Sijbrandij, Klass Rienk (2000) The toda equations and congruence in flag manifolds. Doctoral thesis, Durham University.
| PDF 2518Kb |
Abstract
This thesis is concerned with the 2-dimensional Toda equations and their geometric interpretation in form of r-adapted maps into flag manifolds, r-adapted maps are not only of interest due to their relation with the Toda equations, but also for their adaption to the m-synametric space structure of flag manifolds. This thesis studies the congruence question for r-adapted maps in flag manifolds. The main theorem of this thesis is a congruence theorem for г-holomorphic maps Ψ : S(^2) → G/T of constant curvature, where G can be any compact simple Lie group. It is supplemented by a congruence theorem for general r-holomorphic maps Ψ : S(^2) → G/T if G has rank 2, and a number of congruence theorems for isometric r-primitive Ψ : S(^2) → G/T of constant Kahler angle. The second group of congruence theorems is proved for the rank 2 case, as well as a selection of Lie groups with higher rank: SU(4),SU(5),F(_4),E(_6),E(_6),E(_8),Sp(n).
Item Type: | Thesis (Doctoral) |
---|---|
Award: | Doctor of Philosophy |
Thesis Date: | 2000 |
Copyright: | Copyright of this thesis is held by the author |
Deposited On: | 13 Sep 2012 15:46 |