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Abstract 

The electrical and magnetic properties of MOVPE grown epitaxial layers of 

Hg,_xMnxTe layers has been investigated using a number of techniques. The samples 

have been grown by the Inter Diffused Multilayer Process (IMP) on (100) semi insulating 

GaAs substrates with ZnTe and CdTe buffer layers. The samples have been shown to 

show a number of phenomena nopt observed in the bulk material, such as an anomaly in 

the resistivity, magnetoresistance related to the intrinsic magnetism of the material, and 

saturation of the room temperature magnetisation. 

In general the samples are of a highly compensated nature with the value of \RHe[l 

varying between 1014 and 5x1017 cm"3 at 20K, the Hall mobilities varying between 8 and 

3.5xl05 cn^V's'1 at 20K. Magnetically, the samples generally show a paramagnetic signal 

that is swamped by the diamagnetic background of the substrate and buffer layers. The 

paramagnetism can be well modelled using a Curie Weiss fit. A number of the samples 

show a saturation in the magnetisation, which has been explained via the use of vacancy 

ordering within MnTe regions in the sample. The susceptibility of the samples has been 

investigated using a Faraday balance system, and this data has been fitted using a cluster 

model for Mn ions within the sample. 

The photomagnetisation of Cdo.gMno.iTeiln has been investigated using a Faraday 

balance system, and modelled using the work of Dietl and Spalek, to calculate the number 

of polarons that had formed on donors in the sample, AND

mG = 1.28x1015 cm - 3 . The 

number of donors in the sample has been measured by means of the Hall effect, 

AND = 1.92x10 cm" , and this value compared to that obtained from the model. We 

have propsed a model to explain this discrepancy based on the concept of band tails in the 

impurity band. 
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Chapter One Introduction 

1.1 Introduction 

A Diluted Magnetic Semiconductor (DMS) is a solid solution of a magnetic 

semiconductor and a non-magnetic semiconductor host lattice, in the case of HgMnTe, 

these are MnTe and HgTe. Most of the materials studied are of the form A ni. xMn xB V I , 

although other materials have been investigated including A^i.xMnxB^, ( A Y 

xMn x) 3BV2,[l] and more recently A m i . x Mn x B v . [2] Other magnetic ions can be used in 

the material, such as iron, chromium and europium, each of which give slightly 

different properties. Manganese is a popular choice for a number of reasons. It can be 

substituted into a lattice in large quantities, up to 80% in Cdi.xMnxTe and 75% in Hgi. 

xMnxTe. Manganese has a large magnetic moment 5UB, (although europium has a 

magnetic moment of 7U,B) and in a II-VI semiconductor such as HgTe it acts as a 

neutral impurity, and hence does not produce donors or acceptors. 

1.2 Brief review of work performed on HgMnTe 

The original work in the field was performed by Delves and Lewis [3] in 1963, 

when they investigated the growth of material with manganese concentrations between 

0 < x < 0.8. The majority of samples investigated were in the compositional range of 

0 < x < 0.35, because above this range precipitates of MnTe2 are formed. [4] This is 

analogous to the behaviour observed in the growth of HgCdTe bulk samples. [5] The 

growth technique used for bulk samples is that of Vertical Bridgeman [6,7]. Further 

work [6] by Delves investigated the band structure, showing that the material is a 

direct gap semiconductor, with Eg varying as a function of manganese concentration. 

l 



The band structure of HgMnTe was later analysed by Davydov et al [8] using 

galvanometric measurements, who showed that the E{k) energy spectrum could be 

explained using Kane's model [9]. This model states that the structure of the material 

can be explained by considering the effect of three bands. This is very similar to other 

zinc blende structure semiconductors, and the band structure in low field is very similar 

to that of HgCdTe. [10] This was confirmed by a number of groups work on the 

magneto-optical behaviour, such as Bastard et al [11]. The behaviour of Eg as a 

function of x is shown below in figure 1.1. 
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Figure 1.1 The band gap Eg as a function of manganese concentration in 

HgMnTe. The dots are from Bastard et al [11], the crosses from Jaczynski et 

al [12] and the triangle from McKnight et al [13]. 
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HgMnTe is twice that in HgCdTe. [14] 

The lattice parameter of the material has been measured using X-ray diffraction 

[15] and neutron diffraction [16]. A continuous transition from the lattice parameter 

of HgTe to that of zinc blende MnTe (grown by MBE), with a change in manganese 

concentration is observed. Hence the lattice parameter of Hgi.xMnxTe can be 

expressed using a form of Vegard's law, as discussed in section 1.5.3. 

The crystal structure of HgMnTe has been determined from neutron diffraction 

experiments [17] to be that of zinc blende, and from these experiments it has been 

possible to determine that the lattice is arranged in an antiferromagnetic manner. The 

preferred order in DMS is that of type III antiferromagnetism, and this will be 

explained in more detail in chapter 3. 

Electrically, it was shown by Delves [6] that as-grown undoped samples of 

HgMnTe show p-type behaviour with an acceptor concentration between 1 and 

3xl016c/w"3, although the work of Furdyna has shown a value of 5xl018c/w"3 [4]. 

Delves' work postulated that the acceptors were due to copper impurities within the 

samples, [6] although more recent work [4] [18] has shown that the origin of these 

acceptors is mercury vacancies in the material. This observation is supported by the 

existence of acceptors caused by mercury vacancies in HgCdTe [19], and their affect 

on the electron transport. These vacancies are observable in the resistivity of the 

sample, and their activation energy is dependant on the composition of the sample 

[18]. Bulk samples are generally annealed under a mercury overpressure for 200 hours 

per mm of sample thickness at 200 °C after growth to remove this problem. [18] 

The magnetoresistance of HgMnTe has been extensively studied, and the initial 

results are those of Delves [3]. He observed that in fields of upto IT, the 
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magnetoresistance is positive, and shows evidence of saturation at high field. Davydov 

et al [20,21] saw a magnetoresistance that was positive at low field before turning over 

and becoming negative at fields above 0.7T. They explain this phenomena as being 

due to the exchange interaction in the sample, and the high field results are indicative 

of impurity band conduction. 

The first investigations of the magnetism in HgMnTe were via the use of 

electron paramagnetic resonance (EPR). The variation of the line width and position 

as a function of manganese concentration has been analysed by a number of groups 

[22] who have shown that the gyromagnetic factor g is very nearly that of the free 

electron, 1.99 <g< 2.02. [23] The EPR signal for low manganese concentrations, 

x< 0.001, is comprised of six hyperfine structure lines, which merge as the 

concentration is raised above x = 0.02. [24] The resultant line broadens as the 

concentration is raised above x = 0.03 [25] and also broadens with decreasing 

temperature [25]. This broadening with decreasing temperature is attributed to the 

internal field of the clusters, as they become more dominant at low temperatures. 

Susceptibility measurements on HgMnTe showed that the material has a 

positive susceptibility, which at high temperatures follows a Curie Weiss law. [26,27] 

The value of 0 shows a relationship to the manganese concentration, and is always -ve, 

showing the existence of antiferromagnetic interactions in the material. 

At low temperatures, below 50K, the samples deviate from the Curie Weiss 

law, due to the interactions between the manganese ions [4,28]. The temperature at 

which the inverse susceptibility deviates has been shown to be dependant on the 

managanese concentration [4] The inverse susceptibility falls, and the value of 9 

approaches zero. The susceptibility can now be explained by the Curie law, [10] using 
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an effective number of ions in the sample. This effective number of ions can be 

translated as the number of ions that are uncoupled and can respond to the field. At 

low temperatures, the manganese ions form into clusters for concentrations above 

x = 0.027 [10] and these clusters dominate the magnetisation.[29] The magnetisation 

in this region can be expressed using an empirically fitted Brillouin function [4] where 

the number of ions and the manganese concentration are replaced with effective values, 

which are used as fitting parameters. These values are tabulated and can be used to 

express the low temperature magnetic behaviour of HgMnTe samples. 

The interaction that causes the formation of the clumps in the samples is that of 

the super exchange interaction [30], which is also responsible for the short range 

antiferromagnetic interaction observed in HgMnTe. 

The specific heat of HgMnTe has been investigated by Nagata et al [29] who 

analysed the contribution of clusters as well as that of the single ions. From this they 

were able to calculate a distribution of cluster sizes, which were used to simulate his 

magnetic susceptibility, using a value for the exchange integral of JI kB- -IK. The 

specific heat has also been modelled by Shapira [31] who used a random distribution, 

but used a higher value of the exchange integral, JI kB = -\0K. 

In the quantum limit, the band structure of HgMnTe is no longer simitar to that 

of HgCdTe, [32] because of the band splitting, and the lifting of the band degeneracy. 

One of the unique observations in DMS is the behaviour of the Shubnikov de Haas 

(SdH) oscillations. These oscillations arise from the crossing of the Fermi level and 

Landau levels in the sample. These oscillations were initially observed in HgMnTe by 

Delves [3] and by Morrissy [34], although a quantitative explanation was not possible 

due to a lack of knowledge of the band structure of the material. This was calculated 
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in 1978 by Bastard et al [11] and by Jaczynski et al [12]. From these measurements 

values of the exchange constants have been extracted. In the initial work, Jaczynski et 

al [12] obtained values of /? = 1.4eV and a = -0.7eV, although later Sandauer and 

Byszewski [34] obtained y#=0.8eV and a = -0.3eV, which are closer to those 

obtained by other methods, including intra band magneto-absorption by Dobrowolska 

and Dobrowolski [35]. The amplitude of the SdH oscillations varies with temperature, 

and this is a phenomenon only observed in narrow band gap DMS, the basis of which 

is the temperature dependance of the Landau quantisation of the material, due to the 

contribution of the magnetic ions. 

1.3 Growth of Bulk Hgi.xMnsTe 

The preferred method for bulk growth is the vertical Bridgeman technique [18] 

because of its simplicity. Pre-reacted HgTe and MnTe are ground and placed into a 

thick walled quartz tube. For samples with a Mn concentration greater than 5% the 

inside of the tube is coated in graphite. The tubes are sealed, evacuated and then 

heated to 450°C, where they are held for 24 hours, before being heated to 820°C 

where they are held for over 48 hours. [36] The growth is then performed at a rate of 

around 1mm hr"1. This material in the as-grown state has a composition gradient along 

the growth direction as a result of the large segregation constant of the material. One 

way to overcome this is to use a travelling zone technique after the initial growth. The 

as grown bulk material crystallises with a Hg deficiency, hence creating Hg vacancies. 

These vacancies act as acceptors, with an acceptor energy of 9.4meV for a sample 

with a manganese concentration of x=0.15[37], and the as-grown material is p-type. 

N-type material is created by post growth annealing in a Hg rich vapour, usually for 

around 200 hours for every 1mm of sample thickness [36] 
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1.4 Growth of epitaxial Hgi.xMnxTe 

Epitaxial Hgi_xMnxTe can be grown by a number of methods, including LPE 

[38], MBE [39] and MOVPE [40]. The technique used in this study is metalorganic 

vapour phase epitaxy (MOVPE), in which the layer is deposited from the metalorganic 

species of the required element in the vapour phase. This requires a carrier gas, 

usually hydrogen, to transport the material to the substrate. 

The quality of the samples grown by this technique is generally not as high as 

those grown by MBE, although due to the higher growth rate, they can be produced 

more rapidly. This is useful for commercial production of samples for industry. 

Our samples were all grown on semi-insulating GaAs (100) substrates, which 

were cleaned by rinsing in trichloroethane and then etched in hydrogen peroxide 

/sulphuric acid mix. For the majority of the samples two buffer layers were grown 

before the Hgi.xMnxTe layer was started. The first of these is a 0.1 urn thick layer of 

ZnTe, which forces the following layer to grow in the (100) direction. Without this 

the CdTe is likely to grow in the (111) direction on the GaAs [41] The second layer is 

a lum thick layer of CdTe, which acts as a lattice match to the Hgi.xMnxTe layer. 

Two methods can be used to grow Hgi.xMnxTe by MOVPE. The first of these 

is Direct Alloy Growth (DAG) where the precursors are used simultaneously to grow 

Hgi.xMnxTe directly. The composition of the layer is determined by the relative partial 

pressures of the precursors. This was the first technique used to grow Hgi.xMnxTe, 

[42] and it leads to compositional variations over the sample, sometimes in excess of 

5% mm'1 [43]. Models of the gas flow within a MOVPE reactor during growth show 

that composition changes are inevitable. [44] This is not acceptable if the layer is to be 

used for devices. A refinement of this was to use to the technique of Interdiffuse 
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Multilayer Process (IMP) which had first been used by Tunnicliffe et al in the growth 

ofHg,.xCdxTe.[45] 

In IMP growth, a layer of MnTe is grown, and then a layer of HgTe, whilst the 

substrate is kept heated. This produces a layer in which the composition x is varied 

by the relative thicknesses of the two layers as shown in equation 1.1 

x - h + h 
(1.1) 

where t\ and h are the thicknesses of the HgTe and MnTe layers respectively. 

This is shown schematically in figure 1.2. 
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Figure 1.2 Schematic of the IMP growth process 

Because of the technique there is a certain amount of time during which no 

growth occurs, as the source materials are being switched, from Mn to Hg. This time 

is generally referred to as the flush time, and for the samples grown in Durham is 
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usually about 39 seconds. 

It has been found from work on HgCdTe [45] that providing the individual 

layers have a thickness below 0.1 \im, then difussion will be complete within a 10 

minute anneal at growth temperature in a flow of hydrogen and under a mercury 

overpressure. This anneal generally renders the sample to be n-type as the mercury 

overpressure compensates the mercury vacancies found in the as grown material. 

Rapid interdifussion of the Hg and Mn in the layer is desirable to stop diffusion 

of material from the GaAs substrate. Hence, the thinner the grown layers, the less 

chance of this being a problem, because the growth process will be shorter in duration. 

The thickness of the buffer layer is also important in the control of substrate diffusion, 

and it has been shown that in HgCdTe the CdTe buffer layer has to be around 8um 

before diffusion can be completely eradicated.[46] 

This technique gives a compositional gradient that can be as low as 0.3% mm"1, 

although some have gradients far higher than this, up to 2.8%mm'1 in some cases [47]. 

Examples of the compositional gradient are shown in figure 1.3 below. 

0 2 A 6 B IB 12 
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1 . 

e r-
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Figure 1.3 An example of the compositional gradient in HgMnTe epitaxial 

films, where the contour lines indicate percentage concentrations. 
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1.5 Characterisation of Hgi.xMnxTe films 

Two techniques that have been used to characterise the films are electron 

microprobe analysis, also known as energy dispersive analysis of X-rays (EDAX) and 

high resolution X-ray diffraction. These allow calculation of the manganese 

concentration, layer thickness and an assessment of the sample quality, and are 

performed on samples prior to the magnetic and electron transport work, usually 

within six months of the layer being grown. The samples are sometimes examined 

under a scanning electron microscope to look for any surface features. 

1.5.1 Scanning Electron Microscopy 

The microcope ejects electrons from a cathode, which are then accelerated 

using a high potential (typically as high as 25KV), focused by electro-magnetic lenses 

and are then incident onto the sample. The current leaving the sample is then collected 

on the detector plate marked as P on figure 1.4 

Cathode 

Lens 

Lens I 

Scan Control 

Lens I 

\ 
Sample 

Figure 1.4 The scanning electron microscope 

A number of different interactions occur when the electrons are incident on the 

sample. These occur at different locations within the generation volume, shown in 

figure 1.5. 
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Incident electron beam 

Auger electrons 

Secondary electrons 

Backscattered electrons 

Continuum X-rays 

Characteristic X-rays 

Secondary fluorescence 

Figure 1.5 The electron - specimen generation volume 

Imaging can be achieved using most of the interactions shown, although the 

most commonly used in Durham are secondary electron imaging and the use of the 

Xrays. 

1.5.2 Electron Microprobe Analysis 

Some of the incident electrons produce X-rays, which are a characteristic of 

the material in the sample. It is possible to analyse these X-rays by either wavelength 

or energy dispersion, the former having greater resolution, although the latter is a more 

rapid technique and more simple to operate. The measurements performed have all 

been via the energy dispersion method. The incident X-ray produces an electron - hole 

pair in the lithium drifted silicon detector, which is then accelerated by an applied 

voltage. The energy of the pair is then analysed by use of discriminators to give the 

energy spectrum. 

To obtain the concentration of the samples under investigation, a number of 

bulk samples of known composition have been analysed by Hallam, [48] who has 
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found that the concentration is linked to the relative peak heights of the manganese 

and tellurium. 

where Imh is the height of the Mn Kot peak, and he the height of the Te L peak. 

The use of the calibration removes the requirement to calculate the so called 

ZAF correction for the measurements. This correction is used to allow for the 

absorption of the X-ray emission by the sample. 

For the samples under consideration, it was often seen that the layer was thin 

enough that the CdTe buffer layer was also visible in the spectra. This is because the 

X-rays are produced in the generation volume of the electron specimen interactions, 

which can have a depth of around 3um, which is larger than some of the sample 

thicknesses. 

To combat this, the ratio of — is used to calculate the contribution from the 

he 

buffer layer. For bulk CdTe the ratio is 0.79, and hence the Te contribution from the 

buffer layer, can be calculated and subtracted. It is also possible to obtain an idea for 

the thickness of the sample using this analysis. This method of determining the 

thickness, provides in certain samples a large discrepancy with the thickness measured 

from cross-sectional SEM. A graph of manganese concentration and thickness taken 

from ED AX is shown in figure 1.6. 

Im n 0.0049 + 1.3738 
he 

(1.2) 
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Figure 1.6 The thickness and manganese concentration of samples as 

determined from EDAX 

The limit of accuracy for this technique is approximately 1%, and there are a 

number of problems in detecting light elements, as the efficency of X-ray production 

falls off rapidly for elements with a low atomic number, such as manganese. 

1.5.3 High resolution X-ray diffraction 

Compositional changes across the sample can be measured by the use of X-ray 

double axis diffraction. The lattice constant of the layer can be evaluated from the 

position of the Bragg peak and Bragg's law. The lattice constant is related to the 

manganese concentration by Vegard's Law for HgMnTe, equation 1.3.[1] 

a = ( l -x)6 .46 + 6.334x (1.3) 

where a is the lattice parameter in the material measured in A, and x the 

manganese concentration. 

There is however a complication in performing this measurement on these 

samples. The Hgi. xMn xTe layer is grown on two buffer layers, as mentioned in section 
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1.4, and there will be a lattice mismatch between them. The purpose of the CdTe 

buffer layer is to lattice match the ZnTe buffer layer to the Hgi.xMnxTe layer grown 

above, through the formation of misfit dislocations. A certain amount of strain will be 

present in the Hgi. xMn xTe layer, from the small mismatch to the CdTe layer, changing 

the lattice parameter slightly from that observed in the bulk. This strain will also affect 

the position of the Bragg peak, and will give the impression of an incorrect Mn 

concentration. This means that the relaxation of the layer can be expressed as 

where ai is the measured lattice parameter, ar the relaxed lattice parameter, 

and cio the lattice parameter of the substrate. 

For the samples investigated the relaxation has been calculated as 95% [49], 

which means that the strain is almost completely removed by the presence of the buffer 

layer and the formation of dislocations at the interface. 

The thickness of the samples can also be evaluated from X-ray data. The 

intensity of the peak from the GaAs substrate is compared to that obtained when the 

layer has been grown. The thickness can then be obtained 

where /jt is the sum of the product of the absorption coefficent and the 

thickness for all the layers of the sample. [49] The absorption of the sample is 

dependant on the Mn concentration in the layer, and so this has to be corrected in any 

calculations. The technique gives the total thickness of the layer from the GaAs 

substrate, and so assumptions must be made as to the thickness of the buffer layers, to 

give a measure of the thickness of the Hgi.xMnxTe. The calculated thickness of some 

R = 
ai-cio (1.4) 
dr-Clo 

/(0 
1(0) 

sin& (1.5) 
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of the samples has been compared to that observed using a scanning electron 

microscope looking at the edge of the samples, and from estimates from the EDAX 

data. 
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Figure 1.7 The thickness in microns (a) and manganese concentration (b) 

for sample MMT12 as determined by double axis X-ray diffraction [49] 
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The X-ray data has also shown that some of the samples, especially MMT16 

and MMT28, have a high degree of polycrystallinity [49]. This is shown in the lack of 

a peak in the expected position for MMT, and the CdTe buffer layer is showing 

evidence of tilting and a high dislocation density. It has been suggested that in this 

circumstance MnTe will have deposited in a non epitaxial manner, and clusters will 

have been formed. 

Other samples investigated in this manner have been shown to show the 

possible existence of MnTe clumps. In particular sample MMT18A has shown 

evidence of a peak occuring in a position that could be explained by existence of these 

clumps. [49] This is shown in figure 1.8. 

1200 
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Figure 1.8 The presence of a MnTe peak in MMT18A 

Other samples investigated have not shown the existence of such peaks, 

although it is still possible that they exist and are smaller than the limit of resolution of 

the system, which in this instance is lOOnm [50]. 

16 



1.5.4 Optical absorption 

The transmission of a number of samples as a function of wavelength has been 

measured. The data is shown below in figure 1.9. 
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Figure 1.9 The optical absorption data 

The gap in the data between 2.1um and 2.5urn is due to contamination of the 

data from carbon dioxide and water vapour present. From the figure, it can be seen 

that the quality of samples MMT11, 26, 35, 36 and 37 is apparently higher than for 

MMT5 and 38. The data on sample MMT38 is misleading, as the thickness of this 

sample is 5.5|im, whilst the others are around 2u,m. 

The transmission of a sample can be expressed as 

0-6) 

where Iin and Ioul are the incident and emergent intensities, d the thickness, 

and a the absorption coefficient. 

The absorption coefficient of the investigated samples is shown in figure 1.10. 
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Figure 1.10 The absorption coefficient of the investigated samples 

The drop in transmission at 18u.m is due to the GaAs substrate on which the 

samples are grown. [51] The drop in the transmission that can be observed in all the 

samples at low wavelength, is absorption due to the band edge. This allows a 

calculation of the manganese concentration to be made, which is compared to that 

obtained by ED AX in table 1.1. 

Sample Manganese concentration 

(optical transmission) 

Manganese concentration 

(ED AX) 

MMT5 8% Small 

MMT11 21% 20 - 25% 

MMT26 16% 10% 

MMT36 21% 11% 

MMT37 26% 14 - 29% 

MMT38A 9.4% 5 - 8% 

Table 1.1 The manganese concentration obtained from optical absorption. 
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The more gradual drop in the transmission data observed in samples MMT5 

and 38 is due to there being a spread of managnese concentrations, and hence the band 

gap varies throughout the sample. 

A comparison to the transmission data can be made to MBE grown material 

[40] 

SO 
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Figure 1.11 Optical transmission of MBE grown HgMnTe 

Similar features can be observed in this sample as in the MOVPE grown 

samples investigated. The quality of this sample is similar to that of those investigated, 

as can be observed in the blurred band edge at around 4jum. 

Some of the samples show a set of fringes in the transmission data, an example 

of these are shown in figure 1.12. 
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Figure 1.12 The transmission of sample MMT11 

The fringes occur because of the interference of light from reflections within 

the sample and the direct transmission. This is shown in figure 1.13. 

Sample 

:•: 

Emergent Light 

Incident Light 

d 

Figure 1.13 The origin of the fringes in the transmission data 

The fringes can be expressed in the following equation [41] 

mX = 2dn (1.7) 

where A is the wavelength of the incident light, m the fringe number, d the 

thickness, and n the refractive index of the sample. 

20 



The refractive index is generally assumed to be independant of wavelength, and 

can be calculated from n - ^ f s , where s is the relative permitivity of the sample, 

which is 15 in the case of HgMnTe. 

The relationship is shown below for sample MMT11. 
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Figure 1.15 Fringe number as a function of inverse wavelength for MMT11 

From this it is possible to give an estimate of the thickness of the layers, which 

for sample MMT11 is 1.91 (xm. The thicknesses of the other samples calculated by this 

technique are shown in table 1.2 
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Sample Thickness (um) 

MMT5 No fringes 

MMT11 1.91 

MMT26 7.2 

MMT36 0.989 

MMT37 1.23 

MMT38A No fringes 

Table 1.2 The thickness of samples determined from the fringe seperation 

1.6 Motivation 

The main importance of this work is to examine the suitability of MOVPE 

grown epitaxial HgMnTe as material for device construction. There are two main 

reasons why epitaxial material is preferred for device construction : 

1. The growth of epitaxial layers takes place at relatively low temperatures ( 

380°C rather than the 800°C required for bulk manufacture) and the layers are 

generally of higher quality than their bulk counterparts. 

