We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham e-Theses
You are in:

Sedimentology, Diagenesis and Reservoir Characteristics of Eocene Carbonates Sirt Basin, Libya

SWEI, GIUMA,HEDWI (2010) Sedimentology, Diagenesis and Reservoir Characteristics of Eocene Carbonates Sirt Basin, Libya. Doctoral thesis, Durham University.




The reservoir quality of Middle Eocene carbonates in the intracratonic Sirt Basin (at the northern margin of the African continent) is strongly influenced by depositional facies and various diagenetic modifications. This thesis investigates the petrography, sedimentology, diagenetic evolution and hydrocarbon potential of the Middle Eocene Gialo Formation in the subsurface of the north-central Sirt Basin based on data from core samples and well logs from five boreholes in the Assumood and Sahl gas-fields. Reducing risk in exploration demands an understanding of reservoir facies development, which is governed by the type and distribution of depositional facies and their diagenetic history. Seven major carbonate facies (and 20 microfacies) have been identified in this study and are interpreted as predominantly deposited under shallow-marine conditions within the photic zone, as indicated from their richness in phototrophic fauna and flora. These include lagoon (back-bank), main bank, fore-bank and open-marine facies, all of which were deposited on a homoclinal ramp type of carbonate platform.
The type and distribution of the Gialo depositional facies were influenced by basin-floor architecture and environmental controls. The basin floor was shaped through pre-Eocene structural development into a series of elevated platforms and deep troughs. Platform facies were deposited across three broad facies belts: (1) inner-ramp, dominated by dasycladacean molluscan wackestone/packstone, nummulitic-bryozoan packstone, bryozoan wackestone; (2) mid-ramp, dominated by nummulitic packstone and Discocyclina-nummulitic wackestone; and (3) outer-ramp, dominated by fragmented nummulitic packstone. Troughs were dominated by thick successions of lime mudstone containing rare fine skeletal fragments and nummulites, with deposition taking place in a deeper-marine environment, below the photic zone.
Present-day reservoir characteristics of the Gialo Formation are the net result of modification to the original depositional characteristics caused by diagenesis. This diagenesis took place on the seafloor, under burial, and in the meteoric diagenetic environment. Early marine diagenetic processes affecting the Middle Eocene Gialo carbonates resulted in micritization of bioclasts. Later diagenesis in meteoric to burial environments resulted in dissolution of aragonitic bioclasts, cementation (syntaxial overgrowths on echinoid grains, and blocky to equant, non-ferroan cements), neomorphism, pressure dissolution, compaction and fracturing. δ18O and δ13C values in the Gialo Formation range between -1.06 and -4.16‰ PDB, and 0.76 and 1.89‰ PDB, respectively. These values are mostly marine values, although some alteration is likely. The more negative oxygen of the cements suggests precipitation within the shallow-burial environment under the influence of meteoric water and / or precipitation at higher temperatures during further burial. The carbon isotopic signatures are typical marine values. There is a strong relationship between porosity and the diagenetic processes that-affected the Gialo sediments.
Generally the porosity in the Assumood and Sahl fields is either primary or secondary, enhanced by dissolution and fracturing of the sediments. Reduction in porosity in the investigated sediments is mainly due to cementation and compaction. The common pore-types in the Gialo Formation are intergranular, moldic, intragranular, vuggy and scattered fractures. Porosity ranges from poor to very good (<1% to ~37%) and permeability varies from low to high (<1mD to 100mD). These variations in porosity and permeability are strongly related to facies changes, which were influenced by depositional environment and diagenetic processes. Shallow-water packstones/rudstones containing both primary intergranular and secondary biomouldic porosity have the best reservoir quality. The Gialo Formation is an important gas producing reservoir in the Assumood, Sahl and other surrounding fields. The gas which is generated from the gas-prone Sirt Shale source rock of the northern Ajdabiya Trough possibly migrated onto the Assumood Ridge from the northeast through late Cretaceous, Paleocene and early Eocene carbonates, before being trapped beneath the Augila Shale (Upper Eocene) which is the principal regional seal in the area. This integrated study has helped to understand the reservoir heterogeneity and potential of the Gialo carbonates and based on this current wells are being completed appropriately, as, hopefully, will future wells too.
The facies pattern is different from one well to another, which does suggest that there was a strong tectonic control, that is differential tectonic subsidence and/or fault control, or that deposition was controlled by autocyclic processes. The different vertical positions and numbers of transgressive-regressive cycles in each well make formation-wide correlation problematic. The lack of correlation in terms of cycle thickness, as well as facies, between wells, also suggests autocyclic processes. Third and fourth-order relative sea-level (RSL) changes do not appear to have been a major control on deposition during this Middle Eocene time.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Faculty and Department:Faculty of Science > Earth Sciences, Department of
Thesis Date:2010
Copyright:Copyright of this thesis is held by the author
Deposited On:06 Dec 2010 11:39

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter