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Abstract

The Toda Equations and Congruence in Flag Manifolds

Klaas Rienk Sijbrandij

This thesis is concerned with the 2-dimensional Toda equations and their geometric
interpretation in form of T-adapted maps into flag manifolds.

7-adapted maps are not only of interest due to their relation with the Toda equa-
tions, but also for their adaption to the m-symmetric space structure of flag
manifolds.

This thesis studies the congruence question for r-adapted maps in flag manifolds.
The main theorem of this thesis is a congruence theorem for r-holomorphic maps
¢ : §? — G/T of constant curvature, where G can be any compact simple Lie
group.

It is supplemented by a congruence theorem for general 7-holomorphic maps
¥+ §? — G/T if G has rank 2, and a number of congruence theorems for iso-
metric 7-primitive ¢ : R? — G/T of constant Kahler angle. The second group
of congruence theorems is proved for the rank 2 case, as well as a selection of Lie

groups with higher rank: SU(4), SU(5), Fy, Eg, Es, Sp(n).
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Introduction

This thesis is concerned with the 2-dimensional Toda equations and their geomet-

ric interpretation in form of r-adapted maps info flag manifolds.

The ‘1'elation between Toda equations and these maps is as follows. Let G be a
compact simple Lie group with Lie a.,lgebra. g and maximal torus 7. Then, under
a non-singularity condition, r-adapted maps into the flag manifold G /T can be
lifted to maps into G, so called Toda frames. These Toda frames satisfy a special
differential equation, and the integrability conditions for the frames are the Toda

equations for the Lie algebra g.

However, T-adapted maps are not only of interest due to their relation with the
Toda equations. A flag manifold G/T may not only be equipped with G-invariant
structures such as a G-invariant metric and a G-invariant complex structure, it also
has the structure of an m-symmetric space. It is the m-symmetric space structure
that T-adapted maps are, by their definition, adjusted to. 7-adapted maps have

many interesting properties, for example strong harmonicity properties.
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In the context of this thesis we will study the congruence question for 7-adapted
maps in flag manifolds. First we will give a brief explanation what we understand

under congruence.

Definition:

Let G be a group of transformations of a manifold M. Let S be a Riemann surface.

Two maps ¢, 1]! : S — M are called G-congruent if 1/, = gy for some g € G.

This leads to the fundamental question that this thesis attempts to answer, namely
what do we need to know about 1, 1] in order to decide whether they are congruent.
Our solution to this problem consists of finding a set of invariants (as few as
possible) and their geometrical interpretation such that if these invariants coincide
for ¢ and 1/) then we can conclude that ¢ and 1/: are congruent.

A typical example of a congruence theorem would be the classical rigidity theorem
for smooth maps in R? where metric and 2nd fundamental form are the required

invariants.

The main theorem of this thesis is a congruence theorem for r-holomorphic 7 :
52 — G/T of constant curvature, where G can be any compact simple Lie group.
It is supplemented by a congruence theorem for general 7-holomorphic ¢ : S? —
G /T if G has rank 2 and a number of congruence theorems for isometric 7-primitive
¥ : R? — G/T of constant curvature and Kahler angle. The second group of con-

gruence theorems is proved for the rank 2 case as well as a selection of Lie groups
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with higher rank: SU(4), SU(5), Fy, Es, Es, Sp(n).
The Thesis is structured as follows.

In Chapter 1 we give a brief overview of the aspects of harmonic sequences and
congruence theorems for CP”. These harmonic sequences are used to lift maps
CP” to maps into the flag manifold SU(n +1)/T" and they give rise to a set of
invariants which are related to the Toda equations and which determine these lifts

up to congruence in SU(n +1)/T".

In Chapter 2 we investigate Toda equations of semisimple Lie algebras and their

relation to lifts derived from harmonic sequences.

In Chapter 3 we introduce flag manifolds and their various structures.

In Chapter 4 we consider T-adapted maps into G/T. We will look at two classes
of r-adapted maps, T-primitive and 7-holomorphic maps. 7-adapted maps provide

- via Toda frames - a geometric interpretation of solutions of Toda equations.

In Chapter 5 we sketch the proof of the constant curvature congruence theorem for

7-holomorphic S% in SU(n+1)/T", the motivation for subsequent generalisations.

In Chapter 6 we compute the induced metric of 7-adapted maps and their asso-
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ciated curves. Invariants which determine 7-adapted maps up to congruence are

also introduced.

In Chapter 7 the main theorem is proved, constant curvature congruence for
7-holomorphic S? in G/T. We also prove a general congruence theorem for 7-

holomorphic S? in G/T where G has rank two.

In Chapter 8 a collection of congruence theorems for isometric 7-primitive maps

with constant Kahler angle is presented.

Additional supporting material can be found in the Appendices.



Chapter 1

Harmonic Sequences and

Congruence Theorems in CP"

This Chapter is intended as a brief overview of the aspects of harmonic sequences
and congruence theorems for CP" needed for this thesis. More details and all the
proofs may be found in [BW1], [BPW] and [Sem] which will also serve as reference
for this chapter.

Starting from a harmonic map ¢ into CP" one can construct a sequence of har-
monic maps (see [EW] for the original holomorphic case). Under certain con-
ditions this sequence can then be used to lift ¢ to a map wnto the flug manifold
SU(n+1)/T™. We unll also introduce some wvariants which are related to the Toda
equations and which will determine these lifts up to congruence in SU(n 4+ 1)/T".
Finally we will consider a well-known congruence theorem in CP™ which unll be

used to prove our original congruence theorem in SU(n +1)/T".
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1.1 Harmonic maps

Definition 1.1 Let ¢ : S — M be a C*™ map from a metric Riemann surface S to
a Riemannian manifold M. ¢ s called harmonic if and only if trVde = 0, where

V is the connection on Hom(T'S, TM) induced by the Levi-Civita-Connections on

S and M by: (Vdg)(X,Y) = (Vxdg)(¥) = Vy(do(Y)) — dé(VxY).

For M = CP" d¢ may be extended to a complex linear map from the complexified
tangent space T'SC = T'S @g C to TCP", again denoted by dé.
With z a local complex coordinate on S the harmonicity condition may be

written as

9 0
(Vadd)(5-) =0 or Vg(dg(z-)) =0

. .0 -
as V%E—Oglves

0=(Vaodo)(57)= V%(dd)(i)) = d¢(vigj) = V%(dcﬁ(i))-
0z EE 0z 25 0z 9z 0z

Eqivalently, we also have V o (do(£)) = 0.

1.2 Construction of the harmonic sequence

Let S be Riemann surface and ¢ : S — CP" be harmonic.

In this section we will construct from ¢ a sequence of harmonic maps S — CP"
s Py 1, o = @, 1, P, -
and a sequence of complex line bundles over S

- ,L_Q,L_l,LO = Qs*L,Ll,LQ, A
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Here ¢*L denotes the pull-back of the tautological line bundle L = {(¢,v) €
CP" x C"*' : v € p}. Let L* be the subbundle of the trivial bundle CP" x C**!
whose fibre at ¢ = [w] is {w} (w.r.t. the standard hermitian inner product (-, -)
in C"*1):

7: Lt = CP", 77%q) = {w}t.
We will also use the bijective correspondence between maps ¢ : S — CP" and

smooth complex line subbundles of S x C"*! given by ¢ « ¢*L.

Let ¢ : S — CP™ be harmonic and let Ly, L be the pullbacks via ¢ of L, L* resp.
Due to the canonical identification TCP" = Hom(L, L1) the derivative d¢ may

be regarded as a map d¢ : TSC @ Ly — Li defined by
dp(X @ s) =dp(X)s = ma(Xs)

where X is a tanget vector field on S, 7 Lt denotes orthogonal projection into Lg,

and the section s of Ly is considered a C"*'-valued map on S.

Let 9y : TS'* @ Ly — L be the 1,0-part of dé and Jy : TS @ Ly — L be the
0, 1-part of dp. If z is a local coordinate on S and s a section of Ly we have

0

3705

)s and  Op( == 0

33 )s = do(

0 d
30(0—7)5‘ = dff’(é:

As T'9S = spanc{Z} and T'S = spanc {2} we will define for simplicity

0

77)%

Oy : Ly — LaL, 5 (lgb(%)s and Oy : Ly — Ly, s do(

A complex vector subbundle V of S x C**! may be given a holomorphic structure

for which a local section s is a holomorphic section iff % is orthogonal to V.
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Therefore the harmonicity condition above is equivalent to the bundle map Jy (Jp)

being holomorphic (anti-holomorphic).

If Oy (0y) is not identically zero, i.e. ¢ is not anti-holomorphic (holomorphic), then
the zeros of 9y (Jy) are isolated and there exists a unique complex line subbundle
Ly C L with Im(d) C Ly (L_; C L§ with Im(dp) C L_y).

As ¢ is harmonic the bundle map 0y : Ly — Ly, s+ dqb(%)s is holomorphic and
the bundle map 9y : Ly — L_;, s+ d(/)(%)s is anti-holomorphic. Also the maps
o1, 01 : S — CP" corresponding to L, L_; are again harmonic. Using induction,

we obtain a sequence of line bundles

6—1 30 01
_— e —_—
- L, Ly L, Ly
[o3) 61 o)

and the corresponding harmonic maps
.- 7¢—27 D100 = @, 01, P2, - -

If for some ¢ € Z the map ¢, is holomorphic (anti-holomorphic), then 9, (9,) is
identically zero, and the map ¢,_; (¢441) cannot be defined. The sequence {,}

terminates at the left (right).

1.3 Local description of the harmonic sequence

Let 2 be a local complex coordinate on the Riemann surface S and let ¢(z) = [fo(z))

be a harmonic map into CP™ where fj 1s a nowhere zero holomorphic local section
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of Ly. Then
Ly={(z,v):z€Svefo(2)]}, Ly ={(z,v):z€Svelflz)'}

These are vector subbundles of the trivial C"*!-bundle over S and so each has
a naturally induced connection. Also a section of Ly may be regarded as a map
S — C"*!, in which case we may regard f, as a map into C"*1\ {0}.

The bundle map 9y : Ly — L; is now given by 0, fy = w,‘é(%) =: fi

and Oy : Ly — L_qis defined by 0o fy = 'TL_L( )= fo).

Again, we can build a harmonic sequence ¢,(z) = [f,(z)] where f,,; is the part of
%ﬁ‘i which is orthogonal to f, (w.r.t. (-,-)):

el
< Efp:fp >

of, 0
f] = for1+ 5 B 10g|f7)| fo=Fm+ -|f 2 Fy
P

Oz

We also obtain

af])+1 - _ |f1)+1|2
0z | fol?

and, from the definiton, f,1; L f, holds.

fp

We therefore have

_ 2
ap : Lp - Lp—Ha fp — fp+1 and ap : Lp - Lp—la fl) |]|cfpl lzfl)-l-
p—1

Recall that

0 0 =
d(/)('é;‘) = 30 and dé( a~) 00,
SO
9 [ fynl? 0 |fl?
1o, (— a7 = 2 d |do, 512 )
k@l(az I l Il prlz an l (pl(a I I l ‘fp 1|2

Lemma 1.2 d; s a holomorphic bundle map iff oy = [fo] is a harmonic map.