2. Epitaxial layers are necessary i f physically smaller devices are to be 

manufactured. 

A number of devices have been fabricated using HgMnTe. 

1.6.1 Photodetectors 

The main use for HgMnTe has been in the use of infra red photodetectors. For 

intrinsic material, the energy of the incoming photon will excite an electron to the 

conduction band i f its energy is greater or equal to that of the energy gap of the 

22 



material. The wavelength that this occurs at is given by 

124 
Xg - —— Equation 1.7 

£g 

where Xg is the wavelength of the incident light in um and Sg the energy gap in 

eV. 

Because the energy gap of the material can be altered from OeV up to 600meV, 

a wide range of photon energies can be detected using HgMnTe. Because of the large 

Zeeman splitting the energy gap in the material can be altered with the application of a 

magnetic field, and work by Wong et al [52] at 4.2K has shown this to be feasible. To 

be more useful to industry, this effect needs to be achievable at 77K or above, and this 

has been demostrated by Jain [53] in HgMnTe superlattices. 

1.6.2 Light Emitting Diodes 

The device is based around the injection of charge carriers across a p-n 

junction, as shown in figure 1.16. 

p-type n-type 

^ C.B. 

Fermi energy 
^ V.B. 

Depletion 
region 

Figure 1.16 p-n junction structure 

Under foward bias conditions, electrons are injected into the n-type region and 

holes into the p-type region. These carriers undergo recombination, which produces 
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photons, providing energy and momentum are conserved. This process is most 

efficient in direct gap material, such as GaAs and HgMnTe, as no momentum transfer 

is required. 

The initial work on creating light emitting diodes from HgMnTe samples was 

performed by Becla [54] who created p-n junctions by partially annealing p type 

material under Hg. 

More recently light emitting diodes have been fabricated in HgMnTe by the 

technique of two step liquid phase epitaxy on graded HgCdMnTe substrates by Becla 

[55]. These devices have been operated at 77K with an injection current of 12KAcm'2, 

and have an output wavelength of 5.3 to 5.7u,m. A higher saturation current density 

can be achieved by applying a transverse magnetic field to the device, because of the 

magnetoresistance of the material. [55] 

1.6.3 Lasers 

Very similar to the light emitting diode in the previous section, laser light can 

be produced from a semiconductor quantum well structure. The probability of 

electrons being in the conduction band is greater than that of them being found in the 

valence band, and a population inversion is produced. When a current is applied, 

spontaneous emission will occur from the recombination mechanisms that control the 

LEDs. The semiconductors has been cleaved so that the photons produced are 

internally reflected, and these photons cause other electrons to relax back into the 

valence band, creating further photons with the same phase as the original, i.e. 

stimulated emission. Hence the semiconductor begins to lase. Lasers in HgMnTe have 

been demonstrated by the work of Samarth and Furdyna [56]. 
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Chapter Two Electrical Theory 

2.1 Outline of electrical transport 

Electrical transport measurements can provide an insight in to band structure, 

lattice defects and impurity levels of the material under investigation. The motion of a 

charge carrier in a semiconductor lattice is determined by the scattering mechanisms 

that act upon it. Hence the mobility, which can be defined by a - nefj,, is a useful 

method for the evaluation of the dominant scattering mechanism in the material under 

investigation. 

2.2 Mobility in semiconductors 

2.2.1 Phonon Scattering 

In polar crystals the most dominant form of phonon scattering is that associated 

with optical phonon scatter[l]. The initial work on this form of scattering was 

undertaken by Froehlich and Mott [2] and the application to polar semiconductors 

discussed by Petritz and Scanlon [3]. The strength of the interaction between the 

electron and the optical modes of vibration is characterised by a coupling constant a, 

given by 

where a<> is the Bohr radius of the electron, me the effective mass of the 

electron, s the static and e' the high frequency permitivity, and U is a length scale 

L ( nte) &(£- s') 
a 

ss a0\m 
(2.1) 

defined as 
2meVe 

where Ve is the frequency of the phonon. 
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For most semiconductors, being non-polar, the difference in the two 

permitivities is small, and so the value of a is also small. For polar materials such as 

I I - V I compounds, e' will include the polarization due to the motion of the ions, and so 

this will lead to the difference being larger. This is borne out by the fact that for CdTe 

the value of a is 0.35, whilst for GaAs it is only 0.06. Providing the value of a is 

below one then the mobility contribution from optical phonon scattering, ju<>, can be 

calculated following the work of Petritz and Scanlon, 

1 37T2COneVe 
[ / ( z ) ] 1 (2.2) 

f (z) is an exponential factor given by 

\ e ' - l ] 

0 = ^ ) L T J f ( z ) = z(z)L—^- (2.3) 
z2 

hVe 
where z = — and %(z) is a function that varies weakly with z. 

kT 

From the above equations it can be seen that, due to the exponential behaviour 

of f ( z ) , — becomes very small at low temperatures. This is because to create a 

phonon requires the lattice to have an energy of the order of hv>, and this is just not 

possible at low temperatures. For polar materials such as cadmium telluride, it has 

been shown that optical phonon is the dominant scattering mechanism at high 

temperature[4]. This observation has been supported by Hallam, when considering the 

high temperature mobility of electrons in HgMnTe [5] 
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2.2.2 Ionized Impurity Scattering 

The radius of the potential from a Coulombic impurity is infinite, hence a 

Coulombic impurity will have an infinite cross-section for scattering. This problem is 

overcome by the use of approximations, usually Cornell-Weiskopf or the Brooks-

Herring. The calculation of the scattering of an electron by the Coulomb field of an 

ionized impurity can be calculated by the use of both classical mechanics and quantum 

mechanics, yielding the same result. In the Cornell-Wesikopf approximation the 

mobility is calculated from the standard scattering cross-section for scattering through 

6 into solid angle dw 

where R is the maximum radius of cross-section, and is evaluated by equating the 

kinetic energy of the incoming electron and its potential in the Coulomb field of the 

the permitivity of the material, me the mass of the electron, v the velocity of the 

incident electron. 

This is integrated to get a value of <JC, which is then placed into equation 2.5 

6 1 dw <y{6)dw = —R cosec 
^2 

(2.4) 

impurity. Mathematically R = 
Ze2 

Z is the atomic number of the impurity, e is 
4^£7We V .2 ' 

(2.5) 

where Nj is the impurity concentration in the sample. 

The average of this equation is taken to form ( r ; ) which is then substituted into 

equation 2.6 

m 
(2.6) 
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This substitution gives the Cornell-Weiskopf formula for ionized impurity scattering 

Mi 
MnV2eL(2kT) 3/2 

In 
2^ 

1 + 
\27TSkT 

.Ze2N;nJ 

(2.7) 

This equation shows the expected dependence of the mobility with temperature, 

namely that JUJ x 1*/2. 

The Brooks-Herring approach starts from Poisson's equation, with spherical 

symmetry assumed. The potential is calculated from 

1 d2(r<f>) e(n'-n) 
r dr2 

(2.8) 

where ri is the potential of the scattering centre at distance r, n the potential at 

infinite r, and e the permitivity of the material. 

Taking the energy of the system to be of a Boltzman distribution we obtain 

Ze 
1 (2.9) 

where Z is the atomic number, and LD the Debye length. The Debye length is 

a measure of the maximum distance at which the Coulomb field of the impurity can 

scatter earners. 

The scattering cross section can be calculated from this, which leads to the 

mobility relation of 

Mi 

\_ 3 

NiZ2e3mj 
In 

'24mek2T2s' 
> e2h2n . 

- i 

(2.10) 
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As in the case of the Cornell-Weisskopf formula above, this shows the T2 

behaviour. 

Obviously one of the problems of assuming a Coulomb-like potential is the 

problem of the potential becoming infinite at zero distance. Both of the above models 

counteract this by having a maximum potential set at a distance of a fraction of a Bohr 

radius [6], and then defining the potential at any smaller distance to being this value. 

2.2.3 Neutral Impurity Scattering 

This form of scattering is less likely to be dominant at high temperatures, where 

most of the donors in a system are expected to be ionized, but at low temperatures the 

number of neutral donors will far exceed the number of ionized ones. This system is 

thought to be analogous to the electron scattering by neutral hydrogen atoms [7]. 

Further work has shown that as long as the energy of the incident electron is 

Ei 

sufficiently low, E <—, then this approximation will hold. (£, is the ionization energy 

of the impurity) In this case the scattering cross-section can be given by [8] 

k 

Where k is the magnitude of the wavevector of the electron, a, is the radius of the orbit 

of the outer electron in the neutral impurity. 

The relaxation time of this system is given by 

< * „ ) - - ^ (2.12) 

As TN is independent of energy, then the energy averaged value, (TN ) = rN . The 

mobility for neutral impurity scattering is given by the Erginsoy relation 
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^ = 7 ^ - ( 2 1 3 ) 

5N„neme 

where Wn is the binding energy of the impurity. 

In this approximation the mobility is independent of both temperature and the energy 

of the incident charge carrier. 

Ex 
When the condition of E < — is not held, the above relation is not valid, as is 

4 

usually in the case of high temperatures. In this situation the impurity is treated like a 

square well potential that traps an electron in an excited state denoted by Er, which is 

below the conduction band. I f the value of Er is smaller than the depth of the well, and 

the effective mass approximation is valid, we can obtain 

(Ek + Erfm 

which is referred to as Sclar's result [9]. This gives a mobility of 

mV2 f Ek + Er\ 
(2.15) 

This Neutral Impurity scatter has a temperature coefficent with an exponent of 1/2 

(from the energy term), compared to Erginsoy's equation which has juaT0. It should 

be remembered that this formula is only valid for neutral impurities at high 

temperatures. 

2.2.4 Alloy Scattering 

For a semiconductor that is constituted of two different materials, such as Hgi. 

xMn xTe, then scattering can occur from the parts of the crystal which have different 

stoichiometry. The band structure of the alloy is written using the virtual crystal 
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potential, which gives an average of the pseudo-potential over the lattice sites. Any 

deviation from this is taken to be a perturbation, and is expressed as 

Calculating the Fourier amplitude then allows the r.m.s. deviation from the mean field, 

and from this the rate of scatter can be determined by 

where & ± q - *\o is a Kroenecker delta function, which requires the momentum 

of the system before and after scattering to be conserved, x is the composition of the 

material (eg Hgi. xMn xTe), Nc the density of states at the conduction band, and Va and 

Vb are the potentials of the bands in the two constituent materials, k the incident 

wavevector, k' the emergent wavevector and H the interaction Hamiltonian. 

and the scattering rate can be written as 

W(k) = —l—(Va-Vb)2Qox(\-x)(2m)mE(k)m (2.18) 
27zfi 

where Q» is the volume of the unit cell. 

From the above equation it can be seen that the temperature dependence of W(k) is T*/2 

(from E(k)), so that of the mobility will be T m . 

2.2.5 Dipole Scattering 

In compensated systems oppositely charged impurities may associate 

themselves into pairs. These pairs can scatter electrons in the same way as a dipole, 

but they will have a distribution of the separation between the impurities. For a dipole 

moment of M the scattering potential of the dipole will be given by 

(2.16) 

i xQ-x) 
(k\H\k') = (Va-Vb) & 

Nc 
(2.17) 
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M r 
P(r) = f H (2.19) 

Ana-

From the Born approximation of wave scattering 

< * ' k " C > l * > - ^ (-0, 

The cross-section can be calculated in a manner similar to that used in the derivation of 

the Brooks-Herring model, leading to 

m „ _ * # E & R . ( 2 . 2 1 ) 

24* 2 ftvfc 2 sin 2 ' * 

From this the mobility of an electron, limited by dipole scatter is given by 

MD = 4 1/2 2 A , ( 2 - 2 2 ) 
em r0 NDIP 

The temperature dependance of this form of mobility is T1' 12 

2.2.6 Dislocation scattering 

This form of scattering has a negligible effect on the measurements of a 

material unless the dislocation density is larger than 108 cm'2. They are thought to 

behave as cylindrical acceptor centres within the material, and as such will be highly 

anisotropic, with electrons incident normal to the cylinder being scattered far more 

than those being parallel. This form of scatter is of particular importance for material 

with low effective masses [10] The materials investigated by the author have a 

dislocation density of approx 109 cm'2 [11], but the dislocations are mostly located 

close to the interface with the buffer layer, and have a concentration which is inversely 

dependant on thickness[l 1]. As such, the upper part of the layer will have a far lower 
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dislocation density than the lower part, and as this part is more likley to be the region 

under investigation in any transport work on the samples, the scattering mechanism is 

not thought to be important in this case. 

It has been found [12] that the mobility averaged over the electron energy 

distribution can be expressed as follows 

^, M(KTf ( 2 2 3 ) 

where d is the distance between adjacent broken bonds (usually taken to be close to 

the lattice parameter), / the fraction of the acceptor centres occupied, Nos the 

number of dislocations per unit area, LD the Debye length, m the effective mass of 

the carrier, e the permeability of the sample, and T the temperature. 

2.2.7 Other forms of electron scattering 

The main form of scattering not listed above is electron - electron scattering, 

which is only important for intrinsic narrow gap semiconductors at room temperature. 

For this scattering to be significant [13] 

rm « l < r 5 » (2.24) 

In order to obtain a relaxation time of the order of the other forms of scattering, which 

is 10'1 2 s, we require n>1017cm'3. As this is only applicable in intrinsic material, it can 

safely be ignored in this study. 

The dependence of each of the scattering mechanisms on the effective mass of the 

carriers and the temperature is summarised below in table 2.1 
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Scattering mechanism Temperature dependence Effective mass 

Optical phonon i i 
e r j 2 

m 

Ionised impurity 3 

P (In J 2 )" 1 

i 

/n" 2[ln(/w)] _ 1 

Neutral impurity 

Alloy 1 
f 2 

3 

m~2 

Dipole 1 
f 2 

i 

m2 

Dislocation 3 
J 2 

i 

m 2 

Table 2.1 Summary of scattering mechanisms 

2.3 Mobility calculations 

2.3.1 Matthiesen's Rule 

In a sample with more than one form of distinguisable scattering mechanism, 

the relaxation time for the carriers can be calculated using Matthiesen's rule, which 

states 

— = Z 1 (225> 
TTOT i *i 

The equation is generally written in form of the mobility in the sample, as shown in 

equation 2.26 

— = S - (2.26) 
MmT > Mi 
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This equation does not hold i f the relaxation time of the scattering is a function of k, 

the wave vector, as in this case the required averages - r \ and ( —) are not equal. A 

more realistic picture of collisions casts further doubts over the validity of equation 

2.26. The assumtion that the scattering rate due to one mechanism is independent of 

the presence of the second, especially i f the assumptions of the averaging of the 

relaxation times are dropped, becomes unlikely. It may be that the distribution 

function of the scattering machanisms are independent of each other, but in general 

they will not be. More accurately it can be shown that Matthiessen's rule can be 

expressed as an inequality [14] 

P^Pi (2-27) 

2.3.2 The mean free path of carriers. 

For electrons moving in a semiconductor between scattering sites it is possible 

to define a mean free path, similar to the one found in kinetic gas theory, to estimate 

the average distance travelled between scattering events. This can be expressed as 

1=VFT (2.28) 

where vF is the velocity of the carriers at the Fermi surface, and r the 

relaxation time of the carriers. 

The velocity of the carriers at the Fermi surface can be expressed as 

hk 
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where me is the effective mass of the carrier at the Fermi surface, and kF the 

wave vector at the Fermi surface, which, according to the free electron approximation 

i 

can be expressed as kF - (3;r2/?)3. 

The relaxation time of a carrier between scattering events is given by 

T = 
e2n 

(2.30) 

where o is the conductivity of the sample. 

Combining the above equations, we obtain 

ha 
\n2 j 

(2.31) 

Linked to this is the Ioffe-Regel criterion, which states for real conduction [15] 

r 7 > l (2.32) 

I f this criterion is not matched then the carrier is said to undergo hopping 

conduction, and the standard analysis of Hall effect and other such phenomena breaks 

down. 

2.4 Van der Pauw analysis 

The conventional method for transport measurements is to form a bar of the 

material under investigation and to place contacts along its length. An example of this 

is shown in figure 2.1 

Figure 2.1 Conventional Hall bar 

39 



The current is passed between contacts A and B. The resistivity is calculated 

by measuring the resistance between a pair of adjacent contacts, eg C and D, and 

knowledge of the dimensions of the sample. The Hall effect can be measured across 

either of the two pairs of opposite contacts, i.e. C and E, D and F. This technique is 

often modified to the bridge shaped sample shown below, where the area under 

investigation is sufficently far from the contacts to allow the lines of current flow to be 

sufficently parallel. 

4f 
Figure 2.2 The bridge orientation for samples. 

For samples of arbitary shape it is possible to use the Van der Pauw technique 

to calculate the resistivity without detailed knowledge of the sample area. Providing 

that the contacts used are small, located on the circumference of the sample, the 

sample thickness is homogeneous and is singularly connected then the resistivity of the 

sample can be easily calculated. The sample is considered in the complex plane and 

integrated around an open path t 
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Figure 2.3 A Van Der Pauw contact arrangement 

For the sample under investigation the current is passed between two adjacent 

conatcts A,B and the potential difference measured between the other two contacts 

C,D. This measurement is referred to as RAB,CD- The resistivity can be calculated from 

ud {RAB.CD + RBC, DA) IRAB,CD 

In 2 \KBC,DAS 

(2.33) 

where d is the sample thickness, and / 
^ RAB, CD 

\RBC, DA 
is a function of the ratio that 

will satisfy the equation 

RAB, CD — RBC, DA 

RAB, CD + RBC, DA 

r f l n 2 ^ 
exp 

= /arcosh 

For isotropic samples 

following more useable form 

RA. B,CD 

RBC. DA 

(2.34) 

1 the equation can be expanded to give the 

f 
RAB.CD—RBC,DA In 2 

V RAB,CD-\-RBC,DAS 

RAB,CD—RBC, DA 

\RAB,CD~\~RBC,DA> 

( l n 2 ) 2 ( l n 2 ) 3 

12 

(2.35) 
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Which leads to the following graph. 

0.90 -

4 5 6 7 

Sample Anisotropy 
10 

Figure 2.4 Variation of the anisotropy correction factor for low anisotropy of 

resistance. 

The main problems with the analysis comes from the assumptions made in the 

derivation. I f one of the contacts is misaligned towards the centre of the sample (i.e. 

away from the circumference) then errors will be introduced to the results. 

Considering one contact misplaced, the errors on the resistivity and Hall mobility can 

be given by equations 2.36 

Ap 
2 D 2 l n 2 

A/UH = Id 

(2.36.a) 

(2.36.b) 

where d is the displacement of the contact and D the size of the sample (usually taken 

to be circular in this analysis). 
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For a contact which has a finite size, s, (i.e. — is not very small) then the 

errors on the measurement can be given by equations 2.37 

Ap s2 

p 16D 2ln2 

Ap,H _ 2s 

(2.37.a) 

(2.37.b) 
p.H K D 

The two errors are simply summed i f both of these occur in the same sample. 

An error on the resistivity measurement of 1%, is obtained i f the value of 

s d 
— < 0.33 or the value of — < 0.118. For the mobility measurement the same error 
D D 3 

s d 
can be obtained with the value of — < 4.93x10 2 , or the value of — < 1.57x10 2 . 

D D 

2.5 The Hall effect 

2.5.1 Single carrier conduction 

The Hall effect is a manifestation of the Lorentz force on a charged carrier 

moving under the influence of an applied electrical field. The force can be expressed as 

K = <l(K + vxB) (2.38) 

where q is the electronic charge, £ the electric field vector, v the drift velocity of the 

carrier, B the applied magnetic field. 

The most common form for the Hall voltage which is given [16] in 2.39. 

V« = ^ f - (239) 
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where / is the current through the sample, / is the sample thickness, and RH is the 

Hall coefficient given by equation 2.40 

RH=— (2.40) 
nq 

where n is the carrier density, and r is the Hall coefficent factor. 

The Hall coefficent factor depends on the material under investigation, being a 

weak function of the band structure, the dominant scattering mechanism, and the 

energy distribution of the carriers [17]. However, as the dependance on these 

properties is weak, and the value of r is close to unity, and is often used as 1 in 

analysis. It can also be defined as the ratio of the Hall mobility of the material to the 

drift mobility of the material, as shown in equation 2.41. 

r = (2.41) 
M 

The Hall mobility /uH can be expressed as a function of the carrier 

concentration and resistivity, and can be evaluated from the Hall voltage observed. 

MH = ~ (2.42) nep 

and because of equation 2.39, this can be expressed as 

where (— J is the gradient of the experimental Hall effect data taken. 

2.5.2 Multiple carrier conduction 

I f the material has a contribution from both the conduction and valence bands, 

then the Hall coefficent will also receive contributions from both bands. The weighting 
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of the contribution is proportional to the square of the mobilities of the respective 

carriers, as shown in equation 2.44 [17] 

R K - - { r f " ' r ' " ^ P.«4) 

where rn is the Hall coefficent factor for electrons, p„ the electron mobility, n the 

electron concentration, r the Hall coefficent factor for holes, jup the hole mobility, p 

the hole concentration. 

This can also be expressed as a function of the mobility ratio, b- — , 

providing that rQ = rn = rp. [17] 

\e\{p + bnf 

The value of b can be calculated from the experimental data by examining the ratio of 

the maximum of the Hall coefficent to its value in the extrinsic region. Taking RH

m!X 

and R^to be the Hall coefficent maximum and extrinsic value respectively, we obtain 

[17] 

V " = -(b-l)2 

R„M ~ 4b 
(2.46) 

/in 

From equation 2.44 it can be seen that the Hall coefficient of a sample can be 

dominated by the minority carriers i f their mobility is high enough. As an example i f 

the concentration of holes in a p-type sample is p = 1600w then the Hall coefficient 

will be negative as long as p« > 40/4 • As the magnetic field is increased the Hall 

coefficient will become positive, as in the high field limit equation 2.44 can be 

expressed as 
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and so the Hall coefficient is no longer affected by carrier mobilities. 

2.5.3 The anomalous Hall effect 

In a magnetic material, there is a contribution to the Hall voltage that is 

proportional to the magnetisation of the material. [18] This extra contribution is 

referred to as the anomalous Hall effect. 

RH

meas = RH

act +RH

amm (2.48) 

Where R^™ is the measured value of the Hall coefficient, RH

act the value 

from the 'real' Hall effect, and RH

anom the anomalous contribution. 

In a ferromagnetic material, the anomalous Hall coefficient, RH

anom, can be 

expressed as [19] 

RH

amm = MRS (2.49) 

where M is the magnetisation of the sample, andfty is proportional to the 

magnetic scattering in the material, and hence p. From this we can write [19] 

V ~ = V + C / f f (2.50) 

where RH

meas is the measured Hall coefficient, RH

acl the actual Hall coefficient 

in the sample, p the sample resistivity, x the susceptibility, and C a constant. 

This phenomena has been observed in ferromagnetic materials, amorphous 

magnetic alloys, and in InMnAs [20] 
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2.6 Magnetoresistance 

When a magnetic field is applied to a material its resistance changes. The 

Lorentz force on the electron, which gives rise to the Hall effect, forces the move in a 

circular trajectory about the applied magnetic field. The resistivity of the material will 

increase as a consequence of this, as the mean free path of the electron is reduced. The 

mobility of the electron also shows a similar reduction with the application of a 

magnetic field. Hence the resistivity of the material should increase according to [21] 

^ aB2 (2.51) 

Po 

Where B is the applied field. 

This is the form of magnetoresistance observed in metals and some 

semiconductors. A more general form of the above equation shows that the magnitude 

of the magnetoresistance is proportional to the carrier mobility, and so for a material 

with one carrier type [22] 

^- = SB2 (2.52) 
Po 

Where fx is the mobility of the carrier. 

For a sample with a very small band gap and heavy compensation it has been 

shown that [23] 

— = MnMhB2 (2.53) 

Po 

The majority of the samples studied can be considered as narrow band gap 

compensated material, and so equation 2.53 is likely to be applicable for most of the 

specimens in this work. 
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For a magnetic material, a negative magnetoresistance is often observed in the 

low field region, and is attributed to the scattering of the free carriers by magnetic 

impurities [24]. According to this theory, 

Where M is the magnetisation of the sample, and C a constant. 

Normally it would be expected in a system such as HgMnTe, that the 

magnetisation would be described via the use of either a Brillouin function or a 

Langevin function, as will be described in sections 3.3.3 and 3.3.4. It has been shown 

for very dilute systems containing manganese that the value of the magnetic moment 

used in the analysis is variant on temperature and field. The value of the total angular 

momentum J is found to be variant on the amount of manganese present, and this has 

been linked to the manganese forming clusters within the material [25]. 

Within the hopping regime, the magnetoresistance is dominated by the effect of 

electron wavelength shrinkage, which affects the tunneling ability of the carrier. 

Characteristics of the magnetoresistance in this regime are a positive 

magnetoresistance of the form [26] 

Po 

Where C and A are constants. 

2.7 Photoconductivity 

The conductivity of a material can be defined from equation (2.42) as 

Ap CM (2.54) 

(2.55) 

<j = neju (2.56) 
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Under illumination, a change in conductivity may occur, and so the new 

conductivity, (<r + Act) , can be expressed as 

(cr + Acr) = (« + An)e(ju + Aju) (2.57) 

From this it can be seen that there are two distinct methods of affecting the 

conductivity of the sample, changing the mobility of the carriers or changing the carrier 

density. 

From simple semiconductor theory, illuminating a sample with light will 

produce a change in the carrier density i f the energy of the incident photons are equal 

to the energy gap of the material. In this case an electron is promoted from the 

valence band to the conduction band, and a hole is formed in its place. This is shown 

in figure 2.5. 

C.B. 

hu 

V.B. 

Figure 2.5 Intrinsic photoconductivity 

Increases in mobility can be caused by a number of different mechanisms. I f 

the scattering is dominated by charged impurities, the mobility can be affected by either 

changing the density of impurities in the material, or by changing their scattering cross-

section. 
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I f the material is polycrystalline in nature then illumination can reduce the 

height of the intergrain potential bariers, and reduce the depletion width at the 

interfaces. 

I f carriers are excited from one band to another, the mobilities of the two bands 

may be different, and so the overall mobility of the sample will change. 
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Chapter Three Magnetic Theory 

3.1 Introduction 

Magnetism has fascinated man for centuries, and is one of the oldest areas of 

scientific study. The following chapter outlines the main forms of magnetism, and then 

concentrates on the magnetism relevant to HgMnTe. 

3.2 Diamagnetism 

For an ion or atom in a magnetic field, the total kinetic energy operator in the 

Schroedinger equation becomes [1] 

where pi is the momentum of electron /', H the magnetic field, m the electron 

mass, e the electronic charge, c the velocity of light, and rt the radius of the electron orbit. 

At zero Kelvin, the magnetisation of a quantum mechanical system, M„(H), can 

be defined as [1], where n = 0. 

where V is the sample volume, a n d £ n the energy of the nth state of the system in 

a magnetic field H. 

The value of the magnetisation at a finite temperature can be calculated from the 

thermal average of the magnetisation of each excited state of energy. 

1 r.xH 
2c 2m 

(3.1) 

Km=-
1 SE„{H) 
V cH 

(3.2) 
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M(H,T) = -* ^ (3.3) 

From this the susceptibility can be defined as 

x = ~m < 3 4 ) 

The simplest material to consider is the case of an insulator with all the electronic 

shells filled. Such a material will have zero spin and zero orbital angular momentum in the 

ground state. This can be expressed using Pauli notation as 

J |0)=L|0) = S|0)=0 (3.5) 

from this it can be seen that only the ground state is important in the calculation, 

and this can be expressed as 

Because of the spherical symmetry of the atom under consideration, it can be 

1 2 

shown that the summation can be made over —r rather than the Cartesian co-ordinate 
3 ' 

axes x,2 and y,2. Using this to calculate the susceptibility leads to 

X V W1 6mc2 V K lY' 1 1 

(3.7) 

It is convenient to define a mean square radius by 

1 
fr2) = ^ Z ( ° k 2 | 0 ) (3-8) 
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where Z is the total number of electrons in the atom. 

From this we can obtain the standard equation for diamagnetic susceptibility in a 

material. 

This result is also referred to as the Langevin equation for diamagnetism, and can 

be obtained classically from a consideration of the orbits of electrons. 

It should be noted from this equation that diamagnetism is a property of all 

material. The susceptibility of the material will always be negative, as the mean square 

radius of the electrons cannot be negative, and the temperature does not enter the 

equation implicitly. Any small fluctuation of the susceptibility with temperature is 

interpreted as the mean square radius fluctuating. 

3.3 Paramagnetism 

For a material that only has partially filled shells a different type of magnetism 

occurs. In this case the values of l-S), \L) and hence \J) are unlikely to be zero, and 

methods of calculating these values have to be considered. 

3.3.1 Hund's Rules 

Originally derived from the atomic spectra of materials, these rules state the values 

of S, L and J. These can be expressed as 

a. S = ̂ msj The atom should have as many unpaired spins as possible, within the 

limits imposed by the Pauli exclusion principle. 

el NZ 
X 6/MCZ V 

(3.9) 
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b. L - ^mu The angular momentum should be as high as possible, without 
i 

contradicting rule a above. This is achieved by preferentially filling the L states to give the 

maximum value. 

c. For a shell with less than half occupation (ne < (21 +1)) 

J=\L-S\ 

For a shell with more than half occupation (ne > (21 +1)) 

J=L + S 

3.3.2 Van Vleck Paramagnetism 

For a material with J=0, (one electron short of a half filled shell), the energy of the 

ground state can be expressed using second order perturbation theory as 

tone ; n En~Eo 

(3.10) 

Calculating the susceptibility from this leads to an equation that gives two terms. 

The first of which is just the Langevin diamagnetism of the material, the other having a 

different sign. Hence this second term favours alignment parallel to the field, a behaviour 

referred to as paramagnetism. 

= _N_ 
X - y °2 (oE(x, 2

+ ^, 2 ) |o)-2^5; 
4/MC2 ^V v'"' " "-' r " ^ E-E„ 

(3.11) 

This is the equation for Van Vleck Paramagnetism. Only the ground state of the 

system is occupied with any appreciable probability, and so this is most likely to be 
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observed at low temperatures. In many cases the next lowest energy state is also likely to 

be populated, and so the equation above has to be modified. This form of paramagnetism 

is temperature independent. 

3.3.3 Paramagnetism in a set of identical ions 

I f in the ions only the lowest 2 J +1 states are thermally excited (to a reasonable 

probability), then the free energy of the system can expressed as 

-pa (3.12) 

where y - g(JLS)/jB and ft = 

The magnetisation in this system of N ions in volume V can, using (3.1) be given as 

M = yyJBj(j3yJH) (3.13) 

where Bj(fiyJH) is the standard Brillouin function given by 

BAx) = 
2J + \ 

2J 
coth 

"(2J + l)x" 1 
coth 

X 

2J 2J 2J. 

(3.14) 

The value of the Brillouin function for several values of J is shown below. 
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Figure 3.1 Brillouin function fits to paramagnetic materials [2] 

In the small field limit, yH «ksT, the Brillouin function can be expressed as 

V ' 3J 
(3.15) 

This enables us to write the susceptibility of the material in low field as 

X = 
N(gMB)2 •/(•/+!) 
V 3 kBT 

(3.16) 

Which compares to the classical Curie Law, expressed as 
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Z = j (3-17) 

This assumes that the interactions between the ions is far weaker than their interaction 

with the applied magnetic field. 

In 1907 Weiss noted that the inverse susceptibility of some materials did not go to 

zero at OK. Materials such as nickel and cobalt gave a positive intercept. Weiss 

postulated that these materials had internal interactions, which could be explained by the 

use of a molecular field. No justification of this postulation was made. 

The susceptibility of a material in general can be explained by the use of the Curie 

Weiss Law. 

x = T-e (3'18^ 

where 9 is used as a fitting parameter. Positive values of 6 are a characteristic of 

ferromagnetism, whilst negative values are antiferromagnetic. This is shown in figure 3.2. 

I X 

T i . e 

Figure 3.2.a The behaviour of magnetisation (M(T)) and inverse susceptibility 

(x"1) for ferromagnetic material [3] 
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Figure 3.2.b The behaviour of magnetisation (M(T)) and inverse susceptibility 

(x"1) for antiferroferromagnetic material [3] 

3.3.4 Superparamagnetism 

The response of magnetic clusters within a non magnetic matrix has a behaviour 

which is similar to that of a paramagnet. Assuming that there is no interaction between 

the clusters, the magnetisation as a function of field and temperature is given by the 

Langevin function [4] 

where m = gfJBJx and is often known as the number of effective Bohr magnetons 

per cluster. Another viewpoint on this is that g/u&J is the magnetisation per ion and x is 

a measure of the number of ions within the cluster. 

The above assumes that all the cluster have the same number of ions, whereas in 

reality there will be a distribution [4]. This distribution of sizes gives rise to a remanent 

field in the sample which increases as the temperature falls, and from the measurement of 

this it is possible to evaluate the distribution of particle sizes [5]. 

ksT mB 
M - coth 

ksT mB 
(3.19) 
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3.3.5 Zeeman splitting 

In a magnetic field, an atom with magnetic moment ju will have a potential energy 

due to its orientation, which can be expressed as [6] 

AE = -/i-B (3.20) 

In HgMnTe the electrons in the bands also gain a potential energy from this 

interaction. This energy removes the degeneracy for spin up and spin down carriers in the 

bands, forming two separate levels. The energy of each of these levels away from the 

original degenerate level can be expressed as, 

AE = juBBgms (3.21) 

where (j.B is the Bohr magneton, ms the spin quantum number for electrons 

(±1/2), and g the gyromagnetic ratio for electrons. 

This is shown in figure 3 .3 

.... ' uHBg/2 

" '' 

Zero field Applied field 

Figure 3.3 Effect of Zeeman splitting on a degenerate band 

In a narrow gap semiconductor, such as HgMnTe, the Zeeman splitting can be of a 

sufficient magnitude to cause the bands to overlap, forcing the material to become semi-

metallic. Because of the enhanced g factor in DMS, which can reach 300 or so at low 

temperature, the Zeeman splitting in HgMnTe is typically 20meV T"1. 
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3.4 Direct exchange 

The phenomenological internal field that was introduced by Weiss to explain the 

magnetism of ferromagnetic materials, had no explanation for twenty years. Then Dirac 

and Heissenberg independently discovered quantum mechanical exchange. 

Consider two isolated atoms, each with one electron. Schroedingers equation for 

the system can be expressed as 

- — ( V i 2 + V22) + V(qi) + V(qi) ys - Ey/ 
2m 

(3.22.a) 

and the equivalent defining the Hamiltonian of the system, 

Hy/ = Ey/ (3.22.b) 

This assumes that the two electrons are distinguishable with co-ordinates q\ and 

qi. The solutions to this equation are given as 

y/a(\)yA,(2) (3.23.a) 

K 1 ) K 2 ) (3.23.b) 

The total energy of this system can be expressed as E - Ea + Eb. In reality the 

electrons are indistinguishable and so these two waveforms cannot be solutions to this. 

Linear combinations of the two solutions can satisfy the requirements and so we obtain 

tMl,2) = - ^ [ ^ ( l ) y * ( 2 ) + yA,(\)y/a{2)] 

(3.24.a) 

^(1 , 2 ) = -j=[y,a(\)yA,(2) - y*(l)¥*(2)] 
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(3.24.b) 

From the Pauli exclusion principle, all electron wavefunctions are anti-symmetric. 

The wavefunctions given above have spatial and spin components, which can be 

separated, ysa = <t>a(r)Za> V/b = A(r)Zb- The wavefunctions can now be constructed 

from a symmetrical spatial component and an antisymmetric spin component and vice 

versa. 

This gives the electron wavefunctions to be 

W = ^[^(1)<*>(2) - ^ ( 1 ) ^ ( 2 ) ] [ ^ ( 1 ) ^ ( 2 ) ] 

ym = - j L [ * ( l ) * ( 2 ) - Ml)M2)lx«V)ZfC2) + ^ ( 1 ) ^ ( 2 ) ] 

W = - ^ [ ^ ( 1 ) ^ ( 2 ) - MI)M2)][X^)ZK2)] 

(3.25) 

In the case of yA a singlet state is produced with antiparallel spins, giving S = 0. 

In the case of yn a triplet state is produced with parallel spins, giving S = 1,0,-1. 

I f the interaction between the atoms is considered, perturbation theory can be used 

to calculate the energy of the system. 

E - jy/i* Hny/idT\dr2 + jyti * Hnymdndri 

(3.26) 

where Hn is the Hamiltonian of the interaction between the two electrons 
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The energies for the parallel and antiparallel states can be expressed as 

Ei = Kn + Jn (3.27.a) 

Eii=Kn-Jn (3.27.b) 

where Kn is the average energy of the Coulomb interaction between the 

electrons, and Jn is the exchange integral that comes from the indistinguishability of the 

electrons. These are defined as 

KM = ]>„ *(\)<j>b *(2)Hn<t>a(\)<t>b(2)dudT2 

Jn = ^ a * ( 2 ) ^ . 2 ^ a ( 2 ) ^ ( l ) ^ r a 

(3.28) 

Considering the spins of the two possibilities, parallel and antiparallel, we can write 

the energy of the system to be 

E = Kn-^Jn-2JnSx-Si (3.29) 

This equation is confusing, as the energy of the exchange appears to be related to 

the spin of the electrons, when in fact it is a function of the spatial part of the 

wavefunction. This can be represented by considering the spins of the system, as the two 

are related by Pauli's exclusion principle. 

The exchange integral shows whether the material is ferromagnetically coupled or 

antiferromagnetically coupled. For antiparallel spins, the value of Jn is negative, i.e. 

antiferromagnetism. The parallel case leads to positive values of Jn, i.e. ferromagnetism. 
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3.5 Indirect exchange 

In a material such as zinc blende MnTe, the distance between adjacent Mn ions is 

4.5A. According to the model of Heisenberg outlined in section 3.4 the material would be 

expected to show a weakly ferromagnetic behaviour. In fact cubic MnTe is 

antiferromagnetic below 60K [7], and so it follows that a different mechanism must be 

responsible, that of super exchange, introduced in 1934 by Kramers [8]. The anion that 

separates the Mn ions is responsible for the interaction between the Mn ions, although 

there will be a small contribution from the expected ferromagnetic mechanism. Although 

the distance between manganese ions is less for those which subtend a 90° angle at the 

cation, the interaction is stronger for those which are diametrically opposite, as shown in 

figure 3.4, for MnO. [9] 

Mn 

Mn — O Mn — O — Mn 

Figure 3.4 The contrast between the two orientations of the Mn - Mn 

interaction. 

This is due to the shape of the p orbital in the anion which has a charge distribution 

concentrated in one dimension. A small interaction with the nearest neighbours is 

possible, [10] due to the hybridisation of the 2s and 2p orbitals of the ion. This is 

however, far smaller than that seen for just the p orbital. 
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Figure 3.5 Schematic representation of super exchange 

The mechanism can be explained in the following manner. The ground state of the 

system is shown in figure 3.5. a. One of the electrons from the anion (in this case oxygen) 

is transferred to the Mn ion adjacent, figure 3.5.b. Due to thermal excitation, the spin on 

the electron on the opposing Mn ion flips, forcing the electron spin on the anion to follow 

suit. The electron that made the initial transfer is now unable to return to the anion, 

because of Pauli's exclusion principle, and so the other electron is transferred instead. 

This gives rise to an antiferromagnetic coupling between the Mn ions. 

This mechanism can be described by perturbation theory, and the coupling between 

the Mn ions is found to be, 

Sd\Sdl T 

lEii2 E±2 

where Sdi and Sdi are the spins of the ions, Eu the energy required to form 

parallel spins, EL the energy required to form antiparallel spins. 
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The above description assumes that only one of the electrons on the oxygen is 

transferred to the manganese. Obviously both of the electrons are likely to move, hence 

the coupling coefficient is twice as large as would be derived from the above. 

3.6 Long Range Interactions 

In wide gap diluted magnetic semiconductors Larson [10] has shown that the 

interaction consists mainly of super exchange with around 5% Bloembergen Rowland 

interaction. For a narrow gap material one can expect gap dependant mechanisms such as 

Bloembergen Rowland and RKKY to become more significant. These mechanisms are 

discussed below. 

3.6.1 Dipole interaction 

The magnetic moments in the material are coupled by the dipole - dipole 

interaction, for which the Hamiltonian can be expressed as [15] 

where r_v is the spatial coordinates of the ions, and St, S ; the spin of the two 

ions. 

Typically this interaction is so weak that it will only be noticable at temperatures 

below 40mK.[15] So the long range interactions observed in material such as HgMnTe 

must be from a different mechanism. 

g Mb 

V 

SrSj-3 

(3.31) 
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3.6.2 Bloembergen Rowland Interaction 

Unlike the superexchange mechanism outlined earlier, in this mechanism the 

localised spins interact via the virtual excitation of an electron from the valence to the 

conduction band. The strength of this interaction can be expressed as 

exlr{Egy\ (3.31) 

where r is the inter spin distance, and Eg the energy gap of the material. 

In the case of HgMnTe it has been shown that this interaction will give rise to a 

long range antiferromagnetic interaction. [16] 

Work by Bastard et al [17], has shown that in HgMnTe a mechanism very similar 

to the Bloembergen Rowland is responsible for the observed values of susceptibility at 

high temperatures. The interaction has a form of [15] 

CR~5cos(kFR) (3.32) 

where kF is the Fermi wave vector, R the separation of the ions, and C a constant. 

3.6.3 R K K Y Interaction 

From linear response theory it can be shown that the magnetic field induces a spin 

- polarisation of the electron gas in a sample, which exists for a distance of , where 

kF is the Fermi wave vector. In this way electrons can transfer information about spin 

orientation. In a diluted magnetic semiconductor such as HgMnTe, the concentration of 

free electrons is smaller than the concentration of localised spins (Mn ions), and the 

interaction is ferromagnetic [15]. Antiferromagnetic exchange is also possible using this 
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mechanism, when the seperation of the magnetic ions is sufficently high, i.e. the ratio of 

electron concentration to that of the localised spins drops. 

Story et al, have observed a ferromagnetic phase transition in p-type PbSnMnTe 

[18] which is thought to originate from this mechanism. 

3.7 The magnetism of HgMnTe 

The magnetism of this material can only be calculated analytically in certain cases. 

3.7.1 The dilute limit 

For manganese concentrations below 0.01 the spins in the material can be 

considered independent of each other, and so the behaviour is that of Curie's law. The 

magnetisation can be described by the use of a Brillouin function as outlined in section 

3 .3 .3 above. 

3.7.2 High temperature regime 

Although the magnetisation at all fields cannot be given by a Brillouin function 

because of the Mn-Mn interactions, the low field susceptibility is found to be linear as a 

function of field. This low field susceptibility has been shown to follow a Curie-Weiss 

form [19] and is normally expressed as 

X = -^— (3-33) 

Considering the system to be a randomly dilute Heisenberg antiferromagnet, we 

can express this as 

C x 
Z = ~ ^ - (3.34) 
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At low temperatures and high manganese concentrations, a deviation is observed 

in the inverse susceptibility from the expected linear behaviour [20]. This deviation is 

considered to be quantifiable by the inclusion of higher order expansion terms in the 

calculation of % Work on this have been performed by a number of authors, one of 

which is Nagata [21] and this is outlined below. 

The susceptibility is calculated for the separate contributions of single ions, pair 

and triplets, and then multiplied by the probability of their occurrence in the sample. The 

contribution of larger clusters has been ignored in this work, and it has been shown by 

[22] that for a manganese concentration below 10%, the effect of these can be discounted. 

The probability of an ion forming one of the specified cluster types is given by 

Cluster Type Probability of occurrence 

Single ( ! - * ) " 

Double 12x ( l -x ) 1 8 

Closed Triangle 1 8 x 2 ( l - x ) 2 3 [ 5 ( l - x ) + 2] 

Open Triangle 2 4 x 2 ( l - x f 

Table 3.1 Cluster probabilities 

The susceptibility for each group can be expressed as [21] 

-Es 

3kBT 
Z(2S + 1> 

Es (3.35) 

70 



Where S is total spin of the group and is listed in reference [21], and Es the energy 

of the group in zero magnetic field. In high field this should be changed to Es - gjuBmH, 

where m is the magnetic quantum number, and H the applied field. 

The predictions of this theory are in good agreement with the experimental data, 

although the values obtained are not in exact agreement. Figure 3.4 shows the data taken 

from Nagata's paper to illustrate the fits obtained with the above expression. Some of the 

fits are using a modified probability distribution, which is calculated from the specific heat 

data. The value of the exchange interaction Jn has been used as a fitting parameter for 

the data, and the value obtained, Jn = -IK, is comparable to those obtained by other 

groups. 

The contribution to the susceptibility from clusters larger than three ions have been 

ignored in this work, will give rise to a larger susceptibility than those shown in the figure. 

This will force the inverse susceptibility to lower values, further away from the 

experimental values, showing that the model using the standard distribution is flawed. 
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Figure 3.7 Inverse susceptibility of HgMnTe samples and the fits obtained 

using the method of Nagata et al [21]. The solid lines denote the experimental 

results. The dashed lines are fits based on the random probability distribution 

(c,d,g,h,k) or on the modified distribution (b,e,j). 
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3.7.3 Spin glass 

At a sufficiently low temperature the susceptibility of HgMnTe shows a distinct 

cusp. This is interpreted as the transition to the spin glass phase, and is referred to as the 

spin glass transition temperature, Tg. An example of this is shown in figure 3.8. 

14 

12 

t_> 
toir 

o 
x 
X 

8 

6 

0.2 OA 0.6 
T(K) 

Figure 3.8 The susceptibility of HgMnTe at the spin glass transistion. Curves 

1-3 are for a sample with x=0.034 (right hand axis) and curves 4-5 for a sample 

with x=0.02 (left hand axis) [23] 

The original work in this field suggested that a spin glass could only form for a 

manganese concentration of x > 0.19. This value was based on the percolation threshold 

in HgMnTe and the work of Domb et al [24] 
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The mechanism responsible for the transition was thought to be linked to the 

growth of clusters within the sample [25]. Due to random fluctuation in the composition 

of the sample certain areas are found to be Mn rich. 

. T y p e - I E A F M T y p e - I E A F M 
clumter 

m 
T » T 

m 
01 J 

Figure 3.9 The cluster theory of Mydosh [26] 

As the temperature is decreased the clusters increase in size, until they start to 

touch , picture 3 [26], at which point the spins can no longer react to an applied magnetic 

field. 

The temperature at which the clusters touch can be interpreted as the spin glass 

transition temperature, and this has been supported by neutron diffraction experiments 

[27], that have observed that the magnetic correlation length becomes constant below Tg. 

74 



Later work has found a spin glass transition in samples with a negative bandgap, 

i.e. x<0.07. This concentration is well below the percolation limit and so another 

mechanism must be responsible. All tetrahedrally bonded zinc blende or nickel arsenide 

diluted magnetic semiconductors are predisposed to form AFM-III magnetic order, which 

can be observed directly via the use of neutron diffraction. 

Zinc Blende T y p e - I E 
Structure A F M order 

i 

• A n *Bm • M n ( t ) o M n U ) • B' 

Figure 3.10 AFM-III order [23] 

It has been noted that the interaction that produces a spin glass in samples with 

low manganese concentration is long range [28], and the usual theory is based on the 

concept of frustration of the exchange mechanisms within the lattice. 

Consider an antiferromagnetically ordered triplet of ions. Two of the ions are 

arranged with their spins antiparallel as required from indirect exchange. The third ion 

cannot align antiparallel to both of the ions simultaneously, and this is the basis of the 

frustration mechanism. 
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Figure 3.11 The frustration mechanism in an antiferromagnetic system. 

The spin glass transition as a function of manganese concentration is shown below 

in figure 3 .12. 

Hg.,_ x Mn x Te 

0.10 0.20 0.30 0.40 0.50 

Figure 3.12 The spinglass transition temperature in HgMnTe [22] 

The spin glass transition temperature in HgMnTe can be compared to that of other 

diluted magnetic semiconductors, as is shown in figure 3.13. The gradient of the line in 
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this plot gives an idea as to the range of the interaction that causes the spin glass 

transition. The line for HgMnTe has a more shallow gradient than for wide gap material, 

e.g. CdMnTe, denoting that long range interactions are more important. 

100 I — m m 
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Figure 3.13 The spin glass transition temperature for a variety of DMS [14] 
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Chapter Four Electrical Experimental Details 

4.1 Techniques of Hall measurements 

A number of problems can be encountered in the measurement of the Hall 

effect on samples. The most common one is a zero field offset which is due to the 

misalignment of the voltage probes, this gives a voltage which is proportional to the 

current and the resistivity of the material. The probes are separated by a small distance 

dx, which gives rise to a voltage from Ohms Law of AV 
Ip&c 

This voltage is 

almost completely field independent, unless the magnetoresistance of the sample is 

large compared to the Hall voltage, and can be easily removed during the analysis. 

The usual method for counteracting this problem is to use five electrical contacts 

method, as shown in figure 4.1, where two of the contacts are placed close together 

and are connected by a potential divider. 

Voltage 
+ve 

Current 
+ve 

Current 
-ve 

Voltage 
-ve 

Figure 4.1 The five contact method 

The potential divider is adjusted to give zero Hall voltage at zero field, at each 

temperature used. I f the resistance of the potential divider is infinite, then the device 

will only have to be set once, and the off-set will be nulled at each temperature. In 
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reality the resistance of the potentiometer must be higher than the resistance of the 

sample between the two contacts, or it will act as a short. This allows the samples to 

be subjected to the usual van der Pauw analysis. Some of the work performed by the 

author, however, has been performed using four contacts and removing the offset at 

the data analysis stage. 

Another problem that can be encountered in Hall measurements is the 

Ettinghausen effect. Although smaller in magnitude than the error induced by contact 

misalignment, it can be sufficiently large to give inaccurate results. A permanently 

maintained temperature gradient will appear in a sample i f an electric current is 

subjected to a magnetic field perpendicular to the direction of flow, i.e. in the 

arrangement used for Hall effect measurements. The temperature gradient along a 

sample can be expressed as 

AT=™ (4.1) 
b v ' 

where AT is the temperature gradient across the sample, P the Ettinghausen 

co-efficient, / the current flowing in the sample, H the magnetic field applied, b the 

sample thickness. This will cause the two contacts to be at different temperatures and 

hence see different carrier concentrations. 

Another source of error is the Nernst effect, which is a potential gradient in the 

sample perpendicular to a thermal current. This can be expressed as 

where EN is the potential gradient across the sample, w the thermal current 

density, K the sample's thermal conductivity, Q the Nernst coefficient. 
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The Righi-Leduc effect produces a temperature gradient in the y direction, 

when a thermal current flows in the x direction with a magnetic field applied in the z 

direction. This can be expressed as 

AT = ^ . (4.3) 
K 

where A71 is the temperature difference across the sample, S is the Righi-

Leduc coefficient, a is the sample width, w is the thermal current density, H is the 

applied magnetic field, K is the sample thermal conductivity. 

The usual method for the removal of unwanted errors in the Hall effect is to 

reverse the current and the field to get a series of four measurements. This will also 

allow the removal of the contact misalignment offset voltage. Defining Ej as 

E\ = VH + VE + VN + VRL + Vm (4.4.a) 

where VH is the Hall voltage, VE is the voltage from the Ettinghausen effect, 

VN is the voltage from the Nerast effect, VRL is the voltage from the Righi-Leduc 

effect and Vm is the voltage from the contact misalignment. 

Reversing the current gives 

E2 = -VH-VB + VN + VRL-VIR (4.4.b) 

Reversing the magnetic field gives 

E3 = VH + VB-VN-VRL-VIR (4.4.c) 

Reversing both the field and the current gives 

E4 = -VH-VB-VM-VRL + VIR (4.4.d) 

The four equations above can be combined to give 

„ i r E\-E2 + Ei-£4 
VH + VE = (4.5) 
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Hence the contributions for the Nernst effect, the Righi-Leduc effect and the 

effect of contact misalignment have been removed. The remaining contribution of the 

Ettinghausen effect is impossible to remove by the use of DC Hall effect 

measurements, and so AC techniques are required. Providing the frequency of the 

oscillations is higher than that associated with the thermal current, which is given as 

Q)o»0.1 [1] the effect can be cancelled out. 

The use of AC techniques in measuring Hall voltages allows the use of lockin 

amplifiers, and hence a better signal to noise ratio can be achieved. Due to the higher 

ratio a smaller measuring current can be used, which avoids Joule heating in the 

sample, or in the case of the epitaxial layers, at the contacts which often have 

resistances of l K f i . This is because of the method of contact fabrication, which uses 

evaporated indium and silver epoxy. Further details of this can be found in section 

4.5.2. The system used by the author uses a current of between 5 and 50fiA, which 

will give a Joule heating of around 10'7W at a contact as mentioned above. 

4.2 Modifications to the 4He cryostat 

The author has performed a number of modifications to the group's existing 

magnet cryostat, the Durham University Central High fiEld Superconducting Solenoid 

(DUCHESS). The system was purchased in 1983 to allow VSM measurements in 

fields up to 13T and at temperatures down to 1.5K. A schematic of the present system 

is shown in figure 4.2. 
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Probe entry 
Helium exhaust 

Nitrogen fill port 
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OVC 

35K shield 

Helium bath 

Magnet coils 

Figure 4.2 Schematic representation of the DUCHESS 

The original Variable temperature insert (VTI) was taken out of the system and 

modifications were made to incorporate an Oxford Instruments Heliox refrigerator in 

the cryostat. (For further details see section 4.3) To this end the entry to the helium 

space was then altered to match the NW50 flange on the Heliox probe. The top plate 

was fabricated in the departmental workshop, and a tube welded onto the underside to 

aid guidance of the helium-3 refrigerator during insertion. This tube was fitted with 

copper baffles level with the top of the helium space, the 35K shield and the underside 

of the nitrogen jacket to help eliminate 300K radiation within the helium space. This 

modification required an alteration to the magnet power supply leads, as they were 

designed to fit into terminals in the VTI . The leads are of a vapour cooled multi 

filamentary type which were surrounded by a tufnol jacket to allow insertion and 

removal from the cryostat. The tufnol was removed and the wires covered in heat 
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shrink to allow more flexibility, and prevent shorting to the cryostat neck. They were 

then fastened into place on the magnet and the tops were taped to the side of the neck 

of the cryostat, before the free ends were soldered onto a standard Oxford Instruments 

connector. The choice of this connector was due to the space restrictions at the neck 

of the cryostat and in using a standard connector the author was able to use 

commercially available magnet leads. 

The wiring within the cryostat, the helium level meter, the superconducting 

switch and two Allen Bradley resistors are terminated at a standard hermetically sealed 

ten pin connector on the side of the collar. The Allen Bradley Resistors are useful 

during the filling of the cryostat, one is located on the top of the magnet, the other on 

the base. They give a rough guide as to the temperature inside the helium space, and 

hence show when liquid is starting to collect before the level meter becomes useful. 

Unfortunately the original design of the Thor cryostat had a serious flaw: too 

much strain was placed on the solder joint connecting the central neck to the nitrogen 

plate, as shown in figure 4.3. 
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Weld Cryostat Top Plate 

Soft Solder Nitrogen Plate 

Cryostat Neck 

Figure 4.3 The location of the weak joint in the cryostat 

When the cryostat had been in use for a long period of time, this joint became 

weak and eventually collapsed. Because of the large thermal mass of the object it was 

impossible to form a good join using soldering. Thus a new design was proposed and 

constructed, as illustrated in figure 4.4. Here the neck of the cryostat is held between a 

pair of plates which can be tightened by screws. These plates are held to the nitrogen 

plates by further screws. No further problems have been encountered with this plate 

since implementing this modification. 
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Figure 4.4 The new design for the nitrogen plate 

Another problem with the original design of the cryostat is encountered during 

filling the nitrogen jacket. The fill ports which protrude from the top plate are kept 

leak tight from the outer vacuum jacket (OVC) by rubber orings. During filling the 

orings get cold and they start to leak. I f the system is filled with liquid helium then the 

air is cryopumped and the change in vacuum in the OVC is negligible. However when 

the system warms above 65K, the pressure in the OVC will rise dramatically, being 

potentially dangerous. The author leaves a vacuum pump running on the OVC when it 

is warming to help alleviate this problem. The problem has not as yet been cured at 

source. 

4.3 The Oxford Instruments Heliox Probe 

The Heliox probe is an example of a "single shot" helium three system, 

manufactured by Oxford Instruments Limited, based on the low pressure boiling of 

He3. It has a base temperature just below 300mK, and a hold time at this temperature 
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of over 24 hours providing the heat leak is kept below 10'8 W.[2] The experiment is 

attached to the base of the probe by screwing into the M6 thread located on the 

bottom of the He3 pot. The probe is lowered into a helium bath, covering the end of 

the pickup tubes, as shown in figure 4.5 
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Figure 4.5 The Heliox Probe 
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4.3.1 Operation of the Heliox probe 

The system operates as follows: 

The sorb is activated charcoal, which will pump on helium gas i f its 

temperature is below 10K, but it will completely expel any gas i f kept above 40K. The 

I K pot is cooled below 1.4K by filling with helium-4 from the surrounding bath, and 

then reducing liquid's vapour pressure mixture using an Edwards 40 rotary vacuum 

pump. During this stage of the operation the temperature of the sorb is kept above 

40K, so that it has completely expelled the He3 gas, which condenses on the I K pot, 

and falls into the He 3 pot at the bottom of the probe. After a period, the sorb is cooled 

to below 10K, and the pressure over the He 3 liquid drops, reducing its boiling point. 

4.3.2. Sample Holder 

I f a block of copper is placed in a rapidly changing magnetic field, electrical 

currents are induced in the copper to oppose the magnetic field that is applied. These 

eddy currents cause Ohmic heating, and are as such undesirable in a cryogenic system. 

For use in high magnetic field the probe comes with a low eddy current sample holder. 

This is a hollow tube made of steel and copper which affixes to the He 3 pot. The steel 

has a higher electrical resistance than the copper and so helps to suppress the eddy 

currents that are induced when magnetic fields are being ramped. The thermal 

conductivity of the steel (2x10'5 W m"1 K"1) [3] is very low compared to that of the 

copper (7X10"1 W m' 1 K' 1 ) [3]. It also means that the end of the probe is no longer 

close to the magnet, and so smaller eddy currents are induced in the end of the probe. 

A drawing of the sample holder is shown in figure 4.6 
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Figure 4.6 The low eddy current sample holder 

4.3.3. Thermometry 

The temperature of the probe is monitored by the use of a calibrated rhodium 

iron thermometer mounted on the He3 pot, (for temperatures above 1 4K), and a speer 

resistor, uncalibrated, also on the He3 pot. To obtain an accurate temperature a 

custom calibrated germanium sensor has been purchased, with a thirty point 

calibration. This has been mounted on the sample stage at the end of the low eddy 

current sample holder. Germanium thermometers have a large magnetoresistance 
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making them unsuitable for use in even modest magnetic fields at temperatures below 

IK [4], and so another thermometer has had to be used for the high field work. 

Ruthenium oxide resistors have a small correctable magnetic field dependence i f they 

are mounted parallel to the field direction, and are ideal for use at temperatures below 

4K. The sensor used on the Heliox probe is a surface mount resistor, of the type used 

in electronics manufacture for their temperature stability, though they are uncalibrated. 

The majority of the wiring on the Heliox probe is constantan to reduce the 

thermal leak from room temperature. The experimental wiring consists of 18 wires, six 

of which are 34 gauge copper, terminated at a Lemo connector just below the I K pot. 

From this connector constantan twisted pairs are used down to the sample stage, and 

are thermally anchored along their length to cut down on thermal leakage. The wires 

for the sample are terminated on beryllium oxide heat sinks, onto which the sample 

wires are soldered. 

The author has not performed any measurements on the Heliox probe with the 

samples under investigation because they would have a resistance greater than our 

measurement capability at 4.2K, and so investigations down to 0.3K would be 

pointless. 

4.4 The Magnetotransport System 

The system is based on an Air Products Displex closed cycle helium 

refrigeration system, which is capable of producing a base temperature of 10K, without 

the use of liquid cryogens. The cooling is performed by a form of modified Solvay 

cycle [5]. 
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The thermometry for the system is a commercial Rhodium-Iron sensor with a factory 

supplied three point calibration. The sensor was chosen for its reliability and accuracy 

over the temperature range used, and the repeated thermal cycling. The accuracy 

quoted for this type of sensor is 200 p.p.m. [6] under repeated cycling. The sensor is 

connected to an Oxford Instruments ITC502 temperature controller, which is capable 

of maintaining a temperature to within 0.1K of the set point. The controller is 

calibrated for the 4.22K and 273K reference points supplied, and checked against the 

intervening 77.4K point, where the error was found to be less than 0.2K. This is due 

to the thermometer and the temperature controller being manufactured by two 

different companies, and shows the difference in the temperature behaviour of the 

device with that expected in the calibration. This error was found to be consistent 

within the accuracy of the controller. 

The electrical measurements were carried out using a nominal 5uA current 

through the sample at a frequency of 13Hz. The use of low frequency is to enable the 

use of lockin amplifiers to assist in the noise reduction of the measurement and because 

the use of high frequencies will cause problems with rectifying contacts, and the 

inductance and capacitance of the connecting wires. The physics of the measurement 

will change i f the frequency applied is sufficently high. For most of epilayers measured 

the Hall voltage is around lmV at 0.3T. The current is kept as small as practicable to 

avoid Joule heating in the sample or at the contacts, which in the epitaxial layers 

measured often have resistances of 1KH or more. The lowest voltage which can be 

discerned from the noise is luV, which allows the system to see changes in resistance 

of better than 0.2O, even on resistances of over 10MQ. The current is monitored by 
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measuring the voltage across a high stability 20KO resistor placed in series with the 

sample. This value was chosen because it allows a voltage of measurable size even for 

samples of high resistance. 

The entire equipment is computer controlled via the General Purpose Interface 

Bus (GPD3) which allow bi-directional data transfer to devices at a baud rate of 1Mb 

sec"1. The computer changes the applied magnetic field, then waits for the system to 

stabilise before taking a number of measurements of the field, and the Hall voltage and 

current, which are then averaged to get the final values. To achieve good stability the 

time constants on the lockin amplifier has been set to three seconds, so the computer 

waits for twelve seconds between readings to ensure that the present reading is not 

influenced by the one taken previously. [7] 

The magnetic field is controlled by the use of a stepper motor connected to the 

current control of a stabilised power supply. For high field work this power supply is 

replaced with a Glassman 60-18 power supply, capable of 60V at 18A. This is 

controlled using the DAC card in the Stanford lockin. The current is reversed by the 

use of a reversing relay to allow pseudo bipolar operation. The stepper motor and the 

relay are controlled via the parallel port on the computer via a darlington driver, as 

shown in figure 4.6. 
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Figure 4.6 Wiring of the parallel port to the power supply 

The computer sends logic pulses to the darlington chip which acts as a series of 

transistor switches, triggering the coils of the motor in the correct sequence. 

The computer programming was performed in National Instruments Lab 

Windows BASIC, a language specifically written to allow easy interfacing to 

equipment via the GPIB and serial ports of a computer, as well as their range of Data 

Acquisition Boards (DAQ). 

The applied magnetic field is measured using a standard Hall device which was 

calibrated against a calibrated gauss meter probe. The driving current for the device is 

5mA, supplied by a small constant current device, the details of which are below. 
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Figure 4.7 The constant current device circuit 
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The Hall voltage from the probe was read by a Solartron 7150 digital multimeter, and 

by the computer over the GPIB. The system schematic is shown below 

GPIB interface 
Computer 
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Lockin 
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Figure 4.8 Wiring schematic of the system 

The present software takes Hall data at a number of predetermined temperatures and 

saves them in an ASCII format, with comma delimiters, ready for input into most 

common graphics packages such as Axum. The program also removes the zero field 

offset from the data, by calculating the zero field value and subtracting that value from 

all readings taken from this temperature. The value of the zero field offset is found 

usually to follow the same trend as the sample resistance, and because of this has 

always been considered to be due to contact misalignment. 
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During cooldown of the system the resistivity of the sample is measured by 

using a four terminal resistance meter, such as a Keithley 199. This is not as sensitive 

as the AC technique used for measuring the Hall effect, but the resistance of the 

sample is, in general, approximately \00CI at room temperature, which is easily 

measured with a good multimeter. This procedure is computer automated, with the 

computer reading the temperature and the resistance every thirty seconds during the 

cooldown, saving the data to an ASCII file as noted above. 

For samples with a very high resistance a DC technique is preferred for the 

measurement. A Keithley Picoammeter was used in series with the sample and a high 

input impedance voltmeter (Keithley 199) used to measure the potential drop across 

the Hall contacts. A standard 12V supply drives the system, which can in theory 

measure samples with a resistance of 1013Q. 

The noise on this system is higher than the AC system and the bare results have 

a maximum sensitivity of 10M£2, although this can be improved by averaging over a 

large number of readings. The main problem with samples that appear to have a very 

high resistance is to ensure that it is truly the sample that is being measured and not a 

poor contact, which is rectifying. 
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4.5 Sample preparation. 

4.5.1 Bulk samples 

The technique depended on the quality of the sample and its initial state. Some 

of the samples used were 'as cut' and required polishing before use, while others were 

already polished. The polishing of the samples was undertaken by machine, starting 

with a coarse grade abrasive (usually 6um) and reducing this to lum diamond paste 

for the final surface. The machine rotated the sample whilst polishing to ensure that 

one side of the sample is not polished preferentially. After polishing, the samples were 

etched to remove the oxide layer on the surface. The normal method employed for this 

is to use a bromine / methanol solution which is roughly 2% bromine. Samples are 

subjected a twenty second etch, and are then washed in clean methanol. The contacts 

are then applied using a low temperature soldering iron and high purity indium. 

4.5.2 Epitaxial layers. 

These layers are not polished, they are so thin that any form of mechanical 

polishing would be extremely detrimental to them. They are etched in the same 

manner as the bulk samples, although the etching solution is generally a little weaker, 

and the duration of the etch reduced to around two seconds. The layers have indium 

pads evaporated on in the desired layout using a carefully machined mask. These pads 

have the wires affixed to them by using silver epoxy or sometimes silver paint. This 

technique does not give the same quality of contacts as the direct soldering technique 

employed on the bulk samples, but the epitaxial layers are not capable of withstanding 
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the heat of a soldering iron. The resistance of these contacts is often 1KH or more 

compared a few ohms that can be expected with the bulk samples. 

4.5.3 Affixing the sample to the system 

The sample is held onto the cold finger by the use of a very thin layer of 

Apezion N grease. This solidifies on cooling and holds the sample rigidly in place 

during the experiment, but allows easy removal on warming. The vacuum grease is 

used because of its "high" thermal conductivity 10"2 Wm'K ' 1 at 4.2K [8](compared to 

copper 7x10'1 Wm'K" 1 ) [3], thus helping to ensure that the sample is at the same 

temperature as the system. The wires from the samples are connected to beryllium 

oxide heatsinks, which are also connected to the wires leading out of the cryostat. The 

heatsinks offer a convenient termination point for the wires and avoids any unnecessary 

heatleak down from 300K. 
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Chapter Five Magnetic Experimental Details 

5.1 The Alternating Gradient Field Magnetometer 

5.1.1 Theory of Operation 

The operation of the Alternating Gradient Field Magnetometer (AGFM) is 

analogous to that of the Vibrating Sample Magnetometer (VSM) which is a common 

piece of apparatus in magnetism research labs. The sample is placed in a DC magnetic 

field of varying magnitude in the x direction, with a small AC field superimposed upon 

it. This ripple field is usually of the order of a few mT, and exerts a force on the 

sample of [1] 

F = - V V ( M B J (5.1) 

where BQis the field applied to the sample, Mthe magnetisation and V the 

volume of the sample. 

Because of the arrangement of the system, the x component is the one of 

interest, and so we can write 

r- rJ u dB*o , , dByo w dB*^ F=V M x — + My — + M z ^ -
dx dx. dx 

(5.2) 

As the field has a component BD which is of a sinusoidal form applied in the x 

direction, equation 5.2 can be expressed as [4] 

d(Bn sinwH/) 
FX=VMX ^ B > (5.3) 

3c 

where B^ is the magnitude and wB the frequency of the ripple field, and Mx is the 

magnetisation of the sample in the x direction. For the operation of the system, it is 



very important that the sample is set in the middle of the field gradient so that the 

terms in the y and z directions can be safely neglected. It is thought that these terms 

will cause a torque to be exerted on the sample suspension, causing unwanted errors 

in the signal. 

The frequency of the resonance can be obtained by treating the sample 

suspension as a cantilever [4]. The resonant frequency of an unloaded bimorph can be 

expressed as 

Where Mb is the mass of the bimorph, and Cm its mechanical compliance. The 

frequency of the loaded bimorph can then be expressed as [4] 

Where Ms the mass of the suspension. 

For the system used, this gives a fundamental resonance of 3KHz. 

The force produces a small motion of the sample, which in the original systems 

of [2] was detected using a microscope and a stroboscopic light source. The 

sensitivity of the system for this method of detecting is given by 

where yd is the sensitivity of the dynamic system, ys is the sensitivity of the static 

system and Q is the quality factor of the system. 

Modern systems use piezoelectric bimorphs, which allow the use of lockin 

amplifiers (LIA). These allow higher sensitivities to be achieved (up to 10'12 J T' 1) and 

(5.4) 

f 
J o M 

f o M , + 4 . 2 M 
(5.5) 

Q 
(5.6) 
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give over 80dB of noise reduction. 

The frequency of the ripple field is chosen to match the resonant frequency of 

the cantilever construction. On resonance the system is much more sensitive to any 

vibration of the sample, hence the sensitivity of the system is maximised. The gain 

from this method is proportional to the Q factor of the system which can be as high as 

400 at resonance. This exceeds the values in the literature, which are typically around 

70 [3]. The system is typically operated at a resonant frequency of around 800Hz. 

However, i f the signal to noise ratio is too low at the fundamental frequency, working 

at the first overtone, approximately 1280 HZ, usually lowers the noise level to allow a 

higher signal to noise ratio. [4] Working at higher overtones is less advantageous 

because the drop in signal becomes excessive. 

5.1.2 Construction and Development 

The system is at present arranged in a pendulum style, [5] and is similar to the 

commercial instrument supplied by Princeton Electronics. The bimorph was held 

rigidly by a Perspex mount, which then clipped in to the brass block via the use of an 

8-way IDC connector. This allowed more reproducible positioning of the bimorph 

substructure with respect to the magnetic field. The glass fibres were exchanged for 

quartz-glass fibres to reduce the background magnetisation of the system, and were 

affixed to the bimorph by the use of super glue, rather than the wax used by other 

groups [4]. The sample suspension is shown in figure 5.1. 
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Figure 5.1 Detail of the AGFM sample holder 

The AGFM is fully automated by use of a PC based data acquisition system. 

The equipment is interfaced to the computer via the GPIB bus, which allows high 

speed, bi-directional data transfer with compatible meters. A schematic of the system 

is shown in figure 5.2 
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Figure 5.2 The wiring schematic for the AGFM 
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An attempt has been made to construct an AGFM to work at low 

temperatures. Groups have reported that the sensitivity of the system drops by two 

orders of magnitude as the temperature is lowered to 5K [6], The work undertaken by 

the author showed a useable senisitivity below 10"7 J T 1 [7], which was considered to 

be of no use for the investigations, and less than that obtainable using the vibrating 

sample magnetometer in the laboratory [8]. The majority of the noise was believed to 

have been caused by the vibration of the boiling cryogen and the difficulty in mounting 

a thermometer onto the sample holder itself. The work was abandoned after the initial 

stages, as it was found that the behaviour of the piezoelectric bimorph is strongly 

temperature dependant. The other groups [6] have mounted their bimorphs in the 

horizontal plane, and away from the low temperatures of the sample, hence removing 

the problem. Mounting bimorphs horizontally has also been used successfully to build 

magnetometers for use at room temperature [5], although the initial construction is 

more difficult than for the pendulum style used here, and the sensitivities of the two 

styles is very close. 

5.1.3 Calibration 

The system is calibrated by the use of a known mass of nickel and looking at 

the saturation magnetisation. The samples used for this particular system is 4um thick 

foil, usually in an approximately 1mm square. The voltage at which this saturates is 

then compared to the value of the saturation magnetisation of nickel. A typical 

calibration curve is shown in figure 5 .3. 
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Figure 5.3 The saturation of nickel 

An example of the calculation is shown below. 

Mass of Ni 2.67xl()-7Kg 

S aturation voltage 14.1 m V 

The saturation magnetisation of Ni at room temperature can be calculated using the 

following [11] 

3 5 

M=Mo(\-a32T2-anT~2) (5.7) 

where a 3 2 =6.64xl0"6, a52=1.85xl0" 8, A/» =58.624 J T*1 Kg' 1 , and T is the 

temperature. 

For room temperature (288K), the magnetisation is 55.20 J T"1 Kg' 1 . 

The scaling factor for the magnetisation is therefore 

5 5 . 2 . 6 7 - . 0 - ' = „ 
14.1 *10"3 

106 



So I V on the output of the lockin amplifier is equivalent to 1.045xl0'3 J T"1. 

The smallest voltage that can be detected on the lockin amplifier is 0. l u V with a time 

constant of 30 seconds, so the maximum sensitivity of the system is 1.045xl0'10 J T"1, 

compared to 10"12 J T' 1 quoted in [4]. The sensitivity of the system can be increased by 

using a higher gradient field, although care has to be taken to avoid clipping the 

voltage applied to the coils, which increases the system noise. 

Other methods of calibration include utilising the susceptibility of palladium or 

hydrated cupric sulphate ( CuS0 4:5H 20 ) which is useful for a low field system which 

cannot saturate nickel. 

5.1.4 Operating Technique. 

The sample under investigation is affixed to the sample holder with a small 

amount of vacuum grease. In the case of a very magnetic material such as nickel, GE 

7031 varnish is used to attach the samples more rigidly to the holder to prevent 

movement. The power supply for the magnet is set to a high field (usually 2000 

gauss). The system is then scanned through the frequency range where the resonant 

frequency is likely to be found. The computer varies the frequency of the system by 

applying a known voltage to the voltage controlled oscillator facility on the frequency 

generator. Both the in phase and the quadrature voltage are read and compared to that 

which is expected, which is shown in figure 5.4. 
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Figure 5.4 The resonant condition 

I f the two differ, then the frequency is set to the value which gives the largest 

signal and the phase of the system is maximised at this point. The frequency sweep is 

repeated, until the desired shape is obtained. Some of the data sets show what appears 

to be two resonance peaks, the second of which is taken to be oscillation in a different 

plane to the magnetic field, caused by the sample being offset in the field and 

producing torque on the cantilever. 

The power supply is now set to zero, and the computer program started. This 

changes the field, reads the lockin amplifier and the teslameter, stores the values to 

disc, and so on. A full M H loop can be performed in a matter of minutes and stored in 

an ASCII format, ready for use with a graphics package. 
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5.2 2DEG Hall devices 

5.2.1 Theory of operation 

A Hall device is the most common method used for measuring the magnetic 

field at a point. It is based on measuring the Hall effect in the device, and after initial 

calibration provides a cheap and simple method of field measurement. The most 

sensitive Hall devices have a small number of free carriers and so produce the highest 

Hall voltage for a given field. It is also advantageous to be able to use high current 

through the chips as this will also increase the sensitivity, since according to equation 

5.8, the Hall voltage is given by 

VH=—i (5.8) 
net 

where B is the applied field, / the current in the sample, n the carrier 

concentration, e the electronic charge, and / the thickness of the device 

The problem in this is that, for a low carrier concentration, the resistance of the 

material is too high to allow a useable current to pass without Joule heating or damage 

to the chip. One way round this is to construct a two Dimensional Electron Gas 

(2DEG) where the mobility of electrons in the layer can be as high as 4.5xl0 6cm 2V 1s" 1 

at 4.2K, hence lowering the resistance to a more reasonable value. The typical number 

of carriers in such a device is 2.7x10U cm'2 [9]. It can be shown that the sensitivity of 

the device is proportional to the mobility of the carriers, as is shown in equation 5 .9 

V „ = ^ (5.9) 

where A is the cross sectional area of the chip, and Ea the electric field 

associated with the current. 
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2DEG Hall devices have become a popular and highly sensitive method of 

obtaining magnetic profiles of materials. The original work was performed by Chang 

et al [10] who investigated the properties of superconductors using a linear array of 

Hall pairs. The latest work has been to use the Hall chip in the place of the tunnelling 

tip of a scanning tunnelling microscope, and to scan this across the surface of the 

material. The work of Simon Bending and his group at Bath University have managed 

to make simultaneous measurements of the tunnelling current from the tip, and the Hall 

voltage, to show both the surface morphology and the magnetisation of the sample[9]. 

The majority of the measurements performed using these systems has been in the 

investigations of the magnetism of superconductors, and this is the first attempt to use 

the chips to make observations on diluted magnetic semiconductors. 

The Hall bars used in this work were fabricated at Bath University by Dr Simon 

Stoddart from a AlGaAs heterostructure grown at Nottingham University. The chips 

have nine Hall pairs along their length, as shown in figure 5 .5, each of which are 50um 

in cross section, and 7nm thick. 

Figure 5.5 Optical Micrograph of a Hall device, showing the individual Hall 

pairs 

The chips were tested at Bath University to ensure that all the voltage pairs 
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were functioning, and to find two pairs that were matched in their sensitivities. The 

chips are wired up so that two of the Hall bars are used, to allow differential 

measurements to be performed. One of these pairs has the sample mounted over it, the 

other is left uncovered. This allows for far more accurate and reproducible results to 

be taken as a background run is obtained for every measurement, and so small 

differences in the position of the chip in the magnet can be eliminated. 

The signal from the chip with the sample sees an enhanced magnetic field from 

the magnetic properties of the sample according to equation 5 .10. 

B = Ho(H + M) (5.10) 

Where H is the applied magnetic field, M is the magnetisation of the sample, \i0 

is the permeability of free space, B is the enhanced magnetic flux density seen by the 

chip. 

The sensitivity of the chip was calibrated using a known mass of nickel, and 

looking at the saturation produced. The sample was a 100(+50)ug foil sample, which 

gave a saturation of 26.6 Ohms. This gives a sensitivity of 10"9 J T"1, which is 

comparable to other magnetometers used by the group. The sensitivity can also be 

expressed as 0.2 Ohms Gauss"1, which corresponds very well with the values given in 

the literature of 0.3 Ohms Gauss"1. [9] 

5.2.2 Experimental Details 

The chip is mounted in the Displex closed cycle system that has been outlined 

in section 4.4. Initially it was found that the Joule heating produced in the chip at low 

currents was in excess of the cooling power through the wires connecting it to the 

holder. The solution to this was to affix the chip down with a small layer of GE 

varnish, which had the added advantage that it would also hold the chip in place more 
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firmly and stop it moving in high field. The current in the chip is 13Hz AC, so that 

lockin techniques could be used to improve the signal to noise ratio. The noise on the 

chip can be lowered by using a higher frequency as the signal to noise ratio in these 

devices is given by [8] 

S.N.R.= . I R l , B (5.11) 

Where / is the Hall current, RH the Hall coefficient, B the magnetic field, kB 

Boltzmann's constant, T the temperature, Rs the device resistance, and / the frequency 

of the Hall current. 

The chip is used in differential mode. One of the voltage pairs has the sample 

affixed over it, whilst the other is uncovered. This allows the background to be taken 

with every run, as it shows a strong temperature dependence, especially above 45K. 

This requires the sample positioning to be critical, because the two matched Hall pairs 

used are located close together in the middle of the chip. Hence, the background 

signal often has part of the sample trace superimposed onto it. The background of the 

chip behaves in the normal manner with V H a linear function of B. By analysing the 

saturation resistance of a known nickel sample the sensitivity of the system can be 

calculated, in a manner similar to that used on the AGFM above. 

5.3 The Faraday Balance 

The Faraday balance is a commercial magnetometer supplied by Oxford 

Instruments LTD, and is based around a highly sensitive microbalance head. 

This particular system is capable of 5 T in a temperature range of 1.4 to 320K, 

which gives it the ability to achieve a B/T ratio of 3.57T K"1, greater than the value 

required to saturate paramagnets within 1%, which is 3T K"1. [11,12]. 
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The measurement procedure of the system is to compare the mass of a sample 

under magnetic field gradients of opposing direction. From Faraday's Law, and 

equation 5 .2 we obtain the force on the sample [1] 

F* - VxB0 ~T~ (5-12) cx 

Where is the field gradient in the x direction, Ba the applied field, V the 
ax. 

volume and x the volume susceptibility of the sample. 

Hence by measuring the change in force on the sample, under the application of 

magnetic gradients in the +x and -x direction, a measure of its magnetic susceptibility 

can be obtained. Although in theory it is possible to calibrate the system directly from 

the above equation measurements are usually performed relative to a standard sample 

such as nickel. The saturation of nickel is often chosen because it is field independent 

above its saturation value, although other material such as Mercury-tetra-thio-cyanato-

cobalate, HgCo(SCN)4 is often used as a paramagetic standard, x g

 = 16.44x10** emu 

5.3.2 Operating Procedure 

A diagram of the balance system is given in figure 5.7 
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Figure 5.7 The Faraday balance 

The sample under investigation is affixed to the lower end of an optical fibre, 

which is then hooked onto the end of the balance arm. The height of the balance head 

with respect to the cryostat had previously been set so that the sample was in the 

centre of the gradient field. Full details of the process can be found in ref. [12]. The 

sample space is then flushed with helium gas and evacuated down to 5mbar before 

cooldown. The pressure of exchange gas in the sample space relates directly to the 

thermal link to the variable temperature insert (VTI). The higher the pressure, the 

more rapid the temperature will achieve equilibrium, although it will also raise the 

noise on the system, and so for the epitaxial layers, the pressure was kept as low as 

possible, and the system left for long periods, typically fifteen minutes, to equilibrate. 

The magnetic field required is then set and the magnet set to run in persistent mode, 

usually at 1 Tesla so that a large signal can be obtained with weakly magnetic samples. 

The gradient field is then set and reversed so that the magnetisation can be obtained. 
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The output from the balance head is read by the computer via Object Bench software 

and saved as a datafile for later analysis. This procedure is then repeated for all the 

temperatures and fields required. The calibration curve for nickel at 4.3 K is shown 

below. 
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Figure 5.8 Nickel Calibration Curve (Raw Data) taken at 1 Tesla 

It is noted that the positive field gradient is applied before the negative field 

gradient. From the shape of the graph it can be seen that the nickel has a positive 

susceptibility, as the graph has a positive deflection before the negative. 

The calibration of the balance is very similar to that of the Hall devices outlined 

in section 5.2.2, using equation 5.9. From the standard deviation on the noise for this 

data set, it has been calculated that the noisebase on the system is 7.5683x10'" JT'1, 

which is comparable to that of the AGFM. 
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Chapter Six Electrical Results 

6.1 Summary of samples investigated 

The samples have been investigated using the experimental apparatus described in 

section 4.3, in the Van der Pauw configuration. 

The samples investigated electrically are outlined in table 6.1 below. 

Sample Number Manganese Concentration (%) 

from ED AX 

Thickness (jxm) 

from SEM 

Thickness (\xm) 

from ED AX 

MMT38A 5-8 5.5±0.2 5.8 

MMT38B 5-8 5.5±0.2 5.8 

MMT29A 8-11 1.6±0.2 4.4 

MMT29B 8-11 1.7±0.2 4.4 

MMT21A 5 -6 1.5±0.2 1.1 

MMT21B 5 - 6 1.5±0.2 1.1 

MMT26 10 1.9±0.2 1.2 

MMT19B Very small 2.2±0.2 7.7 

MMT34 25 1.5±0.1 1.2 

MnTe 100 1.1±0.2 

Table 6.1 Summary of samples investigated 

The manganese concentrations of some of the samples show a spread of values, 

and this is due to the inhomogeneities present in the growth as outlined in chapter 1. 
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6.2 Sample MMT38 

6.2.1 MMT38B 

Results 

Figure 6.1 shows the variance resistivity of as a function of temperature. The 

graph shows no evidence for an activation energy, as the line does not become linear for 

an appreciable part of the temperature range. 
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Figure 6.1 The resistivity of MMT38B 

Figure 6.2 shows the number of effective carriers, \RHe^, in the material as a 

function of temperature. From the gradient of the graph at low temperatures it is possible 

to calculate an activation energy, see discussion. 
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Figure 6.2 Effective Carrier Concentration in sample 38B 

Figure 6.3 shows the variation of the Hall mobility of the carriers as a function of 

temperature. The fit shows the dominant form of scattering at high temperatures. 
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Figure 6.3 Mobility of sample 38B 
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Figure 6.4 shows the transverse magnetoresistance of the sample, measured in the 

Van der Pauw configuration, as a function of applied magnetic field. The small anisotropy 

on the figure is due to a contribution from the Hall effect originating in the misalignment 

of the electrical contacts. 
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Figure 6.4 The magnetoresistance of sample MMT38 

Discussion 

The resistivity of fig 6.1 shows an initial drop which can be attributed to the rise in 

the mobility observed in fig 6.3. Below this the data shows evidence of carrier freezeout. 

The value of \RHe[x shows intrinsic behaviour at the high temperatures, a plateau 

between 125 and 40K, and then carrier freezeout into a donor state of 1 2meV. The value 

for the activation energy is taken from the gradient of ln(|i?He| _ 1) v —. The data can be 
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fitted using an equation for the number of donors and the number of intrinsic carriers. The 

intrinsic carrier concentration can be calculated from equation 6.1 [1] 

3 3 r - S 8 0 2 g j ^ 

«, = (4.615- 1.59x + 0.002647-0.017*r + 3 4 . 1 5 x 2 ) x l 0 1 4 £ £ 4 7 V 7 ' 

(6.1) 

and the donor concentration can be calculated from [2] 

l + e[2k°T) 

where ND is the donor concentration, and ED the energy of the donor. 

Using this to obtain a fit to the data of (T^ej - 1 shown in figure 6.2, gives a donor 

concentration of 5.5xl0 1 5 cm'3, using ED of 1.2meV, which corresponds very well to the 

plateau observed in the data. 

The mobility of the carriers in this sample is very high, suggesting that the 

crystalline quality is also very high. The high temperature region of the data can be fitted 

with optical phonon scattering, using parameters of 

Parameter Value 

9 140K 

™e 0.05/wo 

V 1.32xlO ,0Hz 

Table 6.2 Fitting Parameters to optical phonon scattering 
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The leveling off of the mobility looks to be similar to that observed by Sawicki et 

al [3], who observed a drop in mobility between 20K and 80K, before rising again below 

this. This is shown in figure 6.5 below. 
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Figure 6.5 The mobility in Hgo.94Mno.06Te [3] 

The explanation for this behaviour is that the ionised impurities form pairs, one 

acceptor and a donor, and hence lower their scattering efficiency. [4] 

The transverse magnetoresistance of this sample is a positive quadratic, especially 

in the low field limit. A quadratic magnetoresistance can normally be fitted by equation 6.3 

Ap 2 D2 
Po 

(6.3) 

At high temperatures the mobility in the sample is described by optical phonon 

scattering, and this leads to the temperature dependence of 

juaT 2eT (6.4) 
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The exponential term is only important at temperatures well below the Debye 

temperature (0),which is 140K in HgMnTe, [5] and so the mobility can be described by a 

T 2 dependence. Hence we can rewrite equation 6.3 as 

^ aB2T] (6.5) 

Po 

From this it can be seen that for optical phonon scattering, a plot of the 

magnetoresistance against BIT should result in the superposition of the data curves. 

This is shown in figure 6.6. 
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Figure 6.6 Magnetoresistance as a function of B/T 

From this it can be seen that the scattering mechanism that is dominant at low 

temperatures is unlikely to be optical phonon. It is interesting to note that although the 

values for 290K and 80K overlap, the mobility of the sample as shown in figure 6.3 would 

suggest that optical phonon scattering is no longer responsible for the mobility at 80K. 
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In a compensated semiconductor, the above equations are not strictly true, as the 

contribution from the holes has to be taken into account. The revised formula can be 

expressed as [6] 

^ £ = /a,/a5 2 (6.6) 
P° 

The above calculations will hold in such a system providing that both the holes and 

electrons are dominated by optical phonon scattering. 

The 20K data is showing evidence for saturation at high field. This is similar to the 

behaviour observed in bulk MMT by Davydov [4] and by Delves [7] where at 4.2K and 

fields above IT the magnetoresistance changes from being positive to negative. This 

result is generally considered to be due to the bipolar conduction that occurs in these 

materials. 

6.2.2 MMT38A 

Results 

Figure 6.7 shows the variance of the Hall voltage of sample MMT38A as a 

function of temperature. The curvature that is observed in the low temperature case, is an 

example of the anomalous Hall effect, that was discussed in section 2.5.3. 
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Figure 6.7 The anomalous Hall behaviour in sample MMT38A 

Discussion 

The Hall voltage in a magnetic material receives an extra contribution from the 

magnetisation as shown in equation 6.7. [8] 

R»~. = Rh~ + Cpz (6-7) 

Assuming that the susceptibility can be calculated using the Brillouin function for a 

paramagnetic material, we can attempt a fit to the 20K data. The value of 9 used, is that 

obtained from the susceptibility data in chapter 7, 6 = -25K. The linear contribution at 

high field is assumed to be equal to RHACL, and figure 6.8 below shows the fit to the 

anomalous component. The data has also been fitted to a Langevin function for a 

superparamagnetic material, as X-ray scattering and EDAX have shown the existence of 

MnTe clumps within the material (see chapter 1). The value of C obtained from this 

analysis is 8.23 5x109m2. 
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Figure 6.8 Fits to the anomalous Hall effect at 20K 
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Figure 6.9 Free parameter fit to the saturation of the Hall effect 
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Figure 6.8 shows the results of a fit to the data where the value of 6 is used as a 

fitting parameter. The value obtained from this is -19.88K, which corresponds to a Mn 

concentration of 5.7%. [9] This is very close to the value given by ED AX, of 5.5%. 

From the data in the figure it can be seen that the magnetic anomalous Hall effect 

is unlikely to be responsible for the observed data. The other possible mechanism for the 

nonlinearity is the effect of two band conduction. It is difficult to check this hypothesis 

because the magnetic field has not been taken to a sufficiently high value to enter the 'high 

field regime', where this effect would become noticeable. The high field regime can be 

expressed as the field that satisfies the inequality 

Bn>\ (6.8) 

In this case, with a mobility of around 2m2V~'s~', it will require a field in excess of 

0.5T to achieve this condition. The maximum applied field in these measurements was 

only 0.3T, and so the measurements are all in the low field limit. 

6.3 Sample MMT29 

6.3.1 Sample MMT29A 

Results 

Figure 6.10 shows the variation of the resistivity of sample MMT29A as a function 

of temperature, taken dynamically. The graph shows the existence of an activation energy 

of 9.0meV, taken from the linear region below 30K. 
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Figure 6.10 The resistivity of sample MMT29A 

Figure 6.11 shows the variation of the magnitude of the number of effective 

carriers, l ^ e f ' » m sample MMT29A. 
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Figure 6.11 Effective carrier concentration in sample MMT29A 
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Figure 6.12 shows the variation of the Hall mobility in the sample with 

temperature. 
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Figure 6.12 The mobility of sample MMT29A 

Figure 6.13 shows the transverse magnetoresistance of sample MMT29A as a 

function of applied field at varying temperatures. 
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Figure 6.13 The transverse magnetoresistance of sample MMT29A 

Discussion 

The effective carrier concentration shows a discontinuity at approximately 100K, 

and this can be interpreted as the transition from electron to hole dominant carrier in the 

sample. The Hall coefficient for a mixed conduction sample can be expressed as 

R =rB{p-b2n) 
" e (p + bn)2 

(6.9) 

where ro is the Hall coefficient factor outlined in section 2.5, p and n are the 

carrier concentrations of holes and electrons respectively, and b is the mobility ratio 

defined as 

b = ^ (6.10) 

The value of b can be calculated from the ratio of [10] 
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^1-_JI^L (6.u) 
4b K ' 

where R™** is the maximum value of the Hall coefficient, and RJ0" is the value of 

the Hall coefficient in the extrinsic region, which can be assumed to be given by the value 

of NA — ND — 4.0x1014 cm 3 . 

Using this, we can find that the value of b is 26.38, which compares to the values 

expressed in the literature of 70 [11] and 100 [12]. Using this, the mobility of the 

electrons at 20K would be expected to be 2.1 l x l0 6 cm 2 \ r l s~ 1 . 

Below about 50K, the carrier concentration starts to drop once again, suggesting 

the freezing out of holes in to an acceptor with an energy of approximately 9.0 meV. This 

would support the suggestion that the p-type behaviour is due to Hg vacancies in the 

material, as the activation energy of these vacancies has been measured as 9.4meV for a 

sample with x=0.15. [13] 

The magnetoresistance of this sample is a positive quadratic, which is very similar 

to the behaviour shown in MMT38. The curve at 80K is more shallow than the other 

curves shown. This is linked to the transition between electron and hole dominant 

conduction. 
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6.3.2 Sample MMT29B 

Results 

Figure 6.14 shows the resistivity of sample MMT29B. The pink curve shows the 

resistivity of the sample without illumination. The green curve shows the resistivity of the 

sample whilst being illuminated with infrared light from an LED. After the sample had 

cooled to the base temperature, the LED was turned off, and during the warming process, 

the blue curve was obtained. From the graph it can be seen that the sample has an 

activation energy that is varied by illumination. 
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Figure 6.14 Resistivity of sample MMT29B 

Figure 6.15 shows the effective carrier concentration, \RHe\~l, as a function of 

temperature for the dark (pink triangles) and illuminated (blue circles) cases. 
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Figure 6.15 The comparison of the effective carrier concentrations for sample 

MMT29B 

Figure 6.16 shows the mobility of the carriers for the unilluminated sample 

MMT29B as a function of temperature, and fits to this to demonstrate the possible 

dominant scattering mechanisms in the material. 
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Figure 6.16 The mobility of MMT29B in the dark 

Figure 6.17 shows the mobility of the carriers for the illuminated sample MMT29B 

as a function of temperature, and fits to this to demonstrate the dominant scattering 

mechanisms in the material. 
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Figure 6.17 The mobility of sample MMT29B under illumination 

134 



Figure 6.18 shows the transverse magnetoresistance of sample MMT29B at 300K, 

under illumination and in the dark. The two curves have been normalised because of the 

change in the zero-field resistivity under illumination. 
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Figure 6.18 Magnetoresistance of sample MMT29B 

Discussion 

The resistivity of the sample in the dark shows the existence of activated 

conduction with an energy gap of 12.6meV. Under illumination, the resistivity shows a 

non linear behaviour, and an estimate of the energy gap from the lowest points, gives an 

estimate for the energy of 7 .6meV. The resistivity of the illuminated sample can be shown 

to fit 

) (6.12) 
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as indicated in figure 6.19.This is the expected behaviour for Efros - Skhlovskii 

variable range hopping. [14] The value of Ta in this sample is 1352K, and from this the 

radius of the carrier orbit can be calculated using equation 6 .13. [14] 

4mBsag 

From this it has been calculated that the radius of the carrier orbit is 23A. This 

compares to the values calculated from hydrogenic theory of 264A for electrons and 30A 

for holes in HgMnTe. 
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Figure 6.19 The Hopping regime in MMT29B 

After illuminating the sample during cool down, the light was removed and then 

the resistivity monitored during the warming of the system. In fig 6.14, the resistivity can 

be seen to follow the illuminated case closely until 200K is reached. The small offset 

between the two cases is due to the relaxation that occurs as soon as the illumination 
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removed. This relaxation occurs too quickly for a quantitative measurement to be taken. 

After the initial relaxation of the sample, a different mechanism occurs, with a far longer 

time period. 

This resistivity data looks very similar to that observed in persistent 

photoconductors, where upon illumination the resistivity of the sample drops and relaxes 

very slowly upon the removal of the illumination. The resistivity will only rejoin the dark 

value when the temperature exceeds a certain value, referred to as the quenching 

temperature. Comparing the resistivity data to that of a more conventional persistant 

photoconductor, e.g. CdMnTeTn in section 8.1, we can see that in this case of sample 

MMT29B, the quenching temperature can be defined as 200K. This is higher than is 

observed in many materials where the PPC is based on a microscopic mechanism such as 

the DX centre, in CdMnTe and AlGaAs. [15] 

The variation of the measured \RHe\~] in the dark, shows the existence of an energy 

gap at high temperature, with a value of 13.82meV. This compares well to that obtained 

from the resistivity of 12.6meV. At low temperatures, the data shows a trend away from 

this activated conduction. This behaviour may be due to the sample starting to undergo 

the transition from electron to hole dominant carrier. A comparison to the data obtained 

in sample MMT29A, would seem to support this hypothesis. No activation energy can be 

obtained from the illuminated data. Below 40K the two carrier concentrations diverge, 

and the illuminated curve is showing a large increase. From this it would appear that the 

sample is undergoing the transition to hole majority carrier at a higher temperature than in 

the dark case. 
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I f the resistivity behaviour at low temperatures in the illuminated case is dominated 

by the transition to variable range hopping conduction as has been speculated previously, 

then the value of \RHC\~1 , maybe expected to rise. This has been observed in p-type Ge 

samples by Fritzsche et al [17]. 
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Figure 6.20 Behaviour of lifeef1 in the hopping regime in p-type germanium 

I f this is indeed the case, then the mobility in this region cannot be expected to 

follow that of ionised impurity scattering, and the rapid fall off will be caused by the 

transition to variable range hopping conductivity. This would seem to be a reasonable 

hypothesis considering that the mobility of the carriers in this region is very low, of the 

order of lcm2V~ Is"1, which suggests hopping conduction. 

3 

The mobility of the sample in the dark shows a T2 behaviour at low temperatures 

suggesting that ionised impurity scattering maybe the dominant mechanism. Attempting 
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to fit the experimental data to the Brooks Herring model outlined in section 2.2.2, showed 

that it is impossible to model the data without using a modified temperature, i.e. defining 

T=T- X, where X is treated as a fitting parameter. No attempt is made to give a 

physical model to this concept. The fit to the experimental data can be made using the 

following parameters. 

Parameter Value 

r T-13.85K 

5.6xl01 7cm-3 

5x10"V 

Table 6.3 Fitting parameters to low temperature mobility 

At high temperatures the mobility is dominated by optical phonon scattering, and 

this can be fitted using the following parameters. 

Parameter Value 

0 140K 

m e 0.05/wo 

V 9.3xl0 1 3Hz 

Table 6.4 Fitting parameters to optical phonon scattering 

Under illumination the scattering mechanisms appear to be very similar to those 

observed in the dark. At high temperature the optical phonon scattering is dominant, and 

gives the following fitting parameters. 
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Parameter Value 

9 140K 

m e 0.05mo 

V 6.7xl0 1 3Hz 

Fitting parameters for optical phonon scat 

At low temperatures the T2 behaviour is observed, and using analysis similar to 

that in the dark case mentioned previously, we can obtain the following fitting parameters. 

ionised impurity scattering is seen to dominate the mobility, except at the lowest 

temperatures. The parameters obtained are summarised below. 

Parameter Value 

f 7M5.6K 

5.5xl0 , 6cm- 3 

5x1 ( T V 

Table 6.6 Fitting parameters for low temperature mobility 

From the consideration of \RHe[x, it seemed that the illuminated sample was 

undergoing the transition to hole dominant carrier, and so i f this is indeed the case, the 

mobility in this region would not be expected to be explained by ionised impurity 

scattering. During this transition the mobility falls rapidly, as can be seen in the data of 

MMT29A. The apparent agreement of the fit to ionised impurity scattering is because the 

sample has not yet been cooled far enough for the mobility to be dominated by the 
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transition. The trend in the resistivity that allows the Shlovskii Efros hopping to be fitted, 

may just be coincidental, and the only way to determine accurately the mechanism behind 

the mobility in MMT29B is to make measurements at lower tempertures. 

At high temperatures the magnetoresistance of this sample can be shown to have a 

quadratic behaviour, which is similar to the majority of the other samples. Under 

illumination, the quadratic behaviour remains at high field, whilst the low field region 

becomes dominated by a hysteretic feature. This hysterisis is visible on the illuminated 

magnetoresistance of a number of the investigated samples, and one possibility for this 

behaviour is that the illumination is affecting the interaction of the free carriers with the 

magnetic ions within the samples. Certainly the low field magnetoresistance is very similar 

to that observed in MnTe samples by Wasscher [17], and he has attributed this to spin 

disorder scattering. According to the work of Yosida et al [18] the trend for this form of 

scattering in semiconductors should be of the form 

Ap 

Po 

M 

SAT 

(6.13) 

where the ratio 
M 

is generally explained by the use of a Brillouin function. 
SAT _ 
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Figure 6.21 The fit to the magnetoresistance data using a Brillouin function and 

M 
a Langevin function for 

M, SAT 

The value of 0 obtained from this fit is 289.94K, which suggests that 

ferromagnetic interactions would be required to explain this data. The origin of these 

interactions is not apparent as the interaction in MnTe is antiferromagnetic. The Langevin 

function fit, which assumes the existence of MnTe clumps, which respond in a 

superparamagnetic manner, gives a value for the number of Mn ions per clump of 

approximately 10000. This would represent a clump of MnTe of approximately 100 A in 

extent, which would be below the resolution of X-Ray diffraction, as outlined in section 

1.5.3. 
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6.4 Sample MMT26 

Results 

Figure 6.22 shows the variance of the resistivity of sample MMT26 as a function 

of temperature. At low temperatures, this shows the existence of a shallow activation 

energy. 
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Figure 6.22 The resistivity of sample MMT26 

Discussion 

0.04 

The activation energy calculated from the resistivity is 8.92meV. The resistivity 

does not show the anomaly at 50K, that can be observed in a number of the other samples. 

Preliminary measurements, showed that this sample is p-type under going the 

transition to hole dominant carrier between 80 and 120K. The sample is not as good 

quality as MMT29A, as the mobility at 20K is only 50 c m W 1 compared to 7xl0 4 cm 2 V 

s" . The level of compensation is higher in this material than in MMT29A, as the value 
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for NA- ND = 6.0x1016cm 3 is about 150 times greater. This would explain the lower 

mobility in this sample, as highly compensated systems generally have a low mobility. 

6.5 Sample MMT21 

6.5.1 MMT21A 

Results 

The resistivity of this sample is shown in figure 6.23. No activation energy can be 

observed at low temperature, whereupon the high temperature activation energy is 

6.9meV. 
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Figure 6.23 The resistivity of MMT21A 

The effective carrier concentration, \RHe[x, of sample MMT21A is shown in figure 

6.24. 
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Figure 6.24 Effective carrier concentration of sample MMT21A 

The mobility of the carriers in sample MMT21A, and a fit line indicating the 

dominant form of scattering, is shown in figure 6.25. The variation of the points from the 

fit line shown, can be taken as an estimate for the uncertainty on the measurement. 
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Figure 6.25 Carrier mobility in sample MMT21A 

145 



Discussion 

The resistivity of the sample shows a monotonic decrease at high temperature and 

then levels off to give a constant value of p as temperature decreases. Extrapolating the 

value of the conductivity of the sample to OK, gives a conductivity of 5900 (Ocm) 1 . This 

would suggest that the sample is showing metallic behaviour. 

The carrier concentration is showing a drop as the temperature is reduced, 

although a value of \RHe[x - 4.8x10 1 7(cm - 3) is close to the value of nc the critical 

concentration for HgMnTe, and so semimetallic behaviour could reasonably be expected, 

which reinforces the observation made from the resistivity. The value of nc can be 

calculated from Mott's criterion, and is found to be lxl0 1 8cm" 3 . [19] The intrinsic carrier 

concentration for a semimetal at 20K is approximately 5xl0 1 7cm" 3 [20]. 

The mobility of the sample can be shown to be dominated by neutral impurity 

scattering. The points displacement from the fit can be taken as a measure of the 

uncertainty on the measurement, the standard deviation on this data being 4.72cm2V~1s~l. 

6.5.2 MMT21B 

Results 

Figure 6.26 shows the variation of the resistivity of sample MMT21B with 

temperature. A feature can be observed at around y = 0.024, which is observed in other 

samples. The graph shows the existence of two activation energies. 

146 



a: 10 

_ i i i _ _ l I L _ 

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 

1/Temperature ( K 1 ) 

Figure 6.26 The resistivity of sample MMT21B 

Figure 6.27 shows the effective carrier concentration, \RHe\~\ for sample 

MMT21B. 
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Figure 6.27 The carrier concentration in sample MMT21B 
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Figure 6.28 shows the mobility of the carriers in sample MMT21B as a function of 

temperature. The fit to the high temperature part, would suggest that dipole scattering is 

the dominant scattering mechanism in this sample. 
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Figure 6.28 The mobility of sample MMT21B 

Discussion 

The resistivity of the sample shows the existence of a very shallow activation 

energy that cannot be calculated from the resistivity data. At 50K there is a feature on the 

resistivity which is observed on a number of the other samples. 

The effective carrier concentration, \RHe[x, shows a minima, and the line on the 

graph is a guide for the eye. The high temperature data would appear to show a linear 

region, from which an activation energy can be extracted, Eg - 0.859meV. At low 

temperature, the trend becomes very confused, as the spread on the data points becomes 

significant. It is unlikely that variable range hopping is responsible for the behaviour of 
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\RHe\1 in this sample as the measured mobilities are far too large for this mechanism to 

occur. 

The mobility of the sample shows the fit to dipole scattering at high temperatures. 

Oppositely charged impurities in a compensated system may form pairs, i.e. dipoles and 

these can scatter electrons. In this sample it is likely that Hg vacancies are responsible for 

the formation of the dipoles. An expression for this type of scattering can be given by 

3n2V2e2h2Ek

y2 „ _ „ 
em ra NDIP 

Below 40K the fall off in the mobility is too rapid to describe using ionised 

impurity scattering as is normal in these samples. Two lines are shown as the data seems 

to indicate the possibility of two different behaviours, most likely arising from the two 

carrier types. The cyan line shows the behaviour of the less mobile holes. One possible 

explanation for this temperature dependence of the mobility comes from the work of 

Moore [21], where he considers the case of the electron mean free path being greater than 

the distance between scattering centres. Hence the electron scatters more than once in its 

motion. The predicted mobility of this scattering has a temperature dependence that is 

greater than that expected from the Brooks Herring formula for ionised impurity 

scattering. 

Another alternative for the sudden drop in the mobility is that the sample is heavily 

compensated and is about to undergo the transition to hole dominant carrier. I f this is 

indeed the case then the value of \RHe[l should be seen to rise at low temperatures. This 

would seem possible with the available data and the guide to the eye in figure 6.20 was 
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made with this hypothesis in mind. The spread on the data point in the graph are from an 

unknown source as the Hall voltage traces obtained have a far smaller uncertainty than the 

spread on the values of \R„e[x would suggest. 

6.6 Sample MMT19B 

Results 

Figure 6.29 shows the variation of the resistivity of sample MMT19B with 

temperature. 
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Figure 6.29 The resistivity of MMT19B 

Figure 6.30 shows the effective carrier concentration, \RHe\1, for sample 

MMT19B. 

150 



1 0 1 

E o 

CD 
I 

or 

1 0 
ie 

_ i i i i i _ 

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 

-1̂  1/Temperature (K ) 

Figure 6.30 The effective carrier concentration in MMT19B 

Figure 6.31 shows the non linearity of the Hall voltage in sample MMT19B at 

various temperatures. 
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Figure 6.31 The nonlinearity of the Hall voltage in MMT19B 
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Figure 6.32 shows the mobility of the carriers in sample MMT19B. The upper 

temperature range is not dominated by optical phonon scattering as in the majority of the 

other samples. The low temperature region does not fit the expected ionised impurity 

scattering. 

m 2 

i> 
E 

2 o 
5 

10' |4 -

_ J i I i I l I i L _ I i i 

0 20 40 60 80 100 120 140 160 180 200 
Temperature (K) 

Figure 6.32 The mobility of the carriers in sample MMT19B 

Figure 6.33 shows the transverse magnetoresistance of sample MMT19B at low 

temperatures. The saturation observed in the high field region is similar to that observed 

in MMT29A. 
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Figure 6.33 The transverse magnetoresistance of MMT19B at low temperatures 

Figure 6.34 shows the high temperature magnetoresistance of sample MMT19B. 

The quadratic form is similar to that observed in a number of the other investigated 

samples. 
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Figure 6.34 Magnetoresistance in sample MMT19B at high temperatures 
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Discussion 

The resistivity of fig 6 .29 shows the existence of two activation energies. The high 

temperature region gives a value of 11.64meV, whilst the low temperature energy state is 

too small to be determined from the resistivity. A feature is observable in the data at 

around 50K, which is very similar to that seen in a number of other samples. 

The behaviour of the effective carrier concentration shows the existence of an 

activation energy, of 13.01meV. This value compares favourably with that observed in 

the resistivity. At low temperatures, the Hall voltage shows a striking non linear 

behaviour. This anomalous contribution to the Hall voltage can arise from two possible 

sources, the magnetisation of the sample or from two band conduction, as outlined 

previously. 

The high field Hall measurements shown below in figure 6.35, are an attempt to 

ascertain the mechanism behind this anomalous behaviour. It can be seen from the data of 

fig 6.34 that the high field region is becoming linear, and that the gradient is in fact 

opposing that of the low field limit, in other words, the sample is appearing to be showing 

hole dominated transport. Comparing the low field data to equation (2.44) 

RH=ra^-b2"] (6.15) 

and the high field region to equation (2.47) 

RH = — — — (6.16) 
\e\(n-p) 

we can obtain an idea for the compensation within the sample. In general the value 

obtained from the high field region gives {p-ri) = 1.152xl017(cm"3). The variation of 
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this value with temperature suggests that the sample is showing the existence of a very 

shallow acceptor, and the value obtained above for (p - n) can in fact be evaluated as just 

p. From this it is possible to calculate the mobility ratio of the carriers, b, and hence 

calculate the value of n for this sample. From the use of equation 6.11, we find 

thatZ> = 28.63, which is very close to the value obtained in sample MMT29A, of 26.38. 

From this we can use equation 6.15, the value of n can be calculated, assuming 

that the ratio of the mobilities is temperature independant. The values of n are shown in 

figure 6.35 for comparison with the measured value of \RHe\~*. 

The graph of \RHe\* is obtained by analysing the low field linear region of the 

curve. The low temperature data would suggest that the sample is compensated and on 

the verge of the transition from electron to hole dominant carrier. This is in good 

agreement with the explanation of the anomalous behaviour of the Hall voltage. The 

graph of \RHe[x using the high field region to calculate p, is shown below, with the 

experimental data for comparison. 
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Figure 6.35 The comparison between the effective carrier concentration 

measured at low and high field 

The measurement of a linear value of \RHe[x at high field is only possible at 

temperatures below 30K. 

As was attempted for sample MMT38A, the anomalous Hall effect can also be 

explained via the consideration of the magnetism of the sample under investigation. The 

form for this was outlined in sections 2.2 and 6.2.2, [8] 

Rumeas = Rliact + CpX (6.1 7) 

In attempting to fit the data to this equation, it has been assumed that the 

magnetisation of the sample can be described by either the paramagnetic Brillouin function 

or the superparamagnetic Langevin function. For the case of the 15K data, the linear high 

field data has been taken to be RHOCI and the magnetic behaviour has been used to describe 

the non linearity. The graph of these fits is shown below 

• Calculated n 
• Experimental data 
• Calculated p 
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Figure 6.36 Fits to the anomalous Hall effect at 14K. 
The parameters used in the fits are summarised in table 6.2 below. 

Fitting Function Fitting Parameter Value 

Brillouin Function e -13.927K 

Langevin Function m 875^B 

Table 6.7 The fitting parameters used to model the anomalous Hall effect 

The value obtained for 0 suggests that the manganese concentration in the sample 

is around 7.53% [9]. The value for 0 obtained from the fit at 14K cannot be used to 

model the data at any other temperature, because 9 was found to vary with temperature. 

Similarly, the value of the magnetic moment of the superparamagnetic regions that is the 

fitting parameter in the Langevin function also seems to vary with temperature. These 



descrepancies suggest very strongly that the non linearity in \Rfje[x is not due to the 

anomalous Hall effect, but is due to two band conduction in this sample. 

The magnetoresistance of the sample at temperatures above 80K can be expressed 

as a quadratic function in low field. This behaviour is similar to that seen in a number of 

other samples, and suggests that the sample is heavily compensated. This is in direct 

contrast with the mobility data, which due to its high value, would suggest little 

compensation in the material. In the low temperature regime the magnetoresistance shows 

a non quadratic low field region with a saturation being visible at high field. The low field 

data is complicated by the superposition of the Hall effect due to a small contact 

misalignment. Normally this contribution can be removed in the analysis by removing the 

component that is linear in field, but as the measurements on this sample show, the Hall 

effect is non linear, and so its removal is a non trivial matter. The data in high field shows 

evidence of saturation, although with the Hall effects superimposed, this is difficult to see. 

This is similar to that observed in MMT38, another sample that shows extraordinary Hall 

effect and evidence of two band conduction. 

The mobility of this sample does not seem to fit the expected ionised impurity 

scattering mechanism at low temperatures. Attempts to fit this section of the data to a 

scattering mechanism have failed. This may be due to the mobility being calculated from 

the low field region of the Hall voltage, and so two band conduction will be complicating 

the picture. 
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6.7 MMT34 

Results 

Figure 6.37 shows the variation of the resistivity of sample MMT34 with 

temperature. The graph shows the existence of two activation energies, a feature can be 

observed in the resistivity at approximately 60K. Under illumination the resistivity of the 

sample changes dramatically. The feature at approximately 60K can still be observed in 

the illuminated data. 
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Figure 6.37 The resistivity of sample MMT34 

Figure 6.38 shows the transverse magnetoresistance of sample MMT34 in the dark 

at 13K. Unlike the previous samples, the magnetoresistance is no longer positive and 

quadratic. 
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Figure 6.38 The magnetoresistance of MMT34 at 13K 

The low field section of the magnetoresistance is shown in figure 6.39. From the 

graph it is apparent that this low field section is hysteretic. 
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Figure 6.39 The low field magnetoresistance of MMT34 at 13K 
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Figure 6.40 shows the magnetoresistance of the sample under illumination. The 

positive low field section has disappeared. 
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Figure 6.40 Illuminated magnetoresistance of sample MMT34 at 13K 

Figure 6.41 shows the variation of the magnetoresistance as a function of 

temperature. From this it can be seen that the negative magnetoresistance seen at low 

temperatures becomes positive at approximately 3 OK. The difference of the point at 60K 

is linked to the feature observed in the zero-field resistivity, as shown in figure 6.37. 
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Figure 6.41 The variation of the magnetoresistance with temperature at 0.25T 

Discussion 

The resistivity of this sample shows the existence of a high temperature activation 

energy of 127meV. The data shows the same feature at 50K as a number of the others. 

Investigatations of the conductivity show that if the conductivity is extrapolated down to 

OK then a non zero conductivity will obtained. This has a value of 

<J0 = 0.62(Qcm)_1. From the illuminated data an extrapolation shows another non zero 

conductivity, this time with a value of aa = 15.4(Ocm)_1. The dark data is shown in 

figure 6.42. 
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Figure 6.42 The conductivity of MMT34 in the dark 

From these it would appear that the sample is metallic, albeit very slightly. The 

Mott minimum conductivity is denned as [22] 

Ce2 

er = tia„ 
(6.18) 

where e is the electronic charge, aQ the radius of the electron orbit, h Planck's 

constant divided by 2n and C is a constant, usually taken to be 0.2. 

The value of this for HgMnTe is calculated to be 0.99(Qcm) 1 . This compares 

favourably with the value obtained in the dark, although the value under illumination is 

sufficiently different. The theory behind the Mott transition has never been proven 

experimentally, and a number of groups have reported metallic behaviour at conductivities 

well below the Mott minimum, [23] and in fact the <r(0) has been found to go smoothly to 
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zero as carrier density is reduced, as predicted by scaling theory [24]. Thus this sample, 

when under illumination could be considered a 'dirty metal'. [24] 

The magnetoresistance of this sample is unique amongst those studied. The low 

field is a positive quadratic, whilst the high field is negative. The high field can be 

modelled assuming that 

^ « ( j f ) (6.19) 

and using the Langevin function to give the values of [ — — J The model 
\MSATJ 

proposed to explain this phenomenon is as follows. The sample contains a number of 

superparamagnetic clumps, which in zero field have no net magnetic moment, due to 

internal domain type structures. As the field is increased, the clumps become polarised in 

a manner similar to that observed in ferromagnetic materials, until at a field of 

approximately 0.03T they are saturated. The resistance of the sample increases in this 

low field region as the magnetic moment of the clumps is increasing, although their 

direction is still partly random, and are hence more efficient scattering centres. At fields 

above this the clumps undergo rotation to allow their magnetic moment to lie parallel with 

the applied field. As the angle between the field and magnetic moment is decreased the 

scattering of the charge carriers is decreased, and hence the resistance falls, proportionally 

to the magnetisation of the sample. The fit is shown in figure 6.43 for the 13K data, along 

with the parameters used. It should be noted that our fit has a dependence of 

—a I ^ , where the majority of the literature shows —a 
po VM^jJ po 

M \ 2 

\MSATJ 
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Figure 6.43 The fit to the magnetoresistance of MMT34 

0.2 

Fitting Equation Fitting Parameter Value 

\MSAT) \kBTJ \xBJ 

X 100/fi? 

Table 6.8 The fitting parameters for figure 6.43 

The same fit and parameters can be used to explain the magnetoresistance at 

temperatures up to 30K. Above this temperature the negative magnetoresistance is 

becoming positive, as the contribution from the low field region is stronger than the high 

field regime. Because the magnetoresistance can be described by a Langevin function, it 

can be postulated that the material comprises of a number of magnetic clumps, each of 

which have a magnetic moment of 100JUB. Assuming that these clumps are made up of 

Mn ions, each with —//B then the clumps will contain 20 ions, as J C is defined as 
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x = JgfiBN, where TV is the number of ions. If the clumps are MnTe, then the size of 

them is expected to be approximately 12A. 

It has not been possible to measure the Hall effect in this sample. The 

magnetoresistance swamps any attempt to measure the Hall voltage. This would suggest 

that the sample has a high carrier concentration, which would tie in with the suggestion 

that this sample is metallic. 

6.8 MnTe 

Results 

Figure 6.44 shows the variation of the resistivity as a function of temperature for 

the MnTe sample grown by Dr Funaki. A feature is visible at 80K, which is similar in 

appearance to the ones observed in previous samples, though these were observed at 

approximately 5 OK. This anomaly is also observed under illumination. 
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Figure 6.44 The resistivity of MnTe 
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The relaxation time of the photoconductivity of this sample is very short, and is 

faster than the meter can resolve. 

The magnetoresistance of the sample at 60K is shown below in figure 6.45. 
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Figure 6.45 The magnetoresistance of MnTe at 60K 

The variation of — as a function of temperature is shown below in figure 6.46, 
Po 

along with a guide to the eye. The value of magnetic field used in these measurements is 

0.246T. 
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Figure 6.46 The variation of — with temperature in MnTe 

Po 

The magnetoresistance of the MnTe layer shown in figure 6.45 is very similar to 

that observed in MMT34 under illumination. It also similar to that observed by Wasscher 

[25] in his work on bulk MnTe samples. The negative low field region is attributed to spin 

disorder scattering, which in a semiconductor, has the general form of [9] 

Po 
a 

M 
M SAT 

(6.20) 

The variation of — with temperature is also very similar to that observed in 
Po 

certain bulk samples by Wasscher [25], which is shown in figure 6.47. 
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This peak in — was thought to originate from the onset of weak ferromagnetism 

Po 

in the samples, but only occurred in one sample of MnTe and others that had been 

intentionally doped with copper. It has been shown that in NiAs MnTe it is possible to 

obtain a weak ferromagnetic state when the antiferromagnetic state is collinear such that 

the two sublattices are perpendicular to the c-axis. [25] 
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6.9 Conclusions 

The activation energies observed in the samples are summarised in table 6.9 below. 

Sample No E a (from p) 
(meV) 

E A ( f r o m RH) 
(meV) 

Carrier 
type 

p(20K) 
(Qcm) 

n(20K) 
cm2 cm2V-]s'1 

29B (dark) 12.6 13.82 n 8.2 2.5xl0 1 4 10 

29B (light) 7.76 P? 5.5 2x l0 1 5 8 

21B 0.05 n l . lxlO" 3 2.2xl0 1 4 3.4xl0 5 

34 (dark) 127 ? 1.2 

(light) 38.2 9 7x10"2 

29A 9.0 9.7 P 2 l x l O 1 4 8x104 

38B 1.2 n 7.8xl0"3 4x l0 1 5 2x105 

26 8.92 P 5 2.5xl0 1 6 50 

21A n 1.5X10-4 4.8xl0 1 7 1568 

19B 11.64 13.01 n 4x10'2 l x l O 1 6 1.5xl04 

MnTe 

(dark) 

1068 

High temp 

? ~3xl 0 5 

MnTe 

(light) 

884.1 

High temp 

? 1.71x10s 

Table 6.9 Summary of the activation energies of the samples studied 
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6.9.2 Resistivity 

In general the resistivity of the investigated samples show a feature at around 50K. 

This feature is very similar to one observed in EuTe systems, where it is attributed to a 

magnetic phase transition from paramagnetic to Antiferromagnetic systems. [26] The 

value of the Neel temperature obtained from this technique is in good agreement with that 

obtained from magnetic susceptibility measurements. [27] 

The temperature that these anomalies occurs is very close to the observed Neel 

temperature in zinc blende MnTe, which is 60K [28]. The spread on these values can be 

explained by noting that the Neel temperature of MnTe can be affected by the pressure 

applied to the sample, and hence the internal strain. [29] Because of lattice mismatch all 

the layers grown have a residual strain associated with them, and this will cause the Neel 

temperature to be moved from 60K. This is especially evident in the MnTe sample, where 

the anomaly is seen to occur at around 80K in the resistivity data and 85K in the 

magnetoresistance data. The lattice mismatch in a boundary between CdTe and MnTe is 

0.1460A rather than the 0.04A mismatch between CdTe and a Hgo.9Mno.1Te sample. This 

larger mismatch will give rise to a higher strain in the sample, which will increase the 

chance of NiAs structure MnTe forming, and will move the Neel temperature away from 

60K. Compressive strain will cause an increase in the Neel temperature, whilst tension 

will cause a reduction. The mechanism for this is thought to be due to the decrease in the 

exchange integral as the bond lengths are increased. [29] 
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6.9.3 Effective carrier concentration 

In general the measurements of \RHe\~l show that the samples appear to be heavily 

compensated in nature, and i f taken to sufficiently low temperatures will exhibit hole 

dominated transport. This is in a stark contrast to the work of Hallam [30], where the 

majority of the investigated films were n-type in the whole of the measured temperature 

range. The reason for films being either n-type or p-type in the as grown state was initially 

thought to be related to the flush time in the growth cycle. This is the time between the 

growth of HgTe and MnTe, where the sources are changed and no growth occurs. 

During this time, the sample is kept heated and the mercury close to the surface is likely to 

boil off, leaving a higher concentration of mercury vacancies in the layer. Hence samples 

with higher flush times were expected to be p-type. This theory works for a number of the 

samples, but not others. The flush times and the carrier type of the samples is shown in 

table 6.10 below. 

Sample Flush Time Carrier Type 

19B 33 n 

21 47 n 

26 38 P 

29 44 P 

34 37 ? 

38 39 n 

MnTe ? 

Table 6.10 The flush times of the electrically investigated samples. 
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Hence the flush times are not the sole cause of the difference in the carrier type, 

although it is likely that they are a contributory factor. 

In the work on MOVPE grown HgCdTe, Capper [31] has shown that it is possible 

to affect the carrier type in the sample by varying the mercury overpressure during the 

growth as a function of the temperature of the growth susceptor. This is shown in figure 

6.48 below. 
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6.48 Hg pressure v growth temperature for HgCdTe samples 

The growth of HgMnTe samples occurs at a temperature of approximately 385°C, 

in a mercury overpressure of about 76mm Hg. This puts our growth in the shaded area of 

the graph, and so any small deviation in either of the values will cause the samples to go 

from n-type to p-type conduction. 
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Samples of HgMnTe are normally annealed in hydrogen gas following their 

growth, as was outlined in section 1.4. This anneal is used to ensure that the diffusion of 

the growth layers is complete and also generally renders the sample n-type. It is the 

suspicion of the author that the samples grown in this study were not annealed, as they 

show high levels of compensation and the existence of incomplete difussion (MnTe 

clumps). 

6.9.4 Mobility 

The majority of the samples investigated showed a dependence on optical phonon 

scattering at high temperatures and ionised impurity scattering at low temperatures. This 

is in good agreement with previous work on this and similar materials. [30,32] 
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Figure 6.49 The mobility in HgCdTe samples 

The values obtained for the fitting parameters for the optical phonon scattering, 

were in general sensible, although the values for the ionised impurity scattering were 
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unreasonable. This suggests that although the scattering is following a T2 dependence 

over the temperature regime studied, the mobility is in fact being dominated by the 

transition to hole dominant conduction, and the mobility is starting to drop rapidly as the 

transition is reached. The mobility of certain samples (MMT38B and MMT19B) do not 

show the existence of ionised impurity scattering at low temperatures, and this may be due 

to the two band conduction in these samples that is giving rise to the non linear Hall effect. 

The mobilities have been calculated using the low field values for l i^ep 1 , which is of 

course affected by both carrier types and their mobilities, from equation 6.21. 

-\rnUn2n - rPUp2p) 

^ = - ^ r — * ( 6 2 1 ) 

where the symbols are defined in section 2.5.2. 

The high field values of \RBe[x, where available give more accurate values for the 

carrier concentrations in the sample. Unfortunately, there are insufficient values obtained 

by this method as the applied field was not high enough to reach the high field regime at 

the majority of temperatures studied. 

6.9.5 Magnetoresistance (M.R.) 

The majority of the samples show a positive M.R. with a quadratic field 

dependence, at least at high temperatures. This is the expected form of magnetoresistance 

for a semiconductor, and is due to the Lorentz force on the charge carriers. 

A number of the samples show behaviour that is dominated by the effects of the 

magnetisation of the sample. Two of them, MMT29B and MMT34, under illumination, 

show something very similar to spin disorder scattering at low field, whilst sample 

176 



MMT34 appears to be related to the magnetisation of superparamagnetic clumps in the 

material. The magnetoresistance of the MnTe sample shows a maximum in — at the 

Po 

same temperature as the anomaly in the resistivity, suggesting that these two phenomena 

are linked. The magnetoresistance is similar to that observed in other MnTe samples, 

which were undergoing a magnetic phase transition [25]. 

One major unanswered question about the magnetoresistance data is why the 

influence of spin disorder scattering should increase on illumination, as observed in 

MMT29B and MMT34. There are a number of possible explanations as to the origin of 

this effect. It is clear from the previous section that ionised impurity scattering tends to 

dominate the carrier mobility at low temperatures. Now from equation 2.10, such a 

scattering mechanism is dependant upon the free carrier density. Thus a photoinduced 

increase in the carrier concentration may produce a rise in mobility to the point that 

another mechanism, such as spin disorder scattering dominates. We may then expect the 

magnetoresistance to be related to the intrinsic magnetisation of the material only when 

the sample is illuminated. The change in carrier concentration for sample MMT29B is 

low, as can be observed in figure 6.15, whilst in MMT34 the carrier density cannot be 

measured, but the change in conductivity is approximately an order of magnitude. 

Another possible explanation of the magnetoresistance of samples MMT34 and 

29B is that in the dark, the conduction is via percolating pathways between regions of low 

manganese concentration. In this case the transport is not affected by the dominant 

magnetism of the sample (associated with the high manganese regions), and the 

magnetoresistance will be the quadratic form expected from the Lorentz force on the 
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carriers. Under illumination the high manganese regions may become more conducting, 

and therefore contribute to the overall conductivity of the sample. Thus conduction will 

occur in manganese rich regions of the material which will have a similar response to a 

magnetic field as that observed in MnTe. It is unlikely that the change in conductivity 

required for this mechanism arises solely from the photoexcitation in the MnTe regions. 

This is because the photoconductivity of MnTe is small (see figure 6.44). It has been 

noted that, in general, layers of MOVPE grown HgMnTe are of a non uniform thickness, 

and that the thinner regions have a higher manganese concentration [30,33,figure 1.6]. 

The direct band gap of zinc blende MnTe is 3.3eV [34], and so in these thinner regions, 

the incident photons will penetrate through to the CdTe buffer layer, which has a band gap 

of 1.3eV [35], very close to the energy of the illumination, 1.3 leV. Hence electron hole 

pairs are formed in the CdTe. Given the difference in the bandgaps of CdTe and MnTe, 

and the fact that the band offset will be mostly in the conduction band, according to the 

anion rule [36], we might expect the holes to be free to diffuse from the CdTe to the 

MnTe. This would create a surplus of holes in the MnTe layer, as the electrons are 

trapped behind a large potential step, of roughly 2.0eV. This would result in a drop in the 

resistivity, and a move towards a p-type transition as observed in samples MMT34 and 

29B. The spatial separation of the carriers over the CdTe/MnTe boundary can also give 

rise to the observed high temperature photoconductivity (see figure 6.14), as has been 

observed with other materials [37,38]. The holes will interact with the Mn ions via the 

ferromagnetic p-d interaction, which is stronger, (N0/3 = 1.4eV), than the s-d interaction 

of the electrons and the Mn ions, (N0a = -0.7eV) [39], and such an interaction may even 
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produce a ferromagnetic order in the MnTe. In fact photoinduced magnetic phase 

transitions have recently been reported for quantum wells of CdMnTe/CdMgZnTe:N [40] 

and in HI-V material [41]. 

6.10.6 Photoconductivity 

The majority of the samples investigated showed some photoconductivity, 

although in some cases it was so small that it was virtually no different to the dark data. 

In general the resistivity of the sample changed very rapidly on illumination, and on the 

removal relaxed more rapidly than the meter could resolve. After this initial relaxation, 

the resistivity would then relax with a very long time constant, so slowly that it looked like 

a drift on the measurement, until it would become the initial unilluminated value. Sample 

MMT29B shows a photoconductivity that looks very similar to that observed in a 

persistent photoconductor, such as CdMnTe:In, where the DX centre is responsible. This 

mechanism cannot be responsible for the photoconductivity in HgMnTe as DX centres are 

not formed, and so a different mechanism must be responsible. 

DX centres are a form of negative U centre, and it has been shown [42] that these 

are possible in HgMnTe, located on Hg vacancies, although they will be too shallow to 

give rise to persistent photoconductivity in these samples. 

One method of creating a 'persistent' photoconductivity is to separate the charge 

carriers that are created under illumination. I f the carriers are swept apart by the potential 

fluctuations, then their recombination will be less rapid then i f they were allowed to remain 

spatially close. This is possible using a p-n juction, a heterojunction as discussed in the 
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previous section, or by the consideration of a random potential field [43]. The random 

potential theory is shown below in figure 6.49. 

Figure 6.49 The random potential for persistent photoconductivity 

The conduction and valence bands are shown in the figure. The shaded ares 

contain a quasiequilibrium of holes and electrons that have become spatially separated due 

to the shape of the band in that region. Hence the carriers cannot recombine without 

overcoming the potential barriers, and the recombination times are far longer than would 

be expected for the material, giving rise to a photoinduced conductivity with a very long 

time constant. This idea has been shown to be applicable in material in which the band 

structure is affected by the random location of inhomogeneities. [43] 
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Chapter Seven Magnetic Results 

7.1 AGFM Data 

All the susceptibilities given in the body of the text in this section, are expressed as 

volume susceptibilities and are in units of (raks-ra - 3), and is thought of as 

dimensionless. Comparisons between the experimental data and the theoretical data are 

scaled to a sample of dimension 1mm2, as the samples are all slightly diffrent masses. 

7.1.1 Buffer Layer 

From calculations, it was found that the magnetisation of the samples was likely to 

be dominated by the GaAs substrate. The susceptibility of the constituents has been found 

in the literature, and the masses in the sample calculated. Hence, the first measurement 

was on a section of the buffer layer onto which the samples were grown. The 

magnetisation is shown in figure 7.1 
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Figure 7.1 Magnetisation of the CdTe / ZnTe buffer layer 
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The susceptibilities of the constituents of a sample are 

Name Thickness (jum) X (emu g'1) Xv (mks) 

GaAs 500 -1.12xl0~7[l] -7.49x10"6 

CdTe 1 -3.5x10-7 [2] -2.43x10"5 

CdTe 1 -3.1xl0~7 [3] -2.28x10"5 

ZnTe 0.1 -3.6x10"7 [4] -2.87x10-5 

HgTe variable -3.6x10"7 [5] -3.70x10"5 

HgTe variable -2.3x10"7 [4] -2.36x10"5 

Table 7.1 The constituent susceptibilities of the samples investigated 

The calculation for the susceptibility of a 1mm2 section of buffer layer is 

Volume of GaAs substrate lxl 0"3 xlxl 0"3 x500xl 0"6 = 5x10"10 m3 

The susceptibility of this GaAs is therefore 

X ^ h = 5xl0-1 0x(-7.487xl0-6) = -3.74x10"15 

Similar calculations for the CdTe and ZnTe give a susceptibility of this 1mm2 section of 

buffer layer and substrate to be %vUf - -3.77x10"15. This value is very similar to that of 

the GaAs substrate as was mentioned at the beginning of this section. 

The value of the susceptibility obtained from the experiment is 

Xy - -5.03(±0.63)xl0~ 1 5, and scaling this down to a sample of similar dimensions to that 

above, we find that Xv = -3.5l(±0.44)xl0" 1 5. 
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7.1.2 MMT29 

The room temperature susceptibility of MMT29A is shown in figure 7.2, and has a 
value of -2.56(±0.29)xlCr1 5. 
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Figure 7.2 The susceptibility of MMT29A 

Comparing this to that obtained for the buffer layer, we can find that the magnetic 

layer has a susceptibility of Xv - 9.56(±1.08)xl0" - 1 6 

Calculation of the susceptibility of the HgMnTe layer is given by the Curie-Weiss 

law, and can be expressed as 

x = - XHgMnTe 3kB(T + 0) 

where N is the number of Mn ions (m"3), and can be expressed as 

1.5x1028x(Mn%) 
100 

, XHgMnTe 1 S t n e diamagnetic susceptibility of the HgMnTe, which is 
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considered to be equal to the diamgnetic susceptibility of HgTe for low manganese 

concentrations, and all other symbols have their normal meaning. 

The value of 0 is obtained from figure 7.3 [6] assuming that they are equal to the 

bulk values. 
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Figure 7.3 Value of B in HgMnTe 

The calculated susceptibility for a 1mm2 section of sample MMT29 is then 

Xv = 1.64x10"'5. This is based on a thickness of 2jum and a manganese concentration of 

x = 0.1. The descrepancy between this and the experimental value of 

Xv = 9.57(±1.08)xl0 - 1 6 may be due to the inaccuracy of these numbers. The thickness 

can be measured to ±0.1///w and the manganese concentration to 0.005, and so an error of 

A%y = ±0.16x10"15 should be applied to the theoretical value. 
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7.1.3 MMT38B 

The susceptibility of this sample is shown in figure 7.4. 
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Figure 7.4 The susceptibility of MMT3 8B 

Calculations reveal a susceptibility of the magnetic layer of Xv = 2.49x10"'5, 

which compares to the experimental value of %v ~ 2.33(±0.23)xl0"15. The same 

uncertainty has to be applied to the thickness and manganese concentration of this sample 

as the one analysed previously, here taken to be 5.5/wi and x = 0.055 respectively. This 

gives an error on the theoretical value of ts,%v - ±0.27x10"'5. 
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7.1.4 MMT38A 

The susceptibility of this sample is shown in figure 7.5 
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Figure 7.5 The susceptibility of MMT38A 

The susceptibility of this sample is not of a linear nature as in the previous 

examples. A definite saturation can be observed at low field. Removing the linear 

background susceptibility, which is 4.1 lxlO~15 in negative field and 4.25x1 CT15 in positive 

field, reveals this saturation, which is shown in figure 7.6. 
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Figure 7.6 The satauration of MMT38A 

From this saturation it is possible to evaluate the effective number of Bohr 

magnetons per manganese ion. From the volume of the sample the number of Mn ions is 

estimated to be 5x1015, and this gives an effective magnetic moment per ion of 0.27\/uB. 

A different approach would be to calculate the fraction of the Mn ions that are 

contributing to the saturation by defining the magnetic moment of each ion to be 5juB. 

This calculation states that only 5.4% of the managnese ions are contributing to the 

saturation in the material. Another method to calculate the fraction of Mn ions that are 

contributing to the saturation is to calculate the contribution to the paramagnetic 

behaviour of the sample. Considering the linear background of the magnetisation loop we 

can say that the susceptibility of the magnetic layer is 0.64(±0.25)xl0 - 1 5. This is far short 

of the predicted value from Curie Weiss theory, 1.72x10"15 , and this descrepancy can be 

interpereted as the fraction of manganese ions that are contributing to the linear behaviour. 
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From this the fraction of manganese ions contributing to the paramagnetic behaviour is 

37 l(±15.2)%. This can be expressed as an effective manganese concentration of 

x = 2.3%. 

7.1.5 MMT16 

Another sample that shows evidence of a non linear susceptibility at room 

temperature is MMT16. The saturating component of this suceptibility is shown in figure 

7.7. 
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Figure 7.7 The saturation of MMT16 

At saturation the effective number of Bohr magnetons in the sample can be 

calculated as being 6.47x10'3 manganese ions, each of magnetic moment 5/uB. 

Unfortunately there is no record as to the mass of this sample, although it has been 

estimated that it is similar to others measured in this study. Hence, as an estimate, the 

fraction of manganese ions contributing to the saturation in this sample is 2.2%. 
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It has been found that the epitaxial layer of HgMnTe in sample MMT16 is likely to 

be polycrystalline [8], and the MnTe is likely to congregate in clumps. Hence it can be 

postulated that the magnetic behaviour in this sample is dominated by the existence of 

MnTe clumps. 

7.1.6 Mni.xTe 

This sample is a layer of MnTe grown by MOVPE directly onto GaAs, where the 

manganese concentration is far lower than would be expected. EDAX data shows this in 

fact to be as low as 3% in parts of the crystal. It is therefore likely that the sample has a 

large defect concentration caused by the non-stoichiometry. This defect concentration is 

denoted by the x in the sample description. The sample can also be considered as MnTe 

clumps within a Te rich material. The susceptibility of the sample is shown in figure 7 .8. 
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Figure 7.8 The raw data for Mn1.xTe sample 
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The major distinction of this sample from the others studied is the observation of a 

positive background susceptibility. The expected susceptibility of MnTe at low field will 

be positive because of the antiferromagnetic behaviour of the material. 

As for the data of MMT38A and MMT16, the saturation of the sample can be 

removed from the background, giving rise to figure 7.9. The background in this case is 

7.66x10"17. 
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Figure 7.9 The saturation of Mni.xTe from figure 7.8 

The paramagnetic behaviour has a susceptibility (after removal of the diamagnetic 

contribution from the GaAs) of 3.74(+0.45)xl(T15. In order to obtain a value for the 

Curie Weiss law, a value of 0 is required. The value of 0 for this sample is not known, as 

for a sample of MnTe the value of 0 is expected to be -604K [9], although this is a dilute 

system, with about 3% Mn. Considering that HgMnTe is a system of dilute MnTe in a 

diamagnetic host, which is similar to this sample, it may be possible to estimate 0 from the 
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HgMnTe value, which is -5K [6] With this in mind, the Curie Weiss law has been fitted 

to evaluate the possible value of 6, which is +238.5K. 

The saturation of the sample is the equivalent of 1.08xl0 1 5//B, and as the number 

of Mn ions in the sample is 2.13xl015cm"3, the effective fraction of the Mn ions 

contributing to the saturation can be calculated as 20%. 

7.1.7 Proposed mechanism for the magnetisation 

Superimposing the saturation of MMT38A, MMT16 and Mni_xTe on the same 

figure suggests that the mechanism that is driving the magnetism in MMT16 and 

MMT38A, is also responsible for that in Mni.xTe. This can be seen in figure 7.10. 
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I f the magnetisation in MMT16 is dominated by the behaviour of MnTe clumps, as 

has been postulated previously, then the magnetisation should be describable by one of the 

following methods. 

Considering the clumps to be magnetic particles in a weakly magnetic sample, then 

the system should be analogous to that of a superparamagnet, and should be described by 

the Langevin function from section 3 .3.4. 

M JmB\ ksT 
= coth (7.2) 

MSAT \kisTJ mB 

where m, the effective magnetic moment of the clumps is used as a fitting 

parameter. The fit to the average of the three data sets is shown in figure 7.11. 
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Figure 7.11. Comparison of the experimental data and the Langevin function 

Using this equation with the data for sample MMT38A, gives a value of 

/w = 3 x l 0 4 / / B , which can be interpereted as a clump of 6000 manganese ions, each of 
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moment 5juB . Taking this hypothetical clump to be spherical, it would have an estimated 

radius of 25 Mn ions. If the clump is purely zinc blende MnTe, and the separation of Mn 

ions is 4.5 A, [10] the diameter of the clump is approximately 225A, which is well below 

the minimum resolution of the X-ray diffraction. 

Another possibility is that the clumps are behaving like regions of high manganese 

concentration and they are behaving in a paramagnetic fashion, with antiferromagnetic 

interactions, and that their magnetisation should be explained by the use of a Brillouin 

function. 

~2J + \ . 
coth ~(2J + l)x' 

-—coth 
X 

2J 2 J 2J 2J. 

(7.3) 

For zinc blende MnTe clumps, the Neel temperature is 60K [11] and so no 

saturation should be visible in these measurements, at the fields used. However if the 

MnTe inclusions in the material are of a NiAs structure, then the antiferromagnetic 

ordering would occur at the Neel temperature of 31 OK [12], and be visible at room 

temperture, but at far higher fields than those used. Of course, this is not what would be 

expected from the MOVPE growth technique, but still should be considered as a 

possibility. 

Using the value of 9 as a fitting parameter yields figure 7.12. 
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Figure 7.12. Comparison of experimental results and Brillouin function fit to 

MMT16 

The Brillouin function gives a very good fit to the data of MMT16, and fits can be 

obtained to fit the other two samples. The value of 6 obtained from this fit is 

0 = +289.89/:, and is 0 = +289.92/: for MMT38A and Mn,_xTe. These values are for a 

ferromagnetic exchange interaction, and so the antiferromagnetic interaction cannot be 

responsible. One of the possibilities for the origin of the ferromagnetic behaviour is the 

concept of vacancy ordering. In a material such as FeySg which has a NiAs structure, the 

observed room temperature magnetism is ferromagnetic [13], and this has been attributed 

to a magnetic ordering of the vacancies within the material. This mechanism is a 

contender to explain the magnetisation of the Mni_xTe sample, where as a consequence of 

the growth, a large vacancy concentration exists within the sample. This maybe due to the 

formation of NiAs structure MnTe during the growth process as this sample has been 
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grown directly onto the GaAs substrate without the use of a buffer layer. Due to the 

lattice mismatch between the GaAs and the zinc blende MnTe, it is possible that the layer 

is very disordered and the preferential NiAs structure MnTe is present. The lattice 

mismatch between GaAs and zinc blende MnTe is 0.699A, rather than the mismatch 

between the CdTe buffer layer and a Hgo.9Mno.1Te layer, which is 0.04A. Hence the Mni. 

xTe layer should be very highly strained, and liable to form defects to relieve the strain. It 

is also very likely that in such a strained system, the MnTe will form in its preffered form, 

namely NiAs structure, although it can be grown in the zinc blende structure via the use of 

molecular beam epitaxy, for small thicknesses. [11] 

7.1.8 MnTe 

A different sample of MnTe has been analysed, which was grown by M. Funaki 

using MOVPE. The susceptibility shows a very similar field dependance to the previous 

sample. The high field region is showing the contribution of the antiferromagnetically 

aligned spins. The magnetisation is shown below in figure 7.13. 
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Figure 7.13. The magnetisation of epitaxial MnTe 

From this it is possible to remove the paramagnetic component, of susceptibility 

2.53x10"17, to reveal the saturation, which is shown in figure 7.14. 
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Figure 7.14. The saturation of epitaxial MnTe 

199 



The satauration of the MnTe sample is equivalent to 2.46xl0 1 5// B , and from this it 

is possible to calculate the fraction of the Mn ions that are contributing to this saturation, 

which is 0.5%. 

Comparing this saturation with that obtained in the Mni-xTe sample shows a 

difference in the saturation field. 
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Figure 7.15. Comparison of the saturation in MMT38A and MnTe 

Despite the difference in the saturation field visible in the above figure, it seems 

likely that the saturation in this MnTe sample is of a similar origin. This would seem to 

support the theory that the magnetism in these samples is linked to vacancy ordering. 

It has been shown by Banfield et al [14], that the magnetisation of a sample can be 

dominated by the presence of a regular vacancy pseudo lattice in the sample. This 

observation has been made by the correlation of magnetic measurements and the direct 

observation of the vacancies in cross sectional transmission electron microscopy. 
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7.2 Hal! Chip Data 

The behaviour of the chip, an AlGaAs heterostructure, was investigated to 

ascertain the sensitivity of the device in the temperature range desired. It was noticed that 

the chip gave different sensitivities every time it was cooled down, due to the carriers 

freezing in to deep DX centre states [15], although it gave reproducible results under 

saturation illumination. The useable sensitivity can be defined as the number of Ohms per 

Tesla that the chip can show, under saturation illumination, above the noise base. The 

sensitivity of the chip as a function of temperature below 45K is shown in figure 7.16. 
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Figure 7.16 The sensitivity of the Hall device 
VH 

The background of the chip was taken to be the gradient of the line on the — v 

B and this was found to have a quadratic part to it. This is likely to occur from contact 
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offset and is caused by the strong quadratic magnetoresistance of the device, which is 

shown in figure 7.17. 
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Figure 7.17 The magnetoresistance of the AIGaAs Hall device 

Before attempting to measure an epitaxial layer of HgMnTe the chip was tried out 

using a piece of bulk Cdo.gMno^TeiP, with a mass of 5.6mg. The signal due to the 

magnetisation of the sample, after the removal of the background is shown in figure 7.18. 
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Figure 7.18 Sample 2 at 30K on the AIGaAs chip 

The hysteretic region in low field was of great interest, and further investigations 

were undertaken to check i f this was real or an artefact of the measurement. Running 

another piece of Cdo.8Mno.2Te gave very similar results as shown in figure 7.19. 
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Figure 7.19 The second run of sample 2 at 30K 
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It was decided to check the linearity of the system by measuring a known 

paramagnet. A sample of CuS04.5H20 was prepared and measured, and the signal due to 

the sample magnetisation is shown in figure 7.20. 
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Figure 7.20 The magnetisation of the C u S 0 4 sample 

This shows that the system is non linear in the low field region and that the results 

obtained previously are more than likely to be a linear susceptibility without any hysterisis 

at low field. As this problem has not been resolved, the investigations on the Hall devices 

was stopped. 

7.3 Faraday Balance Data 

All the data in this section has been taken in the Faraday balance system, outlined 

in section 5.3, at a field of 1 Tesla to ensure a good signal to noise ratio. The 

susceptibility of the sample under investigation is extrapolated to infinite temperature, and 
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this value is taken to be the diamagnetic background from the sample holder, the GaAs 

substrate, the buffer layers, and the HgTe. This is shown in figure 7.21, for MMT38. 
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Figure 7.21 Calculating the diamagnetic contribution at infinite temperature 

The value obtained from this is subtracted from the data before further analysis in 

undertaken. 

Fitting a straight line to the high temperature region of the data gives an intercept 

on the temperature axis, which is the value of 0 for that sample under investigation. This 

is shown in figure 7.22 below for MMT38. 
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Figure 7.22 The extrapolation of the high temperature inverse susceptibility to 

obtain 6 

The calculated value for 6 is obtained by fitting a line to the data in [6] which 

gives the following equation 

-0 = 0.0317x2 + 4.25x - 5.39 (7.4) 

where x is the manganese concentration in percent and the value of 6 is given in 

K. This equation gives a good fit in the region of 0 < x < 30. 

The values of 0 obtained for the samples investigated are summarised in table 7.2 

below. 
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Sample Mn concentration 

(%) 

-6 Experimental 

(K) 

-9 Literature 

(K) 

Background 

(a.u) 

MMT12 5 - 12 129 16.65 - 54.42 -3.47x10'7 

MMT16 5 -6 19.6 16.65 - 21.25 -4.27xl0*7 

MMT25 13 80 55.20 -3.88xl0' 7 

MMT26 10 31.7 40.28 -4.21xl0"7 

MMT29 8-11 0 30.64 - 45.20 -4.64x10'7 

MMT38 5-8 25.25 16.65 -30.64 -3.79xl0 - 7 

Table 7.2 Summary of the samples investigated 

Using the work of Nagata et al [6] it is possible to simulate the susceptibility of the 

samples. The equations for this are given in section 3.7.2. In most of the work in this 

area the exchange integral J is treated as a fitting parameter. Using this method to 

determine J is notoriously inaccurate, as the value is influenced by long range 

interactions, as described in section 3.6. In the fits below, the value of J has been 

allocated the value taken from Nagata's work, to evaluate the accuracy of the model. 

A comparison of the calculated susceptibility with that of the experimental data is 

shown below in figure 7.23 for MMT38. 
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Figure 7.23 The comparison of experimental and calculated susceptibility for 

MMT38A 

The other samples investigated are shown in the following figures. 
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Figure 7.24 The comparison of experimental and calculated susceptibility for 

MMT16 
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Figure 7.25 The comparison of experimental and calculated susceptibility for 

MMT12 
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Figure 7.26 The comparison of experimental and calculated susceptibility for 

MMT29A 
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Figure 7.27 The comparison of experimental and calculated susceptibility for 

MMT25 

The fits in general show a qualitative fit to the data. The quality of the fit is similar 

to that of Nagata using the random distribution. As no specific heat data is available for 

these samples, it is impossible to create a modified distribution for these samples. The 

work of Shapira et al [16] has shown that the specific heat can be modelled by using the 

standard distribution of ions and increasing the value of J to -10K. Assuming that this 

would allow the magnetisation to be explained using the same technique has not proved 

successful, and the fits obtained are no better than those shown above. Hence, it would 

appear that in order to successfully simulate the susceptibility of HgMnTe specific heat 

measurements are required in order to calculate the distribution of the manganese ions. 
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Chapter Eight Photoinduced phenomena in CdMnTe:In 

8.1 Persistent photoconductivity (PPC) 

Conventional short lived photoconductivity was reviewed in section 1.7. 

However, there are certain materials that show photoconductivity, that remains for long 

periods after the illumination is removed. This persistent photoconductivity has been 

observed in CdZnTe [1], AlGaAs [2] and CdMnTeln [3] samples to name but a few. 

Persistent photoconductivity typically exhibits the following features: Upon illumination 

the value of the resistivity drops to a lower value. After the removal of the illumination, 

the resistivity relaxes quickly to an intermediate level, where it remains for a period of 

many months, as long as the sample is kept below a certain temperature TQ (e.g. 

TQ « \00K for CdMnTeTn) [3]. Upon warming, the resistivity of the illuminated case is 

consistently lower than that of the unilluminated sample, until TQ is reached, (the 

quenching temperature) and the two curves join. An example of this is shown in figure 

8.1. 
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Cdo.9Mno.1Te: In. 

The drop in resistivity is accompanied by a change in the carrier concentration, and 

this can be seen in figure 8.2 for the Cdo.9Mno.1Te:In sample at 25.3K. 
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Figure 8.2 The relationship for resistivity as a function of carrier concentration 
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There are a number of mechanisms for PPC [5], some of which are outlined below. 

The mechanism for the observed effect in CdMnTeTn is that of the DX centre [4]. 

8.2 DX Centres 

The DX centre is a consequence of the bistability of the In dopant in the material, 

as shown in figure 8.3. The indium dopant can substitute onto a cation site to form a 

shallow donor, but the ground state of the impurity is in fact as shown in figure 8.3.b, 

where the In atom occupies an interstitial site. This latter site has a binding energy which 

is roughly an order of magnitude greater than that of the shallow state, and it is believed 

that this deep state is stabilised i f the indium donor is occupied by two electrons. 

Figure 8.3 The distortion of the lattice around the deep state 

The origin of PPC may be understood by considering the configuration co-ordinate 

diagram as shown in figure 8.4. [4] 

D X 

o Q' 

215 



On cooling the sample, the electrons will preferentially freeze out in to the deep 

state, which is strongly relaxed with the potential minimum centred at position Q\ 

l o t o 

/ 

E d 4 

Figure 8.4 Configuration co-ordinate diagram for the DX centre 

The electrons in the deep state are excited by photons of energy EOPT, and then 

relax into the bottom of the left hand potential. Providing the temperature is sufficiently 

low, the electrons will have insufficient energy to cross the barrier of height Ec and return 

to the deep state. Hence the sample now has a metastable increase in the free carrier 

concentration. This will remain the case until the temperature is raised to the point that 

kBT>Ec, and at this point the temperature is defined as the quenching temperature, TQ. 

At T < TQ the electrons are now in the hydrogenic-like donor state and so can be excited 

to the conduction band to contribute to the conductivity. 
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8.3 The formation of bound magnetic polarons (BMP) 

Two types of polaron are theoretically possible in a system such as CdMnTe:In. 

The free magnetic polaron occurs when a carrier is trapped, via the exchange interaction, 

in a magnetic potential well created by locally aligning the spins of the magnetic ions. [6] 

For a stable polaron to form the potential energy reduction, must exceed the gain in 

kinetic energy due to the localisation of the carrier. Possible experimental evidence for 

free polarons, which have been predicted theoretically, comes from the interpretation of a 

line in the photoluminescence spectra of CdMnTe by Golnik et al. [7] However, because 

of the general lack of convincing evidence for these polarons, they will not be discussed 

further. 

The bound magnetic polaron, which has been observed experimentally, [8] is 

described below. 

Consider an electron in the shallow donor band in a material, such as one that has 

been excited during photoconductivity. The Hamiltonian of this electron can be expressed 

as 

H = H B + H C + H M (8.1) 

where HB is the energy from the band, HC the Coulomb energy which is equal to 

— , and HM the magnetic Hamiltonian. 

The magnetic Hamiltonian has two components, the first originates from the s-d 

interaction of the carrier and the localised spins, and the second part which is Zeeman-like. 

This can be expressed as [9,10] 
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# m = - ^ Z ^ I > , (8.2) 

where JN is the s-d exchange interaction, ST the spin of the magnetic ion, s, the 

spin of the electron, g the Lande g factor, / i B the Bohr magneton, and H the magnetic 

field. 

Due to the s-d interaction the carrier creates a potential well which aligns the 

surrounding spins. This localisation is favoured because of the electrostatic attraction of 

the electron to the donor. The energy of the electron is further reduced by the alignment 

of its spin with that of the local magnetic moments. This alignment creates a region with a 

susceptibility that is far higher than the paramagnetic background of the sample. 

The susceptibility of the polarons can be calculated from equation 8.3, [10] 

4kBT 

1 + 
3kBT 

1 + ^ 
kBT 

(8.3) 

where ND is the donor concentration, fxB the Bohr magneton, kB Boltzmann's 

constant, T the temperature, geff the effective Lande g factor which can be calculated 

from g#=g* + ax 
gMB

2 

where a is the antiferromagnetic exchange constant, and % t n e susceptibility of 

the sample. 

The polaron binding energy, ep, can be calculated from equation 8.4 [10] 

a2X 
(gjUB)232naB

3 
(8.4) 
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8.4 Experimental observation of BMP 

Experimentally polarons can be observed optically [8], and by their effect on the 

magnetotransport of samples [11], and by the small change in magnetisation at low field 

[12]. The magnetoresistance arising from the presence of polarons is very large and can 

be in excess of 7 orders of magnitude at 2T, as seen in Gd3.xVxS4 by von Molnar et al [13] 

and is shown in figure 8.5 below. 

Figure 8.5 The magnetotransport of Gd3-xVxS4 showing the effects of polaron 

dominated transport 

In the figure, the values on the lines refer to the field in KOe, and V in the formula 

unit refers to the vacancy concentration in the sample. 
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8.5 Previous work on photomagnetisation 

Photomagnetisation has been observed by a number of groups, the first of which 

was Krenn et al [14] who observed an increase in the magnetisation of HgMnTe under 

illumination from a CO laser with the use of an RF SQUID. Further work by this group 

has shown photomagnetisation from the increase in the conduction electron density in 

HgCdTe [15] using the same technique. Photomagnetisation in CdMnTe has been studied 

by Awschalom et al [16] who have also used a SQUID, and have achieved picosecond 

timescale measurements [17]. 

The only previously published work on persistent photomagnetisation of 

CdMnSeTe:In samples has been recorded by Wojtowicz et al [18]. They observe an 

increase in the susceptibility of their sample under illumination from infra red light, using a 

SQUID magnetometer. Indium contacts on the sample allowed simultaneous resistivity 

measurements to be performed, hence investigating the relation between AM the increase 

in magnetisation and AND the increase in the concentration of the donors. 

The measured value of AND

BLEC from the electrical measurements and AN^0 

calculated from the change in magnetisation of the sample did not agree with A N ^ 0 , 

that being 50% higher than AND

ma. Wojtowicz et al [18] explained this discrepancy as 

being the result of electrons on the donors coupling antiferromagnetically when close to 

the metal insulator transition, and so a number of them are frozen into spin up / spin down 

pairs. Polarons can only form on 'free' spins, and so the discrepancy can be interpreted as 

the fraction of the spins that are frozen out. The carrier concentration observed by 

Wojtowicz et al [18] in their sample is ~1.5xl0 1 6 cm"3, which is far below the value 
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expected for the metal insulator transition in CdMnTeSe:In, of approximately 6x10 cm" 

[19]. Hence, it is unlikely that such an explanation is valid. 

The work presented here, is in an attempt to check the validity of this explanation, 

by measuring the persistant photomagnetisation of a previously characterised sample, in a 

modified commercial Faraday balance system. This is only the second time that these 

measurements have been performed, and the first occasion by this method. 

8.6 Experimental results 

The magnetic data in this section was taken in the Faraday balance system that was 

outlined in section 5.3. The susceptibility of a sample of Cdo.9Mno.iTe:In is shown in 

figure 8.6. 

1000000 

900000 

800000 

700000 

, 600000 

^500000 

400000 

300000 h 

200000 

100000 K 

0 

• Experimental data 
High temperature fit 

- J I 1 L_ 

50 100 150 200 

Temperature (K) 

250 300 

Figure 8.6 Susceptibility of Cdo.9Mrio.1Te: In 
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An extrapolation of the high temperature susceptibility, by use of a Curie Weiss fit, 

shows a value of 0= -34.96K. This is very close to the expected value of 0= -3 5AT 

that would be expected for this sample [19]. 

The photomagnetisation measurement was performed in a magnetic field of 0.1T, 

as this was the lowest field which would give the required signal to noise ratio. The 

temperature of the measurement was 4K. The resulting data is shown in figure 8 .7. 
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Figure 8.7 Observation of photomagnetisation in Cdo 9Mn 0 iTe:ln 

In the above figure, the light is flashed on and off rapidly at 160, 190, and 210 

seconds. The horizontal red lines represent the standard deviation of the magnetisation in 

that section of time. Further illumination beyond 240 seconds showed no further change, 

even under continuous illumination, and from this we conclude that the change in 

magnetisation has saturated. 
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The value of AM, the saturation photomagnetisation is 2.2x1 (T 9 JT - 1 , which 

corresponds to a change of 0.01%, which is over an order of magnitude smaller than the 

value of 0.4% observed by Wojtowicz et al [18]. 

The intensity of the incident illumination was measured in situ in the Faraday 

balance by means of a photodiode. The sample was contacted, and placed in an optical 

cryostat, and illuminated with light from the same source at the same incident intensity. 

The photoconductivity of the sample was measured at 4. OK, the temperature of the 

magnetic measurement, and then the resistance at 25.3K was measured. The sample was 

then transferred to the electrical transport rig that is outlined in section 4.3, where a 

characterisation of carrier concentration and resistivity at 25.3K. Because no Hall 

measurements are possible in this sample at 4.OK, the Hall data was taken at 25.3K, and 

so the resistivity at this temperature allows us to calculate the increase in carrier 

concentration at 4.OK. 

Analysis of the spectra of the illumination source showed that it was very weak in 

the infra red part of the spectrum, the region generally used for the illumination of 

CdMnTe samples, given that the value of E 0 P T is in the infra red part of the spectrum [2]. 

The spectra is shown below in figure 8.8, along with that of a normal tungsten bulb for 

comparison. 
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Figure 8.8 The spectra of the illumination source (not compensated for the 

spectral dependence of the detector) 

The values of the resistance obtained are summarised in table 8.1 below. 

Flash Number R(4.0K) R(25.3K) 

0 » 3 0 0 M Q 79.42MQ 

1 13.8MQ 0.932MQ 

2 7.74MQ 0.526Mfi 

3 3 85MQ 0.338MQ 

4 2.65MQ 0.238MQ 

Table 8.1 The resistance of the Cdo.9Mno.iTe:In sample under illumination 

Immediately after the removal of the illumination, the value of the resistivity is seen 

to relax towards a higher value, becoming stable after 2 minutes. This suggests that 

although the illumination source is creating persistent photoconductivity in the sample, it is 
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also creating conventional short lived photoconductivity. It is also possible that the 

photoionisation cross section of the DX centre is wavelength dependent, and the use of 

higher frequency light is not as efficient as the infra red normally used. At present no 

work has been performed to test this hypothesis. 

The carrier concentration of the sample at the known resistances was then 

measured using an infra red LED for the illumination. This gave the graph that is shown 

in figure 8.2. A good fit to the data can be achieved using equation 8.5. 

ND

ELEC = 1.06x1 (^(resistance)" 1 2 5 (8.5) 

and from this we can calculate that the illumination of the sample in the 

photomagnetisation experiment will have created N ^ 0 = 1.92x1015cw~3. 

Following the work of Dietl and Spalek [8,9] we can use the change in 

magnetisation to calculate the number of donors created on illumination. Using equation 

8.3 we can calculate ND

MAG. 

_ N D / J B

2 2 
l + 3 

3kBT 

1 + ^ 
k j 

(8.6) 

Taking the polaron binding energy sp to have a value of 0.140meV [20], and geff 

to have a value of 40.2 [21], we can calculate that in order to achieve the observed 

polaron susceptibility of 0.757JT_ 2m_ 3, we would require a donor concentration of 

No =1.28x1015 cm . This compares favourably with the observation made in the Hall 

measurements of N D

E L E C = 1.92 l x l 0 1 5 cm"3. 
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Other work on the photomagnetisation of CdMnTe:In by Terry et al [22], has 

shown the observation of a polaron susceptibility of 7.32JT"2m"3, with a change in donor 

concentration of 1.5x10'7 cm"3. Combining the results of Wojtowicz et al, Terry et al and 

the present work leads to the observation that there must be a mechanism so that the 

measured carrier concentration does not equal the number of polarons formed. 

8.7 Model for polaron formation in the band tail 

Although the formation of magnetic polarons is expected to strongly influence the 

magnetotransport of a sample, Stankiewicz [23] has measured persistent 

photomagnetisation in samples of Cdi.xMnxTe with x<0.01 which do not show the 

expected negative magnetoresistance (see section 8.4). We propose an alternative model 

to that of Wojtowicz et al to qualitatively explain this phenomena. 

Before illumination, the sample consists of DX centres lying in the deep state, and 

a shallow donor band just below the conduction band edge. This is shown in figure 8.9. 

_ t | t t Impurity level 

DX centre 

Figure 8.9 CdMnTe before illumination 

Upon illumination, one of the electrons from the deep state is excited to the donor 

band, and the remaining electron also moves into this band as the indium ion returns to the 

substitutional site. Polarons will be formed at these centres, and the transport of the 

system will be affected. The newly formed donor state may only be in the tail of the donor 

band, rather than close to the Fermi energy. The transport of the sample is determined by 
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the carriers excited from the Fermi energy to the conduction band edge. Now as the 

newly created donors in the band tail will not affect the transport. This is shown in figure 

8.10. 

_ Impurity band 

Donor in tail 
of band 

Figure 8.10 Polaron formation after illumination 

The 'Deeper' shallow donors in the band tail, shown in the above figure, will be 

more likely to produce magnetic polarons, because of the high electrostatic binding of the 

electron, as discussed in section 8.3 Thus these only account for a fraction of the number 

of created donors, and so the number of polarons formed will be smaller than the donor 

concentration measured by the Hall effect, which samples only those electrons excited to 

the conduction band edge. 

8.8 Conclusions 

The persistent change in the magnetisation of a sample of Cdo.gMno.iTeiln has been 

measured using a modified commercial Faraday balance magnetometer. The change in 

magnetisation has been compared to the Dietl and Spalek model of polaron formation, and 

the donor concentration in the sample calculated from this, AA^D

A"° = 1.28xl015cnT3. 

The donor concentration has been calculated from Hall data, AND = 1.921x10 cm 3 , 

and a model has been proposed based on donors in the band tail, to explain the 

discrepancy between the two values obtained in the present work and that reported by 

Wojtowicze/a/[18]. 
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Chapter Nine Conclusions 

9.1 Summary of the work on HgMnTe 

The major observation of this work is that the transport and magnetisation of 

layers of Hgi.xMnxTe grown by MOVPE is dominated by the existence of MnTe clumps in 

the samples. This is supported by the work of Munekata et al [1] who, in their studies of 

MBE grown Ini-xMnxAs, found that for certain values of x, their measurements were 

dominated by the existence of MnAs, a ferromagnetic material. The idea of the clumps in 

the HgMnTe samples is based on the observation of the anomaly in the resistivity (see 

section 6.9.2), the saturating room temperature magnetisation (section 7.1) and the 

magnetoresistance under illumination. 

The formation of clumps in HgCdTe is a well documented fact, and it has been 

shown by Edwall et al, [2] that HgTe forms precipitates during growth by MOVPE. 

Other work by Jones et al [3] has shown that the formation of these precipitates is higher 

close to dislocations, such as those close to the CdTe/HgMnTe boundary in these samples 

[4]. 

The growth of these clumps in the samples leads to speculation of their crystal 

structure. The HgMnTe samples themselves are in the expected zinc blende structure, and 

from a crystallographic viewpoint it would be more logical for the MnTe to form clumps 

in the same structure. This would seem to explain the magnetoresistance of sample 

MMT34, and the resistance anomalies, where the effect is noticeable close to the 60K 

Neel temperature of zinc blende MnTe. [5] In contrast to this, the observation of weak 

ferromagnetism at room temperature, which is possibly due to vacancy ordering, suggests 
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the existence of NiAs MnTe, as it has a Neel temperature of 31 OK [6]. However, the 

Interdiffused Multilayer Process (IMP) used in the fabrication of these samples grows very 

thin layers of alternating MnTe and HgTe before diffusing them to form HgMnTe. 

Because the layers of MnTe are so thin it is expected that the MnTe will grow in the zinc 

blende structure. 

The clumps in the material have been observed directly, via the use of high 

resolution X-ray diffraction by Moore [7], and also via the use of EDAX. The figure 

below shows the manganese concentration across the surface of sample MMT38A. The 

average is taken from the statistical deviation of the points, and agrees well with the value 

used in the previous chapters. 
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Figuf© 9.1 EDAX trace of sample MMT38A 

The point to thp right hand end of the graph is taken from one of the numerous 

dark Ipoking areas on the sample surface. Note that the value obtained from EDAX will 
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not correspond to true MnTe, as the depth of penetration of the electron beam will be far 

greater than the spatial extent of the clump, and consequently will include contributions 

from the surrounding HgMnTe. 

One question that should be asked is, does the existence of the clumps originate 

from a problem in the growth system used? Evidence against this conclusion comes from 

the fact that Hallam [8] investigated the electrical properties of a few samples produced by 

IMP, and did not observe any of the anomalous behaviour reported in this work. 

However the magnetic properties of the samples were not investigated, and it is possible 

that such truly bulk measurements might have revealed more of the true nature of the 

materials. 

It is likely that the behaviour of the sample is very sensitive to the growth 

conditions, and it has been shown [9] that the dynamics of the growth process are 

generally not reproducible, and turbulent flow can occur, giving rise to unexpected sample 

properties. In general the samples used in this study have shown the existence of some 

wonderfully interesting behaviour, and have given rise to the observation of some 

interesting physics. However at the present time, the reproducibility of the samples is not 

sufficiently high to be of commercial use for device fabrication. 

9.2 Further work 

A number of other HgMnTe samples have been grown by IMP which have, as yet 

remained uninvestigated. It would be interesting to study these specimens to ascertain 

whether they show similar properties to those already investigated. Further investigation 

is also required in to the temperature dependence of the magnetic susceptibility of the 
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samples that show the anomalous transport, and the persistent photoconductivity, in an 

effort to gain a better understanding of the mechanisms involved. 

The work on the AlGaAs Hall device, outlined in section 5.2, should be continued 

using a paramagnet whose magnetic properties are known in the temperature range of 

interest. Once such a calibration has been undertaken, the device will be a very useful and 

convenient probe of the magnetisation of the DMS samples. 

Finally, the temperature dependence of the photomagnetisation of CdMnTe:In 

needs to be investigated to enable a more complete comparison to theory of bound 

magnetic polarons to be made. Also, it would be interesting to study the variation of the 

photomagnetisation as a function of the localisation radius of the bound electron, in the 

region of the metal-insulator phase transition. 
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