We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham e-Theses
You are in:

Electrical and magnetic properties of II-VI diluted magnetic semiconductors

Horsfall, Alton Barrett (1997) Electrical and magnetic properties of II-VI diluted magnetic semiconductors. Doctoral thesis, Durham University.



The electrical and magnetic properties of MOVPE grown epitaxial layers of Hg(_1-x)Mn(_x)Te layers has been investigated using a number of techniques. The samples have been grown by the Inter Diffused Multilayer Process, (IMP) on (100) semi insulating GaAs substrates with ZnTe and CdTe buffer layers. The samples have been shown to show a number of phenomena nopt observed in the bulk material, such as an anomaly in the resistivity, rnagnetoresistance related to the intrinsic magnetism of the material, and saturation of the room temperature magnetisation. In general the samples are of a highly compensated nature with the value of |R(_H)e|(^-1) varying between l0(^14) and 5xI0(^17) cm(^-3) at 20K, the Hall mobilities varying between 8 and 3.5x10(^5) cm(^2)V(^-1)s(^-1) at 20K. Magnetically, the samples generally show a paramagnetic signal that is swamped by the diamagnetic background of the substrate and buffer layers. The paramagnetisrn can be well modelled using a Curie Weiss fit. A number of the samples show a saturation in the magnetisation, which, has been explained via the use of vacancy ordering within MnTe regions in the sample. The susceptibility of the samples has been investigated using a Faraday balance system, and this data has been fitted using; a cluster model for Mn ions within the sample. The photomagnetisation of Cd(_0.9)Mn(_0.1)Te:In has been investigated using a faraday balance system, and modelled using the work of Dietl and Sample, to calculate the number of polarons that had formed on donors in the sample, ΔN(_D)(^MAG) = 1.28x10(^15)cm(^-3). The number of donors in the sample has been measured by means of the Hall effect, ΔN(_D)(^ELEC) = 1.92x10(^15)cm(^-3), and this value compared to that obtained from the model. We have proposed a model to explain this discrepancy based on the concept of band tails in the impurity band.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Thesis Date:1997
Copyright:Copyright of this thesis is held by the author
Deposited On:09 Oct 2012 11:41

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter