Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham e-Theses
You are in:

The toda equations and congruence in flag manifolds

Sijbrandij, Klass Rienk (2000) The toda equations and congruence in flag manifolds. Doctoral thesis, Durham University.

[img]
Preview
PDF
2518Kb

Abstract

This thesis is concerned with the 2-dimensional Toda equations and their geometric interpretation in form of r-adapted maps into flag manifolds, r-adapted maps are not only of interest due to their relation with the Toda equations, but also for their adaption to the m-synametric space structure of flag manifolds. This thesis studies the congruence question for r-adapted maps in flag manifolds. The main theorem of this thesis is a congruence theorem for г-holomorphic maps Ψ : S(^2) → G/T of constant curvature, where G can be any compact simple Lie group. It is supplemented by a congruence theorem for general r-holomorphic maps Ψ : S(^2) → G/T if G has rank 2, and a number of congruence theorems for isometric r-primitive Ψ : S(^2) → G/T of constant Kahler angle. The second group of congruence theorems is proved for the rank 2 case, as well as a selection of Lie groups with higher rank: SU(4),SU(5),F(_4),E(_6),E(_6),E(_8),Sp(n).

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Thesis Date:2000
Copyright:Copyright of this thesis is held by the author
Deposited On:13 Sep 2012 15:46

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter