiy to the design 

level. This process results in a reverse engineered description of a system or system fragment, 

however i f changes are to be implemented a degree of re-engineering of the system wiU also be 

required using the reconstructed design. 
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3.2.3 Discussion of Current Maintenance Process Models 

The above section has outiined a number of maintenance process models. From the research it is 

evident that although maintenance process models differ in their degree of process granularity^ 

and in their particular emphasis, they all considerably extend the view of maintenance implied by 

development models (with the exception of the 'quick-fix' model). Other characteristics 

important for the maintenance process can also be observed witiiin the different models, for 

example, their aim to enable effective communication; to support cost-effective maintenance; to 

facilitate a reusable process; to support evolution by serving as repository for modifications and 

to facilitate effective planning and increased understanding of the system being maintained. 

There is also considerable emphasis placed on ensuring that quality that might have been lacking 

in the development process is installed into the system via the maintenance process. This is 

evident through the explicitiy documented review and audit activities within the models, in 

comparison to their implicit presence within the development models. 

One of the most important details to note about the maintenance models is tiieic reliance on the 

maintainer being able to analyse or understand the proposed change and existing system at tiie 

initiation of the maintenance process. However, despite recognition of this need to comprehend 

the system, none of the current models, with perhaps the exception of the reverse engineering 

model [228], detail in any way how to conduct the process of analysis or program understanding 

within the maintenance model framework. This is essentially a configuration management 

problem of component and configuration identification plus related dependency or impact 

analysis to assess the potential ripple effect of implementing the proposed change(s). Allied to 

this, it is also interesting to note that although configuration management principles are applied 

in many of the models, these principles are primarily aimed at documenting and describing the 

software process via the elements of software configuration control, status accounting and audit 

rather than in identifying the system configuration. This may be regarded as an omission in the 

modeUing process since in order to understand a system well enough to be able to make 'safe' 

ripple free changes, the configuration and related components should be expHcitiy identified and 

understood. Once, identification has been effected, the other configuration management 

elements can be applied during aU subsequent activities to maintain control and accountability of 

future maintenance changes. 

Another noticeable characteristic of current maintenance models is tiiat although they describe 

the maintenance process in more detail than the corresponding development models they are still 

at a surprisingly high level of abstraction in process terms. That is, tiie models document the 

high-level process stages but give Httie indication of the detailed steps required to carry out die 

documented activities. Whilst this offers flexibility in terms of theic applicability to controlling 
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software production over a wide range of systems and environments, it does mean that there are 

still many areas for activity contradiction thereby allowing inconsistencies to manifest themselves 

within the maintenance process. Wliilst a high-level of process granularity may be acceptable for 

systems under conditions of controlled development a more rigorous and prescriptive low-level 

process model is required to enable 'out of control' systems to be brought back under 

configuration control. It is in tliis area, and in particular the definition of a model aimed primarily 

at maintaining legacy software systems that this thesis and die Inverse Software Configuration 

Management (ISCM) process model is aimed and developed within Chapter 4. 

3.3 Software System Architectures 

Techniques for the modelling of software systems have advanced considerably over the past 

decade. This may be mainly attributed to the now widespread acceptance of the importance of 

the software within a system, and the need to understand its complexity i f the system is to meet 

and uphold quality, reliability and safety requirements. However, particularly for large systems, 

identification of the design of the overall software architecture still emerges as a central problem 

[162, 207]. This may be attributed to several causes prevalent in modern systems development 

each of which impacts considerably on the level of complexity of software systems: 

• Internal complexity of software: software complexity at a program (individual SCI) 

level has increased due to incorporation of more sophisticated algorithms for the 

processing of data or controUing of processes. 

• Number of components: software can no longer exist as a single monoUthic 

component. The size of software systems today dictates for reasons of technical viability, 

performance and control that software must be composed of many smaller units or 

modules (SCIs) which combine to form a complete system through the definition of 

their module interfaces. Whilst this potentially makes reuse of individual components 

and maintenance of complete systems easier, it does mean that the relationships between 

the individual component parts must be identified and maintained i f 'ripple effect' 

problems are to be avoided and systems maintained efficientiy and safely. Tliese 

relationships between components may be very complex in some systems. 

• Heterogeneous mix of components types: not only has the number of components 

increased but so too has the diversity of die component types [203, 292]. Tliis is 

particularly evident in relation to the widespread adoption of multimedia technology into 

almost every aspect of society and corresponding computer systems. This much more 
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heterogeneous mix of application component types adds another level of complexity to 

the modelling of software systems since there is the need to maintain referential integritj'^ 

of the linkages set up between widely different component types. 

Linkage with immediate environment: additionally, there is now increased reliance 

on the integration of application systems with environmental components i f a fuUy 

working system is to be produced and maintained [306]. This has always been evident in 

terms of recording information regarding the relationships with tools such as compiler 

and linker versions and the parameter settings required to create a given application 

system. However, the complexity of today's systems and tiie emphasis on reuse of 

components means that the need to carefiilly preserve relationships has been extended 

to include not only application libraries and versions of tools, but also specific system 

libraries and possible third party library components. Thus there is a need to identify the 

different component types not only of the application itself but also of its immediate 

system environment. 

Linkage with secondary environment: as well as increased reliance on the direct 

relationships of applications with system libraries, in many systems it is now necessar}̂  to 

consider their linkage with interface layers such as those of Windows 3.1, Windows 95, 

Windows NT, Motif, X-Windows, Microsoft Foundation Classes, and Visual Basic etc. 

Additionally, the software may 'sit' upon tiiird party software such as databases, or in 

alternative scenarios may be evident as firmware embedded within hardware 

components [65]. There is thus now the need to consider these extra levels of 

complexity when modelling software system architectures. 

Wider application base: software has also expanded into a much wider range of 

business and industrial domains [62, 166] each requiring specific treatment and emphasis 

on the relative importance of different aspects of tiie modelling process. Particular 

mention should be made of multimedia, world wide web [38, 56], embedded [171], 

distributed [100, 345], real-time and safety-critical [345] systems . It is hence important to 

understand and be able to document underpinning domain knowledge about each of the 

different system types. 

Change in architecture: rapid changes in hardware and software architectures are 

transforming the nature of application software systems [328]. For example, the rapid 

growth of client-server architectures is having a major impact on software design in that 

the client part of these architectures runs die user interface and some of tiie business 
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logic whilst the servers run a database such as Oracle, Sybase or Ingress [292, 328]. Botii 

the need to interface with 3rd party applications or components and die resultant 

distributed nature of the software are having major impacts on the complexity of 

systems [292]. These types of changes are being aided by the advent of Rapid 

Application Development (RAD) domains, middleware services [39] and languages such 

as Power Builder, Visual Basic, Delphi, Oracle CASE and Visual C++. 

Fragmentation of upgrade paths: the rapid changes in architecmre are also having a 

significant effect on systems development and maintenance in that upwards of 50% of 

the market cannot cost effectively integrate new technologies into their systems. In 

particular this impacts on a company's upgrade strategy in order to take into account 

changes in the underlying hardware or operating systems [16, 18], and the need to 

incorporate legacy systems from several preceding generations [203]. 

Redefinition of application boundaries: there is an interesting redefinition emerging 

between what is considered off-the-shelf-packages and in-house development [328]. For 

example Microsoft is encouraging application developers to buHd custom solutions by 

configuring and 'gluing' together standard Microsoft Office components using Visual 

Basic and OLE. This is leading to a change in the role of the developer / maintainer 

from that of 'component builder' to one of 'solution provider'. This has implications 

both in terms of how system architectures are modelled and in terms of the developer 

now needing to understand more fuUy the business domain and how to assemble and 

build a viable system rather than just being technically able to program [328]. 

Extension of geographic boundaries: with the large multi-national organisations it is 

now not uncommon for development and subsequentiy maintenance to occur at 

geographically separate sites requiring co-ordination across different platforms and time 

zones [237]. 

Linkage with supporting information: the need to understand a system fully also puts 

increased emphasis on being able to link with documentation and otiier specific 

components such as requirements and design specifications much of which are now 

stored on-line and which should be incorporated into the overall system configuration 

for a product [360]. This is particularly relevant in web and other hypertext based 

material where Hnks are set up between and within different documents or media types 

[56]. 
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The increased scope of possible system architectures caused by the above factors makes 

modelling of software systems a much more challenging task than a decade ago when software 

systems were of a much more uniform nature and standard defined pattern of development 

[348]. The enormity of the task is further evident when we consider that even a decade ago 

software systems were being described as the: 

^^most intricate and complex of men's handiworks requiring the best use ofproven engineering 

management methods" [5 9]. 

To understand the increased complexity there is a resultant increase in the need for 

comprehensive documentation of the reclaimed configurations. There is also the requirement to 

persistentiy store the information reclaimed about a system if the effort expended on program 

comprehension is to become progressively reduced as more knowledge becomes known about a 

system. For this reason this research has defined a number of component groups which may be 

combined to form software system architectures. Within the scope of this thesis these 

software architectures then become software configurations once instantiated with data related 

to a specific software system. Each component group has a number of attributes associated 

with it, and may be recorded on identification sheets or proformas as they are developed or 

progressively re-identified during the ISCM process. These component groups are then 

amalgamated into configurations at varying levels of abstraction and documented as such. 

Additionally, as knowledge reclaimed about a system configuration is incremental in nature and 

systems by definition do not remain static, the ability to update and store configurations at 

determined points in time is required. This is one of the roles of the Extensible System 

Information Base. 

The above features of the ISCM process wiU be discussed in detail in Chapter 4. The first stage 

however, to enable modelling of software system architectures within the ISCM process, is to 

identify the component parts or building blocks of software architectures and the attributes of 

each of these component types making up the architecture. 
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3.3.1 System Building Blocks 

As a starting point for any software configuration management system it is important to establish 

a form of representation for the elements of system modelling. Terminology and defined 

functionality of tools are not currentiy consistent, and are generally determined by the conceptual 

approach taken by individual researchers and developers [136, 224]. For example, aldiougli 

software 'object' is a commonly used term, other tools or systems may refer to 'elements' [336, 

394], 'items' [280], or 'modules' [378]. The following section describes a number of current views 

on what constitutes and contributes to a system model. More extensive discussions may be 

found in [81, 144, 376, 377]. 

3.3.1.1 Software Objects 

A software object or configuration element [141] can encompass any kind of identifiable, 

machine readable document produced during the course of a project and as such they form the 

fundamental building blocks of any system [376]. Examples of software objects are program 

code, documents, command files and test data etc. Most systems define a software object as 

having a 'body' containing the information, and some form of 'unique identifier', together witii 

an associated set of attributes to define author, creation time, last read access etc. 

Software objects can be further refined and described in relation to how they were created and 

also with regard to their internal structure [376]. The main distinction between software objects 

is whether the object is rederivable or not [377]. Source objects are those objects that are created 

manually and by definition they are provided by human input. These objects must be presen'-ed 

as they have a uniqueness related to the definition 'manual' and cannot therefore by automatically 

regenerated i f altered or deleted. Heimberger [190] refers to source objects synonymously as 

'non-rederivable' objects or 'components' and Conradi [101] uses the term 'primary objects'. 

Derived objects are those objects which are created automatically within die system by programs 

or tools called 'derivers'. Such objects need not necessarily be stored within the system as they 

can be rederived, providing that the corresponding source and derivers are still in existence. In 

practice though, most configuration management systems will maintain a cache of current 

derived objects to avoid object regeneration delays, which can be considerable [376]. 

There is some controversy over objects that are derived but which tiien require manual inputs 

(e.g. program templates), about whether they should be classified as source or derived objects or 

indeed even i f they should be split into two components [376]. This point is exemplified by die 
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views expressed during the plenary discussion on software objects at the Software Version and 

Configuration Control Conference [377]. 

The second distinguishing characteristic of software objects is whether they have bodies that are 

'atomic', 'structured' or occasionally 'bodiless'. The latter category arises with tiie need to 

represent a particular version of software that requires control but which cannot be held or 

represented as a body of an object e.g. versions of host operating system, or to represent objects 

that cannot yet be created [8]. Atomic objects cannot be further divided into smaller objects, 

whereas structured or 'complex' [29] objects consist of an hierarchy of sub-objects with atomic 

objects at the lowest level and connected by relationships. A configuration is a type of structured 

object. 

3.3.1.2 Configurations 

In its simplest form a configuration may be defined as 'a list of modules of wliich the program is 

composed' [23]. Krane [377] and Venkatrami [385] extend this definition to include aU 

information required to recreate a system (sources, tools, parameters etc.). Venkatrami farther 

defines a configuration as a collection of versioned objects, where the collections themselves may 

be versioned, and others describe a configuration as a set of constituent software components, 

together with their control and communication interconnections [359]. 

More specifically, EstubUer defines a configuration as 'a consistent set of objects, one for each 

module related by their dependency relation' [136]. This definition liighHghts the difficulties 

associated with loose coupling of terminology and functionality and of using generic definitions. 

Many tools have a tendency to describe 'module' in a different way: for example make [146] has 

no concept of a module it relies only on files; Cedar [369] splits each module into an 'interface 

module' and an 'implementation part; Gandalf [295] has a similar module concept but adds a set 

of revision to each version; ?Lnd Adele [135] goes one step further by representing each interface 

by a set of 'views'. 

Tichy [376] describes two sub-components of configurations: sequences and composites. A 

sequence is a list of object and/or version identifiers of objects, each of which have the same 

type, perform the same function and can be treated in the same way for SCM purposes. A tj^ical 

example is a list of library object modules. In comparison a composite is an object analogous to a 

record structure comprising a fixed number of fields, each consisting of a field identifier and a 

field value (object identifier or version group identifier). In this case each field does not perform 

the same function, e.g. a software package consisting of a program, a manual and a set of test 

programs. 
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Clemm [92] in his description of the Odin specification language also distinguishes between 

atomic objects edited direcdy by the user, and derived objects automatically produced by a 

computer program or tool. He further defines derived objects as an increasingly complex series 

cumulating in composite derived types which are analogous to Tichy's composite objects. 

3.3.1.3 System Model 

There is currentiy considerable debate about what aspects of a system should be described in a 

system model. Generally a model will not completely identify a system configuration, rather it 

provides a framework to enable the identification, comparison and selection of a number of 

configurations [81]. Tichy defines a 'generic' or 'loose' configuration as a system model. A system 

model defines what elements are needed in the configuration but then requires version selection 

procedures to select particular revisions / variants in order to produce a definitive baseline. It is 

this definitive baseline which has the ability to completely and unequivocally describe the system. 

Similarly, Conradi [101] uses the terms 'unbound' and 'bound' respectively to describe generic 

and baseline configurations. In general, the structural description of a configuration can be 

represented by graphs, whilst the lowest level components are represented by atomic text objects. 

Schwanke extends the definition of a system model to include construction information [377]. 

Generic configurations make possible the compact representation of a large set of possible 

baselines, without having to enumerate all the possible combinations. An alternative approach is 

to maintain configuration tables but these are bulky and difficult to maintain for large systems. 

Sacchi [342] proposes a six-dimensional information model which complements Tichy's system 

model. It provides reasoning on which the construction of system configurations may be based, 

these six dimensions are: organisation, structural, spatial, temporal, purpose and procedural. 

Currentiy no system supports all these information dimensions but the adoption of knowledge 

based techniques, object oriented techniques or entity-relationship models may eventually aid in 

this process. A more complete discussion on system modelling may be found in the plenary 

discussion on the International Workshop on Configurations and Version Control [81]. 
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3.3.1.4 Discussion of System Building Blocks 

From the previous section it can be seen that there is a great deal of instability over the 

terminology relating to the components of a software system and how they should be described 

and combined into configurations. Additionally, the changing nature of software systems towards 

embedded, 3'̂ '̂  party and bespoke amalgamated applications, and those with a proprietary GUI 

front end raises a number of interesting issues concerning defining the boundaries of 

applications and where maintenance responsibility lies for systems that are a mix of hardware, 

bespoke and 3"̂  party software. Additionally, the issue arises as to wlietiier distinctions should 

still be made between derived and source objects, since many of the derived objects in a system 

may not be re-creatable i f they are supplied as part of another application. Alternatively, they 

could be thought of as primary or secondary derived objects depending on whether they 

originate as part of the host system or whether they originate from another vendor. The work in 

this thesis wiU therefore make some assumptions and definitions in Chapter 4 about the status of 

objects or software configuration items within systems, the attributes of tiiese components and 

the roles tiiat they play in combining to form software system arcliitectures as defined by tiieir 

associated system models. 

3.3.2 Methods for ModeUing Software System Architectures 

Within both development and maintenance the issue of creating architectural descriptions or 

system models of software systems has become an increasingly important area of research and 

development [161]. This has been brought about by the realisation that, to date, much of tiie 

architectural modelling of systems has been done on an informal, ad hoc basis leading to 

unusable, eroded and unmaintainable architectures which are characteristic of legacy software 

systems [282, 313]. Mechanisms for modelling software system architectures have however, been 

developing progressively over the past two decades such that areas of research now encompass 

those of graphical design notation, module interconnection languages (MILs), templates and 

frameworks for specific domains, architectural patterns and formal models for component 

integration. 

There have been numerous approaches to the modelling of software system architectures, 

predominandy based on the use of interconnection models and description languages. An 

interconnection model is an abstract description of the components in a given domain whilst a 

description language is the structured syntax and semantics required in order to express the 

attributes of the components within that domain [396]. One of the most descriptive approaches 

which has stood the test of time is that of die Module Interconnection Language (MIL). MILs 

were first introduced in 1976 by DeRemer and Kron [126] as a means of describing the 
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interconnection of software components, in what was subsequendy termed the field of 

programming-in-the-large (PITL) as opposed to programming-in-die-smaU (PITS) which is the 

activity of producing the individual components. Since tiieir inception other MILs have been 

developed such as the configuration languages of Mesa [198], Conic [353], reuse-oriented MIL [317] 

and more recentiy an object-oriented MIL [180] for connecting the components of object-oriented 

systems together. This section introduces die key concepts of interconnection models in general 

and surveys a number of MILs and related approaches. 

3.3.2.1 Interconnection Models 

Interconnection models have been used to support the management of system evolution. An 

interconnection model essentially consists of two sets, a set of objects (the components of the 

model), and a set of relations that define the interconnections that exist amongst die objects in 

the model. The model is represented by a graph structure with nodes as objects and arcs as 

relations [310]. 

The unit interconnection model is the most basic, it defines dependency relations between the 

files or modules comprising a software system. Tliis model supports modular construction of 

software and may be used to aid compilation and recompilation strategies, change notification 

and system modelling. 

The syntactic interconnection model is a finer grained model describing relations among 

syntactic elements of a programming language i.e. the objects within the modules such as 

procedures, functions, types, variables etc. (cf files and modules as in the unit interconnection 

model). Whilst the unit interconnection model can only indicate the general location of changes, 

the syntactic model indicates the syntactic objects that have changed. This model may be used 

for change management, smart recompilation, static analysis and system modelling. In sj'̂ stems 

using this model e.g. GandalfWl^'l, both revisions and variants may be identified, and use may be 

made of a programming-in-the-large language, in which versions are understood as part of the 

system description language. Syntactic consistency checking can be performed automatically by 

the system. 

The semantic interconnection model goes a stage further by trying to capture and express how 

the objects comprising a system are meant to be used and why. The Inscape [310, 311] 

environment is using an input/output predicated approach to define the semantic 

interconnection model and interconnections between objects. Inscape provides a module interface 

specification language, Instress, to describe the properties of and constraints on data and die 

behaviour of operations. In this way Inscape's version control mechanism. Invariant, provides a 
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formaHsation of version control that has some significant advantages over version control 

mechanisms that use either the unit or syntactic interconnection models. These advantages can 

be summarised as computabiUty and checking of system models with respect to their semantics 

as well as the syntax. Perry [310] deals in some depth with the concepts and uses of 

interconnection models. 

More recentiy, the JCand E £ 5 0 0 T models have been developed [396] primarily as mechanisms 

for identifying components for reuse in the systems engineering domain but also with the 

potential for describing software configurations. The 3C model is a prescriptive model of the 

attributes that a component should embody. It encompasses three key aspects namely: 

• Concept (an abstract description of what the component does) 

• Content (a description of how it achieves its pupose) 

• Context (a description of the domain applicability of the component and its interactions with other 

components) 

In contrast the REBOOT [396] component model is a classification model based on descriptions 

of the component and encompassing: 

• Dependencies (relationships with other components) . 

• Abstraction {object that the component implements) 

• Operations {operations that the component offers) 

• Operates on {interaction with the environment). 

Similarly, the features it offers have potential for inclusion in models for describing software 

configurations. 

3.3.2.2 Module Interconnection Languages (MILS) 

A module may be described by an interface that specifies the resources provided and required by 

the module, and by a body that details how the module provides the resources that it should. 

This definition enables the distinction between programming-in-the-small (PITS) and 

programming-in-the-large (PITL) to be made. PITS is concerned with the development of an 

individual module in a software system, whilst PITL is concerned with the interactions between 

modules of a system [126, 132]. Perry [311] defined four interrelated aspects of PITL: 

• The description of module interfaces. 

• The control and implementation of variants of these interfaces. 

• The modelling or configuration of a system from its components. 

• The generation of a system from its model or specification. 
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Configuration control is therefore essentially a PITL concern. MILs work at the PITL level and 

several MILs have been proposed to describe the evolution of software systems. Some of these 

MILS and the systems that use them are described below but a more comprehensive treatment 

of the subject's foundation is given in Prieto-Diaz and Neighbors paper [318]. 

The concept of MILs was originally proposed by deRemer and Kron [126] to support PITL. 

This expressed how configurations could be constructed from their constituent parts or 

'modules', by formally describing the interdependencies existing between components of a 

system [318]. The first such description language was MIL-75. Subsequent research has 

concentrated on extending this principle to include mechanisms for describing system evolution. 

Two notable examples of MILs are Cooprider's MIL [105] and Tichy's INTERCOL [371, 372]. 

Cooprider's system integrated a MIL with a version control system. Tichy's work improved on 

Cooprider's through the provision of a facility for automatic verification of interface consistency 

among separately developed components, and the ability of his system to determine which 

version of which component should be used to form a particular configuration. The results of 

Tichy and Cooprider's research are to express software systems as families of related systems, 

and subsequentiy to introduce the concept of module and sub-system families, each member of a 

subsystem or module family being an 'implementation' or 'version' of that family. 

Several programming environments have evolved that provide module interconnection facilities. 

Gandalf [178] is a software development environment whose System Version Description and 

Generation Facility (SVDE) incorporates Cooprider's version control system and Tichy's Software 

Development Control Facility (SDCF) [372]. The Mesa [231] system supports modular program 

development through a configuration description language, CI Mesa, which specifies how 

separately compiled modules are to be bound together. Similarly, the Cedar [369] environment 

uses descriptive files to list the files of a system and a system modelling language derived from 

Mesa to describe the interactions between these files. However, widespread use of these two 

systems is hindered by their language and machine dependence. 

Module interfaces in the above systems are determined by the syntax of die resources diey 

require and provide, that is, all implementations share exactiy the same interface. Narayanaswamy 

[286] argues that functional properties are a more accurate way of defining members. The 

NuMIL environment therefore takes the view that each member of a module family should 

satisfy the same abstract interface specification and defines this specification as a 

module/subsystem family template for each family. They need not however, necessarily share the 

same syntax. Another important contribution of this work is the treatment of upward 

compatibility of modules and systems based on both syntactic and functional properties. 
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Perry [310, 311] in the Inscape environment has also explored the use of formal module interface 

specifications to describe the semantics of data and operations used by a system environment. 

The MIL used is Instress which introduces the notion of obligations to describe operational 

results. These complement the descriptions of data properties and operational behaviour to 

describe operation results obtained by using Hoare's [195] pre- and post-conditions. Inscape also 

provides a formaHsation of the notion of version equivalence and presents four different kinds 

of compatibility: strict, upward, implementation and system. 

Another MIL based system, CRUISE [362], proposed a rigorous representation scheme for the 

structural evolution of software based on the notion of a hierarchy of interfaces. Through the 

use of a MIL which describes the semantic properties of the interface, it enables descriptions of 

architectural designs for software systems as well as attribute information that facilitate 

identification and retrieval of configurations. Feedback mechanisms give the impact of interface 

modifications on the integrity of software systems. 

A number of configuration description languages have also been defined which enable formal 

descriptions of components and their architectures to be made and translated into 

implementation languages via application of formal transformations. Examples of such algebraic 

specification languages include the Library Interconnection Language (LIE), ACT TWO and 17. Meld 

and Configuration Description Language (CDL) are language-independent object-oriented design 

level languages. They too are formally defined and fulfil similar roles to LIE, ACT TWO and TI. 

A detailed discussion of these languages, their properties and usage can be found in Whittie 

[396]. 

Yau [403] has investigated the use of A I techniques, based on first order logic to interpret die 

interconnection behaviour among the components of a software system. This allows automated 

reasoning techniques to be used for validity and integrity checking of software interconnections 

after modifications have been made. Similar logic techniques are being used to assist in the 

automatic generation of expert or knowledge-based systems that incorporate 'machine-learned' 

human domain knowledge about computer systems [116]. 

3.3.2.3 CONFIG language 

Winkler [398] proposes an approach based on representation of version information as part of 

the programming text. This approach describes different configurations of modular programs 

using constructs that are integrated into the programming language. He proposes that diere 

should be a CONFIG part of a program building block (module, compilation unit) in which the 

programmer can express, firstiy, to which versions the building block belongs, and secondly, 
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which versions of other building blocks it uses. This adding of constructs to express versions as 

pairs of revisions and variants, wiU enable the description of configurations of program families 

in languages such as Ada and Modula-2 which already have constructs for PITL. Winkler uses 

the term 'pragmatic configuration' to define this description of version information within tiie 

programming language [398]. Pragmatic configurations effectively extend the principles of 

syntactic configurations and semantic configurations in which the programming language 

describes the syntax and semantics respectively of the interface building blocks. It is this respect 

that distinguishes Winkler's approach from most others that are oriented towards languages such 

as C or Pascal, or that contain their own framework for modularisation e.g. INTERCOL [372] or 

NuMIL [286]. 

3.3.2.4 Proteus Configuration Language 

Proteus Configuration Language (PCL) is a MIL-evolved language designed to model the architecture 

of multiple versions of computer-based systems [360]. PCL, has two primary functions. Firstiy, 

it can be used to describe, at an abstract level, the architecture of different system versions. 

Secondly, through specification of component dependencies it acts as a configuration language 

and the basis of a systems building and version management system. PCL models a system 

around the basic entity types of: 

• Family entities {hardware, software and documentation) 

• Version descriptor entities {specific attributes of a single version of the system) 

• Tool entities {tools used to build the modelled system) 

The basic facilities are then extended and the model linked to specific design methods using: 

• Classification definitions {used to classify entities in a number of different dimensions). 

• Relation definitions {used to define relations between the family entities and other family entities, 

version descriptor entities and tool entities). 

• Attribute type definitions {used to define attribute types as an enumerated set of identifiers). 

One of the key features of the PCL is the support offered for variability in system families such 

that it supports structural, implementation and installation variability. To achieve this PCL 

models system families as a set of stable and variable parts. The stable parts of the system family 

can be defined in base or 'ancestor' components and then inherited by specific components, 

whilst the exact nature of the variable parts are made explicit by version descriptor entities and 

then specified using conditional inclusion. 
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3.3.2.5 DOCMAN 

DOCMAN [58] is an intermediate file format language developed by British Telecom Research 

Laboratories to enable automatic processing of system information. The focus of the DOCMAN 

file format is on portability between hosts and ease of modification and manipulation of the 

system information contained within the file. Therefore, in marked contrast to the algebraically 

specified configuration description languages outUned in section 3.3.2.2. the DOCMAN file 

consists lexically of a sequence of text Unes and semantically as a set of ordered records and 

nested sub-records indicated by simple coding mechanisms. The file appears as a left justified 

sequence of lines which although not aesthetically pleasing can none-the-less be deciphered by 

humans and readily parsed by programs whose role it is to extract particular data from the file. 

3.3.2.6 Domain Specific 

Another approach primarily aimed at the specification and construction of software systems 

from reusable components has been proposed by Neighbors [290]. This approach makes use of 

a knowledge-base to construct systems specified according to the Draco methodology [289]. The 

Draco methodology is concerned with die modelling of systems through the combination of 

information-capture by an 'application domain analyst' who understands how systems of the 

required type are constructed, with the appropriate computer science modelling techniques 

known to a 'modeUing domain analyst'. Fusion of these respective top-down and bottom-up 

approaches to information acquisition is then achieved in a more detailed format via a 'domain 

designer' who specifies the resultant problem domain to the associated tool. Individual systems 

within the problem domains known to the tool can then be specified at later time-intervals by a 

systems analyst who is not necessarily an expert in the particular domain area. This approach 

ultimately results in a number of domain languages being produced. Each language describes die 

components of a system within a particular problem domain in a syntactical language and 

constructs pertinent to that domain. Tests and results to date have shown this to be an effective 

mechanism for: 

• Improving understanding of the parts of the system within a particular domain. 

• Checking specifications and requirements for a system in that problem domain. 

• Educating people in the organisation with the general structure and operation of a 

system with that domain. 

• Deriving working systems from the requirements stated in domain specific terms. 
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Domain-Specific Software Architectures {DSSAs) are also being developed for use in adaptive 

intelligent systems {AISs) with regard to [188]: 

• Meeting functional requirements. 

• Decomposing expertise into highly reuseable components. 

• Selecting relevant components for automatic configuration into an instance of the 

specified architecture. 

A DSAA comprises a framework for a significant number of applications, reuseable 'chunks' of 

domain expertise and a method for selecting and configuring components within the architecture 

to meet particular application requirements. AJS applications have particular problems associated 

with the configuring of systems due to their requirement to perceive, reason and act to achieve 

multiple goals in dynamic, uncertain and complex environments. This approach whilst also 

placing emphasis on the importance of domain analysis differs from the Draco approach in trying 

to generalise expertise and recognise common architectural properties across diverse domains 

rather than create a specific domain language for each domain area. 

3.3.2.7 Rapide 

Rapide is an event-based concurrent object-oriented language specifically designed for 

prototyping architectures of distributed systems [247]. Rapide uses the architecture of a system to 

provide a global view of how a set of object-oriented components have been combined into 

systems. Architectures within Rapide consist of a set of 

• Interfaces {specifications of modules) 

• Connection rules [define communication between interfaces) 

• Formal constraints {define legal! illegalpatterns of communication) 

Rjzpide differs from other event-based languages, such as LOTOS for modelling communication 

protocols and Esterel for modelling synchronous systems, in its ability to explicitiy represent 

dependencies between events [247]. In modelling dependencies Rapide shares some common 

ancestry with hardware description languages but it adds the capability to model dynamic as well 

as static systems. Another distinctive element of the Rapide approach to modelling systems is tiie 

capability of the architectures to be validated, executed and performance-monitored prior to the 

system being buUt. This is achieved through a range of automatable analysis techniques ranging 

from execution and simulation to runtime constraint checking and formal proof These 

architectures can then act in a number of ways, for example, to monitor system development, to 

stimulate and analyse the behaviour of dynamic systems and to act as reference architectures in 

order to assess compliance of systems to industrial standards. 
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3.3.4 Discussion of Architecture Description Languages 

Section 3.3 has briefly outiined the developmental history of languages for modelling software 

system architectures and has described the key properties of a representative sample of such 

languages. This section selects and justifies a number of these features for inclusion in the 

definition of the Inverse Configuration Description Language (ICDL). 

A number of languages have been defined as a means of syntactically and semanticaUy expressing 

the components and relations defined within associated interconnection models. Much of the 

seminal work in this area has been in relation to MIL development and in particular has stemmed 

from that of DeRemer and Kron in the mid 1970's [126]. The advent of MILs enabled a 

distinction to be made between programming-in-tiie-smaU (PITS) and programming-in-tiie-large 

(PITL) whereby PITS is concerned with the production of an individual component (module) of 

software whilst PITL supports the combination of these components into complete systems. 

However, whilst MILs are very effective at defining the module interfaces and the resultant 

construction of software systems they are not concerned with a number of factors which play an 

important role in enabling a maintainer to conduct efficient and effective program 

comprehension. MILs for example, are not concerned with: 

• What the system does [specification information) 

• The business organisational aspects of the system [analysis information) 

• How individual modules implement their functions [detailed design informatiori) 

Indeed, each of the above features may be considered essential to the program comprehension 

process as indicated by the reiteration of the three key areas encompassed within the program 

comprehension activity: 

• Understanding what tiie system does and how it related to its environment [specification 

and analysis information). 

• Identifying where the system change should be effected [analysis information). 

• Deducing how the components identified for correction or modification work [detailed 

design information). 

Another deficiency apparent in many of the early MILs is their sole concentration on software 

description resulting in inadequate provision of facilities for describing the associated hardware 

or document structure. Some early MILs also restricted their modelling capabilities to tiiose of 

single versions of systems. Languages and systems have however emerged to address the issues 

of handling multiple versions of software or program families, for example the initial work in this 

area by Tichy [372] and Cooprider [105] and most recentiy that of SommerviEe [360]. The PCL 
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language of SommerviUe and the REBOOT model referred to by Whittie [396] also begin to 

address the issues associated with widening the scope of system modelling to incorporate the 

environment and components such as the hardware, enabling tools and associated 

documentation. It is in these respects that the PCL work most closely resembles that of the 

ISCM modelling process. 

Architecture description languages to date have also tended to concentrate on describing the 

static structure of systems and not their dynamic characteristics. Dynamic modeUing may be 

considered from two perspectives: firstiy that of being able to dynamically reconfigure a software 

architecture according to specified build patterns; and secondly as a means of modelling the 

dynamic behaviour of systems. The latter area, whilst likely to be an increasingly important area 

of research due to expansion in the number of event-driven and real-time systems is considered 

to be outside the scope of the thesis. Rapide, however, is developing as a language capable of 

simulating and modelling the run-time behaviour of such systems. The dynamic reconfiguration 

of software systems is another area in which PCL is making some grounds [360] through 

incorporation of inheritance and conditional inclusion. 

A number of configuration languages are also being developed which formally define the 

components of a software system with the primary aim of enabling and verifying the correctness 

of system builds. Whilst the merit of these languages is noted, their aim is also considered to be 

outside the scope of this thesis which is concentrating on identifying and documenting the 

composition of existing systems rather than building new systems from component parts. For 

these reasons they wiU not be considered further. In marked contrast to these mathematically 

specified languages, the DOCMAN approach to describing software system configurations is 

based on a simple text file and simple combinations of characters to represent commands. At 

this stage in the work, the portability, flexibility, learnability and ease of use characteristics 

resulting from the DOCMAN format are considered more applicable to the ethos of the ISCM 

process than the ability to formally verify the built configuration. 

Another important concept that has relevance to the ISCM method is that of capturing and 

making use of domain expertise and knowledge. Models such as 3C [396], methods such as Draco 

and frameworks such as DSAA. all rely on being able map knowledge and problems to tiieir 

relative domains in order to model system architectures, either specifically as in Draco or more 

generically across application domains as in DSAA. However, from a program comprehension 

perspective the information contained within the 3C model describing what each component 

does; how they achieve this; their interactions with other components and their domain 

appKcabiHty, perhaps offer the most potential for exploitation. 
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Taking into account the combinatorial effect of the features described, modelling within the 

ISCM process may be considered to be a natural extension to earlier work in the areas of PITS 

(construction and modelling of single components) and PITL (construction and modelling of 

software systems). To this effect the ISCM concept of programming-in-the-environment (PITE) 

is introduced. P I T E may be defined as the construction and modelling of entire software 

environments; where environments may be taken to mean the modelling of components 

belonging to software other than that of the application, hardware, documentation, tools, 

cognitive, configuration and version information etc. The underlying models of PITE are based 

on the configuration (architecture) abstractions that will be defined in Chapter 4. 

Correspondingly, the syntax and semantics required to express the attributes of the components 

modelled within these architectures are provided by the Inverse Configuration Description 

Language (ICDL). The ICDL language constructs are also described in Chapter 4. 

3.4 Software Manufacture & Configuration Creation Process 

During development or after maintenance configurations must be rebuilt from their component 

parts, this is termed software manufacture or system synthesis. Essentially the configuration 

creation or manufacture process may be spilt into three stages: 

• The choice of a set of groups which are to contribute versions to the configuration. 

• The selection or binding of an actual version from each of the contributing groups. 

• The building of the configuration according to the relationships between components 

and translation rules defined by the dependency graph. 

The primary emphasis of ISCM is on the cognitive aspects of understanding a system 

configuration rather tiian on the physical activities associated with rebuilding it. However, as 

both processes involve study of the associations between component parts, it should be possible 

to draw a number of parallels between the system composition process of traditional SCM and 

the system decomposition activities of the ISCM process. Krane [224], for example, views the 

entire configuration creation process as the transformation of an incomplete high level 

specification of a software product into a complete high level specification capable of being 

executed. In his model he represents this process by a developing series of attributed graphs, 

such that nodes represent objects which may or may not have associated attributes, and edges 

represent relationships existing between the components. Translation processes can be defined 

to add nodes and edges to the graph or to propagate values to the nodes. In tiiis respect the 

ISCM process holds a similar view in that it too moves from an incomplete to complete liigh-

level specification of the system, albeit from the inverse angle. The remainder of this section 
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therefore briefly surveys the synthesis process and formulates some conclusions about the 

appHcabiHty of such activities to the ISCM process. 

3.4.1 Component Group Selection 

The first stage in the configuration manufacture process is to produce a list of the component 

groups required to donate versions in the construction of the product. There are several 

mechanisms for conveying this dependency information to the configuration management tool. 

In most language-dependent environments such as Cedar, Gandalf Ada and Modula-2, the 

dependency relation is explicit in the syntax of the language, and is provided to the tool in 

compilation. Information may also be extracted directiy from the source code by parsing the 

source code for constructs that specify the imported files or modules. Adele uses this mechanism 

as does mkmf - the program that produces Makefiles. CCC uses two scanners, one that detects 

user-specified strings in source code, and a second that detects definitions/references in object 

code [357]. Alternatively, module interconnection languages may be used to confer the 

dependency information to the tool. 

The result of such mechanisms is typically the production of a version independent or generic 

configuration of a system. Tichy [376] for example, describes the generic configuration by means 

of an AND/OR graph model, using leaf nodes to represent atomic objects, AND nodes to 

represent configurations, and OR nodes to represent source or derived version groups. Conradi 

[101] uses an AND-view/OR-view graph representation for unbound (generic) configurations. 

The Make system model expUcitiy defines the exact configuration of a system. However in most 

SCM systems the generic configuration wiU yield many specific configurations, only some of 

which will be viable. Selecting the right modules and variants without exhaustive search is one of 

the most significant problems in configuration management [136, 376]. Mechanisms must 

therefore exist to select a specific version from each of the defined component (version) groups 

whilst still maintaining the integrity of the system. 

3.4.2 Version Selection 

The typical algorithm for component selection is to start at a particular graph node (component 

group) and select from each component group in turn, one of its variants/revisions. This may be 

considered a 'binding' process as attribute information such as variant/revision identifiers and 

physical locations are being bound to the generic graph. The set of selected variants/revisions 

constitutes the baseline or bound configuration [136]. 
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Each tool has its own methods of selecting specific versions from the generic configuration. 

Some of these are more flexible than others, the flexibility depending to some extent upon the 

nature of binding between objects in the dependency relation, for example the dependency 

relation may specify: 

• Exactiy which revision and version to use, the tool provides no selection 

• The variant to use, the tool selects the revision 

• Only an interface, the tool selects both the variant and the revision. 

Selection is generally subject to a given set of requirements or constraints which are applied to 

the generic configuration. Many tools base selection on syntactical constraints, for example, 

revision number, state and author are often used to select revisions. A variant may be based on 

some environmental factor such as the hardware platform being used. 

The dependency relation of Make is very strict, defining exactiy which files to use and allowing 

no revision or variant selection by the tool. To use any files other than tiie most recent version 

requires that the dependency relation in the Makefile is explicitiy changed. Shape [253, 254] - an 

enhanced Make program, offers some improvement by including support for configuration rules. 

These rules control the selection process for component objects during identification, build and 

rebuild of system configurations. Configuration selection rules in Shape consist of a sequence of 

alternatives and associated predicates, and succeed i f one of the alternatives succeeds. The 

configuration rules also support variant selection through the use of variant flags tiiat may be 

passed to the transforming tool [254]. 

DSEE [236] uses configuration threads to define which revision to select. A configuration thread 

is a rule based description of the version of components to use for a particular build of a system. 

In Odin [92, 94] a query corresponds to the configuration thread in DSEE. A query is a request 

for a particular derivation. Queries can be obtained from files or presented interactively, and a 

history mechanism allows modification and reuse of interactive queries. In Jasmine [258] an image 

is equivalent to DSEE's bound configuration thread. 

Gandaf [178] assigns defaults for selection of revisions which may be changed dynamically by 

other modules, while Adele [135] selects revisions using constraints on attributes. Adele also 

allows selection of variants using constraints which rely on semantic properties of the variants 

and not just on names and dates. The selection process continues through the alternatives until 

constraints are matched. Adele also differs from systems such as Make, DSEE and Odin in which 

the relationships between components of a given system are statically defined in the system 

model. Adele takes a dynamic approach by using the desired characteristics of a system to derive 
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the configuration rather than a composition list. The description is evaluated against a module 

dependency graphs and the module descriptions stored in a database of programs. Dynamic 

selection means that it is possible to obtain several different compositions list for a system. 

Clemma [333] supports both static and dynamic construction of configurations. Static 

construction is via a list of components and their versions, while dynamic selection is achieved 

through querying the relational database. Gypsey [95] also used queries, first to select a subset of 

versions that satisfy some predicate and then a specific version that satisfies some selector. In tiie 

Darwin [277] environment, version selection is based not only on the objective requirements, tiiat 

is, the syntactic and semantic constraints that emanate from the structural aspects of the system, 

but also on subjective restraints which are imposed expHcitiy by the users, programmers and 

managers involved in the software development process. 

Module interconnection languages use a different approach to version selection, concentrating 

instead on the interfaces among software modules. Most MILJ- can represent versions of the 

implementation part of the program but have difficulty in representing versions of interfaces. 

Exceptions are Mesa [164] and Cedar [369] wliich use the C-Mesa sub-language for describing 

configurations. 

3.4.3 System Building 

The final stage of the system construction process is to generate the derived objects and 

executable image of the system from the records of versions, sources and tools held or defined 

within the system model. Building occurs according to the dependencies, translation rules and 

commands in the dependency graph. These rules may describe how to generate a particular target 

file, i.e. which kind of source object is transformed into which kind of derived object, how the 

transformation is performed, and the parameters used. Essentially, when a transformation rule is 

evaluated the name of the source objet is passed to the current selection rule and bound to a 

concrete source object in the object base. Alternatively, commands may specify tiie extraction of 

a particular revision from the archive for the purposes of linking and compiling [275]. 

The build tool or facility should have the flexibility to support construction of products 

consisting entirely of current versions of components, and of products constructed from 

versions reconstituted from archives. SERS [329] for example, uses stocklists to specify the files, 

versions etc. of components which form a release, and generates a corresponding loadHst wliich 

lists those files that require recompilation. Shape [253, 254] uses a configuration identification 

document (CID) which is essentially a Shapefile tiiat is completely bound specifying version 

number, variant identifier, tool versions etc. 
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To maximise efficiency it is important to make the building process as fast as possible. It is 

generally impractical to rebuild an entire system every time a component in the system is 

changed. Various mechanisms therefore exist to avoid complete rebuilds such as caches of 

derived objects [236], timestamps [146], opportunistic processing [212, 213], smart and smarter 

recompilation [374, 375]. This subject is outside of the scope of the thesis and as such wiU not be 

treated any further here, McCrindle [263] offers a more comprehensive review of the different 

recompilation strategies. 

3.4.4 Discussion of the Configuration Reclamation Process 

In order to completely recover the system architecture/configuration of a legacy software system 

the ISCM process must incorporate similar activities as those described for the construction of 

software systems. For example, there is the need to identify tiie version groups from which 

components are to be selected; to identify the correct revision or variant of die component from 

within the version group; and to determine the parameters or attributes attached to particular 

component that govern the combinatorial process. There is also the need to understand or 

recover as much syntactical, semantic and cognitive information associated with a component as 

possible in order to build the configuration correcdy (forward process) or to document the 

configuration accurately (ISCM process). Conversely, there are also a number of fundamental 

differences between the forward and inverse processes in that for legacy systems the process 

tends to be much more iterative rather than sequential in nature. The end-product is also 

different in that the SCM construction of a system configuration involves moving from a system 

description to an executable system, while the ISCM identification of a configuration moves 

from an executing system to a description of the component parts of the system and 

relationships existing between them. Factors of both a similar and dissimilar nature were taken 

into account when modelling software systems within the ISCM process. Additionally, it was 

found that as maintenance proceeded over the lifetime of a product the configuration description 

document could be built-up and controlled as part of the legacy system and hence the two 

approaches began to coalesce. These issues are discussed further in Chapter 4. 
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3.5 Storing Software Configuration Architectures 

The underlying mechanism of the ISCM process and its associated metiiod is the representation 

of the fully- or partially-reclaimed software systems architectures by means of an Extensible 

Systems Information Knowledge Base (ESIKB). Within the scope of this work the 

characteristics of a number of Unix, MS-DOS and Windows95 systems and their applications 

were studied (see Chapter 6) and architectural models manually built-up for each application. The 

characteristics of the separate models were then used in combination to create the generic model; 

to determine the type and structure of information to be stored; and to identify a set of initial 

rules for reclamation of this information. These issues leading to the creation of the ESIKB will 

be discussed more fuUy in Chapter 4, whilst this chapter surveys a number of possible storage 

mechanisms and organisational formats for the resultant data. 

3.5.1 Configuration Information Storage IMechanisms 

SCM systems must aU have some underpinning file or database strucmre within which to store 

the various software products and configurations [190], this may be termed the 'object' or 

'information' base. The hierarchical file structure of tiie underlying operating system is tiie 

traditional way of representing objects. Objects are stored as files, and their properties are 

recorded in another file, e.g. Make's Makefile and Odin's ODIN directory. They have an acceptable 

level of reliability, however they have limited recovery procedures, consistency control, access 

synchronisation and authorisation [376]. The Team One [385] configuration management system 

is based on an extension to a normal operating system directory. It resembles a normal directory 

but in addition can freeze a directory structure at discrete points in time which it calls 

checkpoints. The Shape toolkit uses an Attributed File System, AFS, realised as a callable interface, 

to enhance the regular Unix file system by increasing the number of attributes that can be 

associated with a file. [253, 254]. Gjpsj is built on an object oriented extension of Unix that 

provides mechanisms for customising directories with extra commands for inserting and deleting 

components, altering file projects and listing directories etc. 

Commercially available databases may be used as the underlying strucmre for the object base, for 

example the Cbangeman system [395] has the Oracle relational database at its centre and Galileo uses 

Ingres as its basis. Database Management Systems (DBMSs) provide the high reliability and 

systematic mechanisms necessary for handHng recovery, consistency control, access 

synchronisation and authorisation. They also offer facilities that promote data sharing, can 

efficientiy store a large amount of information and support retrieval and concurrent access by 

multiple users [40]. However the namre of SCM requirements do not parallel those of 

75 



commercial DBMSs. SCM requires processing of moderate numbers of large objects with 

complex internal strucmres in contrast to the business oriented applications which require 

processing of large quantities of much smaller records [376]. The result is that for SCM purposes 

these databases are often inefficient, inflexible, inactive, unable to represent deltas, and do not 

provide enough modelling support. In addition most have difficulties in representing versions 

and revisions of a single object. There may also be difficulties in interfacing to different 

languages, tools and hardware [40, 134, 136]. 

Both the configuration librarian, Clemma [333], and the integrated system, PCMS [280], are based 

on relational database models. CCC [356] and Ufespan [378] are two commercial products which 

have developed custom databases optimised for configuration management activities. Eclipse is 

built on the SDS2 [9] database system, that has been designed specifically to support software 

development by large teams. It employs a binary semantic data model with bi-directional links 

and supports a wide variety of data types in addition to allowing other types to be defined by the 

user. SDS2 is based on an extended entity relationship model and is designed to serve as a 

universal data manager for a large set of tools within an ipse. The possibility of using this 

database instead of the Unix file system is being considered by tiie developers of Shape. 

DAMOKLES [127] is another example of a dedicated software engineering database. 

Attention is now being directed towards object-oriented models and entity relationship models 

for object base support. This is in an attempt to yield more accurate data models and increase 

efficiency. Bernstein [40] recognises this as being at two levels, that of layering new facilities on 

top of existing relational database systems, and that of creating new DBMS architectures 

specifically targeted for design operations. The layering approach is unlikely to be as powerful or 

efficient as the new database architectures, however the new architectures are stiU in their 

infancy. 

Perspective Kernel [220], a product from System Designers and an integrated database from Datev 

have entity relationship approaches at their centres. Similarly, Galileo [336] uses an entity-

relationship-attribute data model represented in an underlying relational datbase. By optimising 

the database for retrieval rather than for updating acceptable response times have been achieved 

[336]. The Common Up Framework [92] and the EPOS software engineering environment [101] 

are partially based on object-oriented approaches. Marvel [212] has an object base tiiat is 

conceptually related to object-oriented programming languages in that each object is an instance 

of a class that defines its type. However, unlike most object-oriented languages. Marvel's object 

base is persistent, that is, it retains its state across invocations of the environment tiiereby 

providing a file-less environment. EBDLOG [20] is a prototype logic database system 
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implemented in Prolog. It allows a database to be defined as a logic programming unit and 

definitive Horn clauses. A more detailed discussion of approaches to the use of DBMS to 

support software engineering is given in [40]. 

The above discussion indicates that there are a number of possible storage mechanisms for tiie 

physical representation of the configuration items (components) and their corresponding 

configuration descriptions. These can be broadly summarised as: 

• Flat-file: this is the simplest form of storage with information being represented as a 

sequence of bytes. The advantage of this method is the universal usage of this form of 

file storage in all operating systems and hence there is no extra overhead. However, 

issues may arise concerning the modelling of shared data items. Within this file 

organisation data are normally stored in records of fixed or variable length. Each record 

generally represents an instance of an entity type and the files contain the entity values. 

Within a file each record may be organised in a hierarchical or network structure, each 

node corresponding to a class of real-world entities and an edge representing the links 

between the entities [121]. Permissible operations are the insertion of new records, 

deletion and modification of record types. Primary and secondary keys are needed for 

sorting and searching and an end of record indicator is required for separation of 

individual records. 

• Relational: relational databases are currentiy the dominant database technology [82] and 

represent an elegant and powerful way of viewing and manipulating data at a logical 

level. The relational storage model allows data to be represented in the form of tables 

whose size is predefined. The model originates from the mathematical concepts of 

relational algebra and set tiieory. Within this approach aU information is represented 

logically by values in tables. Every data value is logically accessible by a combination of 

table name, column name and primary key value. A relation may be viewed as a two-

dimensional table representing an entity set. The relation has a fixed number of named 

columns, or attributes, and a variable number of rows or tuples. The overall relational 

schema contains a collection of these relational definitions. In terms of physical 

manipulation of the data, most relational databases are supported by a high level SQL 

(Structured Query Language) or SQL-like language to enable data definition, 

manipulation and querying within the relational schema rather tiian requiring separate 

languages for each of the tasks [172]. 
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Extended relational: relational structures are suitable for simple data structures built 

from atomic types like integers, reals and character strings [121]. However, they are 

frequentiy inadequate for representing the structure of newer applications which require 

the ability to store complex or structured items [89]. These items include computer-

aided design (CAD) drawings, bitmap images, multimedia sound and video files and 

large structured text documents for office automation and document management 

systems [338]. The extended relational approach in products such as Openlngres enables 

support of these large and structured types as well as allowing programmers to defined 

their own special-purpose types [82]. Compound attributes may be modelled and 

representation of specialisation and generalisation is allowed. The extended approach 

also enables the creation of a temporal database thereby providing access to previous 

states of entities within the database. This persistence can be of immense benefit within 

SCM in terms of storing the component and configuration developmental histories, 

without the need to archive every piece of changed data. 

Object-oriented, the object-oriented approach to database systems is intended to 

further advance the features of the relational approach [384]. In particular, better 

support is provided for the representation of large structured objects such as those 

found in CAD (Computer Aided Design), GIS (Geographic Information Systems) or 

document management systems. Object-oriented databases have at their foundation tiie 

concept of data and its functions encapsulated within a single object. In database terms 

tiie data encapsulated within an object is a tuple composed of other objects represented 

by their identifiers. Hence this has great possibilities within the ISCM process for 

representing configuration lists. Additionally, in common with the extended relational 

model, the object-oriented approach supports persistence and hence can keep control of 

permanent as well as temporary data. However, whilst object-oriented databases provide 

increased functionality, they require careful control witii respect to schema evolution to 

ensure that any changes to the system preserve the structural and behavioural 

consistency of the database. In particular, it must be ensured that any changes made to a 

class are propagated fuUy through the inheritance lattice through which the concepts of 

specialisation and generalisation are supported [278]. 

Parallel and distributed: increasingly there is a move towards database models of a 

parallel, distributed [383] or federal nature [91]. Typically, modern information systems 

are based around a client-server model of computing, where the clients make requests of 

the server. In the past there has tended to be a centralised server, however new 

technology and the distributed nature of many businesses means there is a gradual move 
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towards distributed architecmres. Distributed databases may be homogeneous, that is, 

there are several sites all running their own applications on tiie same DBMS (Database 

Management System), or they may be heterogeneous where several existing databases, 

using different DBMSs, are linked into a single system. Federated database systems go a 

stage further and are a collection of independentiy managed, heterogeneous database 

systems that allow partial and controlled sharing of data witiiout affecting existing 

applications. With the increasingly distributed nature of computing, the need to combine 

heterogeneous products with the application system and tiie need to enable distributed 

maintenance, these models are becoming more popular. This is particularly true witii 

regard to the high storage needs of many of the new multimedia types and large 

document formats for which storage on one site of all data is not always physically 

possible. The need for improved access and retrieval of large structured information 

types such as sound and video has also meant that parallel architectures for databases, 

which can offer improved performance are also becoming popular [404]. 

Whilst there is an obvious need to store the logically represented ISCM information in a physical 

format, tiie mechanism to be adopted is not the primary concern of this thesis. Indeed, in terms 

of storage of the components themselves there is an argument for retaining the host system 

approach. Tliis has been the approach taken within the scope of this work. However, in terms of 

representing the component descriptions and configuration Usts, both a flat-file and extended-

relational approach have been adopted, the reasons for which will be discussed in later Chapters. 

3.5.2 Library Organisation 

In addition to consideration of how to store and link individual pieces of configuration 

information, organisation of complete baseline versions must also be considered. The 

organisation and implementation of libraries may vary for different system environments and the 

particular tool being used. For example, some libraries may deal specifically with source code 

files, and others with object files, some may hold files or functions specific to a particular 

function or set of functions, and others might be organised to reflect the differing states of 

baselines or SCIs. Some systems distinguish between a program library and development library 

by considering a program library to be simply a store for compiled code and interface 

information, whilst a development library will also store the source code, analysis results etc. The 

CLEMMA [333] configuration librarian acts as a central repository for objects and information 

produced during a project, including source modules, test data, object code, specifications and 

manuals. Derivation histories, relationships, authorship, membership and access permissions are 

also stored in the library. DSEE [236] has the concept of 'object pools' wliich hold the binaries 

and other objects produced during the course of system building and associated build 
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descriptions. Other systems operate on the basis of tiered levels of development, integration, 

system and official baseline software Libraries with increasing levels of configuration control to 

channel the flow of completed software units to delivery. Softools CCC [356], for example, 

maintains this concept by having an ordered sequence of development, test, build, prototj'pe and 

production accounts. Again, this area is not of primary interest within the scope of tiiis thesis but 

it has been addressed within the PISCES system prototype through the use of versioned 

directories and makefiles. 

3.6 Summary 

This chapter has reviewed a number of development and maintenance process models. It is 

apparent that development-oriented process models do not adequately represent the 

maintenance process. Whilst this deficiency is now being addressed by a number of maintenance-

oriented models, these models tend to approach maintenance from a high-level perspective and 

do not specifically address the activities required to model legacy systems. Given the high 

proportion of legacy systems in the 'real' world that need to be economically maintained, there is 

a pressing requirement for the development of a model that specifically addresses the problems 

of bringing legacy systems 'back under control'. This can be most effectively achieved through 

emphasis on the program comprehension activity during the maintenance process. In order to 

address program comprehension issues of legacy systems, the ISCM process wiU be defined in 

Chapter 4 and together with its associated model and method developed more fuUy throughout 

this thesis. 

A software system is a complex product realised through the interaction of many heterogeneous 

components. These components in viable combination form the configuration of a software 

system. As the components of a system evolve for reasons of adaptation, correction and 

enhancement new configurations are generated such that a family of closely related but distinct 

systems form. It is the role of ISCM to control and uniquely identify this evolution of program 

families. Additionally, as the software discipline matures, systems are advancing such tiiat the 

nature of the interactions between their component parts and the complexity of the interactions 

of these component parts with the system environment and third part tools is becoming 

increasingly complex. It is therefore no longer sufficient to limit modelling to the application 

components alone. For this reason as part of the ISCM process a set of component types or 

groups from which an application and its environment may be modelled will be identified and 

defined within Chapter 4. 
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Tliis chapter has also reviewed a number of module interconnection languages (MILs) and 

related approaches currentiy in use for the modelling of software system 

arcliitectures/configurations. An evaluation was made of the key feamres of each of these 

approaches and of their applicability to tiie ISCM process. As a result, a new language, the 

Inverse Configuration Description Language (ICDL), wiU be defined within Chapter 4 to enable 

the reclamation of legacy software system configurations and description of the resultant system 

models. 

ISCM Will be shown to have parallels in the activities of the traditional SCM activities. This is 

particularly so in the area of software manufacture, where a viable configuration has to be built 

by selecting compatible components, one per version-group. Although the focus of ISCM is on 

identifying an existent configuration rather than rebuilding a new one many of the same issues 

have to be considered and activities undertaken, and hence Chapter 4 wiU also explain how ISCM 

can be used a precursor to the build process. 

It is also essential that the information reclaimed about a software system is stored in a format 

suitable for reporting and update. Advances have been made in the underlying mechanisms for 

storage of system configurations, their constituent components and associated information. 

These include extensions to the underlying file structure of the operating system, and the use of 

relational and customised databases. Additionally, research is active in the spectrum of areas 

from entity relationship through to object wrappers and mediators to fuUy object-oriented 

approaches to object storage [82]. Storage of the configuration 'objects' and rules within the 

ISCM process is the primary role of the Extensible System Information Base (ESIB). 
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Chapter 4 

Inverse Software Configuration 

IVIanagement 

And as imagination bodies forth 
The forms of things unknown, the poet's pen 

Turns them to shapes, and gives to airy nothing 
A local habitation and a name 

Shakespeare ^ Midsummer's Night's Dream, Act V, Scene I 

4.1 Introduction 

Tliis chapter describes the key characteristics of the Inverse Software Configuration 

Management (ISCM) process and development of its resultant maintenance process model. 

ISCM is defined within this chapter as the process of bringing existing (operational or legacy) software 

systems back under configuration control In order to realise control of a legacy system a theoretical 

understanding of how software system architectures can be modelled is required, coupled with a 

practical method for identifying and locating the component parts of the model from within a 

'Hve' application. This chapter consequentiy defines the component types of a system, recognised 

within the ISCM process, as being essential to the effective modelling of software system 

architectures. ISCM involves modelling a given application system at a number of architectural 

levels. This chapter therefore also details the roles and relationships of each component type in 

terms of a number of abstract system configurations, for example at baseUne, version and 

environmental levels. 

Following identification, these components and their relationships need to be formally defined 

and documented within the context of a software configuration and corresponding system 

model. There is therefore a need to syntactically describe the configurations resulting from 

component combination. With this in mind and with respect to the review of configuration 
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description languages carried out in Chapter 3, this chapter also develops the Inverse 

Configuration Description Language ( I C D L ) based on a balance between current best 

practice and applicability to the ISCM process. 

The I C D L provides a convenient 'machine-oriented' file format which can be subsequentiy 

exploited during the semi-automation of the ISCM process via the P I S C E S M'* tool series. 

However, the 'human-aspects' of die process must also be considered, these human-aspects are 

facilitated by representing the system according to a Proforma Increasing Complexity Series 

(PICS). Within the PICS a series of proformas of similar structure but increasing application 

complexity provide the mechanism for the collection and coUation of information for 

underpinning the knowledge base and describing software system architectures. The PICS 

templates in their role as a natural language mechanism for software configuration reclamation 

and description are therefore developed within this chapter. Mention is also made of how an 

inverse perspective to the traditional system building process can be used to incrementally 

populate the PICS in order to reclaim a software system configuration. 

4.2 Inverse Software Configuration Management 

Whilst numerous process models now describe the maintenance process, none of them address 

expUcitiy the problems of bringing a legacy system back under configuration control. This thesis 

proposes the process of Inverse Software Configuration Management (ISCM) as a mechanism to 

achieve a controlled and repeatable method of cost effectively reclaiming 'out of control' legacy 

systems. Thus, there is a need for the reasons discussed in section 3.2.3 to enhance and extend 

current maintenance process models as well as embody the best practices encompassed within 

them. This augmentation must encompass the detailed configuration management activities 

required in order to re-establish control of a system. This section develops the ISCM process 

model and discusses the key underpinning features embodied within it. The key terms associated 

with the ISCM process are defined in Table C4-1. 
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Term Definition 

ISCM Process The overall process and its definition. 

IS CM Maintenance Process Model The conceptual stages/activities necessary to 

effect the ISCM process, and its relationship 

to the global software Hfecycle. 

Process Architecture The modelling tool to represent the process 

model at varying levels of abstractions. 

PISCES Method Tlie physical realisation of each of the above 

stages/activities through a defiined sequence 

of steps and templates 

PISCES M'^ System The meta-CASE environment developed to 

semi-automate the ISCM model & PISCES 

method 

Table C4-1 ISCM process model terms 

4.2.1 Process Model Representation 

Process models may be represented at a number of different levels and for a number of different 

client groups, for example management, customers, developers and even lawyers involved in 

litigation regarding software products and development [256, 278]. Additionally, even within the 

different client groups it may be advantageous to view a system from a number of different 

architectural perspectives. However, the majority of development and maintenance models 

described in Chapter 3 may be considered to be high-level, task-oriented models approached 

f rom a single viewpoint. I n order to more accurately define the ISCM process such that it can 

provide useful results for a wide-ranging customer base including managers, customers and 

maintainers, there is the need to address the process model f rom a number of levels of 

abstraction. Additionally, in order to ensure consistency and traceability of the ISCM process 

there is the need to provide not only a high-level guide to the tasks diat need to be conducted, 

but also detailed guidance for how a particular task wiU be achieved. Consideration will therefore 

be given to three levels o f process abstraction: policies (overall process - managers/customers); 

procedures (high-level tasks - managers/customers) and work instructions (detailed activities -

maintainers). 
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The modeUing approach wiU be supported by software process architecture diagrams as the 

means o f describing the processes, their associated activities, and the corresponding relationsliips 

and dependencies that exist between processes. Levels zero, one and two of the Inverse Software 

Configuration Management (ISCM) maintenance process model will be described in section 4.3. 

Level three, which is synonymous with the PISCES (Proforma Identification Scheme for 

Configurations of Existing Systems) method, will be addressed in depth within Chapter 6. 

4.2.2 The Inverse Software Configuration Management Process 

Inverse Software Configuration Management (ISCM) may be defined as the process of bringing 

operational (existing or legacy) systems back under configuration control [264, 266]. Like 

traditional Software Configuration Management (SCM), ISCM encompasses tiie four basic 

elements o f [43]: 

• Identification - defining and uniquely identifying the baselines and corresponding 

components of a system and any changes made to the components of the baselines. 

• Control - managing through defined procedures any changes made to the components 

and the baseHnes of a system. 

• Status Accounting - providing an administrative history of how the system has 

evolved and its current status. 

• Audit - determining that defined baseHnes meet their requirements and that the 

control, identification and accounting procedures have being adhered to correctiy. 

The major difference between maintenance-oriented ISCM and development-oriented SCM lies 

in the far more comprehensive treatment of the configuration identification phase of the process. 

Within the ISCM framework this is termed Inverse Software Configuration Identification 

(ISCI). The increased importance of this phase for existing or legacy systems is due to the extra 

program comprehension burden attributed to the reasons discussed in Chapter 2. That is the: 

• Increased complexity o f a system through its evolution over time. 

• Progressive increase in the number of versions of a system. 

• Probability of lost or poor associated documentation. 

• Personnel changes leading to loss of undocumented system knowledge. 

• Monolithic nature of software developed prior to modularisation techniques. 

• General lack o f experience regarding the development environment of the system. 

• Gradual degradation of system structure and introduction of 'ripple-effect' errors. 

• Tendency for heterogeneous implementation techniques to become used over time. 
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Additionally over the lifetime of a system the executing appHcation can become cluttered and 

masked through the proliferation o f new versions, 'alien' files f rom other applications and 

updated environmental components etc. [4]. The appUcation may have also become fragmented 

i f a strictiy controlled file and directory structure has not be maintained, leading to possible 

misplacement or even irretrievable loss of appHcation components. During the ISCI phase there 

is the requirement to draw together the relevant system component information and their 

associated dependencies and to censure that which is no longer or has never been requited. 

4.2.3 Inverse Software Configuration Identification 

I n order to address the complexities of legacy systems. Inverse Software Configuration 

Identification (ISCI) encompasses a number of related activities. These include component 

identification, component relationship understanding, component location mapping, incremental 

documentation and multimedia representation of each of these information sources. These 

activities wi l l be outlined in this section and wil l be described in more detail throughout the 

remainder o f this chapter and the rest of the thesis. 

4.2.3.1 Component Identification & Relationship Comprehension 

The key objective o f the ISCI phase is to enable the system being maintained to be understood in 

order that changes can be made cost-effectively and witiiout introducing any farther errors to the 

system. With regard to this, the ultimate aim of the process is to recover the operational system 

configuration plus develop the means to assess the potential impact of any changes on the 

system. I n order to perform effective program and system comprehension it has been shown 

that a wide range of informal, semi-formal and formal information types are useful [225, 234]. 

The ISCI activity thus considers it essential to gain understanding of a system and its 

components at several levels of abstraction and related to several areas. These are: the appHcation 

itself; the version groups o f the appHcation; the problem domain of the appHcation; the cause-

effect relation of the change to other parts of the system; the relationship of the appHcation to its 

environment and the high-level business oriented design support faclHties. 

As systems become more complex in terms of the number and diversity of components so do 

die relationships between the components and the way they interact with each other and with the 

operational environment. Consequentiy, it is not sufficient to only extend identification to tiie 

appHcation configuration components as there is a need to specify, identify and understand [265] 

the: 
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• Intra-specific relationships - those existing between the components within an 

application at a source code level (the traditional view of program comprehension). 

• Inter-Specific relationships - those existing between the components of an 

application and the other identified components types (the extended ISCM (or system) 

view of program comprehension). 

For effective legacy software system comprehension the component types shown in Figure C4-1 

have been identified as being important in order to gain an overall understanding of the system. 

The products of the ISCI activity are a number of configuration descriptions at varying levels of 

abstraction, namely the baseline (operational system) configuration; the version group (program 

family) configuration; and the environmental (global linkage) configuration. Detailed descriptions 

o f each component grouping, the resultant configurations and their role in the program 

comprehension process are given in section 4.4 
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4.2.3.2 Component Location Mapping 

Whilst the primary emphasis of ISCI is the identification of system configurations and their 

relationships, another important element o f the ISCI process is that o f component location 

mapping. This involves determining the location of each of the identified configuration 

components within the file structure imposed by the operational environment. This process 

results in the production of configuration location maps or paths, which aid component retrieval 

for maintenance purposes. This is particularly important i f an ordered project envirormient has 

not been adhered to or has become cluttered over time. Mapping of the component locations 

facHitates the restructuring of the appHcation environment such that the storage and retrieval of 

the appHcation file types can become more controUed and more rapid during future product 

changes. This is especiaUy useful when it comes to identifying the missing and 'aHen' or 

redundant component types. 

4.2.3.3 Incremental Documentation 

Associated with the ISCI process is the concept of incremental documentation [148, 265]. This 

enables information obtained during the maintenance process to be documented with the 

minimum of extra effort or overhead. AdditionaUy as it can be carried out during maintenance it 

is likely to be more accurate and complete than i f documented post-maintenance. This increases 

the HkeHhood of the documentation bekig kept concurrent with the state of the appHcation. 

Incremental documentation techniques also ensure that only the effected parts of the system are 

documented resulting in significant cost benefits (in accordance with the 80:20 maintenance rule, 

that is, eighty percent o f time spent on maintenance is spent on twenty percent of the code). 

Another advantage of this approach to documentation is that it enables the knowledge of one 

maintainer to be preserved for future maintainers, thereby enabling the program comprehension 

process to become progressively less time consuming. Such an approach also enables a 

'maintenance oracle' [268] to be progressively defined. 

4.2.3.4 Multimedia Representation 

Incremental documentation of the knowledge gained through the program comprehension 

process means that the same degree of investigative work requited to understand the system does 

not need to be repeated for the same area of code each time a change is required. However, in 

order to gain the maximum benefit f rom this approach it is also Hnportant to be able to 

represent any reclaimed knowledge in a way that can be productively used by the makitainers. 

Thus, the ISCM method represents the information gleaned during the ISCI activity as a mix of 

textual and graphical output combined through hypertext links [264]. Recent research has 

extended this representation to take advantage of the rich multimedia attributes of video, audio 



and animation [268]. Graphical output f rom this activity may be at each of die three levels of 

configuration abstraction, that is, baseHne (operational) dependency networks, program family 

diagrams and environmental (global) Hnkage plans, together with the file location maps of the 

identified components. 

The activity also generates higher level abstractions of cognitive and traditionaUy documented 

information that have particular relevance to the program comprehension process. The 

mechanism for production of these output types wHl be discussed in detail in Chapters 5 and 6. 

4.2.3.5 Modelling Techniques for System Abstractions 

Whilst the configuration diagrams and file location maps provide 'snapshots' of the system at a 

particular point in time, it is also necessary to represent more persistentiy and rigorously the 

configurations o f the appHcation and associated environment. In order to take into account the 

needs o f the different customer groups it is considered necessary to represent the reclaimed 

system configuration information at varying levels of abstraction. The information progressively 

recovered with regard to a system is stored in an Extensible System Information Base (ESIB) 

and may be modeUed at differing abstractions through the use of a series of natural language 

proformas. Additionally these natural language proformas act as the coUection mechanism for 

information about an appHcation with which to populate the ESIB. 

4.3 The ISCM Process Model and Architecture 

As indicated in the previous chapter tiiere are a number of different process models and 

approaches to maintenance currendy in use. Whether or not their primary emphasis is on 

economy of changes, quaHty control of the process or searching for component reuse etc., it is 

evident that aU models recognise the need to analyse the change, understand the affected part of 

the system and assess the potential impact of any changes on the current system equiHbrium. 

Wi th this in mind, i t is the intention of the ISCM process model to elaborate the comprehension 

activities o f current process models rather than to consider itself as a complete maintenance 

model to replace those currentiy in use. I n this way the ISCM process can be incorporated into 

each o f the currentiy defined process models thus capitaHsing on the experience of these models 

whilst adding value to the maintenance process. AdditionaUy this mechanism causes minimal 

disruption to organisations who have already adopted a specific maintenance approach and 

satisfies the requirements for flexibiHty within process models [156] whilst still maintaining a high 

degree o f rigour. The ISCM process model therefore fits Hito the global framework as shown Hi 

Figure C4-2. 
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Continuation stages ofpre-specified 
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Figure C4-2 The role of ISCM within the globalprocess modelframework 

Whilst the low-level activities of the ISCM process model wiU be detailed in Chapter 6, this 

section presents a high-level overview of each phase of the ISCM approach. Underpinning the 

model is the reconstruction of the information required about a system Hi order to perform 

effective program comprehension prior to making a change, plus tiie subsequent storage, 

retrieval and representation of this information for maintenance purposes. The ISCM process 

model is described in terms of the pre- and post-conditions for each activity; the inputs required 
o 

to effect each activity output; and any feedback into previous phases of the model. 

4.3.1 Overall Process Model 

A t the highest level o f representation the ISCM process model is embedded within an existing 

process model framework. This existing framework guides the maintenance process up to the 

point o f raising a change request, which may be before or after cost-benefit approval of a change 

depending on the model in place. Alternatively, i f a maintenance model is not in place, the 

change request and trackmg procedures encompassed within the ISCM approach for such an 

eventuaHty can be evoked. The ISCI phase of the ISCM process is then initiated to analyse the 

change, understand the affected part of the system and assess the potential impact of the 

proposed change on the system. After the ISCM process activities have been conducted and tiie 

configuration information reclaimed in order that the system may be brought back under control, 

the existing framework for the maHitenance process is resumed in order to carry the change 

process through to completion. Subsequent activities within the framework must include die 

appHcation o f all the activities of the SCM (and ISCM) process, namely software configuration 
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identification, configuration control, status accounting and audit. The high-level representation 

of the model is shown in Figure C4-3. 

PRE-CONDITION 
POST -CONDITION 

Existing Maintenance 

Process Framework 

Out of Control 

Legacy System 

ISCM 
Process 

Existing Maintenance 
Process Framework 

J 
Controlled 

Legacy System 

Feedback into effectiveness 

of ISCM Process 

Figure C4-3 Level-0 : overall (policy) level ISCM process frammrk 

The activities that combine to form the overall ISCM process are shown in Figure C4-4. Each of 

these activities is further decomposed in the Level-2 process architecture diagrams and will be 

expanded fully in the following chapters of the thesis. 
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Figure C4-4 Level-1: high procedure) level ISCM process model 
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4.3.2 Process Change Request 

Maintenance, whether in association with correction, perfection, adaptation or prevention should 

always occur in response to a formaUy raised change request. As mentioned previously, the 

responsibHity for raising this request may reside within the existing maintenance framework, or 

may be incorporated as part of the ISCM process itself. However, whatever the origin of the 

change, i t is important that the reason for it is fuUy documented. The change must also be 

associated with a particular software component and should be given a unique identification 

number so that its status can be tracked throughout the maintenance process. There may also be 

a change log for the component already in existence in which case this also becomes an input to 

the process. The aim of the 'process change request' activity is thus to formaUy document and 

identify the change and any relevant information prior to analysis of the legacy system in order to 

understand and assess the impact of the proposed change. I f during the change request process, 

a particular documentary item needs to be created, a blank proforma of the required type is 

raised, which when populated or semi-populated with information then assumes the specific role 

for which it is intended. The change request activity is summarised in Figure C4-5. 
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Figure C4-5 hevel-2 : process level - ISCM change request process 
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4.3.3 Conduct Analysis of Legacy System 

The key aim of ISCM and the Inverse Software Configuration Identification (ISCI) phase in 

particular is to identify that system configuration existing at a particular point in time as well as 

its interactions with the environment (Figure C4-6). 
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Figure C4-6 I^ve 1-2: process level - ISCM conduct analysis of legacy system process 

There is therefore the need to carry out a comprehensive analysis of all the component types 

aUuded to earlier in Figure C4-1. The starting point for this activity is any pre-existing knowledge 

or documentation about the system and its environment. This includes which, i f any, information 

extraction tools are available on the system host environment. The comprehension process is 

aided by the developed proforma series of templates, which enables information about a system 

to be progressively built-up and documented until a complete system configuration has been 

established. A l l information extracted about a system is stored in the Extensible System 

Information Base (ESIB). The ESIB becomes increasingly populated at a specific level, as a 

particular system is maintained, and at a general level as different systems are maintained. This 

progressive build-up o f information means that initially the proformas will be empt}'̂  of 

information but wi l l act as guides to the reclamation process. However, as more information 

becomes held in the ESIB partially or fully completed proformas become the starting point for 

the comprehension process. 
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4.3.4 Populate Extensible System Information Base 

Once the information about a system has been coUected it is important to retain this information 

and any new information recovered about a system. The role of the Extensible System 

Information Base (ESIB) is therefore to serve as a repository for this information and the nature 

of any relationships between Hiformation types. As the EISB becomes progressively more 

populated with information it may also be used as a mechanism for semi-automated and 

eventuaUy 'inteUigent' program comprehension of a system, thereby reducing the manual effort 

required by the maintainer. A review Hst forms part of the audit requirements of the ISCM 

process and ensures that the correct process has been adhered to and that aU component groups 

and relationships have been considered. 
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Figure C4-7 hevel-2 : process level - ISCM populate ESIB with system information process 

4.3.5 Produce Natural (Proforma) Representation of ISCM Model 

Whilst the proformas provide the driving force behind the coUection of information with wliicli 

to populate the ESIB, they also serve the purpose of deriving the system configurations at 

varying levels o f abstraction. Information pertaining to each of the component groups stored in 

the ESIB is represented for a particular appHcation as part of a Proforma Increasing Complexity 

Series (PICS). Each PICS represents a software system architecture at three levels of abstraction 

namely, generic, tailored and specific. The structure of each of these abstractions wiU be 

described in detail in Section 4.6, but the proforma creation process is represented in Figure 

C4-8. 
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Figure C4-8 Ijevel-2 : process level - ISCM production of natural language proforma process 

Systematic processing o f the different levels of system abstraction enables information to be 

cumulatively added to the proformas thereby increasing their level of complexity and decreasing 

their level o f abstraction. Ultimately a ''genetic fingeprint of a particular application system as at 

particular point in time is achieved which describes the baseline, version group and 

environmental linkage configurations o f the system. 

The proformas therefore serve two purposes, as a guide for reclaiming information and as a 

natural language representation of the information held in the ESIB. The completed proformas 

can also be stored and used as a history of how a complete system configuration has evolved 

over time in a similar fashion to the derivation produced for a single software configuration 

component. 

I n order to assist in automating the ISCM process, an Inverse Configuration Description 

Language (ICDL) has also been defined and is used concurrentiy to syntactically document the 

system configuration information represented by the PICS series in a more machine-readable 

format. The I C D L is defined and described in section 4.5. 
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4.3.6 Generate System Configuration Output 

I n order that the system configurations provide useful information, it is important that the 

information they contain is clearly presented to the maintainers. The akn of this activity is 

therefore to present in textual, graphical or multimedia format the system information extracted 

during the program comprehension process. The specific proforma of the PICS and the I C D L 

provide the input to the activity resulting in output such as baseHne configurations, program 

family diagrams, environmental Hnkage plans, file location maps etc. Figure C4-9 shows just a 

smaU selection of the types of output that can be produced. This output is discussed further in 

Chapters 5 and 6. 

P R E - C O N D I T I O N 

Partial / Completed 
Proforma Set 

INPUTS 

Specific Proforma 

Diagramming Tools 

Multimedia Tools 

M'* System Tools 

Review Sheet 

Generate 
System Configuration 

Output 

Feedback into 
Proformas 

POST -CONDITION 

All Components Multi-
medially Represented 

OUTPUTS 

Genetic Fingerprint 
HTML Files 
Dependency Inform. 

File Location Maps 

Multimedia Information 

Hyperlinked Files 

Configuration 
Abstractions 
ICDL System Model 

Search & Query Result 

[jpdated Review Sheet 

Figure C4-9 hevel-2 : process level - ISCM generation of system configuration output process 
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4.4 System Building Blocks within the ISCM Process 

A t the centre o f the ISCM process described in the previous section is the ability to model the 

new generation of software systems in terms of their component parts and the relationships 

existing between these parts. The thesis will address the issues of this 'new breed' of software 

system by defining ways of building up configurations/architectures at varying levels of 

abstraction. This work builds to some extent upon the generic and baseline configurations of 

Tichy [376] in terms o f adding levels to the set of configurations in the form of family and 

environmental configurations. I t also encompasses many of the ideas of Sacchi [342] who 

defined very specifically and in detail what sort of information should be maintained about a 

system component. I t must also be remembered that this information has to be recovered from 

legacy systems and hence there must be a mechanism for the progressive population of the 

information base and records about each component. The approach to the work although 

developed independentiy, also has some similarities to the modelling techniques employed by 

SommerviUe [360], although there are also other distinctions that can be made and which wiU be 

discussed later in the thesis. Additionally, the identified problems arising through having to 

maintain configurations lists are addressed via one of the original elements of the ISCM process. 

The mechanism for maintaining configuration Hsts will be discussed in more detail in Chapter 5, 

but in essence configuration lists may be maintained efficientiy through the use of stored 

references to other documents. This is now relatively easy to implement through the use of 

hypertext and hypermedia links. 

The following sections of this chapter describe a number of mechanisms for modelling software 

configurations/architectures. However, as indicated in Chapter 3 and commensurate with a 

developing field o f research there are the discrepancies often associated with 'settling' 

terminology and in this case the possible ambiguity over what is meant by the term 'software 

architecture' and its related concepts. Hence, for the purpose of this thesis the definitions given 

in table C4-1 have been assumed within the context of the ISCM process. 
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Software (System) Model This is the overall abstract representation of a software system. It is 

essentially a conceptual model defining the entire set of components 

from which a software system may be composed and the possible 

relationships existing between the component types. 

Sofiware System Architecture This is a more refined representation of a software system. It is still 

conceptual and logical in nature but deals with a lower level of 

granularity in terms of describing particular abstract representations 

of a system. In essence, this is the overall abstract and generic 

representation of a software system. It is essentially a conceptual 

model defining the entire set of components from which a software 

system may be composed, the attribute types of these components 

and the possible relationships existing between the component t)'pes 

and their interaction with the rest of the system 

Sofiware Configuration Component This is the fundamental building block of an appHcation system. It is 

at the level of an individual physical item within a system (i.e. not a 

procedure or function within a program or module) 

Software Configuration This is the physical combination of components that together form 

a viable system. In essence it is the physical reaHsation of a particular 

software architecture. The combination may be at varying levels of 

abstraction and in particular at baseline, family or environmental. In 

essence this is the physical instantiation of the software architecture 

with component names, version information, and attribute values 

such that the viable software configuration is described. 

Sofiware Architectural Abstraction A model of the software architecture from a particular viewpoint or 

defined level of granularity. 

Software Configuration Abstraction A model of the software configuration from a particular viewpoint 

or defined level of granularity. 

Genetic Fingerprint The lowest level and unique description of a software system 

configuration at a particular point in time. 

Attribute This is a property of a particular component(s) 

location This is the physical storage position of a particular software 

configuration component 

Relationship This is the nature of the bond existing between two components 

within a group (intra-appHcation relationships) or between 

components in different groups (inter-appHcation relationships) 

Configuration History The time-related series of generic fingerprints which progressively 

record or reclaim the evolutionary characteristics of a particular 

software system. 

Table C4-2 Definitions of ISCM modelling terms 
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4.4.1 System Layers 

As part o f the ISCM process and in relation to the above discussion regarding what constitutes a 

software system architecture and the types o f components which must be taken into account 

when developing or maintaining a system, a number of component groupings and layers have 

been identified within the scope of this thesis and as such will be encompassed within the ISCM 

model. 

The component parts o f a system may be best identified and described by considering a layered 

approach to software system developments. In this way it is possible to deal with the interaction 

of the system as a whole, which is a key issue in connection with both green field and legacy 

software systems. 

A system configuration may thus be considered within this framework as a number of layers with 

which the application system will interact during its operation. The layered model is shown in 

figure C4-10 and may be represented by the component types described in the following section. 
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Figure C4-10 ISCM layered component model 
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4.4.2 Component Types 

By taking the layered approach and considering the advances made in software systems 

development over the past few years and described in Chapter 3, the following types of 

component groups can be identified: 

4.4.2.1 Application components (Cg^pp) 

These are the central components of the application encompassing software configuration items 

(SCIs) such as the source code modules, object code, and dedicated libraries that comprise the 

actual running version of the system. They constitute what are considered to be the 'traditional' 

components o f a software system and as such they form the central core of the baseline 

configuration of the system. 

4.4.2.2 Versioned components {Cg„^^ 

These components are the variants and revisions of the system that result f rom changing 

components in the system. Collectively these form a version group at the level of a particular 

component and a program family at the level of a complete application system configuration. 

Components of all types may be versioned and the different versions must be tracked i f viable 

configurations are to be created and maintained. 

4.4.2.3 Domain components (Cg^/„,„) 

These components concern documented or cognitive knowledge regarding the domain 

environment in which the application is designed to operate. Such information assists in the 

understanding o f the system context and may impact on the approach etc. required during the 

maintenance process. This knowledge may exist through original documentation or may have to 

be post-documented after knowledge ehcitation f rom the users, developers and maintainers of 

the system. 

4.4.2.4 Incremental components (Q,„̂ ) 

These components encompass the developers and maintainers knowledge regarding the 

functionality, structure and dependencies of the system that has been incrementally documented 

through the ongoing process of program comprehension. Hence these components primarily 

contain reclaimed knowledge and understanding of a software system configuration. 
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4.4.2.5 Documentary components (Cg^i„) 

These components represent the 'formally' produced and generally traditional documentation 

that supports the development of an application. These components include documents such as 

specifications, design documents, test plans etc. 

4.4.2.6 User model components (Cg^,„J 

The user would normally be considered to be 'outside' the modelling scope of an application. 

However, increasingly the user plays an important role in the design, development and 

maintenance of a software system regardless o f whether this is in a proactive or reactive capacity. 

The ISCM model therefore considers that the user should be considered to be a component of 

the software system. Indeed the user can also be considered to be a versioned component as 

particular users may require specific settings for, or tailoring of applications. 

4.4.2.7 Human interface components (Cg^J 

Increasingly applications are making use of user interface languages or development tools to 

create a graphical user interface layer to the application. Whilst the main application may be 

written in the same language as the interface, for example Visual Basic or Delphi, i t may well be 

that the underlying application has a completely different structure and has the G U I layer lying 

'on top o f the application. This component group contains the interface components, some of 

which have been programmed f rom first principles, others of which are reused f rom a library of 

interface components and widgets. 

4.4.2.8 Data components (Cg^/^,J 

These are the data file components, such as the database or spreadsheet data etc. that are 

consumed and produced as a result of running the application components. These components 

may or may not be part of the baseline configuration of the system, depending on whether or not 

data is stored and accessed or whether it is used at run-time, then discarded. I f data is stored and 

accessed then it forms part of the secondary baseline level. 

4.4.2.9 Associated components (Q^„J 

These are components such as the application language libraries and reusable components that 

are associated with the application under development. Thus although they are not developed 

and unit tested as such, these components must still be maintained as part of the core application 

i f a viable configuration is to be evident. 
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4.4.2.10 Allied components (C^^ )̂ 

These form a group similar in function to the associated components. However, they differ in 

terms of ownership o f the libraries etc. For example, they include the general system libraries and 

other operating system components that are requited by the application, but which are not 

actually maintained as part of it. 

4.4.2.11 Environmental components (Cg,,J 

These are components such as compilers, linkers, editors, tools and hardware that make up the 

operational environment o f the system and as such they may impact heavily on the portability of 

tiie application system f rom one environmental upgrade to the next. They differ f rom the allied 

components in the nature of their function - they are involved with the creation of the program, 

rather than the allied and associated components whose library software becomes an integral part 

o f the application. There may therefore be a distinction between enabling components 

(environmental) and inclusive components (allied and associated). 

4.4.2.12 Third-party components (Q^J 

These are the components that belong outside the application itself but with which it interacts. 

They may include database software, other tools with which O L E links have been made, or other 

proprietary software which is then customised by the user for their own purposes. 

4.4.2.13 Enabling components (Q,„̂ /,) 

These include the components that do not form part of either the core or secondary software 

system but which are tools to help with the control or program comprehension of the software 

application. Components of this type include version control systems and tools such as awk and 

grep which can provide definitive information about the state of the software and its 

dependencies. As such i t is important to be able to model these components along wit i i the 

software system in order that the host environment can be exploited to the ful l in terms of 

understanding the application system, particularly in relation to legacy software systems. 

4.4.2.14 Alien (redundant) components {Cg^nJ 

These are components that are never referenced by the application system. They may be from 

another 'alien' application. Alternatively, they may be 'rogue' development versions which have 

been abandoned in the workspace as intermediate or non-implemented changes and which were 

never intended to be integrated into the actual executing version of the application system. These 

components are unique f rom all other components in that they have no part to play in the 
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system configuration and indeed are detrimental to the comprehension of a system configuration 

through the ambiguity and uncertainly they cause. 

4.4.2.15 Missing components {Cg,^;^) 

These are components that are referenced by the system but which have been lost, destroyed or 

misplaced. Their loss may prevent the entire system being rebuilt, particularly i f the components 

are only rarely referenced e.g. a module to convert the date to the year 2000. 

Having identified the key component types, the next stage o f the process is to identify how the 

different component groups interact to form the various configuration abstractions. Once these 

configurations have been established the process can be further extended by defining a 

mechanism for describing the properties or attributes of each o f the components groups and 

their relationships. 

4.4.3 ISCM Relationships 

I n addition to identifying the component types of an application it is vital to ascertain the 

relationships existing between each of the component types and within particular component 

types, i f unwanted actions such as the ripple effect are to be reduced. ISCM involves modelling a 

given application system at a number of different levels. Through doing this it is possible to 

define a series o f software system configurations at different abstractions which can be used to 

assist the program comprehension process. 

I t is necessary to model a system at two fundamental levels within which the sub-levels of 

modelling are encompassed. These levels are: 

• Intra-application modelling 

• Inter-appUcation modelling 

4.4.3.1 Intra-appUcation modelling (Rintra) 

This level of modelling is concerned with the identification of relationships existing between 

application components o f the core configuration and as such may be represented as: 

application <=> application (RCgapp-app) 

This is the traditional view o f a system configuration and is the level at which most o f die 

program comprehension to date has been concentrated. Additionally, within this level the 

modelling may be further divided into: 
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• Intra-component modelling. 

• Inter-component modelling. 

Intra-component modelling is now a common approach to program comprehension. In this 

mode, modeUing occurs at a very fine level of granularity, concentrating on the dependencies and 

linkages occurring witl i in a single module or file, that is, comprehension at the functional, 

procedural or even variable definition level. Techniques such as call graph derivation, program 

slicing and variable cross referencing are all common strategies for dealing with intra-component 

or low level modelling and program comprehension. 

Inter-component modelling concentrates on the dependencies and linkages occurring between 

application components, that is, at the module or file level of granularity. In the context of this 

thesis, i t is these inter-component dependencies that are of most interest. For this reason, Htde 

emphasis wi l l be placed on modelling below the entire component level and hence no distinction 

wil l be made between the intta-appUcation modelling t^pes. 

4.4.3.2 Inter-application modeUing (Rinter) 

This level of modelling is concerned with the identification of relationships existing between 

components o f the core application configuration and components of the other tj^pes identified 

in Section 4.1. The following relationship groupings have thus been identified: 

application versioned (R Cgapp-ver) 

application domain (R Cgapp-dom) 

application incremental (RCgapp-cog) 

application documentary (R Cgapp-doc) 

application user (R Cgapp-nser) 

application interface (RCgappint) 

application data (R Cgapp-data) 

application <=> associated (R Cgapp-assoc) 

application <=> allied (RCgapp-alli) 

application <=> environmental (R Cgapp-env) 

application third_party (RCgapp-trd) 

application <̂ => enabling (R Cgapp-eiiab) 

application <=> alien (R Cgapp-alien) 

application <=> missing (R Cgapp-miss) 
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There may also be relationships existing between components groups other than with those of 

the application group. However, the extra level of complexity arising f rom these interactions is 

considered to be outside the scope of this thesis. I t is considered to be a topic for further 

investigation and hence wil l not be modelled here. 

The identification o f the component types and the relationships existing between the application 

and other component groups leads to the definition of a number of configuration abstractions 

for any system under investigation. These are represented genetically in Figure C4-11 and more 

specifically in Figures C4-12 to C4-19. The membership of each configuration example is also 

described using a simple set tiieory. 

4.4.4 ISCM Configuration Abstractions 

Abstraction is a technique for handling complexity in real-world scenarios by masking irrelevant 

details for defined situations [111]. I t thus follows that understanding of the complexities of 

software systems during the program comprehension process could be aided through the use of 

abstraction to selectively model different aspects of a system. Indeed, abstraction is not a new 

phenomenon with regard to the construction of new or reverse engineering o f old systems. 

However, prior approaches have tended to concentrate on abstracting contexts and actions for 

source level understanding or process concepts in order to recover design decisions. There is 

thus scope for investigating how 'layers* of a system can be abstracted or 'peeled away' in order to 

recover the components and organisation of a software configuration. Indeed, by using carefully 

selected patterns of requested information, the component groups and relationships existing 

between them can be systematically modelled until representation of the entire system has been 

acliieved. 

The previous sections have described the component types and the relationships existing 

between the core application system and the other component groups. This section wiU present a 

number o f possible configuration abstractions. As discussed in Chapter 3, the primary 

abstractions supported by the ISCM process are at the baseline, program family and 

enviconmental levels. However, any number of abstractions may be identified according to the 

needs of a system under investigation. Indeed, the exact nature of component groupings and 

theit combination into configuration abstractions has a degree of subjectivity associated wit i i it. 

The ISCM process intentionally supports this flexibility in order to exploit one of the most 

powerful concepts o f abstraction, that is, being able to make visible an exact area of interest 

within a system at the level o f detail required. The generic framework for building up a 

configuration is shown in Figure C4-11 and examples of specific configuration abstraction 

patterns in Figures C4-12 to C4-19. 
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Figure C4-11 Generic configuration build-up 

The membership o f each configuration abstraction may be described using a purposely 

simplified set theory where: 

U is the union o f all single elements (either components or relationships) that are 

associated with a particular application at the specified configuration abstraction. 

U is the union of sets (component types or relationship types) that are applicable to 

the specified configuration abstraction. 

C is a component within the defined (component type) set. 

R is a relationship between two components of the defined set or sets. 

<̂  is a bi-directional linkage to another application component 

^ is a uni-directional linkage to a component of a different type. 

is additive, representing the sum of two different sets (i.e. a set of components and 

a set o f relationships). 
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4.4.4.1 Total 

The total configuration abstraction models an entire application. As such it may contam 

components in any or all of the identified component groups. Figure C 4 - 1 2 demonstrates the 

necessity for a series o f abstractions i f a software system is to be clearly modelled. I t is extremely 

difficult to identify the different component parts of the configuration when viewed as a whole. 

However, this is the simation commonly facing the personnel charged with maintaining legaq' 

code. Maintainers need to be able to progressively identify the different components and to map 

the relationships o f the application components to each other and to the components in other 

groups. 

Config 

Liration 

Figure C4-12 Total configuration abstraction 

The total configuration may be represented as: 

' total U ( { C a p p } U { C v e r } U { C d o m } U { C c „ g } U { C j o c } U {Cuse r} U { C . n t } U { C d a t a } ' 

{Cassoc} U { C a l l , } U { C e „ v } U { C t r d } U { C . n a b } U {Cal .en} U { C ^ s s } ) + 

U ( { R C a p p < - » a p p } ^ { R C a p p ^ v e r } ^ { R C a p p ^ ^ d o m } ^ {RCapp^^cog} ^ { R C a p p ^ ^ o c } ^ 

{RCapp^use r} ^ { R C a p p i ^ i n t } ^ {RCappn^data} ^ {RCapp^assoc} ^ { R C a p p ^ a l i i } 

{ R C a p p ^ e n v } ^ {RCappi_>trd} ^ { R C a p p ^ e n a b } ^ {RCapp^^al ien} ^ { R C a p p ^ ^ m i s s } ) 
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4.4.4.2 BaseUne 

The baseline configuration abstraction models the traditional view of a software system 

configuration. This is essentially the core application components and how they relate to each 

other. The composition o f the baseline configuration is shown in Figure C 4 - 1 3 . 

Config
uration ^^^Ripp-,ipp 

List 

Figure C4-13 Baseline configuration abstraction 

The baseline configuration may be represented as: 

V > baseline "~ U ( { C a p p ) } ) + U ( { R G p p ^ a p p } ) 

4.4.4.3 Program Family 

The program family configuration abstractions can be used to model versioning at a number of 

levels. For example. Figure C 4 - 1 4 shows the set of version groups existing for the baseline 

configuration. Alternatively, abstractions can be used to model versioning within the primary or 

secondary environments i f this level o f detail is required, or they can be used to model a 

particular (single-version) application release within a program family. Alternatively, within a 

controlled system, the set o f (multi-version) baseline abstractions can be modelled over time to 

record the developmental or maintenance history o f a system at an entire configuration, rather 

than solely individual component, level. 

r 
1 ver 

c ver 

- app 

f^^gapp-ver u r a t i o n 

Figure C4-14 Versioned (baseline) configuration abstraction 

The baseline family configuration may be represented as: 

V>versioned(baseline) U ( { C a p p } U C v e r } ) + U ( { R C a p p ^ a p p } U { R C a p p ^ v e r } ) 
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4.4.4.4 Environmental 

The environmental abstraction models the interactions occurring between the application 

components and those o f the surrounding system envkonment. A distinction has been made 

between the primary and secondary environment based on the nature o f the component 

relationships. Essentially, the primary environment is composed of those components with 

which the application components have a direct relationship in terms of their required 

integration or interaction to enable execution of the software. The primary environment 

therefore models component types which include the user, interface facilities, data and associated 

system and application libraries. The primary environment is modelled in Figure C 4 - 1 5 . 

LiraUon 

Figure C4-15 Primary environment configuration abstraction 

The primary environmental configuration may be represented as: 

'pnmary = U ( { C a p p } U { C u . e r } U { C . n t } U { C d a t a } U { C a s s o c } ) + 

U ( { R C a p p o a p p } ^ {RCapp^^user} ^ {RCappH>int} ^ {RCapp^^data} ^ {RCapp^^assoc}) 
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The secondary environment is composed o f those components which enable construction or 

change of the baseline application but which are not actually maintained or incorported as part o f 

it. Thus components such as tools for compiling and linking the application, tools for 

maintenance information extraction, third party tools, operating system facilities and hardware 

components can be modelled within this abstraction. The secondary environment is shown in 

Figure C 4 - 1 6 . 

iirauon 

Figure C4-16 Secondary environment configuration abstraction 

The secondary environmental configuration may be represented as: 

V > secondary U ( { C a p p } U { C a l l , } U { C e n v } U { Q r d } U { C e n a b } ) + 

U ({RCapp<->app} ^ {RCapp^^a l l i } ^ {RCapp^^env} ^ {RCapp^_»trd} ^ {RCappH>enab}) 
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4.4.4.5 Documented 

The documented abstraction models the relationships existing between the baseline application and 

any documentation created during the development or maintenance processes. As such the 

documents may: reflect the products of the development stages such as requirements or design 

documents, test plans, test data etc.; include documented quality assurance activities such as 

review proceedings; or record knowledge reclaimed about an application during the maintenance 

process. The composition of the documentation configuration is shown in Figure C 4 - 1 7 . 

^C?,»?? 
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Figure C4-17 Documented configuration abstraction 

The documented configuration may be represented as: 

V > documented U ( { C a p p } U { C d o m } U { C c o g } U { C d o c } ) + 

U ({RCapp<->app} ^ { R C a p p ^ ^ d o m } ^ { R C a p p , ^ c o g } ^ { R C a p p , ^ d o c } ) 

4.4.4.6 Anomalous 

The anomalous abstractions relate to the modelling of configurations which have become 

corrupted or masked through a dominance of unrelated or alien components, or which have 

become incomplete through the loss or misplacement of essential components. The composition 

o f the corrupted configuration is shown in Figure C 4 - 1 8 . These components need to be flagged 

to the maintainer as candidates for archival or removal f rom the application framework. This is 

because, even i f these components do not directiy affect the correct operation o f the system, 

their presence can greatiy hinder the program comprehension process. 
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Figure C4-18 Cormpted configuration abstraction 

The corrupted configuration may be represented as: 

U ( { C a p p } U { C a l , e n } ) + U ( { R C a p p ^ a p p } U { R C a p p ^ a l . e n } ) 

Conversely, any components that have been flagged during the ISCM process as missing or 

misplaced f rom the application directories must be 'found' and replaced within the application 

framework. I f after searching they cannot be located, they must be re-created in order to 

maintain the correct operation of the application across the entire range of its functionality. The 

incomplete configuration abstraction is shown in figure C4-19. 

Con fig 
L i r a t i o n 

Figure C4-19 Incomplete configuration abstraction 

The incomplete configuration may be represented as: 

Cincomplete — U ( { C a p p } ^ { C m i s s } ) + U ({RCapp<-^app} ^ RCapp^^miss}) 
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4.4.5 Attributes & Storage of Components 

As mentioned in Section 4.2, the ISCM process places an increased emphasis on the 

identification phase o f the SCM process. I t is therefore imperative to be able to document either 

immediately or incrementally, a ful l complement of information regarding each particular 

component and how it is integrated into one or more configurations. This can be achieved 

through the identification of a set of component attributes which in combination will uniquely 

and fully identify a component and any corresponding configuration compositions. From studies 

of the literature and a number of 'real-world' systems such an attribute set has been defined for 

use within the ISCM process. Some of the data related to these attributes is immediately evident 

f rom the system and some can be generated automatically through use of the host resident tools, 

but the remainder wiU need to be recovered and recorded during the maintenance process itself 

I n this way the level of component and configuration identification can parallel or indeed exceed 

that recorded during the traditional development-oriented SCM process. The attribute set of a 

component upon which the ISCM identification activity is based is shown in figure C4-20 and 

corresponds to the /{Components}/ level of the Inverse Configuration Description Language 

(ICDL) shown in Table 4-3. 

component id {'^iil) 

high level component description (^cit) 
functionality {"^fii) 
change log {'^cl) 

SCI attributes 

identification 

description 

information 

component name C/octi) 
component type f^ct) 
fde type Cft) 
version number C^vii) 
location of file ('"lo) 
creation date C^cd) 
created by tool ("tl) 
parameters of tool (''pa) 
developer Cdii) 
last maintenance date Ctnd) 
last maintainer ("rnl) 
reason for maintenance C^nn) 
change status (''cs) 
depends on ... fVo *a..n*) 
required by ... C^rli "a..it"} 

operations permitted (^op ~a..n~) 
e.g. create; bind; change; delete; archive 

Figure C4-20 Component attribute set 

AU configuration and component information, together with rules defining ways to collect and 

collate this information f rom different application and system types must be stored within the 

Extensible System Information Base. A number of approaches and possible structures for the 

storage o f this information were discussed in Chapter 3, and the acmal structures chosen are 

described in Chapter 5 within the context of the PISCES M'^ system. 
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The foundation o f the ISCM process and its associated method is thus the representation of 

software systems architectures by means of an Extensible Systems Information Base (ESIB). 

Within the scope of this work the characteristics of a number of Unix, MS-DOS and Windows95 

systems and their applications were studied (see Chapter 7) and architectural models manually 

built-up for each application. The characteristics of the separate models were then used in 

combination to create the generic model and to identify a set of initial rules for information 

reclamation. This information was subsequentiy used for seeding the knowledge base. However, 

it is intended that the ESIB will be incrementally extended as additional information about 

specific domains, system types and applications is obtained. Through this principle it should be 

possible to approach the premise of complete genericity of the model. 

The ESIB thus contains information regarding key features of operational environments such as 

operating systems, systems architectures, application types, tools and programming. This 

information can be held as records or 'objects' to represent the generic view of a system. This 

generic view can then be instantiated as a tailored and subsequentiy specific view for a particular 

system as more information is gained about the system. The information collection process is 

facilitated through the definition of a number of proformas or templates which can be 

progressively populated with information of a general or more specific namre. The strucmre and 

detailed role of these proformas is discussed in Section 4.6. 

4.5 The Inverse Configuration Description Language (ICDL) 

This section describes the development of the ICDL, the configuration modelling language for 

the ISCM process. As mentioned in Chapter 3, most configuration languages are targeted at the 

P I T L level and as such they are primarily concerned with the construction of systems f rom theit 

components parts, either during development or after changes have been made during 

maintenance. Whilst the construction of a correct build remains as the ultimate goal, the ISCM 

process is primarily addressing the program comprehension activity of the maintenance process 

which occurs prior to any changes being made. Correspondingly, within the context of the ISCM 

process, the principal emphasis is on extending the modelling o f software system architectures or 

configurations to encompass environment, domain and cognitive components. These extended 

models wi l l enable the system to be more readily understood prior to the change being made and 

the new software buUds occurring. The I C D L is therefore considered to be a programming-in-

the-environment (PITE) language, which it achieves by building upon and extending a 

combination o f features taken f rom several of the P ITL languages described in Chapter 3. 
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4.5.1 Structure of the I C D L 

When devising the I C D L for the purpose of PITE, two possible approaches were considered. 

Firsdy, the I C D L could be developed as an aU encompassing system-build language 

encompassing P I T L and PITS constructs as well as facilities for describing systems at a PITE 

level. Alternatively, the I C D L could be developed exclusively as a PITE language which could 

then act in combination with P ITL and PITS languages as required. The latter of the two 

approaches was considered to be the more appropriate for reasons of flexibilit}^, scope of work 

and relevance to the issue being solved, primarily that of recovering and documenting the 

configurations o f viable builds (the inverse configuration management approach) rather than 

enabling and verifying builds f rom a series of separate component parts (the traditional 

configuration management approach) . 

Structurally the I C D L consists of seven levels or abstractions of system information. A n overall 

system identifier and date field are also included to enable a historical record of the evolution of 

the system to be constructed. These levels may be defined as: 

• Domain: this level documents the features and characteristics of the general 

environment and domain {domain knowledge and experience). 

• Environmental: this level defines the general computing characteristics of the 

application system [operational specification and characteristics). 

• Location: this level defines the location of the key libraries, component t}^e directories 

and tools pertaining to a system type or application {physicalspecification and characteristics). 

• Total: this level documents all of the components that are or that may be associated 

with a particular system architecture. This includes any present but apparentiy redundant 

or 'alien' components and a record of any components which are referenced as being 

associated with a software architecture but which appear to be missing. Through this 

approach, the total level documents unselectively the application and its associated 

environment {unfiltered information). 

• Abstraction: this level defines the components that are considered to be part of each 

configuration abstraction and as such acts as the driver for determining 'what' and 'how 

much' component information should be extracted f rom the knowledge base pertaining 

to a particular system {definition of parameters for filtering of information). 
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• Configuration: this level documents the combination of components associated with a 

software system architecture or configuration as defined by the level of abstraction 

selected (filtered information at defined level of abstraction). 

• Component: this level documents the attributes and relationships (see figure C4-20) of 

individual components, that is, i t defines the resources provided and required by a 

module and an overall description of the implementation part of the components. I t 

does not however, deal in detail with implementation details, unless these have been 

recovered and incrementally documented as part of the reclaimed understanding about a 

system [more detailed component identification and comprehension information). 

Syntactically the information contained within each level may be represented as a sequence of 

simple commands. Parsing of this information by bespoke or proprietary utilities enables the 

relevant sections of information about a system to be extracted and passed to other tools for 

manipulation or reporting purposes. The syntax of the language and a description of each of die 

relevant identifers is given in Table C4-2. A discussion of the usage of the language for 

documenting software systems is given in Chapter 7. 

As can be seen f rom Table C4-2, the lexical and syntactical approach of the I C D L is targeted 

towards machine- rather than human-processing in terms of its simplicity and lack of the 

elaborate record structures evident in some description languages. Never-the-less the I C D L 

encompasses all the essential features necessary to describe system architectures and it does so in 

such a way that its representation is compatible across multiple platforms and can be readily 

updated and extended. Additionally, with a littie practice and instruction maintainers should vtrj 

easily be able to directiy decipher the information contained in the resultant file. In these respects 

the I C D L approach adopted is similar to that of the D O C M A N intermediate file format [58], 

although the record structures are considerably different in their structure and content. The 

simplicity o f the I C D L language also enables easier integration with the human-readable PICS 

although this is currentiy at a conceptual and manual level rather than by automatic conversion. 

The I C D L is able to incrementally document a wide variety of information pertaining to the 

reconstruction of software system configurations such that it encompasses cognitive, domain 

and environmental information in addition to the more traditional configuration management 

identification and dependency information. The levels of information extracted or presented 

about a particular system may be controlled via the abstraction section of the ICDL. This section 

also enables new abstractions to be defined in relation to a particular system or application 

domain. 
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/Header/ 
%sn: Overall system name 
%dt: Date that configuration information was generated. 
%pi: Proforma identifier (Linked to specific proforma) 
%pv: Versioned proforma identifier (linked to specific proforma) 
/Domain/ 
%da: Generic domain application area of the system. 
%st: System type 
%gd: General description of what the system is intended to do. 
%si: Any specific issues that need to be flagged such as safety issues. 

standards to conform to etc. 
/Environment/ 
%pl: AppUcation host system platform 
%ar: Overall application architecture 
%os: Application operating system 
/Location/ 
%sl: System libraries 
%vc: Version control system 
%df: Data files 
%et: Extraction tools 
/Tota Leo nf i g u rat i 0 n/ 
%mc: Master configuration list 
^component/cn} Iteration of component name(s) 
/Abstraction/ 
%bs: Baseline abstraction 
%pf: Program family abstraction 
%en: Environmental abstraction 
%dc: Documented abstraction 
%an: Anomalous abstraction 
/{Abstracted_co nf i g u rat i o n}/ 
%ct: Abstracted configuration title 
7oCl: Abstracted configuration list 
-̂ {component/on} Iteration of component name(s) 
/{Component}/ 
%cn: Component name 

Component id 
^\: Component type 
f̂t: File type 

^;d: High level component description 
Functionality 

^vn: Version number 
l̂o: Location of file 

^;d: Creation date 
t̂l: Created by tool 

^pa: Parameters of tool 
^jv: Developer 
^md: Last maintenance date 
-̂ mt: Maintainer 
^rm: Reason for maintenance 
^ 1 : Change log 
^s: Change status 
'^o: Depends on 
*a..n*: Component(s) a .. n 
^rb: Required by 
"a..n": Component(s) a .. n 
^Dp: Operations permitted 
~a..n~: Operation(s) a ..n 

Key: 
/ / Section level marker { } Iterated component or information 
% Outermost-level data ^ Sub-level of data 
* *, " ", ~ ~ Sub-sub-Ust of data 

Table 4-3 ICDL syntax and command structure for PITE 
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Storage o f information extracted using the I C D L is currentiy held in a flat-file arrangement, 

although parts o f the prototype system use a relational approach in order to enable more 

flexible search and retrieval patterns to be defined and more efficient storage of 'chunks of 

information' or structured object types to be carried out. 

4.5.2 System Description Document 

The basis o f a configuration is typically the system description document (SSD) which acts as a 

blueprint for the construction of a system. Examples include Make's [146] makefile. Shape's [280] 

shapefile, Adele's [135] system model, Odin's [90] compiled knowledge base and Gypsej's [95] configuration 

template, fasmine [258] also uses a template to define the system model. The system model 

essentially contains all the 'knowledge' about a system. This may include, aU software objects or 

references to objects, relationships between objects, transformation rules, selection rules, tool 

parameters and variant definitions. In these respects the system description documents are often 

a more detailed representation of the systems they describe than those of the configuration 

description languages which tend to focus on the PITL concerns of module interface definition, 

programming resource requirements and the subsequent combination of the modules into an 

executable system. 

Chapter 3 has outHned a number of languages for describing syntactically software system 

architectures/configurations and this chapter has extended these principles, to more folly 

describe the system configurations and the complexity of theic interactions with the 

environment, through development o f the Inverse Configuration Description Language 

( ICDL). The I C D L thus provides the framework for representing information about system 

architectures and enables manipulation of these data by a number of data extraction and 

representation tools. However, f rom a human computer interaction (HCI) perspective tiie 

Proforma Increasing Complexity Series (PICS) provides a more comprehensive and intuitive 

interface for reclaiming and recording information about a software system. The role and format 

of the PICS is described in section 4.6. 
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4.6 Proforma Increasing Complexity Series 

Information about each of the component client groups identified in section 4.4.2 is collected 

and stored in a system knowledge base which is then represented for a particular application as a 

Proforma Increasing Complexity Series (PICS). The series may be described by a number of 

proformas each one becoming more detailed and specific in terms of the application under study. 

Thus, each PICS represents a software system architecture at three levels of abstraction: generic, 

tailored and specific. As shown in Figure C4-21, the abstraction enables the configuration 

description document to move f rom being independent of any application and any application 

host environment towards being a totally application and host specific description or 'genetic 

fingerprint' o f a software system. I n this way the transition is made f rom an architectural model 

o f a system to a configuration description or instantiation of a specific application and 

represented by the SSD. Additionally, i f a series of genetic fingerprints of a particular system are 

taken over a period o f time, the evolution of a system version or even an entire program family 

may be progressively built-up. The syntax of the I C D L that integrates with the PICS information 

can also be used as the intermediate file format for hypermedia manipulation of information 

pertaining to the software system. 

Tools & Information 

Extensible System Information Base 

Intermediate 
pjle Hypermedia 

Format 

G e n e r i c ^ ^ ^ ^ T a i l o r e d ^ ^ ^ ^ Specif ic 
Pro forma ^ ^ ^ ^ Proforma ^ ^ ^ ^ Proforma 

Report 
I B ^ ^ . Interface 

D o c u m e n t 

Environment Environment 
Independent Dependent 

Application Application 
Independent Independent 

Figure C4-21 Independent vs. dependent implementation of the PICS 
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The aim of the PICS series within the ISCM process is to drive and ultimately semi-automate the 

program comprehension process. Initially however, or at least until a substantial quantity of data 

have been assembled within the Extensible System Information Base (ESIB), the program 

comprehension process must be conducted manually through system observation and 

incremental recording of reclaimed information. The comprehension process is however gready 

aided and driven by the provision of the PICS which are essentially a defined set of proformas or 

templates that become cumulatively populated with system information as the comprehension 

process occurs each time a maintenance change is required. 

As indicated in Figure C4-21, the PICS consists of three key levels of proforma abstraction 

which represent the transition f rom a generic application independent system model to an instantiated 

application dependent configuration. Due to the abstracted nature of the proformas there is not a 1 : 1 : 

1 mapping of generic : tailored : specific proformas. The actual mapping is represented pictorially 

in Figure C4-22 and is explained in the remainder of this section together with a description of 

the role o f each of the proformas. 
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Figure C4-22 ^relationship between generic, tailored and specific proformas 
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4.6.1 Abstraction_Leve/_1 : Generic proforma 

The generic proforma is environment independent and application independent Its role is to define the 

information required by aU systems, whatever the application domain, target platform, operating 

system or language, and to specify the information requited for selection/creation of the tailored 

proforma. Due to the generic nature of the proforma there is likely to be only one instance of the 

generic proforma in connection with a particular ESIB. 

4.6.2 Ahstraction_Lxvel_2 : Tailored proforma 

The tailored proforma is environment dependent but application independent Its role is to define what 

information needs to be obtained in order for a category of applications to be modelled within 

the defined criteria o f a particular tailored proforma. I t also specifies the information that needs 

to be extracted in order to generate the specific proforma and defines more specifically the tools 

that should be available on the host system to assist in the generation of application specific 

information. As a tailored proforma can collectively model a number of systems at this level of 

abstraction it is likely that several instances o f the tailored proforma will exist in connection with 

a particular ESIKB. As more systems are maintained and more application scenarios 

combinations are recorded, the number of tailored proformas wiU increase. For systems 

matching the attributes o f a tailored proforma, a 'later' starting point into the program 

comprehension process may be enabled. 

4.6.3 Ahstraction_L£vel_3 : Specific proforma 

The specific proforma is environment dependent and application dependent. Its role is to describe and 

define unequivocally the application under investigation in terms of the component parts that 

make up the system configuration and the relationships existing between these components and 

their environmental counterparts. Any knowledge regained and documented about the system 

during the program comprehension process should also be evident at this stage. I t is at this level 

that information regarding the application components, associated versions, missing 

components, redundant components, allied and environmental components is revealed. As the 

specific proforma is unique (fingerprinted) to a particular application system, there will be at least 

one proforma per application and possibly several i f the proformas are basehned over a period of 

time. BaseHned proformas enable the evolutionary history of a system to be determined eitiier by 

consultation o f the baselines themselves, or via a report consisting of the cumulative deltas which 

provide a time-ordered series of change-events made to the system. Information contained at 

this level of proforma abstraction corresponds closely to the I C D L representation of the 

software configuration. 
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4.6.4 Proforma Information 

Each o f the proformas is divided into six major sections or levels with regard to the type of 

information to be recovered and documented. These sections have been designed to map onto 

the I C D L constructs defined in section 4.5 such that the information in the proformas is also 

reflected within the I C D L . The exact fields included may be tailored to be representative of the 

type o f system being maintained. 

4.6.4.1 Section_Eevel_1: Header (identification section) 

This section provides the identifying information for the system being maintained. The key fields 

in this section are: 

• The name of the system being maintained 

• The date the proforma was raised or updated 

• A. unique identifier based on [proforma abstraction level + incremental counter] 

• A versioned identifier based on [unique identifier + revision number] 

The purpose o f maintaining this information is twofold, firstiy it enables the system being 

documented using the PICS to be easily identified and secondly at the specific proforma level it 

enables a maintenance/evolutionary history o f the system to be constructed. 

4.6.4.2 SectionJLevel_2: Environment and domain (descriptive section) 

This section contains information regarding the application domain characteristics and the 

general features of the application operating environment. The key fields encompassed are: 

• Application domain area (Manufacturing, Finance, Commercial, Robotics etc.) 

• Application system type (Keal-time, Batch, Event-driven, Embedded, etc. 

• General description of the application system (Short paragraph describing key features of the system) 

• Specific issues for concern (Performance, Safety, High volume throughput etc.) 

• Plaform (PC, Workstation, Mainframe etc.) 

• Architecture (Distributed, Standalone, Centralised etc.) 

• Operating System (Unix, MSDOS, VMS, Windows95, WindowsNT etc.) 

• Language (C, Pascal, C++, Delphi, COBOL, Java, ]++ etc.) 

Maintenance and specification of these items of data enable the proforma to be tailored towards 

a particular type o f system. Additionally, i t is the information contained within this section that 

determines whether a new tailored proforma needs to be raised for a particular system 

undergoing maintenance. 
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4.6.4.3 Section_Level_3\ Resource and location (definition section) 

This section contains information regarding the resources, tools and utilities available on the host 

system platform. I t also defines die default or specified location of the different component 

types associated with an application. The following types of information are specified: 

location of system libraries 

location of system tools used 

location of tools available for data extraction 

Version control system used (.bak, res, sees etc.) 

location of application tools and libraries 

location of application source files 

location of data files 

location of documentation 

hocation of test files 

etc. 

4.6.4.4 Section_J^evel_4 : Configuration abstractions (specification section) 

This section contains the definitions of the component types or groups that constitute each of 

the configuration abstractions defined in section 4.4.4. The abstractions act as the driver for 

determining 'what' and 'how much' information should be studies and recorded with respect to a 

particular system. The key abstractions supported are: 

• Total (application + versioned + domain + cognitive + user + documentary + interface + data + 

associated + allied + alien + environmental + third-party + enabling + missing components). 

• Baseline (application components) 

• Program family (application + versioned components) 

• Environmental (application + versioned + domain + user + interface + data + associated components) 

• Documented (application + domain + cognitive + documentary components) 

• A^nomalous (application + alien + missing components) 

Whilst the above categories have been defined as the default configuration abstractions, the 

components identified as making up each abstraction may be redefined or new abstractions 

added within the proforma in response to the needs of the system being maintained. This allows 

a high degree of tailoring and flexibility in the way the configurations are defined. Additionally, 

by implication the abstraction definitions can also be interpreted as tiie intra- and inter

relationships that wil l need to be identified as existing between the application components 

themselves and the application components and other component groups. 
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4.6.4.5 Section_Level_5\ Component identification (extraction section) 

This section contains information regarding the components present that make-up the 

application and its environment such as source files, header files, synthesised files, executable 

files, object files, archived files, libraries; archived libraries, documentation files, documentation 

files, test files, data files, tools used, versions, presumed missing files, presumed redundant files; 

presumed 'alien' files. Each file type is recorded against the most appropriate component group 

as identified in section 4.4.2, however this categorising of files into component groups may again 

be redefined within the proformas in response to the specific needs of the system being 

maintained. The configuration abstractions and component identification thus combine to form 

a filtering mechanism to enable a more focused study on the relevant views of the application 

being maintained. The key component groups defined are: 

Application (source + header + object + executable + synthesis components etc.) 

Versioned (archivedfiles + archived libraries + res + sees + back-up components etc.) 

Domain (documentation + annotation + audio + video + graphic + animation components etc.) 

Cognitive (documentation + annotation + audio + video + graphic + animation components etc.) 

Documentary (documentation + text + rich-text + hypertext components etc.) 

User (programmer + maintainer + manager + customer components etc.) 

Interface (widgets + foundation classes + interface library + linkage components etc.) 

Data (database + spreadsheet + analysis information + flat-file components etc.) 

Associated (application library components + test suite components etc,) 

Allied (general system libraries + operating system components etc) 

Thirdparty (rapid application development tools + databases + performance analyser components etc.) 

Environmental (compiler + editor + linker components etc.) 

Enabling (version control tool + data extraction tool + drawing tool components etc.) 

Alien (any components without primary or secondary connections with the application) 

Missing (primarily application components but may be associated with an component group) 

The allocation of components types to their respective groups is to an extent subjective, thus 

within the proformas the components types within the groups may be extended or restricted as 

needs arise. Additionally as the proformas move f rom a generic to specific abstraction, the nature 

of the component definitions also change f rom being general file types to specifications of 

singular files. 
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4.6.4.6 Section_Level_6 : Components (recorded/deduced) 

This section contains the detailed information regarding each of the components identified at the 

varying levels o f abstraction in Section_Level_5. The section contains both factual and recovered 

information about each component as well as details of their interactions with and dependencies 

on other application and environmental components. The key attributes that are recorded for 

each component are; 

Component name (system specific name or identifier) 

Unique component identifier (shortened component name + type indicator + incremental counter) 

Component type (application, cognitive, domain, user, versioned etc.) 

Vile type (text, graphics, video, audio, rich-text, text etc.) 

High level component description (brief description of component function) 

Version number (revision or variant number) 

Creation date (original creation date of component) 

Creator (original developer of component) 

Tool created by (enabling tool, compiler, linker etc.) 

Toolparameters (switches and options passed to the tool) 

Last maintenance date (date component last changed) 

Last maintainer (lastperson to change the system) 

Reason for last maintenance (reason for last maintenance change) 

Current maintainer (person assigned to proposed change) 

Reason for proposed maintenance (reason for current change) 

Depends on (components that call/ link to this component) 

Required by (components called by/linked to this component) 

Operations permitted (edit, delete, create etc.) 

Location (where within the host system the component is physically located). 

The attributes defined in this section should be completed for each component that is studied as 

part o f the program comprehension process, thereby conducting a thorough identification of 

each o f the components contributing to the system configuration. 

Tables C4-3 to C4-5 show the informational transition of the generic to the tailored to the 

specific proformas. Due to the large volumes of information produced even for a small 

application, for the purpose of demonstration, only a subset o f the attributes in each of the 

sections of the proforma have been modelled. The change in emphasis towards information 

pertinent to a particular application should be evident f rom study of the completed proformas as 

they progress f rom ^^^mV to tailored to j^^^:?^^'instantiations. 
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A B S T R A C T E D L E V E L 1 : G E N E R I C 

SECTION CRITERIA CANDIDATES / RESULTS 

H E A D E R System name Any_software_system H E A D E R 

Proforma production date 22-05-1997 

H E A D E R 

Proforma identifier GOOl 

H E A D E R 

Versioned proforma identifier G001_v2 

E N V I R O N M E N T A L Domain area manufacturing, medical, robotics, commerce, etc. E N V I R O N M E N T A L 

System type real-time, event-driven, embedded, etc. 

E N V I R O N M E N T A L 

Operating system Unix, MSDOS, VMS, Windows95, WindowsNT etc. 

E N V I R O N M E N T A L E N V I R O N M E N T A L 

Language C, C++, Java, Pascal, FORTRAN, COBOL, Delphi etc. 

D E F I N I T I O N & 

L O C A T I O N 

System Libraries /urs/Hb/bin, C:\system\lib etc. D E F I N I T I O N & 

L O C A T I O N Version control system RCS, sees, .bak etc. 

D E F I N I T I O N & 

L O C A T I O N 

Location of data files ~/rjmc/data, C:\MyDoc\Data etc. 

D E F I N I T I O N & 

L O C A T I O N 

D E F I N I T I O N & 

L O C A T I O N 

Extraction tools available PCMS, Make, awk, grep, MMS etc. 

A B S T R A C T I O N S BaseHne application etc. A B S T R A C T I O N S 

Environmental application, domain, versioned, user, interface, data etc. 

A B S T R A C T I O N S A B S T R A C T I O N S 

Anomalous application, alien, missing etc. 

I D E N T I F I C A T I O N Application components source, object, header, makefiles, batch, autoexec etc. I D E N T I F I C A T I O N 

Domain components documentation, annotation, graphics, animation etc. 

I D E N T I F I C A T I O N 

User components programmer, maintainer, manager, customer etc. 

I D E N T I F I C A T I O N 

Enabling components version control tool, data extraction tool, drawing tool etc. 

I D E N T I F I C A T I O N I D E N T I F I C A T I O N 

AHen components any of the above 

C O M P O N E N T Component name Any_component C O M P O N E N T 

Component identifier any_req_001 

C O M P O N E N T 

Component type application, cognitive, domain, user, versioned, data etc. 

File type text, graphics, audio, video, rich-text, text etc. 

High level component description component function 

Depends on object, executable, documentation, annotation 

Created by tool Compiler, editor. Linker 

Table C4-4 The generic proforma 
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ABSTRACTED L E V E L 2 : T A I L O R E D 

SECTION CRITERIA CANDIDA TES / RESULTS 

H E A D E R System name lleiii_timc_Unix_C^ 

Proforma production date 29-06-1997 

Prot(jrma identifier A003G001 

W'rsioned proforma identifier A003Ci001_v2.1 

E N V I R O N M E N T A L Domain area 

System tA'pc 

Operating system 

] .anguage 

manufacturing 

real-time 

UnLx 

D E F I N I T I O N & System libraries /urs/lib/bin. 

L O C A T I O N ^'crsion control system sees 

-Location of data files -/rimc/data/97 

[ixtraction tools available A fake, awk, grep. 

A B S T R J V C T I O N S 
Baseline application 

Environmental application, domain, user, interface 

Anomalous application, alien, missing 

I D E N T I F I C A T I O N .Application components •c, .h, makefile, .obj, .exe 

Domain components ..txt, .doc 

User components maintainer 

1 enabling components .exe 

Alien components 

C O M P O N E N T Component name 

Ojmponent idcntifie 

(Component tN-pe 

I'ile type 

High level component description 

Component name 

A.\A_NNN.req 

application, domain, user, interface 

.txt., .c, .wav, .avi, M l W i , JPEC], .rtf 

What the component does 

.obj, .cxe., txt, .ann 

C compiler 

Table C4-5 The tailored proforma 
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: S P E C I F I C 

CANDIDA TES / RESULTS 

Mcxiblc_ manumctumiL!- svstcm 

7-19 

IlKADER 

Protorma idcntiti 

N'crsioncd nrofonna u l L n t i t R r r 

rtiiinuracru 

real-time 

HiNVlRONM 

I)i-:(-iNn iON & System libraries /urs/'lib/bin. 

L O C A T I O N X'ersion control system sees 

Location of data files '/fms/Ldat ' S H H H H H I 

application -

domam, user, interlace 

Vnomalou 

I D E N T I F I C A T I O N Application components control.c, control.h. makefile, control.obi., . J control.exe 

l)..m.unco„,p,.,nenrs l)..m.unco„,p,.,nenrs 

User components 

I 'aaaliling components awk..exe, IVfakc 

Alien compfjncnts bank.pa^ bank.diK 

(:onipf)tient t\pe 

1 ligh level Cf)m 

1 )i. pends on 

c< >n 

Main controller for conveyer be 

fms.c, speed.c 

Table C4-6 The specific proforma 



4.7 ISCM Configuration Reclamation Process 

I n order to completely recover the system architecture/configuration of a legacy software system 

the ISCM process incorporates a number of activities similar to those described for the 

construction o f software systems. For example, version groups to which components belong 

must be identified together with the correct revision or variant and any associated parameters or 

attributes that direct their combination into executing configurations. As much syntactical, 

semantic and cognitive information associated with a component must also be identified and 

made available i f the partial or complete system undergoing maintenance is to be comprehended. 

However, there are also a number o f fundamental differences between the forward and inverse 

processes, namely: for legacy systems the process tends to be much more iterative rather than 

sequential in nature. The end-product is also different in that the SCM construction of a system 

configuration involves moving f rom a system description to an executable system, while the 

ISCM identification of a configuration moves f rom an executing system to a description of the 

component parts and relationships existing between them. With regard to this, ISCM may 

initially be considered to act as a precursor to the software manufacture process. This can be 

attributed to the improved understanding gained through the ISCM activities of the system 

composition and its interaction with the environment. The resultant effect o f ISCM is two-fold: 

firstiy it enhances the probability of producing a viable bmld and secondly it reduces the chances 

of ripple effects propagating through the system. 

I t is additionally expected however, that as maintenance proceeds over the lifetime of a product 

the ISCM configuration description document can be built-up and controlled as part of the 

legacy system to such an extent that they can eventually be used themselves to drive the build 

process. A t this point the forward and inverse approaches coincide and the system may be 

considered to be fully under control once more. 

4.8 Summary 

I n order to address program comprehension issues of legacy systems, the ISCM process has 

been defined. Whilst ISCM incorporates the four key elements of the traditional SCM process, 

namely identification, control, status accounting and audit, i t differs in the depth to which the 

identification phase o f the process is treated within the ISCM process. The ISCM process model 

extends current work by enhancing existing maintenance models through the addition of detailed 

low-level process descriptions to guide information retrieval and understanding during the 

program comprehension activity. As such it is a prescriptive approach to the comprehension of a 

system, but one which maintains flexibility for customisation of individual working practices, 
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together with identification of its configuration at varying levels of abstraction and degrees of 

formality is considered to be unique to the ISCM model. 

To address the complexity of the software systems being developed and subsequentiy requiring 

maintenance, this chapter has also identified and defined a set of component types and groups 

f rom which an application and its environment may be modelled. Additionally, the relationships 

existing between the defined components may be modelled at two fundamental levels: intra-

appHcation modelling (between application components) and inter-appUcation modeUing 

(between the application and its environment). I f a system is modelled as a whole, i t is often 

difficult to comprehend the component parts due to the vast number of components and die 

complexity of relationships. Therefore, a series of ISCM configuration abstractions have been 

defined which, as with other forms of abstraction, enable the composition of various layers of 

die system to be highlighted and the currentiy irrelevant parts to be masked. In order to uniquely 

identify and document the individual components and their combination into configurations as 

they are re-identified during the ISCM process, a set of attributes has been identified for which 

the information can be incrementally added as maintenance proceeds. 

A new language, the Inverse Configuration Description Language (ICDL), has been defined to 

enable and describe the reclamation of legacy software system configurations. The distinct 

feature of this language over current methods is the emphasis is places on the interaction of the 

application components with their environmental counterparts and the explicit encapsulation of 

knowledge pertinent to a particular application domain. The I C D L may therefore be considered 

to be a programming-in-the-environment (PITE) language and as such is a natural extension to 

earlier work in the fields of programming-in-the-small (PITS) and programming-in-the-large 

(PITL). 

The I C D L provides a convenient framework for representing software system architectures and 

its purposely simple command syntax facilitates the extraction and manipulation of its associated 

data by a number o f automated tools. However, in terms of the maintainer, an alternative and 

more intuitive representation is also provided as a series of templates, the Proforma Increasing 

Complexity Series (PICS), to guide the information collection and collation process during the 

program comprehension phase. The structure of the I C D L and the PICS are conceptually 

comparable, although due to time limitations on implementation each must currentiy be 

maintained and manipulated separately. Work, however, is currentiy in progress to enable sharing 

of the underlying data and hence dispel the problems associated with maintaining multiple copies 

of data. 
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The proformas associated with the PICS exist at three levels of abstraction: generic which define 

rules and characteristics relevant to any software system; tailored which are adapted to a 

particular category of application systems within a specific domain; and specific which are only 

relevant to a particular application system. By systematically processing the different levels of 

system abstraction, information may be cumulatively added to the proformas thereby increasing 

tiieir level of complexity and decreasing their level of abstraction. Ultimately a 'genetic 

fingerprint' of a particular application system at a particular point in time is achieved. Tliese 

genetic fingerprints can be baselined and stored over a period of time to record the evolution of 

system as a complete configuration rather than as a collection of isolated individual components. 

ISCM has parallels in the activities of the traditional SCM activities. This is particularly so in the 

area of software manufacture, where a viable configuration has to be bmlt by selecting 

compatible components, one per version group. Although the focus of ISCM is on identifying an 

existent configuration rather than rebuilding a new one many of the same activities have to be 

considered and hence ISCM can be used a precursor to the build process. This can be attributed 

to the increased understanding afforded by the ISCM process during the program 

comprehension activity. 

The activities of the model generate a number of key outputs such as the system configurations, 

file location maps and incrementally documented knowledge of how the system functions are 

implemented. These outputs cumulatively contribute to reducing the time required to understand 

the area of a system affected by a proposed change. Use of the ISCM process and its associated 

model therefore enables an 'out of control' legacy system to be gradually brought 'back under 

control' as i f it had been developed using SCM principles from the outset. Additionally, 

knowledge of the system configuration and the incremental knowledge recovered during the 

maintenance process enables the program comprehension process to become progressively more 

rapid as shown in Figure C4-22. 

Program comprehension is generally considered to be the key activity that underpins all 

subsequent maintenance and reverse engineering activities. It is also documented as being the 

most costiy activity of the maintenance process. Hence, the adoption of the ISCM process model 

has the potential to realise significant savings in the cost of software maintenance process. 

Chapter 5 details how semi-automated support for the completion of the PICS, manipulation of 

the ICDL, and provision of management support facilities are provided through the 

development of a meta-CASE framework, the PISCES M'* system. Chapter 6 describes in more 

detail the concepts underpinning die ISCM model. This level of detail may be considered 
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synonymous with that required for Level-3 representation of the model and for the consistent 

implementation of the ISCM process activities via the PISCES method. Chapter 7 describes and 

applies, via definition of the PISCES method, the progressive utilisation of each stage identified 

within the ISCM process model to a number of real-world applications. 

Soitware Lilecyde Without ISCM 

Software Development 

Analysis 
Specification 

Design 
Implementation 

Software Maintenance 

Program Comprehension 

Software Development 

Program Comprehension 

Software Development 

Piogram Comprehension 

Software Development 

Software Development 

Program Comprehension 

Software Development 

Program Comprehension 

Software Development 

Software Lifecvcle With ISCM 

Software Development 

Analysis 
Specification 

Design 
Implementation 

Test 

Software Development 

Program Comprehension 

Figure C4-23 The effect of IS CM on the software maintenance process 
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Chapter 5 
PISCES Prototype System 

O, well done! I Commend your pains, 
A.nd everyone shall share i' th'gains. 

And now about the cauldron sing 
Like elves and fairies in a ring 
Enchanting all that you put in 

Shakespeare Macbeth Act W, Scene 1 

5.1 Introduction 

Chapter 4 has described the activities that underlie the ISCM process. Whilst this forms the basis 

of an approach for regaining control of legacy systems, there is a need to provide a degree of 

automated support for the process if it is to be efficientiy and consistentiy applied; applicable to 

large-scale applications; and if useful output is to be generated and managed. For these reasons a 

series of prototype tools have been developed to enable the proformas and knowledge base on 

which the ISCM process is based, to be progressively constructed and the resultant information 

reported to the maintainer. A combination of evolutionary prototyping and incremental 

development techniques have been used to construct a flexible software maintenance meta-

CASE (Computer Aided Software Engineering) framework into which various bespoke and 

host-resident tools can be linked. This chapter describes the progression of prototypes and 

discusses how the ideas developed in earlier chapters have been incorporated and implemented 

within the PISCES M"* (MultiMedia Maintenance Manager) system framework. Future 

enhancements to the system are discussed in Chapter 8. 
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5.2 Implementation of the ISCM Process 

The main purpose of the PISCES M^ (MultiMedia Maintenance Manager) system is to facilitate 

the reclamation of software system configurations and to control any subsequent changes to 

components of these configurations during the maintenance process. To achieve this a generic 

framework has been developed into which a number of bespoke and proprietary tools have been 

and wiU continue to be integrated to enable the extraction, organisation, storage, querying and 

retrieval of information pertaining to a software system configuration. Additionally, emphasis has 

been placed on the provision of an environment that facilitates incremental documentation of 

the knowledge and understanding progressively gained during the comprehension activity of the 

maintenance process. 

The tool has been designed to support the ISCM process described in Chapter 4 and the 

PISCES method detailed in Chapter 6. The key components of the PISCES M'* system are 

represented diagramaticaUy in Figure C5-1. 

Proforma Identification 
Scheme for Configurations 
of Existing Systems 
M* System 
Framwork 

Figure C5-1 PISCES Nt^ environment strticture 
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The components may be summarised as: 

• Extensible System Information Knowledge Base (ESIB): this forms the core of 
the tool. The purpose of the ESIB is to store the rules, component details and domain 
knowledge pertaining to a system configuration. 

• Proforma Identification Scheme for Configurations of Existing Systems 

(PISCES): this tool provides support for the collection, coUation and dissemination of 

information via the defined series of proformas described in Chapter 4. It acts as an 

interface between the user and the ESIKB. 

• Multimedia Application Documentation Domain (MADD): this provides the 

management and control mechanisms of the tool such as access, editing, Unking and 

storage of the configuration documentation. 

• Multimedia MultiPlatform Identification and Tracking System (Mu^PITS): this 

provides the mechanism for recording information about software system 

configurations and the individual software configuration items from which they are 

composed. Mu^PITS also tracks the status of changes to a configuration and records 

the development history of components and entire configurations during their 

continued maintenance. 

• MultiMedia Maintenance Interface (MuMMI): this provides an innovative means 

of incrementally recording and reporting information pertaining to software system 

configurations and the cognitive understanding gleaned during the maintenance 

process. 

• MultiMedia Maintenance Manager (M'*): this provides the overall framework of 

the system. It binds togetiaer tiie ESIB, MADD, Mu2PITS MuMMI, and PISCES tools 

and enables external point function tools such as those for version management and 

information extraction to be Hnked into the system 

The M'̂  prototype was incrementally built-up through a planned and controlled series of 

individual tools which through their integration have gradually extended the functionality offered 

by the original PISCES tool. The following sections of tiiis chapter document the developmental 

history of the PISCES M^ system, discuss the features implemented in the individual tools in 

more detail and describe how each tool relates to the PISCES method. 
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5.3 PISCES Development History 

A progression of prototypes have been developed in order to implement the ISCM process and 

PISCES method described in Chapters 4 and 6. Deliberately, these prototypes have become 

increasingly sophisticated, both in terms of their front-end interface and their back-end 

integration of different applications. This has been made possible through the exploitation of 

new hardware and software technology as it became available within the mainstream computing 

environment. 

5.3.1 PISCES Ml System 

The M^ system was the initial prototype and was essentially characterised by the features outlined 

in Table C5-1: 

P I S C E S Ml S Y S T E M 

Platform: • PC 386 

• Windows 3.0 

Language: • Software Development K i t version 1.0 [274] 

• Microsoft C 

Key features: • Dependency information extraction 

• Initial implementation o f Proforma Increasing 
Complexity Series 

• File location information 

• Incremental armotation facility 

• Combined browsing and partial editing 

Linkage mechanism: • Hypertext 

Underlying storage: • Flat-file for configuration description and 
dependency information 

• MS-DOS file structure for PISCES generated 
documentation 

• Host system for configuration component storage 

Interface • Text and graphics 

Table C5-1 PISCES M system characteristics 
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Example of the M^ features are shown below in Figures C5-2 and C5-3. 

^ P I S C E S HYPERDOC & INTERFACE FACILITY 

fiepetidencies 

aled 

Copyright Rachel Kenning I9S1 

Figure C5-2 PISCES M' command interface 

PISCES HYPERDOC t INTERFACE FACILITY 

Malntainer: rjk 
Date: 10-9-90 
Notes: T h i s module is concerned with the 
merging of different v e r s i o n s of a file. 

I 
l^aintainer: f jmc 
Date: 11-10-90 
Notes: Th is module has again needed modif^^ 
The problem s e e m s to ar ise in the filecomp i 
procedure. 

stdio.h* 

Maintainer: ibk 

Figure C5-3 PISCES M dependency maps annotation facility 
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5.3.2 PISCES M2 System 

The M^ system incorporated a more sophisticated back-end to the PISCES toolset, the 
MultiMedia Application Documentation Domain (MADD). Additionally, it provided an 
innovative approach to the representation of maintenance information through the MultiMedia 
Maintenance Interface (MuMMI). Compatibility with the M^ system was provided through an 
OLE Hnk to the original tool. The key features of the M^ system are summarised in Table C5-2. 

P I S C E S M2 S Y S T E M 

Platform: • PC 486/Pentium 

• Windows 3.1 and 95 

Language: • Visual Basic version 3.0 

Key features: • Integration with PISCES tool 

• Innovative multimedia maintenance interface for 
display and incremental documentation (MuMMI) 

• Facilities for management and control o f aU file 
types ( M A D D ) 

• Natural language control facility 

• Separate browsing and editing levels 

• Password protection between browsing & editing 
levels 

• Rapid response times 

Linkage mechanism: • Hypermedia at docviment level o f granularity 

Underlying storage: • Makefile for configuration description and 
dependency information 

• Windows file stnicture for PISCES generated 
documentation 

• Host system for configuration component storage 

Interface • Text, graphics, audio, video, animation 

Table C5-2 PISCES iVP system characteristics 
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The tool interface is represented below in Figures C5-4 and C5-5. 

e d i a 

i n t e r f a c e 

View program code. 

Figure C5-4 graphical menu and project selection window 

Errors Q r ^ p h t o S h o w 

d lisIC 
d displayf 
d update(void) 

ck^record 
-1ocale(ch 

(void). load(vaid) 
Blisefvoid). clenifvoidl 

C D Modu e 

Figure C5-5 display of multimedia file types <& activation of video editor 
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5.3.3 PISCES M3 System 

The PISCES M^ system incorporated die Mu2PITS system to die PISCES framework. This had 
the effect of adding facilities for documenting and tracking changes to the reclaimed software 
system configurations and their respective components. The system also provided the facility for 
documenting information regarding specific components and their combination into viable 
configuration listings. The key features of the M'' system are summarised in Table C5-3. 

P I S C E S M3 S Y S T E M 

Platform: • PC Pentium 

• Windows 3.1 and 95 

Language: • Microsoft Access version 2.0 

• Access Basic 
• Visual Basic 

Key features: • Integration with PISCES M^ and M^ tools 

• Multimedia and multi-platform configuration and 
component identification 

• Change tracking and documentation 

• Status accounting facilities 

• Comprehensive reporting mechanisms 

• Password protection 

Linkage mechanism: • Relational Unks between configuration components 

• Hypermedia Hnks for documents 

Underlying storage: • Makefile for configuration description and 
dependency information 

• Relational database for relationship and dependency 
information 

• Windows file stmcture for PISCES generated 
documentation 

• Host system for configuration component storage 

Interface • Forms based interface for configuration and change 
tracking 

• Text, graphics, audio, video, animation for 
documentation 

Table C5-3 PISCES system characteristics 
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Examples of the M"* system facihties are shown in Figures C5-6 and C5-7. 
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Figure C5-6 Mu^PITS main menu 
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Figure C5-7 Process configuration form menu 
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5.3.4 PISCES M* System 

The PISCES M'* system represents the state of the integrated system at the current time, 
although new features are continually being added as development proceeds. Essentially the M"* 
system provides a more seamless integration of the different tools outlined so far and enables a 
more comprehensive set of links into other program dependency tools to be made. The extended 
facilities of the M"* systems are summarised in Table C5-4: 

P I S C E S S Y S T E M 

Platform: • PC Pentium 

• Windows 95 and N T 

Language: • Microsoft Access version 2.0 

• Microsoft Office 97 [255] 

• Access Basic 

• Visual Basic 

Key features: • Seamless integration with PISCES M ' , and 
systems 

• Additional tool hooks to external environments, for 
example version control facility. 

• Finer granularity hypermedia linkage within textual 
documents 

• Limited media to media pinpoint hypermedia 
linkage. 

• Updated proforma series including hypertext links 
to multimedia file types and optional generation o f 
H T M L files. 

• Lifecycle process model support 

Linkage mechanism: • Relational Hnks between configuration components 

• Hypermedia links for documents at within 
document level for text and graphics 

Underlying storage: • As M^ system 

Interface • Seamless interface to all tools 

Table C5-4 PISCES system characteristics 
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Examples of the M'̂  system facilities are shown in Figures C5-8 and C5-9. 
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5.4 The PISCES System Description 

As a result of the research and development of the ISCM process and PISCES method a flexible 

meta-CASE framework has been developed rather than a rigidly defined more traditional CASE 

tool. This approach to the provision of semi-automated support has a number of advantages: 

• Control: an underlying core set of faciHties can be integrated into the toolset to satisfy 

the requirement to regain and keep control of a system in a defined and consistent 

manner. 

• Adaptability: the framework enables the integration of different tools into the toolset 

to support the individual working practices and methods of different maintenance 

organisations. 

• Extensibility: information gathered from other sources or tools can be brought into the 

framework and maintained as a coherent set of data. 

• Evolution: new technologies can be exploited as tiiey come into the mainstream 

computing community. 

• Feedback: the incremental prototyping approach enables an early working product to be 

developed whilst still providing the opportunity to encompass the resultant feedback 

into development of later parts of the overall system. 

This section describes in more detail the functions provided by each of the key components 

currentiy integrated within the M'̂  system prototype. 

5.4.1 PISCES 

The PISCES (Proforma Identification Scheme for Configurations of Existing Systems) tool 

encompasses both the earHest and most recent features of the M"* system. The activities of the 

PISCES tool are primarily concerned with the extraction and recording of information regarding 

die components and configuration of an application and the overall environment in which they 

play a part. As such the tool primarily implements the PICS described in Chapter 4, although 

close Unkages are also formed with the information recorded by the Mu^PITS system (see section 

5.4.3) and with any host system tools that aid the extraction of information about a system's 

components. The following faciHties are offered by the PISCES tool [264, 270]: 
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• Implementation of the PICS: the templates associated with the proforma increasing 

complexity series (PICS) are provided on-Hne as a guide to the consistent information 

collection and documentation of any software system being maintained. Within the latest 

prototype extensive use has been made of the facihties offered by the Microsoft Office 

97 suite of programmes, and in particular the use of Word 97 [255] to implement the 

PICS templates. As maintenance occurs, information may be successively added and 

saved using one of two approaches: the PICS may be updated and saved in the normal 

manner or a basehne PICS may be struck and the template saved as a new version. The 

point at which baselines are struck is definable by the maintenance organisation, for 

example, this may be on a temporal basis or on a per maintenance basis after a change or 

series of changes have been made. Progressive baseHning of the PICS enables an 

evolutionary history of an entire system to be recorded. 

• Creation of HTML links and web pages: by creating die PICS within the Microsoft 

Office 97 suite of programs, the facihty to add HTML links and covert the PICS to web 

pages is enabled. Maintenance across the web is however outside of the scope of this 

project and hence this facility has not yet been fuUy exploited, although it is the intention 

to do so in future versions of the tool. 

• Dependency information extraction and viewing: Hnkage to tools such as awk, grep 

and Make for extraction of dependency information; access to the resultant components 

such as Makefiles; and study of the code when combined with the maintainers expertise 

enables dependency information to be recovered and documented. Additionally small 

bespoke utilities enable features such as the resultant dependency tree structures to be 

displayed. 

• File location information and maps: the physical file locations for components can be 

identified and displayed through the use of simple data extraction utihties on either a per 

component or per system basis. 

• Incremental annotation facility: provision of a simple editor enables notes to be made 

regarding the understanding of the system gained during the comprehension process, or 

as a means of providing a temporary note to the maintainer, for example, to flag an 

activity that still needs to be carried out or to warn other maintainers of a troublesome 

section of code etc. 
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5.4.2 I M A D D 

The MADD (Multimedia Apphcation Documentation Domain) environment supports tiie 

management and control of, and access to the underlying multimedia types. A 'natural-language' 

control centre provides the primary Hnkage mechanism within the environment enabling Hnks at 

a component to component level of granularity to be estabHshed between the different project 

documents. The key facHities provided by the MADD environment are [128, 268, 270]: 

• Viewing and loading of stored documentation: this faciHty enables the multimedia 

documentation previously stored on a project within the M"* system to be viewed. This 

includes the abHity of the M^ system to display recorded video, to play audio, to display 

'pure' text or texts with incorporated animation or graphics, and to display statistics in a 

graphical or animated format. The system also enables concurrent viewing of different 

multimedia attributes, for example, it aUows code to be viewed alongside an associated 

video recording. 

• Creation and saving of the documentation: diis faciHty enables new multimedia 

documentation to be input into the M'* system, stored within the M"* environment as a 

project directory and subsequentiy accessed through the MuMMI interface. These files 

can be in the form of pre-recorded video and audio, graphics, animations or text. 

• Editing of stored documentation: this faciHty enables changes to be made to stored 

documentation. This is required to keep the documentation up-to-date and concurrent 

with the state of the software project or simply to make corrections to erroneous 

documentation. In the case of audio and video files, these may be externally edited and 

replaced in the system, or the editing tools may be loaded and the file edited through the 

M"* system itself. Text documentation may be displayed as 'pure' text or may be 

associated with other multimedia files. For example, whilst in edit mode the user can use 

the audio tool to record and associate a voice-over with a piece of text, thereby adding 

value to and aiding the understanding of an otherwise less descriptive pure text file. 

• Appending to stored documentation: this faciHty enables new Hiformation to be 

appended to the existing versions of the documentation held within the M'̂  system. This 

may be required after the advancement of the documented software project, witii the 

aim of keeping the documentation up-to-date. Although closely aUied to the editing 

function, implementation is handled differentiy, as changes are sequential in nature 

thereby building up a change history of a particular component. The creation of new 
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files and the formation of linkages between them and their predecessors can handle this 

feature. 

Deletion of documentation: this facility enables documentation to be deleted either as 

complete multimedia files or as Unkages to files. However, this should be supported with 

the disciplined practice of archiving the documentation onto some form of back-up 

medium such as a tape streamer before allowing it to be deleted f rom the project 

environment. 

Provision of security and access rights: diis facility provides a security mechanism in 

the form of password access. This is important because only certain personnel within an 

organisation may have the rights to change project documentation. This facility is 

supported through the M u M M I which has two access levels, browse and edit, with 

password access into the edit mode thereby Limiting changes to authorised users only. 

Data storage and retrieval: this enables the multimedia documentation accessible by 

the M"^ system to be stored in the form of files in the user directory. There is no 

restriction on the organisation of these files, thereby allowing the user to adopt a 

preferred method of operation. This can involve the storage of independent files 

associated with each project in individual directories. Alternatively, storage can be via a 

Hnk to a database application, as occurs in connection with the information stored 

within the Mu^PITS tool (see section 5.4.3). The advantage of the latter method is the 

provision o f a more organised framework and the ability to conduct more complex 

queries and searches. 

I t is also acknowledged that a fuUy configured M'* system will store large quantities of 

multimedia documentation, in the form of external files. The need for a high capacit}' 

storage medium is determined by the size of video and audio files, which are in the order 

of megabytes for seconds of recording (the need to store minutes or hours of recording 

for large project needs further consideration). However this technical problem of storage 

is becoming less of an issue due to the development of more efficient compression 

methods for sound and video files such as JPEG and MPEG [37, 352], and the 

continuing reduction in the price of hard-disk storage. The further development of hi-

density, CD-readable drives and rewriteable CDs wiU also facilitate cost effective storage 

of huge quantities o f data [295]. 
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5.4.3 Mu2PITS 

The Mu2PITS (MultiMedia Multi-Platform Identification and Tracking System) tool supports 

documentation of the identifying features of system components and their integration into 

software configurations. The nature o f the tool is such that it enables attributes such as the 

relationships existing between widely different file types to be recorded and the location of these 

components to be tracked across distributed networks. In this respect Mu^PITS differs f rom 

many o f the traditional configuration management tools which tend to concentrate on text based 

products. Mu^PITS also supports the production of change requests and tracking of the stams 

of changes throughout the maintenance process. The key facilities provided by the Mu^PITS tool 

are [125, 270]: 

• Documentation of component attributes: this facility enables information about a 

particular component to be documented. Once created the resultant component records 

may be amended, versioned or deleted. The information documented supports aU types 

of multimedia components as well as the more traditional text-based components. 

• Documentation of configuration composition: tiiis facility enables die documented 

components to be associated with one or more configurations. I n this way master 

configuration lists o f the components of configurations can be built-up. Additionally, 

dependencies on a per component basis can be recorded. Once created the resultant 

configuration records may be amended, versioned or deleted. 

• Creation/amendment/deletion of a change request: this facility enables a change 

request to be generated for a particular component. I n order to avoid possible conflicts 

and loss of valuable data the system will allow only one active request per component at 

any one time. The resultant change request form may be updated i f the change request 

has to be amended in some way after scrutiny by the change control board and is 

archived once the approved change has been completed or immediately i f the change has 

been rejected. 

• Creation/amendment/deletion of a status tracking form: this facility enables the 

status o f an accepted change request to be tracked during the maintenance process and it 

thereby allows the status o f the change itself to be monitored. A status tracking form 

cannot be raised until the change request form has been completed and agreed. The 

status attribute of the tracking form will be amended during the change process to 

reflect the status of the component and the form wiU be archived once the change has 

been completed. 
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• Creation of reports and queries: tiiis facility enables information to be obtained 

regarding the data held within the Mu^PITS database. Information may be output to a 

printer as reports or to the screen as queries. The reports range f rom listing of 

component details to master configuration lists to management statistics, for example 

details of how many components are undergoing changes at a particular point in time. 

• Security: the Mu^PITS tool also provides a level of security in tiie form of password 

access. 

5.4.4 MuMMI 

The M u M M I (MultiMedia Maintenance Interface) is the front-end to the M'^ system, and is used 

to display the multimedia documentation [128, 267, 268, 270]. This documentation is any 

information of relevance to understanding the high-level design or low-level code of a software 

product. I t is routinely added to the system throughout maintenance thereby keeping the 

documentation up to date in relation to the underlying software product. The interface has been 

designed through a 'user-centred' development approach, meeting good design practice for 

multimedia windows interfaces [315, 327]. In particular, the windowing environment displays a 

standard format in order to be consistent with other Windows based products. A Multiple 

Document Interface (MDI) approach was selected in order to enable the concurrent viewing of 

many multimedia documents. 

The M u M M I co-operates closely with the M A D D and is based on three levels of access: 

• Level 1 - Hieroglyphic MuMMI Manager, this level is used to select the particular 

project or system undergoing comprehension. Selection is via a graphical menu of 

multimedia attributes and determines whether it is the graphical, textual, audio or video 

documentation associated with a project that is initially displayed. Once a vaHd project 

file has been selected control is automatically switched to level-2 of the interface. 

• Level 2 - Browsing MuMMI Project Environment: this level is organised with respect 

to a particular project and is activated automatically on selection of a project file. Initially 

only the selected multimedia view of the project documentation and the control centre 

are displayed. The control centre uses a 'natural language' command interface in order to 

fu l f i l the requirements for fast operation by an experienced user group. The user 

communicates with the system through die entry of defined commands. A history of die 

commands entered within a session is maintained and can be invoked again by simple 
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selection. As the program comprehension process proceeds the user can enter 

commands to display other multimedia views of the project related to the initially 

opened file. 

The interaction between this level of the M u M M I and the M A D D component of the M"* 

system is one o f read-only access. Thus the user is able to browse and display the 

multimedia documentation on accessible project files but is prevented from making any 

changes to stored material. The user can enter the editing levels of the M"* system 

through a command in the control centre followed by access via a password protection 

mechanism. 

• Level 3 - Editing MuMMI Project Environment: die interaction between die diird 

level o f the interface and the M A D D component and is that of read- and write-access. 

Thus at this level die user is able to edit the existing multimedia documentation and to 

create and store new documentation witliin the M'^ framework. This faciht}^ allows 

update or extension of the information stored on an existing product as it is recovered 

during the program comprehension process. 

The M'* system makes use of external software applications for editing each of the 

multimedia file types. Object Linking and Embedding (OLE) connections are used to 

create a Knk between the multimedia attribute and the appropriate external application 

which are subsequendy activated when the user selects the required edit facility. The only 

multimedia attribute not linked to an external application is the text window, which uses 

an internal editor. This is because the user does not specifically obtain a text editor with 

the required multimedia hardware (compared to the video, audio and graphics editors, 

provided in multimedia packages). However, links can also easily be generated to word 

processing packages such as Word for Windows in the same way as to the multimedia 

applications. 

I n addition to providing tiie interface to tiie M'* system, the M u M M I has also addressed tiie 

issues o f 

• Help support for users of the system: as the M'^ system is intended for use by 

experienced computer personnel, help facilities are provided in the form of an on-Hne 

help system addressing the specific operations of die M'* system radier than general 

computer commands. 
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• Response times: as already mentioned the M'^ system has been designed for use by 

experienced computer users and therefore requires facilities for fast operation, browsing 

and editing o f the multimedia. The interface provides the user with short-cut keys and a 

'natural' command language interface. The system also supports fast access and retrieval 

o f multimedia documentation. However, i t should be noted that the operating rate of the 

M u M M I system can be highly dependent on the hardware configuration. 

• Number of users: the M'^ system is currendy a stand-alone, single user system, although 

multi-user work is supported i f individual sessions are separated on a temporal basis. 

Future development is already underway to extend the system into a fully multi-user, 

networked system. This would provide an environment in which long distance 

maintenance could take place. For example, teleconferencing techniques over the 

Internet could be used to Hnk a number of M u M M I systems anywhere on the globe. 

This would reduce the importance of geographic location of personnel and allow experts 

f rom all areas to communicate more easily. 

5.4.5 M"̂  Environment 

The Multimedia Maintenance Manager (M^) system provides the overall framework of the 

system, binding together the ESIKB information storage mechanism, the M u M M I front-end and 

the M A D D back-end. I t also provides Links into the bespoke Mu^PITS and PISCES tools as well 

as enabling links to be made to external point function tools such as those for version 

management and information extraction. The evolution of the M'* system has also incorporated 

animated models o f the maintenance process and work is underway on a Hypermedia Browsing 

and Editing Facility (HyBrEF) [270] for the multimedia documentation stored within die M"* 

framework. Some proposed extensions to the M"^ system are as follows: 

• Provision of change control facilities: with such a dynamic environment as die M'* 

system and the emphasis that needs to be placed on keeping documentation concurrent 

with the state of the software, there is a need for rigorous change and version control. 

Software configuration management requirements must also extend to the ability of the 

M'^ system to support a family of concurrentiy released software product configurations 

to different cHents. This latter requirement of recording component and product 

configuration details has been addressed in the Mu^PITS tool. However Mu^PITS does 

not deal with the issue of change to and subsequent storage of the actual components 

themselves. 
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As the M"* documentation is in different multimedia formats the problems of managing 

changes are more complex than for text management alone particularly i f the changes 

are to be stored as a series of deltas rather than complete files. This problem of change 

control may eventually be fuUy handled by the M'* environment itself. Currentiy 

however, links have been provided to an external, but tailorable change and version 

control system for multi-platform code management [205]. This system adequately 

manages the versioning of textual components but does extend to managing other 

multimedia types. Multimedia version management within the M"^ system must therefore 

be handled through adherence to a set of defined procedures whilst the issue of 

automated multimedia version management is still being addressed [175]. 

• Hypermedia capabilities: i t is planned to extend the hypermedia capabilities of the M'* 

system. Currentiy, ful l use is made of multimedia attributes, however the majority of 

linking and control of related items of data is implemented through the M u M M I control 

centre. Hypertext links existing within and between textual documents have always been 

implemented in the PISCES tool and have recentiy been extended the general M"* 

environment. The next release of the M"̂  system will incorporate fuU hypermedia 

extensions at both browsing and editing levels. This much finer granularity of linkage 

within and between the document types wiU enable a more elegant and targeted coupling 

of audio, video, graphics and text documents. 

• Process management: the latest version of the M'* system has incorporated information 

concerning the management of the maintenance process. This includes tiie use of 

hypertext links to explain the different stages, roles and responsibilities associated widi 

the maintenance process and the use o f animation to step through a number of process 

models including that of the ISCM approach. 

5.4.6 ESIB 

The Extensible System Information Base (ESIB) as it is currentiy implemented is actually an 

amalgamation of technologies spanning simple flat files, relational database systems and the 

inherent storage mechanisms of the host system. This ratiier piecemeal approach has arisen due 

to the development o f individual tools which handle data storage locally but whose data can be 

shared through in-built data exchange mechanisms or via simple parsing tools which extract 

relevant data f rom the different toolsets as requited. Whilst this approach has worked 

successfully and can exploit fiilly the advantages of flexibility there are also arguments for having 

a central M ^ repository, with strictiy defined data structures, for use by all tools within die M' ' 
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framework. However whilst this would offer more seamless tool integration and would lessen 

the likelihood o f maintaining any redundant data within the M'* system it may also make the 

incorporation of proprietary tools difficult or even impossible. 

5.5 Application of the System to the ISCM Process 

Section 5.4 has described the functionality offered by each of the main components of the M"* 

system. When integrated together these components provide the underpinning framework for 

on-Hne implementation and semi-automated support for the entire ISCM process. The overall 

interaction o f the tools within the M'* system framework is shown in Figure C5-10 and the 

mapping o f these tools to the salient features of the ISCM process is summarised in Table C5-5. 

External Data External Data External Version 
Extraction Tool Representation Tool Control System 

e.g. Make e.g. GraphixDraw e.g. R C S 

Software Maintainers 

M4 System 

PISCES 

MADD 

MuMMI Mu^PITS ES B 

External Graphics 
[Editing Application 

e.g PowerPoint 

External Audio 
Editing Application 

e.g. Soundo'LE) 

External Video 
Editing Application 
(e.g.Media Player) 

Application Systems 

Figure C5-10 Tool integration within the system 
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T O O L I S C M PROCESS 

M u M M I • Interface to the program comprehension process 

• Selection o f a project for maintenance 

• Browsing o f current documentation and information regarding an 
• application and o f the application components themselves. 

• Links to facilities for creation and editing o f multimedia 
documentation regarding comprehension o f the application 

P I S C E S • Provision o f generic, tailored and specific templates 

M u 2 P I T S • Documentation o f software component details 

• Documentation o f software configuration details 

• Production and update o f change control proforma 

• Production and update o f change tracking proformas 

E S I B • Storage o f rules and guidelines regarding systems and their 
construction 

• Logical storage o f all information pertaining to a software system 
configuration and its comprehension 

• Physical storage o f information created within the M"* environment 

M A D D • Handles the creation, update and storage o f information tj^pes 
created within the M'* framework 

M* • Overall ISCM environment, providing a universal interface to the 
activities o f the ISCM process 

External Editing Tools • Physical creation and editing o f the multimedia file types 

External Data Collection & 
Representation Utilities 

• Extraction o f information for data representation regarding the 
comprehension process 

External Version Control 
System 

• Version control o f text documents within the M4 framework 

Table C5-5 Mapping of system features to the ISCM process activities 

I t is also important to estabUsh the use of the M'^ system within the task-oriented context of the 

way in which maintainers performing their role. I t is intended that the M'* system is used during 

the program comprehension process prior to each maintenance change according to the 

following procedures: 

• Browse: initially, the maintainer would browse the program code and any associated 

documentation akeady present in the M u M M I system that appears to be of use to 

understanding the proposed change and the affected parts of the system. 

• Evoke: i f appropriate, the maintainer may evoke any data extraction tools etc. existing 

within or integrated into the M'* framework in order to generate additional understanding 

or dependency information about the construction of the system. 
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• Complete: the maintainer should document any additional findings about the affected 

parts o f the system within the specific proforma generated for the system under study. 

• Update: as the comprehension process occurs the maintainer will gain more information 

about the appHcation itself, the appHcation domain, the detailed functionaUty or design of 

the system etc. This understanding should be incrementally recorded using an appropriate 

multimedia type and subsequentiy stored within the M"^ system. 

I n essence the M^ system acts as a 'maintenance oracle' capturing all previous maintenance 

experience within a single environment. The effects of this system are three-fold: 

• Increased understanding: as domain, system and appHcation knowledge is incrementally 

built-up and recorded so too is the understanding of the system and its importance in the 

context of the organisational and system domain better understood. This has the effects of 

ensuring that changes can be prioritised towards those of a key business nature and it also 

ensures that changes can be made more safely with reduced risk of the ripple effect 

occurring. 

• Faster changes: as more information is built-up about a system the time attributed to the 

comprehension process should become successively reduced. This is because the prior 

knowledge of the maintainer themselves and of any previous maintainer is available for use 

and hence provides a 'head start' so that the time taken to understand a change and its 

impact on the rest of the system can become progressively more rapid. 

• Foundation for re-engineering: the increased documentation and understanding of a 

system, as weU as notes about a system or collection of metrics about errors etc. assists 

with identifying the areas of the system that wiU most benefit f rom being re-engineered. 

Additionally, identification of the components and records o f how they are synthesised 

into complete configurations provides a soHd foundation on which the actual re-

engineering process can be based. 

Additionally, although the use of the M'^ system has primarily being discussed within the context 

of its use during maintenance, maximum benefit of the M^ system comes as a result of it being 

used f rom the inception o f a green-field project. I n these circumstances, the M'* system can be 

populated with the complete set of components and documentation about an application. 

Additionally, all design decisions, key meetings or reasoning of an informal, semi-formal and 
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formal nature can be captured f rom the outset of development through a combination of the 

different multimedia attributes. Used in this way, the M"* system pre-empts the maintenance 

process and acts as a 'maintenance escort' during hand-over of the application. 

5.6 Summary 

This chapter has described the development, features and structure of the PISCES M'^ system. 

The M"^ system is an innovative and flexible meta-CASE environment that provides on-line 

implementation and semi-automation of each stage of the ISCM process. The M'^ system 

provides the framework into which other tools of a bespoke or proprietary nature can be 

incorporated to enable the understanding and configuration of a software system to be 

documented using a more heterogeneous and enriched mix of information types than has 

previously been possible. 

The M'^ system framework may be summarised as having a multimedia (MuMMI) front-end, an 

underlying repository (ESIB) and a control and management back-end (MADD) . In addition to 

this there is a data collection and collation mechanism (PISCES), support for the SCM activities 

of identification, control, status accounting and audit (Mu^PITS), and the integration of other 

tools such as those for data extraction and version control. Together these tools span the entire 

range o f the ISCM process activities and through their defined usage during development and 

maintenance plus their ability to link to other tools may be considered to provide a complete 

maintenance environment 

The support provided by facilities of the M^ system and its close co-operation with the practical 

appHcation o f the PISCES method wiH be discussed in more detail in Chapter 6 in order to 

iHustrate its practical appHcabiHty to the program comprehension process and maintenance of a 

number o f laboratory and 'real-world' programs. 
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Chapter 6 
Application 

And go we, lords, to put in practice that 
Which each to other hath so strongly sworn 

Shakespeare Love's Labours Lost, Act I , Scene I I 

6.1 Introduction 

This chapter describes the use of the ISCM model, PISCES method and PISCES M"* system for 

reclaiming and incrementally documenting the configurations of legacy software systems during 

the maintenance process. Due to the nature of the program comprehension activity, which 

necessitates a high degree of human reasoning and inference, the ISCM process cannot, as yet, be 

fuUy automated. Therefore within the scope of this work a combination of maintainer expertise 

and manual procedures have been used alongside the semi-automated activities provided by the 

various tools integrated within the PISCES M'* system. Suggestions for how increased 

automation of the ISCM process might be achieved in the future are discussed in Chapter 8. 

Modelling o f the applications has been an iterative process throughout the study rather than a 

single evaluative step at the conclusion of the project. This is in keeping with the user-centred 

approach to systems development, which realises the importance of task-oriented development 

and early and continuous user-interaction. This is especially true in connection with the 

development of the multimedia interface to the PISCES M'^ system which to be truly effective 

must be treated as an integral part of the system rather than a 'bolted-on' afterthought. Indeed, in 

contrast to many systems, the M u M M I interface forms the central part o f the system through 

which the individual tools are subsequendy added. 
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The iterative nature of the appHcation modelling process enabled feedback to be made into the 

ISCM model and PISCES method. Tliis decreased the risk of finding significant flaws in die fuU 

model once i t was developed. AdditionaUy, such an approach proved to be highly effective, 

particularly in connection with requirements capture for the individual components of the 

PISCES M 4 system toolset. 

To demonstrate the capabiHties of the ISCM model and PISCES method, this chapter uses a 

number of appHcation systems to progressively walkthrough the stages of the model and 

method, incorporating the activities, features and tools described in Chapters 4 and 5. The 

complete process is described for each stage of the model and at this level of detail may be 

considered to represent level three of the ISCM model and be synonymous with the PISCES 

method as aUuded to earHer in Chapter 4. 

6.2 Trial Levels 

The effectiveness of the ISCM process was examined by modelling a number of different 

appHcation programs. These ranged in si2e and complexity f rom a small calculator program with 

a small number o f reasonably homogenous components to the PISCES M' ' system itself, which 

incorporated a large number of heterogeneous components. Two Unix appHcations, RCS 

(Revision Control System) and SPMS (Software Project Management System) were also 

modeUed, since these two systems were the subject of the original manual modelling process in 

order to determine the initial requirements of the ISCM process and the ESIB. Within the scope 

o f the thesis it has not been possible to model a large-scale industrial system, however the 

impHcations o f modeUing such systems are discussed in relation to die work undertaken and die 

evaluation o f the method in Chapter 7. 

For comparative purposes, each appHcation is rated according to a simple scale of complexit};^ 

based on: 

• The number o f baseline appHcation components. 

• The diversity o f the component types in terms of the number of component groups 

having representative components. 

• The complexity of the component relationships measured as a function of die intra- and 

inter-specific relationships 

• The number o f Hnes of appHcation code. 
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The key characteristics of each of the applications studied are summarised in the remainder of 

this section. The rest of the chapter then discusses the effectiveness of the ISCM process, 

PISCES method and M^ system in understanding and documenting these applications. 

6.2.1 The Calculator : Small Scale Program 

The calculator program [314] represents the smallest and least complex application that was 

modelled. Essentially it is a small C + + application, running under MS-DOS and compiled using 

the Borland C + + package version 2.0. The key complexity characteristics of the application are 

summarised in Table C6-1. 

M E T R I C R E S U L T 

Component number 11 

Component diversity 5 

Intra-relationship complexity 10 

Inter-relationship complexity 10 

Number o f Hnes o f code 300 

Table C6-1 Complexity characteristics of the calculator program 

6.2.2 The Chess Game : Small-Medium Sized Program 

The chess program [182] is an order of magnitude more complex than the calculator program, in 

terms of lines o f code and the number of components associated with the application. The 

relationships existing between the application components are also more complex but the 

heterogeneity of component types is of a similar nature. Although it is also a C + + program it 

runs under Windows 95 and via the Visual C + + development suite of tools. The key complexity 

characteristics of the application are summarised in Table C6-2. 

M E T R I C R E S U L T 

Component number 30 

Component diversity 5 

Intra-relationship complexity 20 

Inter-relationship complexity 10 

Number o f lines o f code 3,000 

Table C6-2 Complexity characteristics of the chess pro-am 
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6.2.3 RCS : Medium Sized Program 

RCS, the Unix Revision Control System, is a sizeable but stiU relatively smaU program compared 

to many appHcation systems. However, i t proved to be surprisingly complex to model 

completely given the size o f the code and the number of components even though these were 

fairly uniform in nature. RCS was considered to be an interesting appHcation to model since it is 

in itself a configuration management faciHty and unique in terms of many full-scale appHcations 

in that the complete source code was available for modeUing purposes. The key complexitjf 

characteristics o f the appHcation are summarised in Table C6-3. 

M E T R I C R E S U L T 

Component number 60 

Component diversity 10 

Intra-relationship complexity 40 

Inter-relationsliip complexity 10 

Number of Hnes of code 15,000 

Table C6-3 Complexity characteristics of the RCS application 

6.2.4 SPMS : Medium - Large Sized Program 

SPMS (Software Project Management System) is an appHcation available on some but not aU 

Unix systems. This system is considerably more complex than RCS in terms of the number of 

components and the number of relationships existing between them. The size of this system 

dictates that complete modelHng of the system is not feasible, nor indeed necessary within the 

scope of this thesis. I t thus acts as a candidate for the partial modelling and incremental 

documentation o f only those parts of the system affected by a proposed change. However, 

although the number of components is high, Hke RCS the level of heterogeneity of the 

components is relatively low. The key complexity characteristics o f the appHcation are 

summarised in Table C6-4. 

M E T R I C R E S U L T 

Component number 900 

Component diversity 15 

Intra-relationship complexity 90 

Inter-relationship complexity 20 

Number of Hnes of code 30,000 

Table C6-4 Complexity characteristics of the SPMS application 
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6.2.5 PISCES M 4 system 

I t is often asserted that the proof of a good process, method or tool is its ability to build, 

document or control itself For this reason the M"* system was also documented and configured 

with respect to the ISCM process, PISCES method and M^ system. Modelling of the M"* sj^stem 

also presented some useful problems in terms of coping with the heterogeneity and complexity' 

o f interaction between the different components of the toolset and the number of diird party 

libraries and applications on which they depend. However, to some extent, the way in which the 

toolset has been constructed has minimised the overall complexity of the system by ensuring 

that most o f the relationships can be partitioned at the individual tool level and then by using 

standard interface protocols to pass interaction f rom one tool to another. The key complexity 

characteristics o f the M'* application are summarised in Table C6-5. 

M E T R I C R E S U L T 

Component number 400 

Component diversity 50 

Intra-relationship complexity 40 

Inter-relationship complexity 40 

Number o f Hnes o f code 10,000 

Table C6-5 Complexity characteristics of the Af^ system 

6.3 Application of ISCM process, PISCES method & system 

Tliis section describes the use of the ISCM process, PISCES method and M'^ system for 

maintenance o f a legacy software system. Each sub-section describes the reaUsation of die 

conceptual ISCM process activities defined in Chapter 4, through the appHcation of die 

guideUnes and procedures estabHshed by the PISCES method described in this section, and dieir 

implementation via the M' ' system outHned in Chapter 5. The extent to which the modelling 

process varies according to the size and complexity of the system being maintained is also 

discussed. 

6.3.1 Process 1 - Process Change Request 

This process, initiates the maintenance of a legacy software system. Its aim is to ensure that die 

change request is fuUy documented prior to the program comprehension process commencing. 

The change request documents may be raised within the ISCM process itself or may be created 

f rom inside o f an alternative maintenance framework and then integrated into the ISCM process. 
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The stages defined within the PISCES method and summarised in Figure C6-1 assume creation 

of the change request within the ISCM process framework. 
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Figure C6-1 Level 3: method (mrk instruction) level - PISCES process change request activities 
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The process is essentially one of ensuring that the change required is officially documented and 

associated with a system component which may or may not already have a change history 

associated with it. Within tiiis process all of the traditional configuration management activities 

are being addressed to some extent for legacy systems: 

• Identification {Creation I Retrieval/ Update of Component ID Form) 

• Control (Raising/Agreeing of Change Proposal and Change Tracking Forms) 

• Status Accounting [Creation/Retrieval/ Update of Change Log) 

• Audit {Completion of Review Form) 

The tool support is provided for each of tiiese activities by tiie Af ' system. In particular the 

Component I D , Change History Log, Change Request and Change Tracking forms are 

handled by the Mu-PITS tool. The Review Sheet is maintained as a Word document. 

I n connection with this process, the size and complexity of the applications studied were found 

to have no significant effect on the effort required for documenting the change request. This is 

not surprising since the nature of the process is one of 'intention' rather than 'analysis' at tiiis 

preHminary stage. 

6.3.2 Process 2 - Conduct Analysis of Legacy System 

This process, involves the initial analysis of either an entire legacy system or more commonly an 

analysis o f only those parts of the system affected by the proposed change. The aim of the 

process is to identify and document the relevant component parts of the system, the 

relationships existing between these components and the relationships between the components 

and their environment. The process involves querying of the ESIKB for any previously recorded 

knowledge about the system being maintained; determining whetiier any relevant proformas 

exist at the varying levels o f abstraction; production or update of die proformas and production 

of configuration and dependency Usts. The process also ensures that any knowledge reclaimed 

during this initial analysis phase is incrementally recorded for use by future maintainers. The 

PISCES method stages associated with this stage of the ISCM process are summarised in Figure 

C6-2. 
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Figure €6-2 Level 3: method (work instruction) level - PISCES conduct analysis of legacy system activities 

The process essentially conducts a preliminary analysis o f the system undergoing maintenance. 

A l l relevant information is extracted f rom the underlying ESIB and made available to the 

maintainer. Any updates regarding the system components or their relationships based on the 
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level o f abstraction selected are undertaken. This process is primarily concerned with the 

identification activity o f the SCM process as applied to legacy systems. However, the audit trail 

of ISCM activities is maintained throughout the process: 

• Identification {creation/update of Proformas, Component ID Forms, Configuration 

Lists and Reclaimed Knowledge) 

• Audit {completion of Review Sheet) 

Again tool support is provided for each of these activities by the h/P system. In particular the 

creation/update of the Pfoformas (PICS) is handled by the PISCES tool, Component I D 

Forms and Configuration Lists by the Mu-PITS tool, incremental documentation of the 

Reclaimed Knowledge by the MuMMI and MADD environments and as before the Review 

Sheet is maintained as a IFcr^/document accessible through the general NP framework. 

I n connection with this process, the size and complexity of the applications studied impacted in 

a number o f ways on the effort required for analysing the system. Firstiy, a distinction had to be 

made between those systems which can be studied in their entirety and those systems for which 

only the affected parts of the system can be feasibility studied each time a maintenance change is 

required. Whilst the creation o f the generic and tailored proformas were not affected by the size 

or complexity o f the applications, production of the specific proforma was found to be 

significantiy affected due to the increased amount of information that needs to be analysed and 

subsequentiy entered. Similarly, the identification of dependency information was more time 

consuming for larger applications and particularly for those wit i i a high degree of interaction 

with environmental components. However, the actual method of documenting the dependencies 

once identified was no more complex for large heterogeneous systems than for small 

homogenous systems. Recording of the knowledge once reclaimed about a system was also not 

affected by the size o f the system. 

6.3.3 Process 3 - Populate Extensible System Information Knowledge 

Base 

This process may essentially be regarded as a continuation of the analysis process. However, 

whilst the analysis process is concerned with collecting information pertaining to a system, the 

population process is responsible for ensuring that all the information reclaimed and 

documented about the system is stored within the ESIB such that it is available for future 

reference. 
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As mentioned in Chapter 5, the ESIB is currentiy composed of a number of different data 

storage mechanisms and record types brought together within the M'* framework. Whilst this 

offers flexibility in terms of tool integration and incorporation of custom working practices, i t 

can lead to data redundancy and it necessitates careful handling of the storage, editing and 

versioning associated with each information type. The population process therefore defines the 

way in which information should be progressively stored within the ESIB. 

The relationship between the "populate £ i " IB ' process and the 'conduct analysis process' described in 

the previous section is actually one of iteration rather than one limited to succession. The 

iterative cycle may either fall within a single period of maintenance or may occur over 

consecutive maintenance changes. This is due to the incremental nature of the reclamation 

process that progressively recovers and stores information about a system via one or more of the 

supported media types or using the supplied proformas. Over time this augmentation of the 

material existing in the ESIB makes possible a more highly evolved start to the program 

comprehension process. The PISCES method stages associated with this stage of the ISCM 

process are summarised in Figure C6-3. 

This process essentially controls the saving, within the ESIB, of all components browsed, 

created or updated as part of the analysis process. The PISCES method activities are intended to 

act as a guide encompassing all component types rather than being a mandatory set of 

instructions. This is to maintain flexibility of approach both in terms of the working practices of 

maintenance organisations and with regard to the mechanisms by which the different tools 

incorporated within the M"̂  framework handle the storage of components. Detailed level 

instructions can be found in the user-guides or on-line help systems associated with each tool. 

As this part o f the process is restricted to the update and saving of information it is primarily 

concerned with applying the SCM change control activity to program comprehension of legacy 

systems. Again an audit trail of the ISCM activities conducted is maintained: 

• Change control (controlling updates and creation of Proformas, Component I D Forms, 

Configuration Lists, Reclaimed Cognitive & Domain Knowledge, Existing System 

Information) 

• Audit (completion of Review Sheet) 
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Figure C6-3 Level 3 : method (work ins.) level - PISCES populate system information knowledge base activities 

Tool support is provided for each o f these activities via the storage mechanism of the individual 

tools within system. I n particular storage of the Proformas and Review Sheet is handled by 

Word, the Component I D Forms and Configuration Lists by the Mu^PITS tool, and the 
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Reclaimed Environmental & Domain Knowledge and Existing System Information by 

the MADD. Additional control and protection with respect to which changes can be made and 

by whom is provided through a password access mechanism between the browsing and editing 

levels o f the MuMMI and similarly through password access in the Mu-PITS tool. 

I n connection with this process, the size and complexity of the applications studied were found 

to have no significant effect on the effort required for documenting the change request. This is 

not surprising since the nature o f the process is one of 'storage' rather than of 'analysis and 

recovery' which is done in the previous stage. 

6.3.4 Process 4 - Produce natural representation of ISCM model 

representation 

This process describes in more detail how software system configurations can be modelled 

within the ISCM process using the PISCES method. The approach consists of two parallel 

activity strands. The first strand relates to the Proforma Increasing Complexity Series (PICS) 

that is a human-friendly format readily understood by customers, users and maintainers. The 

second strand concerns the Inverse Configuration Description Language (ICDL) system model 

tiiat is a machine-oriented format that can be readily parsed by tools for automated information 

extraction. The process is closely tied to the analysis process and generally occurs concurrentiy with 

it and with the process concerning access to and retrieval of information in the ESIKB. The 

primary function o f the PICS is to guide the retrieval and documentation of information 

pertinent to the system or part of the system under investigation. The process concentrates on 

identifying the components and relationships o f a system according to varying configuration 

abstractions, the composition of which can be defined within the proforma and system model 

themselves. The resultant specific proforma or architectural model resulting at the end of tiie 

natural representation modelling phase may be considered as providing a genetic fingerprint, of 

the state o f a system at a particular point in time. Progressive recording of the variations between 

successive proformas (or models) over the maintenance lifetime of a product in a configuration 

change log enables the maintenance history of a system to be made visible. The PISCES method 

stages associated with this stage of the ISCM process are summarised in Figure C6-4. 
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Figure C6-4 Level 3 : method (work ins.) level- PISCES produce natural language representation activities 

This natural language representation process may essentially be regarded as a controlled and 

ordered approach to the collection and recording o f information via the PICS and I C D L system 

model. Whilst this approach ensures the recording of a consistent and complete set of 
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information about a system configuration and its associated components it also retains the 

flexibility o f individual maintenance organisations in terms of the approach they take and tools 

they utilise to recover this information. This part of the ISCM process encompasses the key role 

within the Inverse Software Configuration Identification (ISCI) sub-process. With regard to 

otiier SCM activities, the process also addresses change control through the requirement to 

version the successive specific proformas; status accounting through the maintenance of a 

configuration change history log and, as before, an audit trail of the activities carried out is 

maintained. These may be summarised as: 

• Identification (of Components and their corresponding relationships to produce varying 

Configurations Abstractions). 

• Change control (versioning of the P I C S and I C D L System Models) 

• Status accounting (through maintenance of Change History Logs of the configuration 

evolution) 

• Audit (completion o f Review Sheet) 

Tool support is provided for each of these activities within the IVF system framework. The 

PISCES tool adopts the key role in association with this process in that it defines and maintains 

the Specific Proformas that are subsequentiy stored as Word files within the ESIB. A simple 

Text Editor provided within the MuMMI framework enables the corresponding I C D L system 

model to be generated and updated, whilst linkage to an external Version Control Tool assists in the 

versioning of the Genetic Fingerprints and in maintaining the Change History Log. 

Individual Component I D Forms and relationship information within the Configuration 

Lists may be updated or retrieved f rom the Mu-PITS tool and Word handles the Review Sheet. 

I n connection with this process, the size and complexity of the applications studied were found 

to have an effect on the effort required in order to complete the PICS and I C D L system model. 

However, the extent o f the effect was also determined by whether a decision was made to model 

the entire system or just the parts of the system affected by the change. Additionally, whilst the 

workload involved in physically documenting the information was directiy proportional to the 

size and complexity of the application, the documentation acmally only accounted for a relatively 

small part o f the overall comprehension process. Indeed, the greatest consumer of effort was 

that attributed to the 'thinking' or analysis part of the process and hence the effect of tiiis 

complexity can be generally apportioned to the corresponding analysis process. The way the M'* 

system handles the increasing amount of information was also found to be appropriate for the 

applications studied in that the level of complexity and amount of information involved could be 
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made visible or masked through the use of multiple windows, hypertext and hyperlinks and by 

considering the configurations at varying levels of complexity. 

6.3.5 Process 5 - Generate system configuration output 

Associated with the identification process is the generation of various reports and views 

pertaining to the recovered system configurations. One of the key features of the ISCM process 

and its implementation via the M' ' system is its innovative use of multimedia attributes such as 

audio, video and animation, in addition to the more traditional graphics and text. The use of 

multimedia files augments the incremental documentation process and enhances the 

representation o f knowledge regained about a system during the program comprehension 

process. The aim of the ^generate output' ^tocc-s,?, is to guide the user through the range of possible 

outputs that may be produced as a result of the ISCM process, PISCES method and M"* system 

implementation. For some of the activities associated with this process information may be 

generated automatically, for others information may be created and displayed within the M'* 

system framework and, for others manual modelling must be undertaken but wit i i the help of 

on-line packages for storage and update. The PISCES method activities associated with this 

stage of the ISCM process are summarised in Figure C6-5. 

This process may be said to act as a ''table of contents' to the types of information representation 

and reports that may be produced once a software system configuration has been reclaimed. The 

types of output are extensive ranging f rom the textual listing of the I C D L system model, to the 

graphical location maps of the identified system components to the audio and video 

representation of cognitive knowledge, and die animation of process information. Depending 

on a maintainer's requirements, some or all of these information types may be accessed and 

displayed on the screen or sent to a printer for a hard-copy record. In order to produce the 

information required one or more of the primary tools integrated within the M'* framework are 

invoked and in some instances a secondary tool must be effected in order to produce or display 

the output. More detailed descriptions of how to produce each information type have been 

documented as part o f the user-instructions or on-line help associated with each tool. 

The provision of these core set of reports and information types ensures that a consistent and 

complete set of documentation about a system configuration and its associated components may 

be obtained. However, additional tools may be integrated within the M"* framework to support 

the needs of individual maintainers. Another advantageous feature is the provision of a facility to 

enable the maintainer to affix hypertext links within documents and hypermedia Hnks between 

information types in order to create information network appropriate to their needs. 
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Figure C6-5 Level 3 : method (work instruction) level - PISCES generate system configuration output activities 

Again this part o f the ISCM process performs a key role with regard to the Identification sub-

process. I t also supports status accounting through the printing of the configuration change 

history logs and change tracking status proformas. As before an audit trail of the activities 
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carried out is maintained. The ISCM activities associated with this process may be summarised 

as: 

• Identification (through printing of Component IDs , Genetic Fingerprints, 

Dependency Information, File Location Maps, I C D L System Models etc.) 

• Status accounting (through printing of Change History Logs of the configuration 

evolution and Change Tracking Forms) 

• Audit (completion of Review Sheet) 

Tool support is provided for each of these activities within the system framework. The 

PISCES tool adopts the key role in association with this process in that it defines and maintains 

the Specific Proformas that are subsequentiy printed as Word files or converted into H T M L 

(HyperText Mark-up Language) for future incorporation into web pages. A simple Text Editor 

provided within the MuMMI framework enables the corresponding I C D L System Model to be 

generated and updated, whilst linkage to an external Version Control Tool assists in the versioning 

of the Genetic Fingerprints and in maintaining the Change History Log. Cognitive 

Knowledge can be documented using the Text Editor, Word or using any of tiie multimedia 

application packages that can be invoked via the MuMMI. Individual Component I D Forms and 

Dependency Information within the Configuration Lists may be updated or retrieved from 

the Mu^PTTS tool. Word continues to handle the Review Sheet. 

I n connection with this process, the size and complexity of the applications studied were found 

not to have a significant effect on the effort required to complete the process. The amount of 

material related to a system was found to be more abundant for a complex heterogeneous 

system than for a small homogeneous application, although the M'* system appeared to handle 

this adequately. Additionally, the amount of material was also found to be a function of the 

length o f time over which the application was being maintained resulting in more information 

being recorded and cognitive knowledge documented as the number of program comprehension 

cycles accumulated. 

6.4 Assessment of ISCM process, PISCES method & system 

Section 6.3 has outlined the employment of the ISCM process, via the PISCES method and M^ 

system support, on a number o f applications of varying size and complexity. However, as stated 

in Chapter 4, the primary aim of the ISCM process, PISCES method and M"* system is to assist 

the maintenance process by reducing the amount of time spent comprehending a system prior to 

a change being made. This section therefore identifies the key benefits that were found to accrue 
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wit i i regard to the ease with which comprehension of application systems occurred with 

prolonged use o f the ISCM model, PISCES method and M'^ system. These may be summarised 

as: 

• Increased domain understanding: noticeably, a number of tiie applications studied and 

modelled during the research were of a similar domain type, namely that of project and 

configuration management. I t was found that as the number of systems modelled within 

this domain type increased, so too did the general ease and rapidity with which an overall 

understanding o f the software functionality could be comprehended. This was mainly due 

to the increased experience of the domain characteristics. 

• Advanced start to comprehension process of systems: as the number of systems 

modelled and comprehended increased, so too did the number of tailored proformas 

available within the PISCES framework. I t was found that an application being modelled 

for the first time but which could be categorised within a particular domain type, could 

make use o f a pre-existing tailored proforma, to the extent that the initial identification 

activities o f the modelling process could be at least partially by-passed. 

• Advanced re-start to comprehension process of systems: particular benefits were found 

to accrue for systems that were incrementally modelled or maintained over a period of 

time. I n these cases, the specific proformas associated with a particular application enabled 

an accelerated start to the maintenance activity to occur. This was through the 

documentation within the specific proforma of the attributes regarding the application 

components, their dependencies and the understanding gained during previous 

maintenance cycles. 

• Consistent framework: the comprehension process was also significantiy eased by the 

provision o f guidelines for the activities required during the comprehension process. In the 

initial 'manual' study of the RCS and SPMS applications, the modelHng and comprehension 

process tended to be performed in an extremely ad-hoc and unstrucmred manner. 

However, this initial modelling was invaluable in determining the t5^es of activities carried 

out during the comprehension process, such that they could be put into the structured 

framework of the ISCM process and PISCES method. 

• Audit trail: closely connected with the provision of guidelines for the comprehension 

activity was the provision of review sheets to record the comprehension activities tiiat have 

taken place, when they occurred and by whom. Provision of this information was found to 

be useful, not so much in terms of increasing the speed at which comprehension could 
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take place, but with regard to documenting the extent to which the comprehension 

activities had been carried out, a previously unrecorded factor. This influenced the degree 

of confidence with which a change could be made such that i t avoided any potentially 

damaging 'ripple effects'. 

• Increased on-line documentation: although the PISCES method provided a solid basis 

on which to comprehend and model software system configurations, it was found that in 

order to be used effectively, even for small systems, a degree of on-line support was 

required. This was due to a number of factors, including: 

0 the amount o f information generated during the comprehension process; 

0 the need to maintain the reclaimed information itself, which soon became 

prohibitively time consuming i f recorded manually on paper; 

0 the abnity to store heterogeneous information types including text, graphics 

animations, audio and video footage; 

0 the ability to link relevant information types together, and 

0 the ability to search for pre-existing information on-hne. 

However, once tiie information recovered during comprehension was recorded on-line it 

was found that incremental documentation of an application became progressively more 

rapid and effective. 

The above benefits were collectively found to ease the problems of program comprehension by 

enabling the configurations of legacy systems to be more rapidly understood than when die 

comprehension process and subsequent maintenance activity took place in an ad-hoc manner. 

This was evidenced by the ease with which systems were being modelled, understood and 

updated at the end o f the research in comparison to those at the beginning when the modelling 

process was undertaken via a manual method. Due to the application modelling being conducted 

as an incremental feedback process throughout die research rather than a statistical series of tests, 

the above benefits are qualitative rather than quantitative. However, the trials were sufficient to 

prove that the rate at which comprehension could proceed increased significantiy as the number 

of applications and the extent to which these applications were modelled increased. 

6.5 Summary 

This chapter has described the practical realisation of the ISCM process, ISCM mamtenance 

model, PISCES method and M"^ system in the maintenance of a number of 'real-world' 

applications. These applications ranged in their size and complexity f rom small-scale laboratory 

examples, through medium-sized programs to larger-scale heterogeneous systems. Depending on 

175 



the size and complexity of each application, fuU or partial system configurations were modelled 

by systematically applying the activities defined in each of the process stages of the I S C M 

model. Audit sheets raised as part of the initial process were used to track the progress of the 

maintenance activities identified in connection with the I S C M process and defined within tiie 

P I S C E S method. Automated support was provided through the invocation of relevant tools or 

utilities implemented or integrated as part of the M'* system. 

Adherence to each phase o f the model was shown to drive maintenance process activities f rom 

inception of a required change (process change request), through analysis of the affected parts of die 

system {conduct analysis of legacy system), to storage {populate extensible system information knowledge base) 

documentation {produce natural representation of ISCM model representation), and output {generate system 

configuration output) o f die reclaimed configuration information. Although a 'paper-based' 

description o f the model within this thesis necessitates a sequential description of each phase 

and implies a sequential ordering to the activities defined within each phase, in practice many of 

the activities were found to be conducted in parallel and iteratively. Indeed, an iterative approach 

to the process activities was shown to be a favourable requirement in terms of being able to 

incrementally document system configurations as the maintenance phase proceeds 

asynchronously over a period of time. 

Combined usage of the ISCM model, PISCES method and PISCES M'^ system were found to be 

effective for reclaiming the configurations of the existing systems irrespective of their size and 

complexity. However, application size and complexity did impact on the degree of work 

associated with many of the defined activities, the extent of which was often related to the 

amount o f information that had to be cognitively analysed or physically documented. 

Additionally, this high degree of human reasoning associated with analysis of a legacy system 

undergoing maintenance necessitated that the ISCM model, PISCES process and M'* system, 

acted as guides, supplements and semi-automated support to the human-oriented maintenance 

process rather than a machine-driven replacement to it. 

A more detailed discussion regarding the effectiveness of ISCM process, PISCES method and 

M"* system on the maintenance of the trial applications is given in Chapter 7 together with the 

projected impact o f the process and associated activities on the maintenance o f large-scale 

industrial systems. 

Chapter 7 also assesses the degree to which each of the otiier objectives identified at the start of 

the research and described in Chapter 1 have been achieved. 
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Chapter 7 

Critical Evaluation and Discussion 

of the Research Objectives 

Let us from point to point this story know 
To make the even truth in pleasure flow 

Shakespeare "̂ ^̂  "^^^ ̂ '̂̂ ^ "̂̂ ^ '̂̂ "̂̂  

7.1 Introduction 

The overall aim of this research has been to investigate ways of bringing existing or legacy 

software systems back under configuration control. To this effect the work undertaken has 

investigated a number of issues and proposed several part-solutions which, when combined, 

provide an innovative approach to the software maintenance process. To achieve the overall aim, 

a number o f objectives were proposed and systematically investigated. These objectives 

progressively moved the research through a sequence of defined stages namely the: 

• Conceptual definition of a process and its associated process model. 

• Realisation o f the process and model through development of a practical method. 

• Documentation of the results f rom the method through a sequence of languages, 

proformas and review sheets. 

• Semi-automation of the method through the construction of a set of CASE tools and 

their integration into a meta-CASE framework. 

• Practical application of the process, model, method and tools through the study of a 

number of 'Live' applications of increasing si2e and complexity. 

• Evaluation of tiie work undertaken. 
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This chapter reviews the research carried out and assesses the degree to which each of the part-

solutions set as objectives in Chapter 1 have been achieved. The exceptions to this are Objective 9 

- critical evaluation of the research undertaken and Objective 10 - identification of future work. Objective 9 is 

met through the nature of this chapter and Objective 10 will be addressed within the final 

chapter o f the thesis. 

7.2 Discussion of Objectives 

The following sub-sections summarise the work undertaken on an objective by objective basis 

and evaluate the strengths and weaknesses of the approaches adopted and results obtained within 

the scope of the thesis. Particular emphasis however is given to discussion of Objective 1 - the 

definition and development of the ISCM process model as this has been the primary aim of the research. 

7.2.1 Definition & Development of the ISCM Process and Process Model 

(Objective 1) 

The primary objective o f the research has been the definition and development of a process and 

associated process model to facilitate the maintenance of legacy software systems. To this effect 

the Inverse Software Configuration Management (ISCM) process has been identified and 

defined as being: 

"the process of bringing existing (legacy) software systems back under 

software configuration control." 

Development of the ISCM process has resulted f rom the fusion of three key areas within the 

computing discipline identified as having great relevance to today's demands for cost effective, 

functionally correct, reliable and safe software systems. These three key areas and the reasons for 

focusing on them in the research are: 

• Software maintenance: this encompasses aU activities that take place after a software 

product has been delivered to the customer and may account for between 40% and 85% 

of software expenditure over a product's lifetime [10, 49, 165, 243, 405]. The increasing 

size, complexity and invasion of software into other disciplines indicate that this figure is 

unlikely to decline. Additionally, within the maintenance process itself, up to 50% of the 

effort expended is in relation to the program comprehension activity wliich is carried out 

in order to understand the affected part of the program prior to making a requested 
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change. Definition of a process that meets the needs of the program comprehension 

activity wil l realise significant benefits in terms of time, monetary and safety gains. 

• Software configuration management (SCM): this is the process of controlling die 

evolution o f complex software systems through the activities of identification, control, 

status accounting and audit of software system components, their configurations and any 

changes made to them over their lifetime. SCM is recognised as an effective control 

mechanism i f applied throughout development and onward into maintenance [65]. 

However, many legacy software systems have been developed without any regard to SCM 

and resultantiy have become ^out of control' such that, even after a lengthy period of program 

comprehension, guarantees of safe maintenance changes are virtually impossible to give. 

Additionally, even within the traditional development-oriented SCM process, i t has been 

acknowledged that there are still a number of fundamental issues waiting to be resolved 

[138]. 

• Software process models: these represent a conceptual sequence or cycle of stages and 

activities whose realisation through an associated method enables a defined process to be 

conducted or a specified problem to be solved. Process models for software, although 

developing, are still very much in their infancy, particularly with regard to the maintenance 

process. Additionally, the continued research and development of software process models 

in order to standardise the set of methods, procedures and artefacts intrinsic to the 

software lifecycle has been hailed as extending the 1980s decade of the methodology into 

the 1990s decade of the process [123]. 

Amalgamation o f these three areas to form the ISCM process has been achieved by applying, 

extending and enhancing the principles and techniques of traditional SCM to die program 

comprehension activities that occur during maintenance of legacy software systems. The ISCM 

maintenance process model has then been developed to encapsulate and structure the activities 

intrinsic to the ISCM process. 

The characteristics of the ISCM model were determined after a study of several traditional 

development-oriented models and a number of more recentiy proposed maintenance process 

models. As a result of this investigation, a number of deficiencies were identified with even the 

most recent models in connection with their superficial treatment of the comprehension of 

legacy systems during the maintenance process. These may be summarised as: 
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Insufficient granularity: i t was found that the level of process granularity in many 

current maintenance models, although an improvement on traditional lifecycle models, is 

generally still at too coarse a level to ensure the controlled maintenance of legacy sj^stems. 

Emphasis within the ISCM process has dierefore been placed on ensuring that die process 

steps are defined and described at a sufficiendy low level of detail. This approach enables 

consistency and traceabiHty of the maintenance process across a diverse range of system 

and application types, whilst still allowing a degree of flexibility in the working practices 

and methods o f different maintenance organisations. 

Lack of focus on identification: i t was found tiiat many maintenance process models 

place their emphasis on the more downstream activities of change control, status 

accounting and audit rather than on the initial identification activity. The ISCM process 

recognises that in order to facilitate understanding of a system being maintained, there is a 

need to address more closely the identification of an existent system configuration and its 

decomposition into interrelated component parts. This realisation of the need to 

progressively reclaim the configuration of an out of control legacy system has led to the 

sub-process Inverse Software Configuration Identification (ISCI) being instigated. 

Correspondingly, the process Inverse Software Configuration Management (ISCM) is defined as 

the 'umbrella' process for tiie identification and comprehension process plus the 

subsequent control, status accounting and audit of future maintenance changes. 

Location mapping: i t was found that many approaches to program comprehension make 

the assumption that the components of the system are stored locally and occur as a 

coherent set o f components. This is however often not the case, due to components 

having become dispersed across the file system such that some key components may be 

segregated f rom the main component directory and may be or may appear to be 'missing'. 

Alternatively, redundant or 'alien' components may have become resident within the 

application directory. Additionally and increasingly the distributed nature of systems 

development and tiie resultant distributed application systems such as multimedia or web 

based products necessitate the need for very careful fiile location mapping of components. 

Resultantiy, another key feature of the ISCM model developed has been the integration of 

the information reclamation process with location mapping of the system components. 

This enables efficient access to components once changes have been approved or enables 

controlled reorganisation of the physical storage of components. 
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Short-term nature of comprehension process: i t was found tiiat one of the major 

inefficiencies associated with the program comprehension process was the requirement for 

the affected part of the system to be understood f rom scratch each time a change was 

required, even i f comprehension has previously been conducted on that particular part of 

the system. This phenomenon can be attributed to the failure of maintainers to document 

the understanding they gain about a system as they proceed through the program 

comprehension activities. The information recovered and understanding gained is then 

forgotten by the time the next change is required or different maintenance personnel are 

assigned to the change. Since the 80:20 rule may be appHed (80% of the time is spent on 

20% of the code) it follows that documentation of this understanding could realise 

significant benefits. The ISCM method therefore also encompasses a mechanism for 

incremental documentation of the understanding regained about these components and 

their contribution to the overall system configuration. Additionally, this collection, storage 

and access o f information pertaining to systems and changes to these systems is managed 

at varying levels of abstraction via a series of proformas and an enriched multimedia user 

interface (MUI) incorporating hyper-Unks. 

Focus on low level detailed information: i t was found tiiat most program 

comprehension tools focus their understanding on study of the program code. Wliilst 

agreeing that the source code will always constitute the critical information pertinent to the 

program comprehension process, studies have shown that the efficiency of the process can 

be markedly improved i f a mix of information types are consulted at varying levels of 

abstraction and different levels of formality. The ISCM process has dierefore addressed 

this need through the identification and analysis of all associated documentation and 

information types pertaining to the application itself and to tiie environment wit i i which it 

interacts f rom the low level source code to the high level cognitive knowledge and 

enterprise and business domain information. 

Originality of Interface: i t was found that most program comprehension tools offer a 

texmal and graphical interface to the maintenance process, sometimes with the 

incorporation o f hypertext. Whilst this is adequate for representing code and text, it 

becomes restrictive when trying to represent a very heterogeneous mix of document types. 

Therefore this work has extended the representation of maintenance information to 

incorporate video, audio and animation as well as the more traditional graphics and text. 

No t only does the process provide an efficient and effective mechanism for information 

collection, but the multimedia aspects enable a more heterogeneous representation of this 
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information at formal, semi-formal and informal levels which result in a more intuitive 

understanding of the system. 

The main strengths o f the ISCM process defined within this thesis and its associated 

maintenance model thus lie in its structured approach to the program comprehension process 

with the primary emphasis being on identification of a system's configuration and its 

decomposition into the component parts and their corresponding relationships. The lower levels 

o f granularity o f the process steps enable consistency and completeness of the process, which 

when coupled with the retrieval and display of information at higher levels of abstraction than 

the source code alone provide an effective mechanism for increased understanding of the system 

and the implications o f the proposed change. The multimedia capture and display of die 

progressively reclaimed information and recovered domain understanding also increases the 

intuitiveness o f both obtaining and understanding the information. The issues surrounding the 

definition and development of the ISCM process and associated process model have been 

discussed in Chapter 4. Although the model is fairly well defined and a number of unique 

features are implemented, it is still at an early stage in its development and although utilised 

effectively during the research with several applications it may need to be refined as its usage is 

extended to a wider variety of application systems. The detailed realisation of the model and its 

effective usage are discussed within the remaining objective summaries. 

7.2.2 Description, guidelines and documentation of the P I S C E S method 

(Objective 2) 

Within Chapter 4 the ISCM process and its associated maintenance process model have been 

described at liigh levels o f granularity corresponding to levels zero, one and two of die model. 

These levels progressively detail the main process stages of the model; the pre-and post 

conditions for each stage; the input resources required for each process; and the outputs 

generated f rom a particular process. However, even at abstraction level-two the process and 

model may still be considered essentially conceptual in nature. For the model to be physically 

realised, a series o f detailed stages or guidelines must be defined for each aspect of the ISCM 

process. This provision of a detailed description or method facilitates the translation of the 

tiieoretical concepts to a real-world base. For the ISCM model this has been achieved through 

the definition of the Proforma Identification Scheme for Configurations of Existing Systems 

(PISCES) method. A n expHcit link between the ISCM process and PISCES method has been 

ensured through the continued abstraction of the ISCM process into level-three of die model 

which is at a sufficientiy low level of granularity for the activities defined to be implemented as 

the PISCES method. 
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The PISCES method has been developed with the aim of providing guidelines and a structured 

approach to the core set of activities that should be undertaken i f effective program 

comprehension is to be achieved, software system configurations reclaimed and the impacts of 

proposed changes on the rest of the system clarified. The PISCES method has been defined in 

Chapter 6 by a series o f process activity charts which indicate the inputs to the process, the 

sequence of steps and decisions that should be considered during the program comprehension 

process, and the resultant outputs f rom the process. Although the ordering of the process charts 

imply a sequential organisation, the processes and to some extent the activities associated with 

them may occur concurrentiy and iteratively. Indeed, the important factor is not so much the 

ordering o f the activities but the fact that they have all been addressed at some point during the 

program comprehension process. This is because through completion of each activit}^, a 

maintenance organisation can ensure that a degree of consistency and completeness has been 

applied to the process. The addition of the audit sheets also realise benefits in connection witi i 

the implementation o f quality control procedures, on which increasing emphasis is being placed 

by many organisations. 

The PISCES method could have been much more explicit in its demands, however user-centred 

task analysis revealed that too prescriptive an approach can act as a negative factor rather than a 

positive driver for maintenance productivity gains. This can be attributed to factors such as 

resentment at the removal of task creativity; the failure to take into account valuable intrinsic 

maintainer expertise; and neglect of evolved and well-tested maintenance practices within an 

organisation. The PISCES method has therefore been developed as a trade-off between 

prescription and flexibility in that the method defines the controlled and accountable set of 

activities that should be carried out, but their sequence of execution and the way by which they 

are achieved is maintainer-driven. 

The PISCES method has also tried to address the balance between providing practical support 

for the technical activities of the maintainer and the reporting activities required by the manager. 

I n this respect technical activities are supported by procedures and tools for activities such as 

data extraction, incremental documentation, file location mapping and definition and recording 

of configuration abstractions. Management aspects include the ability to provide change log 

histories, to highlight candidate areas of code for cost-effective re-engineering, and to record an 

audit trail of maintenance activities. As mentioned above, this accountability and adherence to a 

well defined process are likely to become increasingly important as developers and maintainers 

become held more accountable for the work they do and any adverse consequences of tiiis work. 
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Within the Umits of method flexibility, another level of detail could have been added in 

connection with the (semi-automated) support provided through the M'* system. However a 

decision was made to retain the detailed procedural instructions associated with the use of each 

tool within the individual user guides. This decision was taken to accommodate changes in the 

toolset composition, but also because the individual tools are still undergoing development and 

hence update and enhancement of the tools themselves is likely to occur at a faster rate of 

change than the higher level activities of the method or process. 

Practical application of the PISCES method was acliieved through the modelling of a number of 

applications ranging f rom small laboratory programs to relatively large U N I X applications and 

the M'^ system itself. The results of these trials are discussed more fully in section 7.2.8, however 

initial findings suggest that it is relatively easy to apply the activities defined within the PISCES 

method to a range of applications. As the applications were modelled, feedback regarding the 

effectiveness of each process was made possible and the activity descriptions and their suggested 

sequencing were adjusted accordingly. Whilst the method proved to be an effective guide to the 

modelling and comprehension of all applications studied, it is recognised that this has been based 

on a very limited sample size. I t is therefore likely that the method wiU evolve as it is used in 

connection with a greater number of applications of different types and f rom a wider range of 

domains. I t is feasible that a number of variants of the method wiU be necessary in order to 

accommodate all software systems. This is because some types of system may require greater 

emphasis on particular aspects of the model, or a more rigidly defined approach than others. For 

example, safety critical real-time systems may need to be modelled differentiy to business batch-

oriented transaction systems. These model variants could be defined and maintained in a similar 

fashion to the generic, tailored and specific set of proformas. 

7.2.3 Modelling Software System Architectures through Abstraction 

(Objective 3) 

I n order that legacy software system configurations can be identified there is a need to 

progressively model the components of the application system and the relationships tiiat define 

their composition into viable configurations. The ISCM process has based its approach around 

the definition of a number of component-type groups, the components of which can 

subsequendy be combined to create or identify the software system configurations at varying 

levels o f abstraction. A review of what constitutes software system architectures was conducted 

to enable the ISCM core component groups to be identified. The resultant inclusion of a more 

enriched set o f component types than any of the system models reviewed contributes to die 

uniqueness o f the ISCM approach. The originaHty of the approach also extends to the modelling 
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o f software configurations as a series of maintainer-definable configurations abstractions. These 

abstractions are based on the interaction of 'baseline' application group components with 

components f rom other groups, thereby placing emphasis on the modeUing of an application 

within the context o f its environment. Modelling in relation to the system environment was 

considered to be an important issue given that it in relation to today's software systems it has 

become very difficult to consider the application in autonomous isolation. 

Linked with the above, one of the key premises on which the ISCM approach is based is the 

ability to model systems at varying levels of abstraction. Software systems and the associated 

modelling o f their configurations have become progressively more complex over the past decade. 

This complexity may be largely attributed to the resultant effects of advances in hardware, 

software and communications technology and include: 

• Implementation shift: technology advances have enabled software to take on traditionally 

hardware-oriented roles through task implementation using complex algorithmic bases . 

• Implementation evolution: technology advances have resulted in far more advanced 

human computer interfaces, parallel processing algorithms and heterogeneous multimedia 

components being incorporated into software systems. Additionally advances in 

communication technology have resulted in the number of distributed applications across 

multiple and often geographically dispersed platforms. In particular the meteoric rise of 

world wide web based activities has introduced issues surrounding the maintenance of 

products as a series of conceptual and rapidly changing Hnks, rather than a set of physical 

objects over which the owner of a system has control. 

• Computer abundance: widespread acceptance of computer technology has resulted in 

computer applications impacting on every area of society, business and industry. This has 

had two major effects. Firstiy, in order to sustain the rate of requirement for cost-effective, 

safe and reliable computer systems, emphasis is being placed on the integration of reusable 

components within the core application. Secondly as the number of software products in 

the market place increases so does the computer 'food chain' in terms of the requirement 

of one vendor's product by another for a completely functional system. For example, a 

given processing or control application may require an underlying third-party database in 

which to store its data and a third-party front-end interface through which to access its 

data and control functions. Hence it is no longer the norm for components requiring 

modelling to come f rom the application system alone. 
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Abstraction is a technique for dealing with complexity by masking irrelevant details, either 

through defining the level of granularity of the information displayed or by defining different 

views o f die partial or complete system. Both of diese approaches have been shown to be 

effective for the modelling of large-scale software systems and both have been addressed within 

die research. The modelling o f systems through progressive levels of granularity will be discussed 

in Section 7.2.6. The remainder of this section discusses the modeUing carried out through 

defined views o f system configurations. 

As mentioned above, modelling within the ISCM process is based on identification of a 

comprehensive number of components groups and their interaction with the members of the 

application component. Although some work has been done in this area, it has tended to be 

limited to modeUing program family versions, build-tool characteristics and occasionally the 

documentation associated with a software system. Review of die literature did not reveal any 

work that examined the same level of modeUing detail as the ISCM process. Nor does die other 

work reviewed use the concept o f describing software by a series o f definable and re-definable 

configuration abstractions. I n the practical trials of the method and approach described in 

Chapter 6, targeted modeUing of the relevant aspects of the system was found to be an effective 

aide to the speed with which application systems could be understood during the program 

comprehension process. 

Definit ion of the default component group membership and configuration abstraction 

composition is made within the PICS and ICDL. The ability of the maintainer to redefine the 

default memberships o f the configuration groups was also considered important within the 

context o f the process. The reasons for this were two-fold. Firsdy definition of group 

membership was found to be somewhat subjective in nature since a number of components 

types could have been placed in more than one group. Secondly, the nature of the components 

and the roles they play depends to some extent on the nature o f the application being 

maintained. For example, the relationship of an application component to its environmental 

counterparts may be very different in an embedded system than in a data processing application. 

The configuration abstractions can also be redefined within the PICS and I C D L system model 

templates to enable modelling of the most appropriate views of the system. 

The modelling has also initially been kept very simple, with the definition of the abstractions 

being Umited to unions of entire component groups. In reality, modelling is a more complex 

process than this implies in that only sub-sets of the component groups will produce viable 

system combinations. The extent to which these should be defined and modelled is a candidate 

for future refinement o f the model. Similarly, within the scope of the thesis, the modelUng of the 
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relationships has been limited to those existing between the application components (intra-

appHcation modelling) and to those between the application component group and the other 

component groups (inter-application modeUing). There is however, another level of complexity' 

associated with the modelling process in that interrelationships may also exist between the 

various non-appHcation component groups. However, the complexity of modelling at this level 

o f detail was considered to be outside of the scope of the thesis. I t was also assumed that the 

component relationships remain fairly stable and traceable once modelled and hence issues such 

as web-based product maintenance have not been addressed. In such applications it may be 

impossible to trace components once a referential Hnk has been broken due to movement of the 

component by another owner. However, this is a very relevant area of interest and one that will 

be addressed in the future. 

7.2.4 Definition and Structure of Underpinning Information Base 

(Objective 4) 

The information regained about the software system configurations and their associated 

component parts must be stored in a format suitable for retrieval, reference or update i f die 

effort expended during maintenance is to be effectively reused. This is an essential requirement i f 

one o f the major inefficiencies o f the maintenance process is to be addressed, that is, the time 

spent performing program comprehension activities, even i f the affected part of die system has 

been maintained and comprehended before. This inefficiency can be attributed to the knowledge 

gained during a particular maintenance cycle remaining 'personal' to the maintainer rather than 

being documented as part of a 'maintenance oracle' [268] for future reference. To address these 

issues an Extensible System Information Base (ESIB) has been defined. The roles of the ESIB 

are thus to store the information reclaimed about a software system during maintenance and to 

store the rules and guidelines associated with the collection of this information. More debatably, 

another role could be the storage of the actual components of the system being maintained. The 

label 'extensible' has been tagged to the nomenclature of the knowledge base in order to 

emphasise the incremental and progressive population of the ESIB with information and new 

information types as they are recovered during the maintenance process. 

Two approaches to the construction of tiie knowledge base were considered. Firstiy a single 

central repository, with expUcidy defined data structure formats could have been developed into 

which every aspect o f information relating to the comprehension of a system must be physically 

stored. The second approach considered, still retained the concept of a central repository but, 

was essentially logical in nature with physical implementation occurring through a series of 

repositories whose data structure and maintenance are governed separately by the individual 
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tools. With respect to making this choice a study was conducted regarding a number of different 

approaches to the development of knowledge bases within the context of achieving the goals of 

the ISCM process. 

As a result o f the investigation a physically disparate but logically coherent approach was 

eventually adopted. There were two main factors that influenced tiiis decision. Firsdy, the 

disparate approach provided greater flexibility within the context of the ISCM process. Secondl)', 

the development o f an object base that has the ability to store the highly structured and variable 

datatypes associated with the ISCM process was too great a task for what was essentially a 

'support activity' within the scope of the thesis. Development of a more sophisticated storage 

mechanism can be investigated at a later date. 

The flexibility afforded by allocating data storage responsibility to the individual tools removed 

any restrictions on the types of tools that could be incorporated into the M"* meta-CASE 

framework. However, there were also a couple of negative issues associated with this approach, 

particularly in terms o f a degree of redundancy being associated with die storage of some 

information and resulting in concurrent maintenance of multiple datasets. The most obvious 

example o f this is the requirement to maintain the PICS and the I C D L system models in parallel 

for a particular system. A short term solution is being developed that will enable the importation 

of the I C D L data direcdy into the PICS or vice versa. However this is not yet at a stage suitable 

for incorporation into the M"* system. 

The ESIKB thus has been implemented as a combination of: 

• Flat files: for the I C D L system model storage and representation. 

• Relational database tables: for storage of details regarding the individual components, 

their composition into configurations, change proposals and change tracking forms. 

• Individual files within the underlying operating system: for storage of die 

proformas and multimedia file types. 

• Hyperlinks: to link the proformas to other information types. 

Currentiy, the rules associated with the reclamation of knowledge pertaining to a particular 

system or category of system are represented within the proformas themselves. Eventually, a 

separate rule base wil l be established, having its own set of heuristics and incorporating enabUng 

technologies such as neural networks, fuzzy logic and intelligent agents. Incorporation of such 

features wil l enable more intelligent and automated knowledge eUcitation and may eventually lead 

to a situation o f 'auto-maintenance'. 
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7.2.5 Definition of Inverse Configuration Description Language (Objective 5) 

Widespread use o f systems such as those based on the language Mesa [231] and its derivatives 

such as C/Mesa are said to be hindered by their language and machine dependence [369]. Hence 

one o f the primary aims of die ISCM research has been to develop a language wliich is 

independent with regard to application system type, application language and application 

platform. The Inverse Configuration Description Language (ICDL) has thus been developed such 

that it provides a generic approach to the modelling of software systems. 

A review was undertaken of a number of approaches and languages used to model software 

system configurations. These were found to range f rom very simple text-based syntactic 

descriptions, to more structured abstract-datatype/object-oriented definitions, to strictiy defined 

mathematical denotations of the relationships existing between components parts of a system. 

The languages used for defining software system composition have in general been based on the 

concepts o f programming-in-the-large (PITL), whereby the interface of the components and the 

resources required by and provided to these components are modelled in such a way that the 

implementation details, characteristics of programming-in-the-small (PITS) approaches, are 

hidden. Whilst this approach has proved to be very apt in the past for modelling software system 

configurations, there is an argument based on the increasing interaction of application 

components with their environmental counterparts, for an additional level of modelling i f system 

configurations are to be adequately described and controlled. This concept, which translates to 

modelling an application system within the context of its development and functional 

environments, has been developed within the thesis and is termed programming-in-the-

environment (PITE). The additional attributes and features required for achieving this level of 

modelling have been incorporated into the I C D L and hence form the primary basis by which the 

I C D L may be distinguished f rom most other languages for describing system configurations. 

The I C D L defined is based on seven levels of information definition {domain, environmental, location, 

total, abstraction, configuration and component) which together describe the syntactic composition and 

semantic meaning o f the components, their combination into configurations, their functionalit)' 

and their interaction with the environment. Whilst some PITL languages, such as PCL [360] and 

R E B O O T [396], offer elements of the above, I C D L provides a more comprehensive attribute set 

for domain and environmental description than current languages. This emphasis has been made 

possible through modelling configurations as a series of different abstractions and by developing 

the I C D L as a P ITE language rather then an aggregate of PITS, PITL and PITE concepts and 

constructs. I t is however intended that P ITL and PITS languages may be used in combination 

with the I C D L as required and as such present a balance between prescription and flexibilit)' of 

choice. 
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Another key way in wliich the I C D L differs f rom existing languages is in relation to die role it 

plays in the software configuration management (SCM) of a system. Within traditional SCM die 

architectural description of the system acts as a blueprint to drive the composition process. 

Indeed, after each maintenance change or set of changes there will be the requirement to rebuild 

the software system in order to create a viable configuration capable of being executed. The 

I C D L is not intended to carry out this role of automatically reconstructing and verifying system 

builds. Rather, the resultant I C D L architectural description becomes the product of the ISCM 

process, whose activities are directed towards incrementally recovering an unambiguous system 

description f rom a previously corrupted or disarrayed one. That is, the inverse approach involves 

progressive or selective decomposition of a system configuration in order to understand its 

composition and working, rather than being a mechanism for system composition f rom its 

constituent parts. 

The aim of the ISCM process and the I C D L is tiius to aid the comprehension process in order to 

increase the likelihood o f making a safe change. However, for maximum effectiveness, once the 

ISCM process has assisted in the prediction that a safe change can be made, a more traditional 

P I T L language could be invoked to initiate the system build in the normal manner. The I C D L as 

such acts as a precursor to die traditional system build process. Again this approach promotes 

flexibility, this time in relation to the build approach adopted by individual maintenance 

organisations or that required for different application types or platforms. 

The chosen syntactic structure for the I C D L is that of a very simple text-based description. 

Whilst such an approach lacks the ability to represent and read complex structures as complete 

records or objects, i t has again been devised with flexibility in mind. A n important requirement 

for the I C D L was that it could be easily machine-read or parsed in order that the data contained 

widi in could be manipulated, displayed or reported. The format of: 

/ s e c t i o n - h e a d e r / i n f o r m a t i o n - i d : r e s u l t s 

with optional iteration at any point enables the file to be readily parsed by small bespoke or 

commercial utilities and the requested data to be extracted and manipulated by different tools, 

for example, the production of file location maps or configuration lists. 

Emphasis on describing software configurations within the context of PITE may thus be 

considered an innovative approach to the description of software systems. However it is 

recognised that the I C D L wil l need to continue to evolve as more systems and system types are 

modelled. 
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7.2.6 Definition and Creation of the Proformas for Natural Language 

Representation of the ISCIVI IVlodel (Objective 6) 

The core element of the ISCM process is the definition and use of the Proforma Increasing 

Complexity Series (PICS). The series was developed as a result of an initial manual study which 

investigated, for a number of applications, the types of information that could be usefully 

recovered pertaining to maintenance of a software system. The role of the PICS is threefold: 

• Input/output mechanism: whilst the I C D L provides a convenient machine-readable 

format, the PICS present a more human-oriented mechanism for information collection, 

collation and reporting. The PICS also enable the input and output processes to be 

conducted in a manner which is consistent and comprehensive yet flexible enough to meet 

the demands of different maintainers or maintenance practices. 

• System blueprint: the proformas act as the system description document and hence as the 

definitive guide to the composition of a current system configuration, the identification of 

the relationships of the configuration to its operating environment, and a record of 

reclaimed domain and semantic information about the system. 

• System life-cycle derivation: i f baselines of the system composition as represented by die 

specific proformas are struck at appropriate intervals, when viewed as a time-ordered 

sequence, they provide a record of the evolution of a system or the maintenance pattern of 

either part of all o f a system. 

I n essence, all information identified as being relevant for the effective maintenance of a system 

should be represented and recorded within the proforma series. However, due to die large and 

complex nature of software systems, information eUcitation and reclamation is generally a 

progressive process. To accommodate this, a series of three proforma abstractions (generic, tailored 

and specific) have been defined, each of a similar structure and format but which have been 

designed to become syntactically and semanticaUy more attuned to a particular system as the 

series is progressed. That is, via the PICS the recorded information is transformed from being of 

an application and environmentally independent nature [represented by a single generic proforma), to a 

stage o f application independence but environmental dependence (represented by one of several 

tailored proformas), to ultimately a state of complete application and environmental dependence 

[represented by one of many specific proformas). This latter stage may be considered to represent the 

genetic fingerprint of a system at a particular point in time. 
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Although the use o f proformas or templates to describe software system configurations is not an 

entirely new concept, the PICS has been designed to extend the facilities offered by such 

techniques. This enables the PICS to effectively address the configuration management 

requirements of today's complex computer systems and particularly those with respect to 

applying the ISCM process to such systems: 

• Heterogeneity: the PICS, like the ICDL, has been designed to incorporate a broader 

spectrum of information than has been addressed by many previous configuration 

management ventures. Collection of this information is organised into six major sections 

which correspond to those fields defined within the ICDL, namely: header, environment & 

domain, resource <& location, configuration abstraction, component identification and component?,. 

Completion o f these respective sections enables a ful l or partial system configuration to be 

progressively recovered through a series of activities related to the identification, 

description, definition, specification, extraction and deduction of information. 

• Structure: a number of key distinctions can be made between developing/maintaining a 

knowledge base of information pertaining to software system configurations and a 

database relating to more traditional transaction-oriented records. These distinctions stem 

f rom differences in the numbers of records maintained; the complexity of die records; and 

the frequency o f access to these records. Traditional databases are generally designed to 

deal with extremely large numbers of relatively small and simple records which may be 

frequendy accessed for purposes of information retrieval or small updates. Conversely, a 

knowledge base such as that underpinning the PICS has a 'relatively' small number of 

records but which are highly complex in their structure and which tend to be accessed less 

frequentiy but for longer periods of time and for more lengthy update. The heterogeneous 

nature of the multimedia data also requites additional thought for effective processing. 

The templates within the PICS series, which in their entirety form highly complex 

structures, have thus been designed and implemented to take account of such factors. The 

primary way in which this has been achieved is by storing the configuration data within the 

PICS as a combination of physical entities and logical Hnks. This enables any short textual 

descriptive data to be stored as part of the PICS, whilst allowing complex items of data 

such as multimedia files to be stored elsewhere on die system or distributed across a 

network. These complex items of data (whether records, documents or multimedia files) are 

accessible through activation o f the hyperlinks embedded within the PICS. For example, 

links can be established f rom the PICS to configuration id records stored within an Access 
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database. I n this way traceabiHty can be established f rom the proformas to all components 

identified as having a relationship to the configuration. 

The workload associated with the input of the large amount of configuration information 

generated for a system and its subsequent display has been addressed through the 

implementation of the PICS as a forms-based interface incorporating elements such as 

radio buttons, check boxes, pull-down lists and the previously mentioned hyperlinks. These 

features within the PICS have enabled the high information load of large systems to be 

collated, documented, managed and structured whilst at the same time retaining flexibilitj? 

and reducing complexity. Additionally, the use of hyperlinks has kept redundancy and 

maintenance of information to a minimum since Hnks may be made f rom several 

proformas to a single stored copy of physical data. 

Incremental: one of the key features of the PICS is dieir ability to facilitate incremental 

documentation of a fuU or partial system configuration each time the maintenance process 

is undertaken. The PICS have therefore been designed to be progressively populated as 

maintenance proceeds and for baseHne or ^genetic fingerprint/ of the system to be taken at 

periodic intervals in order that a configuration history of the system may be established. 

The PICS themselves also exhibit the properties of flexibility and extensibility in that 

certain properties such as the composition of the configuration abstractions or definition 

of certain fields may be altered or created as required for particular systems or analysis 

purposes. I n this context the incremental nature of the PICS means that data for the newly 

defined fields may be added at a later comprehension state. 

Reuse: one o f die key aims of the ISCM process is to model as wide a range of 

application systems and system types as possible. The PICS have therefore been 

structured such that one set of proformas can be used to represent the configurations of 

aU possible system types. Through the definition of a number of generic rules and 

selection possibilities, which become progressively narrower as the proformas become 

more application specific, i t is possible to reuse partially or fully completed proformas at 

the generic or tailored levels of abstraction. Indeed, it is not until the specific level of 

abstraction that there is a direct one to one mapping between the proforma and the 

application. This approach is very efficient in terms of documenting system configuration 

since a high degree of reuse is afforded in terms of the structure of information, die 

selection and recording of data and the information content itself Indeed, by maintaining 

a library of partially completed proformas an accelerated start can be made to the 

program comprehension process itself. The use of referential links within the PICS also 
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increases the level o f reuse since items of documentation or notes relevant to more tiian 

one system at whatever level of abstraction can be attached to more than one proforma. 

• Reverse Engineering: the PICS also form a solid foundation for subsequent maintenance 

activities and/or configuration control of the system. One of the issues pertaining to 

legacy systems is that of reverse or reengineering. The PICS and ISCM process in general 

may be considered to assist the reverse engineering process in two ways. Fitrsti}^, die 

reclamation and understanding of information pertaining to a software configuration is an 

essential first stage in the reverse engineering process and hence die PICS form an integral 

part o f the reverse engineering process itself. Secondly, one of the key factors often 

associated with reverse engineering is that of the very high costs involved. Hence, there is 

often the need to identify systems or parts of systems as being prime candidates to 

undergo reverse engineering. The information recorded via the PICS and ISCM process 

can help determine which systems would benefit most f rom reverse engineering. In 

particular scrutiny or comparison of the time-ordered genetic fingerprints of a system 

reveals the maintenance characteristics of a system and may highlight troublesome areas of 

the code. 

• Consistency and documentation: one of die problems often associated with 

maintenance and addressed by the ISCM process is die lack of guideHnes or defined 

process steps to enable a consistent approach to be taken to maintenance and the 

program comprehension process in particular. Definition of the PICS for use in 

conjunction with the ISCM method has enabled a degree of consistency and 

completeness to be conveyed to the maintenance process. Records of the configuration 

information recovered are evident f rom the PICS and visibility of the maintenance 

process available through the audit sheets, both of which are implemented on-line and 

may be stored electronically or as printed copies. 

The PICS thus play a vital role during the ISCM process f rom a human-oriented perspective in 

facilitating the reclamation of software system configurations. The PICS have been shown to 

effectively guide and control the modeUing of a number of appUcation systems and hence have 

met their primary objective. AdditionaUy, they have been shown to be able to accommodate a 

wide range o f appHcation types and hence meet the requirement for an independent, generic and 

flexible framework. However, the PICS stiU require further refinement and possible extension in 

order to improve aesthetics, maximise effectiveness and encompass more appUcation domains, 

system environments and programming languages etc. There is also the need to increase die 

comprehensiveness of the knowledge base such that information pertaining to a system can be 
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automatically recovered and inserted into the proformas. The conversion of the proformas into 

html (hypertext mark-up language) has also begun and their usage for maintenance across the 

web being investigated. The main criticism of the work to date is the requirement to maintain in 

parallel the machine-oriented I C D L and the human-oriented PICS. Work is however underway 

to resolve this and once completed wil l be implemented within the M"* system. 

7.2.7 Implementation of the P I S C E S System (Objective 7) 

The PISCES method may be effectively appUed as a sequence of stages to facilitate bringing 

legacy software systems back under configuration control. However, although adoption of a 

method alone can realise significant benefits, there is generally a need to provide computerised 

support i f i t is to be usefully appHed to large real-world systems. This is particularly true in 

relation to the software maintenance discipline, where many of the problems to date have 

typically arisen f rom deficiencies in recording and being able to easily access any knowledge 

regained about a system during the program comprehension activity. I t is also imperative that any 

method adopted is viewed by maintainers as assisting rather than liindering them in dieir work. 

Again, an element o f semi-automation and on-line support is regarded as essential in ensuring 

that diis requirement is met. With these factors in mind a series of prototypes have been 

designed and developed during the course of the research culminating in the creation of the 

PISCES {MultiMedia Maintenance Manager) system. I n order to promote maximum process 

flexibility and product extensibility the M'* system has been created as a meta-CASE framework 

into which a variety of bespoke or host-resident tools may be plugged and activated though a 

universal front-end. This 'open' approach is becoming increasingly popular in the CASE 

marketplace [114, 181]. The core toolset of the M"* system currentiy comprises: 

• Extensible System Information Base (ESIB): for storage, querying and recovery of 

rules, component details and domain knowledge. 

• Proforma Identification System for Configurations of Existing Systems (PISCES): 

for collection, coUation and dissemination of information via the provision of on-line 

proformas and guidelines. 

• Multimedia Application Documentation Domain (MADD): for access to, 

management and control of configuration documentation. 
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• Multimedia Multi-Platform Identification and Tracking System (Mi^PITS): for 

recording information about individual software items, tracking their change status and 

their composition into viable configurations. 

• MultiMedia Maintenance Interface (MuMMI): as an overall controlling interface, 

invocation of the core toolset plus any host resident tools responsible for activities such 

as version management, configuration building, information extraction or incremental 

documentation using multimedia attributes. 

Tool support for the maintenance process, although growing in stature, is still small compared 

with the number o f tools available to assist the development process. The M'* system has thus 

been designed to add to the set of tools available for maintenance and in doing so also offers 

several advantages over many maintenance tools currentiy on the market. These may be 

summarised as: 

• Role: the primary aim of the M"^ system is to support the ISCM process and PISCES 

method. As the process and method have been defined within this thesis as the subject 

o f the research, the M"^ system is unique in its ability to support the process and method 

in their enticety. 

• Flexible: adoption of a meta-CASE approach to the development of the M'^ system has 

enabled it to be very flexible in terms of its functionality, and readily extensible with 

regard to the range of tools that it can incorporate. This enables the system to be 

efficientiy adapted to a particular operating platform since any 'redundant' tools may be 

unhooked and replaced with more appropriate tools for the particular environment. In 

contrast many current maintenance tools are far more prescriptive in their functionaHtj? 

and are difficult to adapt or extend once they have been bought and installed. 

• Generic: the approach taken by the PISCES method and implemented in the M"^ system 

also means that as well as being adaptable for different operational platforms, the system 

may be tailored to suit different application domains and programming languages 

through the on-Hne implementation of the generic, tailored and specific proformas. In 

this respect the M"^ system may be considered to be more generic than many current 

maintenance tools, although it must be stated that this is a part-result of the generic 

nature o f the method itself. 
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Cost effective: many current maintenance tools are costiy to buy and implement. In 

addition to actual tool expenditure, there may be tiie requirement to reorganise the 

computer system on which the tool is to be run, or to change current working practices, 

i f the tool is to be used to its best advantage. The M'^ system however can be integrated 

with tools already residing on the host system thereby reducing cost, and rninimising the 

disruption associated with training maintainers to use new tools. Additionally, as the 

PISCES method provides guidance rather than prescription for the maintenance 

process, the different working practices of maintainers can be accommodated within the 

framework o f the system whilst still providing the required consistency and control. This 

ability to integrate with the users environment with minimum disturbance is considered 

essential to the acceptance of the system. 

Multimedia: although the use of text and graphics and their linkage through hypertext 

are now commonly used within tools of all types, the ability to exploit the capabilities of 

multimedia (and when linked together, hypermedia) within software maintenance tools 

does not appear to have been comprehensively investigated to date. However, the 

popularity o f audio and video as an information source is increasing and the concept of 

what constitutes a document changing accordingly [204]. I n response to this, the M'* 

system uniquely makes use of a hypermedia approach to enrich the maintenance and 

continued development of software systems. I t also provides tiie M u M M I interface as a 

means o f managing the recording, activation and dissemination of multimedia material 

pertaining to software system configurations. Indeed development and evaluation of the 

M'* prototypes has demonstrated the feasibility of using multimedia technology to gain 

real benefits in the area of program comprehension. Initial interest in the product has 

also confirmed that with the correct approach, the use of a multimedia system for 

development and maintenance could become widely accepted by the computing 

industry, particularly with the widespread integration of multimedia technology into 

almost every aspect of our working and social lives. 

Domain Knowledge: The system pays particular attention to being able to capmre 

domain knowledge about a system undergoing maintenance. This is facilitated by 

exploitation of the multimedia capabilities described above. Indeed, the importance of 

having a tool that can incorporate domain expertise is emphasised by studies which 

found that i t is 'better to have specific knowledge about the problem domain and a 

weaker programming mechanism than a more powerful mechanism and general 

knowledge' [290]. 
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• Communicative: the key findings o f another study [189] were that maintainers 

expressed the need for better communication between the development and 

maintenance teams. This included the need for the initial transfer of knowledge between 

the two teams to be as complete as possible, as weU as requiring the long term 

conservation, dissemination and refinement of expertise f rom one maintainer to 

another. The long term transfer facility is provided by using the M'* system during 

maintenance whilst initial transfer of knowledge is also facilitated i f the M"* sj^stem is 

used f rom the outset of the development process. 

• Transferability: a by-product of the M"̂  system development is the transferabilit}'^ of tiie 

underlying framework into other realms of information management. Although die M"* 

system has centred around providing an environment for the development and 

maintenance of software systems it has become evident tiiat there is enormous potential 

for expansion o f the ideas into many other application areas requiring production and 

control o f a mixed media type. The feasibility of transferring the ideas and associated 

technology of the system into other areas of information management is akeady 

being commercially exploited in some domains and investigated farther in others. 

Although a successful working prototype exhibiting the above characteristics has evolved during 

the course of the research, there are still a number of ways in which the M'* system can be 

improved both in relation to the degree o f functionality offered by the M'^ system and in relation 

to the quality o f development of the prototype system. These may be briefly summarised as: 

• Functionality: a series of progressively more sophisticated tools have been integrated 

into the M"^ system during its evolution, however these still require a high degree of 

human involvement in their invocation and interpretation of the resultant data. 

Improvements may thus be made with regard to the degree o f automation provided by 

the system in terms of information extraction and inference. I n connection with this is 

the need to further build up the information within the ESIB in order that enough data 

exists for maintenance patterns to be established both about generic system types and 

specific applications. This wil l also involve building up a knowledge base of partially 

complete proformas together with an effective indexing system to enable their effective 

reuse. 
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The degree of granularity of the hypermedia Hnkages also needs to be refined. Currendy, 

these linkage act at a file to file level, however for maximum effectiveness the linkages 

between different media types should be at a point to point level. Work is well underway 

to enable this. 

There is also the need to add/further develop the tools that are integrated into the 

toolsets in order to aid the extraction of the system information and its subsequent 

representation. 

• Quality: there are a number of observations to be made f rom an implementation point 

o f view which also need to be addressed. Although emphasis has been placed on 

efficiency of the M'^ system such that there is Httie delay in relation to the access, retrieval 

and display o f the multimedia attributes, other areas of performance and quality need to 

be addressed. For example, littie work has been done to date on the provision of 

verification mechanisms for the data being entered into the system. However, this area is 

being addressed in a commercial variant of the system. 

Additionally, the individual components of the core toolset have been developed on a 

rather piecemeal basis using a variety of languages ranging f rom C to Visual Basic. 

Whilst this exhibits the ease with which different tools may be integrated together within 

the M"* framework, a degree of uniformity in development strategy for die core toolset is 

seen as desirable and an investigation into developing the entire system using Delphi or 

Object Builder is underway. This would also enable a more secure 'bonding' between the 

core tools to be made. 

There is a need to address the issues of redundancy arising with regard to some of the 

data stored within the system particularly with regard to the I C D L and the PICS. Finally, 

there is also the need to test the M'* system more extensively on a much larger number 

of documents of each media types, particularly in connection with large applications. 

Although, the above highlight a number of deficiencies with the system, it must be 

remembered that it was developed as a prototype to assist implementation of the ISCM process 

and method. Many of the highlighted issues are already being addressed in the commercially 

developed variant of the system. The effectiveness of tiie M'^ system for assisting the program 

comprehension process when used in conjunction with the ISCM process and PISCES method 

is discussed in the next section. 
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7.2.8 Practical Application of the Process, JModel, JVlethod and Tool 

(Objective 8) 

I n order to assess the effectiveness of the ISCM Process, PISCES method and M'* System for 

modeUing real-world systems a number of test-bed applications were used. These ranged from 

very simple laboratory si2ed programs to more complex real-world systems and culminated in 

determining whether the approach would be suitable for maintaining the M'* system itself The 

degree to which Objective 8 has been met may be discussed f rom joint viewpoints. Fitstiy, the 

approach adopted for evaluation of the ISCM process and its corresponding model, metiiod and 

tool, may itself be evaluated. Secondly and more importantiy, the findings of the ISCM 

evaluation in terms o f its effectiveness in assisting the maintenance of real-world systems may be 

deliberated. 

As mentioned in Chapter 6, evaluation of the ISCM process and its associated model, method 

and tool has been cumulative over the duration of the research rather than a single post-

development activity. As such it has been interwoven with the development process and based 

on a number of techniques such as manual modelling, prototjrping, iterative and evolutionary 

development, walkthroughs, metrics collection, and user analysis and evaluation. This approach 

was considered to be appropriate for several related reasons: 

• Solid foundation: manual modelling of the target applications assisted in formulating 

the requirements for the overall ISCM process; identifying the components for 

modelHng systems at a programming-in-the-envkonment (PITE) level; determining the 

activities for the ISCM model and PISCES method; and acting as a comparable test-bed 

for the semi-automation of the process through the M'^ system. 

• User-centred: there is always a danger when developing a model, method or tool that 

the end-product may not address sufficientiy well the task-needs of die user. 

Incorporation o f front-end user requirements capture and on-going user evaluation of 

the method and tools has enabled the products to be tailored for maintenance specific 

features and activities. 

• Early and continuous deliverables: the prototyping approach enabled early 

deliverables to be available for the purposes of requirements eHcitation, user evaluation, 

and feedback into better or more focused development and commercial exploitation of 

some of the underlying features of the system. On an individual tool basis, the tools 

were occasionally rapidly prototyped, discarded and then rebuilt, but the majority were 
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developed on an evolutionary basis. In terms of tiie overall system an incremental 

development approach was adopted whereby the up-front analysis of the system was 

followed by staged implementation of the individual tools. 

• Feedback & control: The decision taken to conduct the evaluation as an iterative 

activity throughout the research also proved to be successful in terms of the resultant 

feedback. This enabled adjustments to be made to the process, model and system, 

resulting in a more maintainer-oriented product and reducing the risk of having to make 

significant changes late in the development process. 

• Analogous development to product strategy: part of die ethos of the ISCM process 

and associated tools is the flexible, incremental and iterative namre of the process itself 

and the accompanying toolset, in order that they may both be as generic as possible. By 

developing, in this iterative manner, the ability to adapt the model for differing systems 

and domains and to add tools incrementally to the toolset, the approach was found to 

complement the intended strategy. 

• Transferability & scalability: widiin die timescale of the project it was only possible 

to model a relatively small number of applications. However, these differed in their size, 

complexity and composition and were capable of showing the effectiveness of the results 

o f the research, particularly with regard to the differences between modelling very small 

applications and diose of a much larger and more complex nature. 

The ISCM model described in Chapter 4, may be regarded as a liigh level representation of the 

ISCM process. This level of abstraction is suitable for providing an overall impression of the 

activities o f the process to customers or project managers, however for guided and controlled 

use o f the model by maintainers a lower level of detail is required. This is provided through the 

combination of the PISCES (Proforma Identification Scheme for Configurations of Existing 

Systems) method and the M'* (Multimedia Maintenance Manager) meta-CASE system. Definition 

and application of the activities encompassed within each major process of the ISCM model has 

enabled the applications studied to be reconfigured, comprehended and brought back to ful l or 

at least partial configuration control. The advantages offered by the PISCES method and M'* tool 

may be summarised as: 

• Genericity: the process and model proved to be suitable for modelling applications of 

different sizes and complexities. Additionally, the ability (within limits) to extend or 

mask details on the PICS (Proforma Increasing Complexity Series) as maintenance 
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proceeds over the lifetime of a product or in response to new applications means that 

die approach has potential for universal application across a range of systems of 

disparate types. 

Flexible & encompassing: the method is intended for incorporation into an existing 

maintenance process framework and hence is very flexible in terms of the maintenance 

practices and procedures that it can encompass. 

Presentation of varying abstractions of information: die approach adopted also 

made i t possible to present different levels of information or different information types 

to 'client's (customers, managers, maintainers) in response to tiieir differing 

requirements. 

Incremental: the method and system provided the means for incrementally 

documenting and storing within the ESIB (Extensible System Information Base) the 

knowledge regained about a system during the program comprehension process such 

that i t is made available for use by future maintainers. This has the effect of transforming 

the comprehension part of the maintenance process f rom an expensive 'overhead' to 

that of a 'value-added' activity. 

Concurrent documentation and maintenance: die ability to record maintenance 

activities using multimedia attributes such as sound or video was found to remove some 

o f the problems of latent (or forgotten) documentation of changes to the system. This is 

made possible since the thoughts, ideas and changes to the system can be recorded 

unobtrusively as the maintenance change proceeds. 

Interesting environment: the mix of multimedia information types whilst not only 

proving to be effective in terms of providing a range of high, medium and low level 

documentation about a system, also brings the maintenance process 'to Ufe' through 

making the environment more interesting and by even being able to present 'in person' 

past maintainers. 

Accelerated start: through provision and subsequent selection of tiie partially or fuUy 

completed generic, tailored and specific proformas, associated component I D forms, 

change history logs etc. an accelerated start to the comprehension activity is made 

possible. 
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• Consistent & traceable: provision of a defined series of activities and stages means that 

the maintenance process can become more consistent and complete in terms of the 

activities undertaken. Additionally, when coupled with the change request and tracing 

sheets the status of the product becomes more clearly visible and when coupled with the 

review sheets, status o f the maintenance process itself is made visible and traceable and 

hence more rigorous for audit requirements. 

• Management & technical support: the environment and tools provide both 

management and technical support for the maintenance process. 

• System comprehension: the approach adopted by die ISCM process which stresses die 

interactions o f the application component parts with their environment means that a 

shift occurs f rom the comprehension activity being viewed predominantiy at a program 

level to that o f a system level. This is considered essential for today's applications which 

are often intimately bounded to their environmental counterparts. 

• Solid foundation: f rom an overall perspective the ISCM process, ISCM model, PISCES 

method and M'^ system have been shown to provide a soUd foundation on which to base 

the future maintenance / reverse engineering of an application system. 

For the reasons described above is felt that the evaluation approach adopted was appropriate. 

Certainly, the continuous feedback into the model, method and tool during the research proved 

to be invaluable. Resultantiy, this has reduced the risk of having to make significant changes to 

the process, model or system late in their development. The range of test-bed systems were 

modelled successfully including those requiring linkage to third party elements and multimedia 

attributes. The ability model on an incremental basis to enable ful l or partial modelling of system 

was also demonstrated. This ability to comprehend the varying complexities of the test-bed 

applications may be seen as proof that the ISCM process, ISCM model, PISCES method and M'^ 

system can be used in an integral and innovative way to assist the comprehension of 'real-world' 

applications. 

There are a number of ways in which the evaluation could have been improved or more 

formalised [221, 222], although it was difficult to extend to these within die timescales of die 

work. For example, a wider range of application types, such as those of an embedded, real-time 

or parallel nature could have been modelled. Additionally, the process is as yet unproven for very 

large industrial scale applications. However, it is tiiought likely that, due to the ethos of the 

approach and implementation via an extensible meta-CASE framework, scaleabiUty of the ISCM 
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process and method to industrial levels applications are not a major issue. However, 

complementary work in the areas o f large-scale storage, indexing and version control of complex 

data structures containing a high proportion of multimedia related information will need to be 

investigated further [175, 404]. 

The process as i t currentiy stands is also largely 'human-driven'. Indeed, due to the liighly 

cognitive nature o f the program comprehension and maintenance processes, it is likely that a 

degree o f human involvement wiU always be required. However, die use of techniques such as 

neural networks, fuzzy logic and autonomous agents coupled with an increasingly populated 

ESIKB may enable elements of intelligent comprehension and maintenance to be feasible. These 

issues are discussed further in Chapter 8. 

There was also a degree of subjectivity over the metrics chosen as measures of the complexit)'^ of 

the test-bed applications. These were deliberately kept simple for the purpose of evaluation 

within the scope of the thesis. I t is felt that although the metrics provided were simple they were 

an effective measure of a number of key features by which application systems may be 

distinguished f rom each other in terms of level of complexity, i.e. lines of code, number, 

heterogeneity and coupling of modules. Lower level program metrics could have also been taken 

into account, for example measures of program control flow, operator : operand ratios, nesting 

levels o f code etc.. However, metrics at this level were deemed inappropriate for this study which 

is not looking at program comprehension perse, but at system comprehension at a PITE level. 

The M"* system itself is also currentiy, very much a 'prototype demonstrator' rather than a 

rigorous fuUy developed system. I t has however been appropriate for its intended purpose of 

supporting the research ideas developed within the thesis [30, 346]. As a result, some elements of 

the system and ideas stemming f rom the research are now being developed directiy into 

commercial products, whilst others are being incorporated within a number of related 

developments. 

7.3 Summary 

This chapter has progressively evaluated each of the objectives identified in Chapter 1 of the 

thesis. I n connection with each objective a brief summary has been given of why the objective 

was included, the work undertaken to achieve the objective; how the approach taken 

incorporated, built-upon or extended relevant work already in the field. The advantages offered 

by the results o f this work and any areas requiring further development or more detailed 

examination have also been discussed. With regard to this, i t can be stated with confidence that 
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each of the objectives set has been successfully achieved and with positive results. However, as 

the namre of research is one of continual inquiry and feedback there is always scope for 

enhancement o f this work, particularly when the research conducted has drawn together a broad 

range of areas as this thesis has done. I n summary it can be said that a solid foundation has been 

established, to address more efficientiy and effectively the maintenance of legacy software 

systems, that can be utilised immediately but which also forms the foundation for further work 

in tills area and in associated fields. 

The work within this thesis has incorporated a number of important areas of investigation, 

culminating in the development o f a new process, model and method to address issues pertaining 

to the comprehension of legacy software systems. This has been achieved via the tailored 

application of SCM principles and techniques to the maintenance process. That this is an 

important area for research is supported by the findings of a study into an analj^sis of the 

industrial needs and constraints of organisations, conducted within the framework of the 

ESF/EPSOM project. [170]. Among the key findings of this study were that although a 

consensus view existed o f the need for well defined and formalised procedures for maintenance, 

the actual formaHsation of these procedures was generally much poorer than for those of the 

development process. The needs of maintainers covered both those of a management nature to 

plan, make visible and track the maintenance activity and those of technical guidelines and tools 

to support the activities of maintainers themselves. In particular, mention was made of the need 

for integration of configuration management with maintenance, including the ability to address 

multi-site and multi-machine configuration management [170]. Process modelling was identified 

as being the first step in this direction. Within this evaluation chapter, the ISCM process, its 

associated model, the PISCES method and the M'* system meta-CASE framework have been 

shown to address all of these needs and many of those identified by the International 

Organisation for Standards within the SPICE (Software Process Improvement and Capabilit)^ 

Evaluation) initiative [308]. 

This chapter has reviewed each objective in isolation. Chapter 8 draws together the work 

summarises its achievements and proposes a number of areas for fumre study. 
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Chapter 8 
Conclusions and Further Work 

If study's gain be thus, and this be so, 
Study knows that which yet it doth not know 

Shakespeare Move's Labour's Lost, Act I , Scene I 

8.1 Introduction 

The previous chapter discussed the work carried out in relation to each of the objectives set at 

the start o f this thesis. The results of the research within each objective were reviewed and the 

degree o f success in meeting each one evaluated. I t is the aitn of this chapter to look more 

globally at the success o f the work and to draw final conclusions regarding the state of software 

maintenance today and the contribution of this research to advancing that state. 

Whilst a significant amount of work has been achieved within the context of this thesis there will 

always be the need to explore some of the issues in greater depth and to expand the research into 

new areas to fully encompass the ever expanding software industry. Additionally, other areas of 

complementary research became apparent during the work, which although closely related were 

considered to be outside the scope of the thesis. These are topics for future research projects, 

some of which are already underway, whilst others are forming the basis of project proposals. 

These areas for further work are outlined in Section 8.4. 

8.2 The State of Software Maintenance 

Software maintenance is a discipline that has advanced considerably over the past decade in 

terms o f its social acceptability, its management practices and its technical approaches to the 

effective and safe maintenance of software systems. Much of this has been aided by advances in 

software development practices such that maintenance is now considered f rom the outset 
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thereby reducing the burden o f future maintenance expenditure. For example, adoption of 

software configuration management tools and techniques throughout development followed by 

their continued use during maintenance enables the product to stay within control and to be 

maintained with the minimum of program comprehension effort. 

However, there are also many other computer systems requiring maintenance that have been 

developed in an ad-hoc and undisciplined manner. These systems have many problems 

associated with them and as such require a significant proportion of program comprehension 

time, i f they are to be safely maintained. This is particularly true for legacy software systems, 

some of which were developed well over a decade ago and were not expected to still be in 

operation today. Legacy systems are often characterised by immense maintenance expenditure 

due to the problems of their undocumented complexity and the unknown impact of changes on 

the equilibrium of the system, prior to the actual implementation of the change. However, legacy 

software is often far too valuable an asset to be thrown away and redeveloped in its entirety . 

This is due not only to the economic unfeasibiHty of developing a new system, but is also 

attributable to the amount of domain knowledge locked within a system that could never be fully 

recovered and re-implemented within a new system development. 

There is thus an identified need for the ISCM process to bring legacy systems back under 

configuration control such that their configurations are known in terms of the individual 

components and how these components react with each other and with their primary and 

secondary environments. The resultant effect of this process is a platform for safer and more 

cost effective maintenance of a system. Alternatively, i f the structure of the system has 

degenerated to such an extent that it has essentially become unmaintainable, the process 

establishes a soHd foundation for the partial or fuU reverse engineering of the system. 

The need to identify a system configuration is particularly pertinent at the present time due to the 

rapid approach o f the new millennium. Not only do computer systems have to be maintained 

with respect to the usual problems, adaptations and enhancements, but there is also the element 

of risk and uncertainly as to how a system wiU react to 1 January 2000 [185]. Indeed, even 

systems that have considered the impact of the new millennium will be 'searching for ' and using 

modules for date conversions etc. perhaps for the very first time. 

Therefore, whilst considerable inroads have been made into solving maintenance problems over 

the past decade there is still a vast number of issues that need to be addressed. As mentioned 

above, one of the most critical is the time spent comprehending a system in order that only safe 

changes are made in spite o f the complexity of its configuration and the interrelationships 
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between the component parts. Models are starting to appear that exclusively address the 

maintenance aspect o f the software Hfecycle, however, there is still a need to refine these models 

and define within them a finer level of activity granularity. The effect of this will be to assure 

process repeatability and consistency within the areas of program comprehension and software 

configuration reclamation across the global maintenance community. 

The main aim of tiiis research has therefore been to provide a solution to the maintenance 

problems o f legacy software systems through the definition of a new process. Inverse Software 

Configuration Management (ISCM). ISCM can significandy reduce the time required for program 

comprehension and can assist in bringing existing software systems back under control. Section 

8.3 together with Figure 8.1 summarises the progression o f the work undertaken within the 

scope of the thesis, and highlights the original contribution that has been made by this research. 

8.3 Overall Summary of Work Undertaken 

To provide the underpinning knowledge for the concepts within this thesis a general review of 

the current state o f software maintenance and its associated discipUnes of software configuration 

management, reverse engineering and redocumentation was undertaken. This identified the need 

to investigate a solution to the high program comprehension overhead associated with 

maintenance of legacy software systems. 

The area o f process modelling was then investigated in more detail to enable a new process. 

Inverse Software Configuration Management (ISCM) to be defined and placed within the 

framework of existing software maintenance process models. This process focuses on the 

reidentification and subsequent control of the components and configurations of legacy software 

systems. A study was therefore subsequentiy undertaken to establish the different types of 

components associated with a software system and the nature of their inter-relationships. This 

led to a number o f software configuration abstractions being defined, thereby enabling a 

software system to be studied on an aspect-by-aspect basis prior to building up the complete 

configuration description of a software system. This information together with the set of rules 

for reclaiming the configurations was stored within the Extensible System Information Base 

(ESIB) through the definition of an Inverse Configuration Description Language (ICDL). 

I n order to assist the consistent and coherent use of the ISCM process across a wide range of 

software applications and system architectures, the PISCES (Proforma Identification Scheme for 

Configurations o f Existing Systems) method was developed as a defined series of procedures and 

guidelines. To underpin the method and to offer a user-friendly interface to guide the 

208 



configuration information collection and collation activity a series of templates, the Proforma 

Increasing Complexity Series (PICS), was developed. The purpose of die PICS is two-fold, in 

addition to data collection, it also serves as a reporting mechanism for the progressively 

reclaimed system configurations. 

I t is essential to be able to readily document and retrieve information i f i t is to be usefully 

employed on large and complex projects. The PICS series was therefore developed for on-line 

usage and as such is maintained as part of the PISCES M^ prototype system. The M'* system was 

developed as a meta-CASE (Computer Aided Software Engineering) environment to drive and 

semi-automate the ISCM process. Provision of a meta-CASE environment rather than a rigidly 

defined CASE tool has enabled maximum generic modelling capability. Additionally, the meta-

approach is very cost-effective in diat i t offers increased opportunities for exploitation of the 

host system environment tools. O f particular interest within the M'* system is the provision of a 

Multimedia User Interface (MUI) to the maintenance process. 

As a means of evaluating the PISCES method and in order to provide on-going feedback into 

die ISCM process model, a number of practical applications were studied. These practical 

applications also enabled the features and facilities of the M'^ prototype system to be assessed. 

This research has thus considered a number of concepts, some of which are innovative in nature 

themselves and others of which are used in a novel manner. I n combination these concepts may 

be considered to significantiy advance the knowledge and understanding regarding program 

comprehension during the maintenance of legacy software systems. These concepts are 

summarised in Figure C8-1 and the contributions of this work to the knowledge area may be 

summarised as: 

• Definition of the ISCM process: an innovative process which adapts the traditional 

activities of the development-driven SCM discipline to the requirements of the 

maintenance-driven program comprehension process. 

• Development of the ISCM process model: a new model that integrates the ISCM 

activities into the software Hfecycle thereby enhancing the current modelling of the 

software maintenance process. Although emphasis is strongly placed on the 

identification activity, die process also supports the change control, status accounting 

and audit functions of SCM. 
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Figure C8-1 Summary of research 

Identification of key component groups and configuration abstractions: a more 

comprehensive approach to the modelling of software system architecmres than in many 

previous methods. The approach enables abstractions to be developed o f the 

configuration descriptions. These may range f rom a simple model of the core application 

baseline system to the complete but often incomprehensible entire system configuration 

incorporating all application, program family and environmental component parts. 
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Development of the ICDL and ESIB: a configuration description language that 

specifically addresses the modelling of components and relationships prevalent in legacy 

systems. This language adopts an innovative approach to the modelling of software 

systems through the introduction of the concept of programming-in-the-environment 

(PITE) which extends the previous work in the field of programming-in-the-large 

(PITL). The structure of the I C D L forms the basis of information storage within the 

ESIB. The ESIB has the flexibility to incorporate documents or references to 

documents o f all media types. 

Development of the PISCES method: a new metiiod that provides the guidelines and 

procedures for implementing the ISCM process. The method addresses both technical 

and managerial aspects of the SCM process. Technical aspects include information 

reclamation and storage mechanisms, while the managerial aspects encompasses the 

consistent and complete documentation of components and configurations and the 

change status of these items within an application. 

Definition of the PICS: a natural language representation of software system 

architectures suitable for use by users, managers and maintainers. The PICS drive the 

incremental information collection, documentation and reporting activities. Although 

the use o f proformas or templates in tiiemselves is not unique to this research, they 

form an integral part of the ISCM process. Hence the context in which they are used is 

considered innovative. The templates or proformas enable abstraction in terms of 

generic, tailored and specific modelling of software system architectures. Tlie proformas 

also contribute to the control of the maintenance process, by their recognition of the 

increased heterogeneous nature of systems due to the widespread uptake of multimedia 

and web based products, and the need to document and control such systems. 

Genetic fingerprinting of a system: the progressive abstraction in terms of complexitj^ 

of modelling afforded by the PICS eventually leads to 'genetic fingerprinting of a software 

system application. This genetic fingerprint represents a software system configuration at 

a determined maintenance point in time and can therefore be used as a baseHne on 

which to measure further changes to, or evolution of, the system. Cumulatively over 

time these 'genetic fingerprints' can document the maintenance history of a system at an 

entire configuration rather than being restricted to a component-by-component basis. 

Additionally, as generic aspects of a system can be modelled and subsequentiy refined 

the method is suitable for a wide range of systems types across a substantive range of 

operating platforms. 
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• Design and implementation of the PISCES meta-CASE environment: this 

prototype set of tools provide an environment for the management and control of the 

entire ISCM process. In particular, i t enables on-Hne implementation of the proformas 

which drive the data collection and reporting process. The framework also enables the 

flexible integration of host resident tools, techniques and methods pertinent to a 

particular application or system t5^e. 

• Development of the MUI: implemented as part of the system, tiiis concerns die 

development of a Multimedia User Interface (MUI) to the program comprehension 

process. Graphical front-ends to maintenance products are now reasonably well 

established with their integration of text and diagrams. However, the M'* system extends 

the user interface to enable a richer set of knowledge and information to be recorded for 

a software system undergoing maintenance than is possible with text documents alone. 

Similarly, the report generation facilities are also enriched through the application of 

video, audio and animation, adding value to the traditional text and graphics 

environments. Additionally, although several maintenance products incorporate 

hypertext links between and within documents, the M'^ system extends this to provide 

hypermedia links between and within the different media types. 

8.4 Further Work 

The time-scale for the research dictated that not every idea could be investigated to tiie same 

level within the context of this thesis. A number of future developments of the work have been 

identified. Some of these areas involve enhancement and continued development of the work 

produced within the thesis; others involve exploring complementary areas of research. Some of 

these project ideas are already funded and underway whilst others are being incorporated into 

project proposals. These developments are discussed in the remainder of this chapter. 

8.4.1 Proving and Refinement of the ISCM model 

Software maintenance is a still a new discipHne, particularly when compared with many other 

engineering disciplines which have had centuries to become established in theic working practices 

and which are not subject to such an explosive rate of change in technology as tiiat currentiy 

evident in the computer industry [322]. There is therefore still considerable flux within the 

methods and tools being produced [28]. 
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The ISCM process and its associated model, PISCES method and tool have been designed and 

developed within the context of this thesis. Whilst initial studies show that ISCM has the 

potential to benefit the maintenance community in terms of assisting the program 

comprehension process and thereby bring a system back under configuration control, diere is 

still a number o f extensions and enhancements that can be made to the model. Developments 

are currentiy being undertaken in the following areas: 

• Refinement of the model and method: tiirough detailed examination of applications 

similar to those used within the thesis, but with increased numbers of components and 

levels o f complexity. 

• Extension of the model and method: through the detailed modelling of the special 

characteristics of distributed, real-time, multimedia and embedded systems. Associated 

with these different application types, is also the requirement to model the cognitive 

aspects o f the corresponding domains of which the systems form a part or in which 

they are intended to operate. Modelling of these domains could even be extended to 

incorporate wider organisational activities such as marketing, sales and user support i f 

these were felt to impact significantiy on the software system and the process by which 

it is maintained [241]. 

The above refinements and extensions may manifest themselves as changes to the activities 

encompassed within to the ISCM process model; modifications to the way in which these 

activities are implemented through the PISCES method; or amendments and additions to the 

number o f fields and attributes that must be included in order to progressively populate the 

PICS. There is also the need to examine further the degree to which the PICS and the I C D L can 

be populated, stored and maintained concurrentiy. 

8.4.2 Formalisation of the PICS Series 

The PICS approach to modelling provides a useful representation of software system 

architectures in terms of natural language understanding of individual components, theic 

location, descriptions and combination into software configurations. This is very relevant in 

terms of enabling users, managers and maintainers to gain an overall understanding of the system 

and its environment. However, this form of representation can be lengthy and, as with all natural 

language representations, occasionally ambiguous in its meaning. There is therefore a perceived 

need for investigating a more formal approach to the modeUing of the software system 
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descriptions defined within this tiiesis through the use of semi-formal object-oriented (O-O) 

techniques and rigorous formal method languages either singularly or in combination [281]. 

• Object-oriented techniques: modeUing for maintenance using object-oriented (O-O) 

techniques is becoming an increasingly viable approach considering the paradigm shift 

during development, away f rom the traditional functional approach towards that of an 

object-based or object-oriented nature. Indeed, even the most conservative forecasts 

consider that by the year 2000 more than half o f all systems will be based on the O-O 

approach [192]. The impact of this can be seen as twofold: systems embracing the O-

O paradigm should exhibit characteristics of increased maintainabiUtj'^ and, in theory at 

least, i t should be more intrinsic to model and maintain O-O systems using O-O 

approaches. 

Object-oriented technology is an approach that models systems around real world 

concepts encapsulating both their functionality (behaviour) and data into 'objects' or 

object types. Also central to the O-O paradigm is the notion of abstraction and 

classification in order to reduce the complexity of a system. I f a software system is 

considered as being a collection of definable components, exhibiting definable 

behaviour, having definable properties and communicating with otiier definable 

groups, the use o f O-O technology to model software system architectures seems to 

be a natural progression. This is especially true given that tiie ISCM approach is 

already heavily biased towards the principles of abstraction in terms of its component 

group view of software configurations and its use of the PICS to model abstractions 

of the system. 

• Formal Method Languages: Although an object-model would go some way towards 

formalising the information extracted by the PISCES system relevant to the 

description o f software system architectures being maintained, there is still room for 

confusion and misinterpretation. Therefore, an approach now being considered is that 

o f translating the proforma information into a mathematically based formal language. 

By doing so, a precise and unambiguous specification of the state of a system under 

maintenance could be provided. This has the added advantages of formaUsing die 

work, providing the basis for traceability and proof of correctness and providing a 

basis for reverse engineering of the system since they could assist in design and 

specification rediscovery for the system. Indeed, i f the original specifications were 

available it may be possible through formal methods to detect inconsistencies. 

214 



omissions and ambiguities in the system being maintained. A t the very least 

ambiguities for future maintainers would be removed. 

The formality o f the object-oriented and formal method types of representation may dius be able 

to more succinctiy describe the software configurations. These representations could also act as a 

useful shortcut once a maintainer had grasped a good general understanding of an application 

system through the more visually developed PICS series. Additionally, such representations 

would present a more rigorous method for verifying the consistency and completeness of any 

subsequent changes to the configured system. 

8.4.3 Pattern Oriented Software Maintenance (POSeM) 

Pattern architectures are currentiy the subject of a growing body of research. They capture well 

proven experience in software development and help promote good design practice [67, 68]. 

However, to date they have concentrated on the developmental aspects of the software lifecycle. 

I t is the intention to develop a comprehensive series of patterns which can form the basis of the 

software maintenance process. Pattern definition and usage could be explored in the areas of 

reuse, redocumentation, and reverse engineering, and at the code, design, specification or even 

organisational levels [67, 107, 217, 273, 279]. Patterns may also be investigated as a way of 

providing procedures for defining and guiding the maintenance process; as a means of 

documenting legacy software architectures at varying levels of abstraction and for different 

domains; and for providing a common vocabulary and understanding for maintenance principles 

and techniques. A further use of patterns may be their use in combination with formal methods 

to ensure preservation o f system functionality during the re-engineering process [229]. 

8.4.4 Extension of the ESIB 

Underpinning the model and method is die Extensible Systems Information Base, ESIB. Tliis is 

the storage medium for the rules and reclaimed information about a system type or 

configuration. There are a number of directions in which this area can be investigated further: 

• Extension of the Rule Base, gradually as more applications are maintained and 

modelled using the ISCM process, more information and implicit and explicit rules for 

extracting this information can be built into the knowledge base. This information may 

be o f both o f a specific nature with regard to a particular application or of a more 

general nature pertaining to software systems in general. As a consequence of tins 

continual influx of information the role of tiie ESIB will gradually bmld up to that of a 

''maintenance oracle\ This has a number of potential uses in terms of increasing the ability 
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of the M'^ system to 'inteUigentiy' maintain an application system, or to automate the 

process of maintenance and thereby evolve to become an Extensible System 

Information Knowledge Base (ESIKB). With this in mind the application of 

techniques such as case-based [11], model-based [285, 347] and functional [382] 

reasoning should be investigated with respect to the software maintenance process. 

Object-Oriented Representation of the ESIB: during die course of the research die 

database component of the information base (database + knowledge) has moved from 

a flat-file representation to that of a relational implementation. However tiiese 

implementations have purposely been limited to tiie storage of references to 

components and their configuration descriptions rather than storage of the actual 

components themselves. Physical storage of the component themselves has been 

handled by the underlying file storage mechanism of the host computer. This is not 

necessarily a practice to be changed, since such an approach retains maximum system 

flexibility and portability (particularly with a flat-file representation) and avoids the 

often considerable difficulties associated with storage of large documents and files with 

complex internal structures. This issue is becoming particularly relevant when 

considering the multimedia and distributed nature of many of today's software systems. 

I t also means that the concept of delta storage of different component versions can be 

handled by whatever version management system has been incorporated into the M"* 

toolset and environment. 

However, advances are rapidly being made in the area of extended-relational and 

object-oriented database systems which are far more suited to the storage of complex, 

structured and multimedia objects. This area therefore warrants investigation, 

particularly since part of the ISCM process is already concerned with the object-

oriented and pattern modelling of software system architectures. There are currentiy a 

number o f object-oriented databases appearing in the market place and being 

developed within the research arena whose facilities would be useful to investigate [78, 

219]. Such systems include O2, Ontos, Iris, Orion and Gemstone [106, 219, 397]. 

However, many of these databases have yet to be proven in widespread large industrial 

situations. 

Investigation into the structure of databases for handling multimedia attributes can also 

be used to further develop the M"* system towards tiiat of a computer supported co

operative work (CSCW) environment. These developments could potentially make use 
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of a software layer to translate web requests for information into SQL queries, and 

generate web pages dynamically to display results to the user [129]. 

8.4.5 Further Development of the M^ Meta-CASE Environment 

There are plans to further extend the facilities and features offered by the PISCES M' ' system. 

Many of these are already underway and may be considered under the following headings: 

• True hypermedia linkage: it is intended to extend the hypermedia capabilities of the 

PISCES M^ system. Currentiy, ful l use is made of multimedia attributes, however, in 

the main, linking and control of related items of data is still implemented through the 

control centre. However, hypertext linkages (text:text) between and within textual 

documents have been implemented, as have hypermedia extensions (media:media) 

f rom within text documents to the other media types. The next version of the M'* 

system wil l fully implement hypermedia extensions within and between all media types. 

This much finer granularity of linkage wiU enable a more elegant and targeted coupling 

of audio, video, graphics and text documents, thereby further increasing the 

effectiveness of the program comprehension process. The Hypermedia Browsing and 

Editing Facility (HyBrEF) has akeady been developed to address these issues but has 

not yet been implemented within the M'^ framework. 

• Further support for ISCM of multimedia and distributed products: applications 

that make use o f multiple media types are fast becoming the norm. I t has been stated 

that due to technical demands, large heterogeneous, networked and distributed 

multimedia systems, need new object-oriented, user friendly software development 

tools as well as tools for retrieval and data management [175]. The PICS and Mu^PITS 

work has addressed many of the issues surrounding the data management aspect of 

such systems particularly with respect to documenting the component and 

configuration identification and change status o f both standalone and distributed 

multimedia products. However, there is still scope to enhance this work tiirough the 

inclusion o f features such as [125]: 

0 Automatic prompting for updates to components affected by changes to other 

component through linkages in their dependency relationship graph. 

0 Addition of a customer/client database for recording client-specific multimedia 

product configurations. 
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0 Explicit rather than implicit linkages between the Mu^PITS system and the 

component files to enable closer linking of identification and change 

information to each specific component. 

0 Linkage to an e-mail facility for faster communication regarding the state of a 

change and for automatically informing other users who might be affected by 

the intention to make a component change. 

0 Automatic detection of file formats and subsequent highlighting of possible 

configuration conflicts, for example i f trying to configure a product f rom a 

combination o f PC, Mac or Sun system components. 

0 Adaptation of the Mu^PITS system to control the flow of information in a web 

page in terms of documenting the hyperlinks. 

0 Technical evolution of the M^ system with regard to issues such as improved 

query processing, transaction, buffer and storage management, and recovery and 

security [175]. I t is also intended to investigate the incorporation of speech 

recognition as a means of enabling the maintainer to interact with/invoke the 

different parts of the system [326]. 

Addition of tool base: the framework of the M"* system means that more program 

comprehension and data extraction tools can be added to, or exchanged with existing 

elements in the toolset. This provides for the most flexible and system geared 

framework, which is a positive feature for CASE tools which have been reported as 

suffering f rom a lack of flexibility in the past [327]. Additional tools wiU enhance the 

ability o f the system to define new rules and add increasing amounts of knowledge to 

the ESIB. 

Movement of the ISCM environment into the CSCW Arena: work is akeady 

underway to extend the use of the PISCES M'* system into the Computer Supported 

Co-operative Work (CSCW) arena. CSCW is a developing field of information 

technology which builds on the capability for communication emerging f rom software 

developers and network providers [94, 176, 304, 349]. CSCW is extendmg die 

boundaries o f the more established Groupware [157, 246] concepts which cover 

software support for groups of workers, ranging f rom e-mail at its simplest to 

distributed real-time video conferencing at its most complex. The potential of 
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extending the M^ system to make use of teleconferencing techniques over the Internet 

to allow distributed software development and maintenance is of great commercial 

interest to many companies, particularly wit i i tiie increasing encouragement of 

teleworking [248] and the need to maximise experienced maintenance staff availability. 

Eventually, the stand-alone M'^ system will evolve to become a multi-user distributed 

networked system across the Internet. 

• Virtual Reality Maintenance: ultimately, the M^ system environment wiU be 

augmented through the use of an advanced 3-D network based Virtual Reality (VR) 

interface. Such a system will enable the maintainer to 'walk around' a software company 

and to discuss activities with other maintainers who are present on the network. 

Indeed, present day maintainers will also be able to roam around the system archives 

and 'interact' with virtual software developers and maintainers f rom the past, captured 

for posterity within the environment through the implementation of hologramic 

images. The VR interface coupled with storage o f ever increasing amounts of 

knowledge about a system will advance the concept of the maintenance oracle. This 

wil l enable the problems of the development-maintenance / maintenance-maintenance 

time-space divides and the loss of key personnel to be largely overcome. 

8.4.6 Further Automation of ISCM Process 

Essential to the ISCM process is the collection and reporting of information regarding the 

software system architectures. Currentiy this is achieved through a combination of manual and 

semi-manual procedures but which have the potential to be more fully automated. Some of these 

areas are outline below: 

• Automated retrieval of information: currentiy, the ISCM process makes use of host-

resident information extraction tools such as awk, grep, make etc. However, there is 

still a high proportion of work which has to be done manually, albeit through 

interactive prompting by the system and through the use of the PICS templates which 

can be saved and incrementally built up. Addition or development of further and more 

specific tools for data extraction will enable a liigher degree of automation of the 

process. 

• Progressive population of the ESIB: further automation of the information 

extraction and PICS completion process, will be achievable through the continual 

build-up of the ESIB over a period of time. This is due to the progressive population 
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of the information knowledge base with rules for generic system modelling and with 

historical data pertaining to specific applications requiring comprehension. Gradually 

as the ESIB is built up, patterns of behaviour of particular system types being 

maintained wiU become evident increasing the degree of automation of the process. 

Additionally, the PICS series for specific applications undergoing maintenance will 

gradually become more complete and hence the starting point for comprehension will 

be markedly advanced. 

• Automation of the translation process: tiiere is also scope for investigating die 

automatic generation of semi-formal and formal representations of tiie system 

configurations. This may be achieved through the development or incorporation in the 

M"* toolset of utilities for more effective parsing of the system description document 

and of specific diagramming utilities for outputting the results. Automation in tiiis 

respect wiU not only make the process more efficient but will assist in the verification 

process o f changes made to system configurations and in defining the baselines at 

specific points through the maintenance process. 

8.4.7 Intelligent Program Comprehension 

As stated in the previous section the PISCES method supports a degree of process automation, 

and a number o f areas for further automation have been identified. However, there is still a key 

requirement within the program comprehension process for a human maintainer to drive die 

information collection and collation process as well the interpretation of the results. Additionally, 

the quality o f the decisions regarding a system is very much influenced by the prior knowledge, 

experience and expertise o f the past and present maintainers of die system. In particular the 

ESIB accepts information directiy f rom 'experts' in the field or collates it as a result of rules 

defined by these experts. For an 'inexperienced' maintainer it may be difficult to assess with 

confidence the quality of the decisions made or the accuracy of the information entered into the 

ESIB. Additionally, although hypermedia can be viewed as a powerful tool for building software 

modelling support tools, i t lacks die reasoning or inference ability to generate a truly 'intelligent' 

[79] or 'cooperative' [86, 196] system. Advances being made in the field of Artificial Intelligence 

(AI) could however be exploited to provide elements of intelligence witiiin die program 

comprehension process, thereby advancing the degree of auto-maintenance possible. The 

technologies that appear to afford the most potential in this area are the application of software 

agents, neural networks and fuz2y logic: 
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Software agents: these are self-contained programs which are capable of controlling 

their own decision-making and accomplishing tasks for their user through actions 

based on their perception of the environment [206, 296]. Typically agents exhibit 

behaviours of autonomy, social ability, responsiveness, pro-activeness [288], 

persistence and communicativeness [232], although this is determined to some extent 

by the type and nature of the agent. Agents may be collaborative (interact with otiier 

agents); mobile (roam wide area networks); information (manage, manipulate and 

collate information); reactive (respond to state of the envitonment); and hybrid 

(combinations o f two or more agent types) [288]. 

Neural networks: present a completely different paradigm for solving problems than 

that offered by conventional computing based on well defined numerical algorithmic 

processing. Neural networks encompass networks of adaptable nodes which, tiirough a 

process o f learning f rom task examples, store experiential knowledge and make it 

available for use [391]. Indeed, many of the basic functions provided by neural 

networks mimic the abilities of the human brain. These functions include those of 

classification, clustering, associative memory, modelling, time-series forecasting and 

constraint satisfaction [47]. Many of these areas which rely on attributes such as 

creativity, generalisations and understanding have proved to be difficult areas for 

conventional computer processing. Neural networks however, have the potential to 

infer and induce f rom what might be incomplete or non-specific information. They can 

also learn appropriate modes of behaviour particularly when presented with real-world 

data. As such the network can be taught not only to recognise particular patterns of 

data as they occur, but also to recognise similar patterns by generalisation [391]. The 

increased profile of the abilities of neural networks have led to predictions that the 

market for such networks will grow world-wide at a rate of 46% per year [215]. 

Fuzzy systems: this is another area which although studied for many years is only just 

becoming popularised as a technique for modelling uncertainty in a range of system 

applications. Fuzzy systems are concerned with imprecision and approximate reasoning 

[216] and through the enabling techniques of fuzzy logic and fuzzy sets can be used as 

a method for reducing as well as explaining system complexity. This modelling of 

systems using fuzzy logic is based on linguistic rather than mathematical representation 

of data and processes. Indeed it has been stated by Zadeh, that as the complexit}^ of a 

system increases, the ability to make precise and significant statements about its 

behaviour diminishes [112]. Such a phenomenon therefore also diminishes die ability 

of traditional mathematics to represent the real-world characteristics of software 

221 



systems and their architecmres. However through the use of fuzzy logic, benefits may 

be shown to accrue in the following areas: the ability to model highly complex business 

problems; improved cognitive modelling of expert systems; the ability to model 

systems involving multiple experts; reduced model complexity; and improved handling 

of uncertainty and possibilities [112]. 

There are a number o f ways in which the intelligent learning of software agents, and die soft 

computing techniques associated with neural networks and fuzzy logic may be used eitiier in 

isolation or in combination [155, 216] to increase the intelligence and decision making of die M"* 

environment and thereby the effectiveness of the program comprehension process. The areas for 

investigation include: 

• Automated modelling: the ISCM process has made use of modelling techniques 

based on simple set theory. Whilst this has provided a convenient mechanism for 

modeUing the component groups and their composition into viable configurations, 

there was often a degree of uncertainty during the modelling surrounding membership 

of the component groups. Definition of fuzzy configuration sets for modelling the 

configuration abstractions therefore warrants further investigation as a more exact real-

world representation of the configuration composition process. 

Additionally, many of the benefits accruing f rom reducing and explaining system 

complexity may be directiy related to the maintenance of software systems enabling 

reduced mean-time-between-failure; improved mean-time-to-repair; easier and more 

stable extensibility of existing systems; and improved understandabiMty. 

• Automated data extraction: currentiy the information placed in the ESIB and 

extracted for reporting purposes can be done on a semi-automatic basis. However, tiie 

placement or extraction must be driven by the maintainer, eitiier via selection from a 

defined set o f queries or by construction of a query specifically adapted to current 

information needs. I t would be useful i f part or all of this process could be conducted 

automatically and presented to the maintainer prior to them making the change during 

the program comprehension process. Intelligent software agents are a mechanism 

whereby this could be achieved. Hence the use of agents for the collection and 

collation of the information pertaining to the software system configurations and the 

subsequent population of the PICS and ESIB is being considered [13]. 
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Software agents at there most basic level may be programmed with a set of rules to 

enable them to 'wander around' a standalone system and to gather pre-programmed 

matches of data requirements [251]. Intelligence can be added to such agents through 

artificial evolution such that agents can gradually evolve their degree of autonomy until 

they are capable of meeting user needs and adapting to the changing requirements of 

thert users without the need for reprogramming [226, 251]. Additionally, to 

substantially advance the program comprehension process for large heterogeneous 

systems, multi-agent approaches based on the distributed problem-solving paradigm 

and distributed artificial intelligence should also be employed [277, 367]. This approach 

is known as co-operative information gathering and involves concurrent, asynchronous 

discovery and composition of information spread across a network of information 

servers. Indeed agents are being evaluated as a means to support legacy systems in the 

area o f kiosks for telephone sales and support and information access for sendee 

technicians [232]. 

Data mining for maintenance: data mining is the efficient discovery of valuable, 

non-obvious information f rom a large collection of data [15, 47]. That is, it centres on 

the automated discovery o f new facts and relationships in data. As more sj^stems are 

maintained through the ISCM process and the amount of data held within the ESIB 

increases it may become increasingly difficult to find and select the data relevant to a 

particular application, and to ensure that the host systems has been completely 

searched for relevant configuration components. There is thus scope for investigating 

more intelligent data search mechanisms and for the creation of data warehouses for 

program configuration data. Again techniques such as software agents, neural 

computing and fuzzy logic have significant roles to play in this area. 

Intelligent program comprehension & auto-maintenance: it is intended to 

investigate a shift towards intelligent program comprehension whereby the M'* system 

would not only be able to automatically identify the characteristics of a system 

configuration but through analysis of these characteristics could also flag up trouble 

spots in the system meriting special attention during the maintenance process. 

The use o f software agents, given a set of fuzzy logic rules and learning tiirough the 

application of neural networks may also enable a degree of auto-maintenance to take 

place. For example, in networked based systems, it may be possible for program 

comprehension and problem diagnosis to be performed remotely f rom a central 

location. The M^ system could incorporate a number of software agents that have die 
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responsibility for storing, controlling and monitoring information about each part of 

the system. The application of this technology has been used in network diagnostics 

for a number of years [71] and hence there is the potential to extend these ideas 

towards the management of the software is-itself rather than limiting diagnostics to the 

hardware components of a distributed network [218]. I t is envisaged that through 

agent monitoring of metrics regarding factors such as component stability, age, size etc. 

and comparing these to fiazzy data sets or rules it may be possible to make predictions 

of the need to perform maintenance on certain parts of the system. 

Intelligent decision support, cost-benefit, and risk analysis for reverse 

engineering: allied with the issues of intelligent program comprehension is application 

of artificial neural networks in order to determine die cost-benefits and/or risks of 

continuing to comprehend or maintain all or part of a system [321, 354, 355]. Artificial 

neural networks that have been taught [130] and tested by means of experienced 

maintenance practitioners, could result in accurate recognition of when to reverse 

engineer, re-engineer or redevelop parts of a software system. 

8.5 Summary 

Two major criteria must be met to satisfy the requirements for PhD level research. Ficsdy, an 

area of research must be identified in which an original contribution can be made to the existing 

body of knowledge concerning the relevant field. Secondly, it must be shown that the research 

process itself can be carried out in a defined and systematic manner and the results 

communicated effectively to other researchers. 

Very few people would disagree that software systems are becomingly increasingly pervasive and 

important within our everyday and working lives. Hence, there is a very urgent need, i f the 

rapidly growing consumer and industrial products of today are to remain safe and reliable, and 

we are to avoid a software crisis far greater than that of the early 1980s, to retain or regain 

control of systems that are undergoing development and maintenance. 

The aim of this thesis has been to design, develop, justif};^ and evaluate the effectiveness of the 

ISCM process, ISCM model, PISCES method and M'^ system environment in order to 

demonstrate the contribution of the research to the software maintenance discipline. As 

discussed throughout the thesis, the main aim of the ISCM process is to enable a legacy software 

system to be brought back under configuration control through a series of defined technical and 

managerial activities and procedures. The ISCM process is based on the inverse application of 
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traditional SCM concepts and a model defined at a finer level of activity granularity than in many 

previous process models. The ISCM process thereby enables configurations of software systems 

to be incrementally reclaimed and unambiguously documented via the PISCES method and M' ' 

system to enable safe and effective maintenance to take place. 

The research and resultant ISCM process has established a solid foundation for more effective 

program comprehension during the maintenance of legacy software systems. The process 

through which the research has been carried out has been structured and iterative in nature. In 

summary, the problems of program comprehension during maintenance were analysed, the 

ISCM concept was defined and subsequentiy developed as the PISCES method, which in turn 

was implemented and semi-automated through the PISCES M'^ system before being tested with a 

number o f practical applications. Each stage of the research provided feedback into the previous 

stages and any identified corrections, amendments and enhancements were encompassed to 

strengthen the practical applicability of the ISCM approach. A number of publications have been 

produced f rom the research and a number of funded research and commercial projects are 

underway, building upon the concepts developed within the thesis. 
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Glossary 

Abstraction: A technique for handling complexity by masking irrelevant details for 

defined situations. 

Adaptive 
maintenance: 

Changes made to both the design and code in order to enable the 

software product to accommodate changes in its hardware and 

software operating environments. 

Alien components: Components that are never referenced by the application system and 

as such play no part in tiie system configuration at any level of 

abstraction. 

Allied components: The general system libraries and other operating system components 

that are required by an application, but which are not actually 

maintained as part of it. 

Anomalous 
configuration 
abstraction: 

Modelling of a system configuration which has become corrupted or 

masked through the presence of alien components, or incomplete 

through the loss or misplacement of essential components. 

Application 
components: 

Associated 
components: 

The core components of the baseUne of an application. 

The components of a system such as the application language 

libraries and reusable components that are associated wit i i the 

application under development or maintenance. 

Attribute: A property of a particular software configuration component. 

Baseline configuration Models the traditional view of a software system configuration, that 

abstraction: is, the core component parts of a software application. 
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Baseline: A stable, unchanging or 'frozen' version of a configuration. I t 

provides the inventory of the state of a product at a specific point in 

time and serves as a basis for subsequent development, control and 

maintenance of a system 

Change control: The process that ensures that changes to individual software 

components are made and incorporated in the correct fashion. I t 

controls what changes are made and when, where and by whom the 

change are made. 

Change request: A document or record that proposes a change. I f arising from an 

error in the software it may also be referred to as a problem report. 

Change-log: Documents the history of a component (see Derivation). 

Cognitive components: The components o f a system that record the incrementally gathered 

information about the functionality, structure and dependencies 

about the system. 

Coincidental utilities: Tools that are intrinsically available on the host system environment, 

which although not specifically provided for SCM purposes can be 

used to provide information regarding software system 

configurations. 

Component attribute The ful l complement of information about a particular config;uration 
<set' 

component. 

Any computer software or system which aids a software engineer in 

the specification, design, development, testing or maintenance of 

other computer software or any aspect of the management of this 

process. 

Computer aided 
software engineering 
(CASE) 

Configuration 
abstraction: 

A subset of component types, modelled according to a defined 

pattern, in order to identify aU or part of a software system 

configuration. 

Configuration control: The management of complete versions of systems and the 

interrelationships existing among the components of tiie system. 
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Configuration history The time-related series of genetic fingerprints which progressively 

record or reclaim the evolutionary characteristics of a particular 

software system. 

Configuration 
validation: 

Process of ensuring that the SCIs serve their correct purpose, i.e. that 

they meet customer requirements. 

Configuration 
verification: 

Process of ensuring that the specification for each SCI in one 

baseline or update is achieved in the subsequent baseline or update. 

Configuration: A set of interrelated software objects from which the system is 

composed. 

Corrective 
maintenance: 

Changes made to code resulting f rom inconsistencies between the 

specification of the product and the product itself. 

Data components: The data file components of a system, such as the database or 

spreadsheet data that are consumed and produced as a result of 

running the application components. 

Delta Space efficient storage mechanism for versions of components. 

Dependency analysis: Scrutiny of the program code in order to ascertain the relationships 

existing between the particular module to be changed and the other 

parts of the system (see Impact Analysis). 

Derivation: Records precisely and accurately the changes made to a software 

object, including when, where and by whom the change was made. 

Derived object: A software object that is created automatically by program or tools 

called derivers. 

Documentary 
components: 

The formally produced requirements, design etc. documentation that 

supports the development of a system. 

Documented 
configuration 
abstraction: 

Model of the relationships between the baseline application and any 

documentation developed during tiie development or maintenance 

processes. 
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Domain analysis: The process of understanding the application context and 

implementation of working practices within the product. 

Domain components: The components of a system that contain documented or cognitive 

knowledge regarding the domain environment or application area in 

which the system is designed to operate. 

Enabling components: Components of a system that do not form part of either the core or 

secondary software system but which are tools to help with the 

control or program comprehension of the software application. 

Environmental 
components: 

Components such as compilers, linkers, editors, tools and hardware 

that make up the operational environment of the system. 

Environmental 
configuration 
abstraction: 

Models the interactions occurring between the application 

components and those of the surrounding primary or secondar}? 

environment. 

Existing system: Software system that has entered the maintenance phase. Also 

synonymous with operational and legacy systems. 

Extensible system 
information base 
(ESIB): 

Information base containing data regarding key features o f 

operational environments such as operating systems, systems 

architectures, application types, tools and programming as well as the 

reclaimed information about software system configurations. 

Firmware: A hardware device and the software that resides on that device, 

where the software cannot be readily modified under program 

control. 

Forward engineering: The traditional approach to software development, moving from 

analysis through design to implementation and testing. 

Function tools: Tools that support one aspect o f the software configuration 

management process, for example version control or system 

synthesis but generally not both without forced integration. 
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Generic configuration: A system model, which makes possible the compact representation 

of a large number of baseline configurations. 

Genetic fingerprint The unique description of a software system configuration at a 

particular defined point in time. 

Geriatric systems: Legacy systems developed longer than 10 years ago. 

Green-field software 
systems: 

Systems developed f rom new, tiiereby enabling software 

configuration management principles and techniques, together with 

other modern programming, design and management methods and 

practices to be employed on the system. 

Heterogeneous system Software system composed of a wide variety of different component 

types. 

Homogeneous system Software system composed of a single (or very few) component 

type(s). 

Hypermedia: Non-Unear linkages between and within files of different media types, 

often of a non-linear nature. 

Hypertext: Non-Unear linkages between and within text or graphic files, often of 

a non-Hnear namre. 

Impact analysis: Scrutiny of the program code in order to ascertain the 'what i f effects 

of changing a particular module on the other parts of the system (see 

Dependency Analysis). 

Incremental 
documentation: 

Retrospective detailed documentation conducted during 

maintenance, of the parts of the system requiring maintenance. 

Integrated project Environments that manage the complete project Hfecycle and offer 

support environments project management support facilities that go beyond tiiose of 
(ipse): 

conriguration management. 
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Inter-application 
modelling: 

Modelling of a system in connection with the identification of (inter

specific) relationships existing between components of the core 

application configuration and components other types. 

Interconnection model: A model proposed to support the management of system evolution. 

Interface components: The interface components of a system, either developed in-house or 

reused f rom a library of interface components and widgets. 

Inter-Specific 
relationships: 

Relationships existing between the components of an application and 

the odier identified component types. 

Inter-version-group 
control: 

Management of changes to individual components such that ther 

version group is extended. 

Intra-application 
modelling: 

Modelling of a system in connection with the identification of (intra-

specific) relationships existing between application components of 

the core configuration. 

Intra-specific 
relationships: 

Relationships existing between the components within an application 

at a source code level. 

Intra-version-group Management of changes to configurations such that the program 

control: family group is extended. 

Inverse Configuration Language developed to model system architectures and 

Description Language: configurations at a programming-in-the-environment (PITE) level. 

Inverse engineering: The process concerned with die complete reverse engineering of a 

system from code to specification through the use of formal 

trans formations. 

Inverse software 
configuration 
identification (ISCI): 

The process of re-identifying and documenting the existent but often 

corrupted configuration of an existing software system with a view to 

bringing it back under configuration control. 

Inverse software 
configuration 
management (ISCM): 

The process of bringing an existing software system back under 

configuration control. 
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ISCM maintenance The conceptual stages/activities necessary to effect the ISCM 

process model: process, and its relationship to the global software lifecycle. 

ISCM process: The overall process of Inverse Software Configuration Management 

and its definition. 

Legacy system: Application software created in a pervious traversal of a software 

lifecycle. 

Library: A common and controllable store for the elements of a software 

system that provides a basis for sharing and control of software 

objects. 

Location: The physical storage position of a particular software configuration 

component. 

Maintenance process A coherent and defined set of conceptual activities carried out during 

model: maintenance. 

Master configuration A list that uniquely identifies all configuration items of a system. 
index: 

Method: The set of defined activities required to physically realise the abstract 

model of a process. 

Missing components: These are components that are referenced by the system but wliich 

have been lost, destroyed or misplaced. 

Model: A n abstract representation of a process. 

Module 
interconnection 
language (MIL): 

Multimedia: 

A language that describes the structure and evolution of software 

systems. 

A combination of more than one media format such as text, 

graphics, audio, video, animation. 

Object base: The underlying file or database strucmre within which to store the 

various software products and configurations. 
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operational system: Software system that has entered the maintenance phase. 

Synonymous with existing and legacy systems. 

Out of control system: Legacy software system developed without the aid of software 

configuration management principles and techniques such that it is 

characterised by high program comprehension overheads and error 

prone maintenance. 

Perfective 
maintenance: 

Changes made to the specification, design and code in connection 

with improving the function of the software in response to user 

requests for improvement, enhancements to functionality, or 

customisation to new working practices. 

PISCES M'system: The meta-CASE environment developed to semi-automate the initial 

stages of the ISCM model and PISCES method. 

Pre-emptive 
maintenance: 

Activities carried out during development whose primary aim is to 

reduce future maintenance costs. 

Preventive 
maintenance: 

Changes made to the software in order to preclude future problems 

and facilitate future maintenance work. 

Primary environment: The components with which the application components have a 

direct relationship in terms of their required integration or interaction 

to enable execution of the software. 

Problem report A document that describes a fault within the system (see Change 

Request). 

Process architecture: The modelling tool used to represent the process model at varying 

levels of abstraction. 

Proforma 
identification 
complexity series 
(PICS): 

Series of proformas or templates developed to guide the information 

collection and collation process during the reclamation of software 

system configurations. 
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Proforma 
identification scheme 
for configurations of 
existing systems 
(PISCES) method: 

Program 
comprehension: 

The physical realisation of each of the above stages / activities 

through a defined sequence of steps and templates. 

The process of understanding the appKcation system prior to making 

a modification. Although often used synonymously wit i i the term 

system comprehension, it is used in the context of this thesis to mean 

understanding at the source code level. 

Program family 
configuration 
abstraction: 

Program family: 

Models versioning of a system at application baseline, release, 

primary or secondary enviconmental levels of detail. 

A set of closely related but distinct software systems, each member 

catering for slightiy different requirements. 

Programming-in-the- The process concerned with die interactions between modules 

environment (PITE): (components) of a system and its environment. Developed as an 

extension to the concepts of PITS and PITL. 

Programming-in-the- The process concerned with the interactions between modules 

large (PITL): (components) of a system. 

Programming-in-the- The process concerned with the development of an individual 

small (PITS). module (component) of a software system. 

Redocumentation: The process of studying the code in order to create an alternative, 

easy to visualise, representation of the program structure. 

Redundant 
components: 

Components that are never referenced by the application system (see 

alien components). 

Re-engineering: The process of reverse engineering followed by a period of forward 

engineering during which additional functionality may be added to 

the original system. 
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Relationship: 

Restructuring: 

The nature o f the bond existing between two components within a 

group (intra-application relationships) or between components in 

different groups (inter-appUcation relationships) 

The process of transforming the representation of the system from 

one form to another at the same relative level of abstraction. 

Reverse engineering: The process that combines an element of redocumentation with that 

of design recovery such that it enables a system to be represented at a 

higher level of abstraction. 

Revision: A source object produced by changing another source object. 

Revisions are sequential and cumulatively record development liistory 

such that later versions supersede earlier versions. 

Ripple effect: Propagation of errors through a software system as a result of 

making a change to that software system. 

Secondary 
environment: 

Those components which enable construction or change of the 

baseUne application but which are not actually maintained or 

incorporated as part of it. 

Software architecture: This is a more refined representation of a software system than a 

model. I t is still conceptual and logical in nature but deals with a 

lower level of granularity in terms of describing particular abstract 

representations of a system. 

Software configuration A model of the software configuration from a particular viewpoint or 

abstraction defined level of granularity. 

Software configuration The process of determining whether or not baselines meet their 

requirements and that correct procedures are being adhered to. 

Software configuration This is the fundamental building block of an application system. I t is 

component: j ^ ^ ^ ^ individual physical item witiiin a system, i.e. not a 

procedure or function within a program or module (see also software 

configuration item). 
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Software configuration The set of controlled procedures for making changes to components 

andbaselmes. 

Software configuration The unique identification and definition of the different components 
identification: and associated baselines of a system, and any changes made to tiiese 

components and baselines. 

Software configuration The basic unit of information within a configuration, examples 
item (SCI): include source code files, object code files, command files, database 

files, documentation files, test procedures. 

Software configuration The process of identifying and defining the configuration items in a 

management (SCM): system, controlling the release and change of tiiese items diroughout 

the system lifecycle, recording and reporting the status o f 

configuration items and change requests, and verifying the 

completeness and correctness of configuration items. 

Software configuration Offer in a single product aU aspects of SCM, i.e. seamless integration 

management systems: between identification, control, status accounting and audit. 

Software configuration Provision of an administrative history of the evolution of a software 

status accounting: system. 

Software 
configuration: 

This is the physical combination of a set of interrelated components 

(SCIs) that together form a viable system. In essence it is the physical 

realisation of a particular software architecture. The combination may 

be at varying levels of abstraction and in particular at baseline, family 

or environmental. 

Software engineering 
lifecycle: 

A software lifecycle that encompasses representation of both the 

technical activities and management aspects associated with software 

development and maintenance. 

Software lifecycle: Cyclic orderiag of the activities defined within a software process 

model. 
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Software maintenance: The modification of a software product after delivery to correct 

faults, to improve performance or other attributes, or to adapt the 

product to a changed environment. 

Software model: The overall abstract representation of a software system. I t is 

essentially a conceptual model defining the entire set of components 

f rom which a software system may be composed and the possible 

relationships existing between tiie component types (often used 

synonymously with system model). 

Software object: Any identifiable, machine-readable document, the basic unit of 

information within a configuration (see Software Configuration 

Item). 

Software process 
model: 

A series of activities associated wit i i tiie development or maintenance 

of a software system. 

System 
comprehension: 

The process of understanding the application system prior to making 

a modification. Although often used synonymously with the term 

program comprehension, it is used in the context of this thesis to 

mean understanding the interactions of the source code with the rest 

of its system environment. 

System evolution: 

System model: 

The process by which a program family evolves. 

This is the overall abstract representation of a software system. I t is 

essentially a conceptual model defining the entire set of components 

f rom which a software system may be composed and the possible 

relationships existing between the component types (often used 

synonymously with software model). 

Third party 
components: 

Components such as database software and other proprietar}' 

software that belongs outside the application but with which it 

interacts. 

Time-Space divide: The temporal and/or geographic separation of development and 

maintenance activities and/or personnel associated with the hand

over of a system from developer to client. 
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Total configuration 
abstraction: 

User components: 

Variant: 

Version 

Models an entire application and thus contains components in any or 

all of the identified components groups. 

The user of a system. 

A source object created by changing another source object. Variants 

are indistinguishable under a given abstraction and as such are 

intended to be alternative, interchangeable parts. 

A new software configuration item (component) arising from 

changes made to existing configuration items as a result o f the need 

to correct, adapt or enhance the software. Versions may be revisions 

or variants. 

Version control: 

Version group 

Management of version groups arising f rom changes to the individual 

components of a system. 

The collective set of versions arising f rom changes to a component. 

Versioned components: The variants and revisions of a system that result f rom changing 

components in a system. 
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