Lemma 1.3 If ¢ is harmonic, then ¢, is harmonic as well.
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Terminating harmonic sequences

Definition 1.4 Let S be Riemann surface and ¢ : S — CP” be a harmonic map.
¢ 1s called pseudo-holomorphic (or superminimal or totally isotropic) f

the harmomic sequence terminates.

Assume that 9y = 0, i.e. ¢ is a holomorphic curve in CP", and assume ¢y is
linearly full, i.e. Im@y is not contained in a totally geodesic CP¥ ¢ CP". Let
{¢, = [f,]} be the harmonic sequence of ¢.

Then for r > s

0 ( . 12
E < fraf.s' >=< fr+1 + -—az—log‘frlzfr,fs > =< fra |}filll2fs—l > .

Also note that Jy = 0 implies that aﬁ fo and fy are parallel. This, together with
< fri1, fr >=0, gives the result that any two elements of the sequence are orthog-

onal: < f,, f; >= 0 for » # s.

It follows that the harmonic sequence must terminate at the right hand end with an
antiholomorphic curve ¢, as there are at most n+ 1 non-zero mutually orthogonal

vectors in C"H1,

Definition 1.5 (cf. [BJRW], p.602, [Wo], p.167) The line bundles Lo, ..., L,
are called the Frenet frame of the holomorphic curve ¢y as they are essentially

the analogue of the Frenet frame of a real space curve.

The Frenet frame of the holomorphic curve ¢q is obtained via the harmonic se-

quence.
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1.4 TI'- and U-invariants of the harmonic sequence

The y-invariants

P . 2 . ]
Let v, := |d¢p(§;)|2 = '—fl"}‘ﬁ—l as above. This depends on ¢,, % but not on the

choice of f,. In fact, I, := 7,,|dz|2 is a globally defined form on S.

The integrability conditions 5%;; = %;E fp for

af) a Y af) 'f)l?
—a—zl— = f7)+] + 'a—:].Og l.f])[zfp a.]_ld ()37 = — pr7_1|2f])_]

are equivalent to

0* 5
9207 log lfpl =% — Tp-1»

i.e.
92

8235 lOg 7]) = 7p+1 - 271) + ’)’p-l .

These are the Toda equations for SU(~o) in general and for SU(n + 1) if the

sequence terminates (see Chapter 2).

The following Lemma is immediate from the above equations.

Lemma 1.6 Any two consecutive y-invariants determane all the y-imvariants.

The U-invariants

Assume p > ¢ and let w, , = 5—{%“3 This is independent of the choice of f,, and,

in fact, U, , = up ,dz""9 is a well-defined (p — ¢)-form.
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In the terminating case these invariants are identically zero, so we assume that we

are not in this situation. Then

0 0

Eulhq = ul’w‘lg(’yp—] BRI 7(]) + Upt1q9 — Upg-1
0

oz e T Tellpatt T Tr—1Up-1,4

Corollary 1.7 If some k consecutive elements of a harmonic sequence are mutu-

ally orthogonal then every k consecutive elements are mutually orthogonal.

Corollary 1.8 Every harmonic map ¢ : S> — CP" s part of a Frenet frame.

Relationship between the harmonic sequence of ¢ : S — CP”
and its complex conjugate ¢ := ¢ : S — CP".

We will need this relation for the construction of some examples later.
Denote by {f,} the local sections for the harmonic sequence {¢,}. Define

P 7—p
|f-*

f:]) = (_1)

Then it is obvious that span{fo} = Lo = Lo and it is casy to check that {f,} is in
fact the sequence derived from fo. Hence we have

of, d - o -
37 = fen ¥ g1 l0glf M, and <a—°f> =0.

We also get the following relations between the metric invariants of ¢ and qu

o L,= f_,,.

_ R 1 AN | [? 2 et
o Pp = 1—1—(10+1) T = ff:;z = ,f_;::::p]fwl = m = T=p+1)-



CHAPTER 1. HARMONIC SEQUENCES AND CONGRUENCE THEOREMS IN CP™9

1.5 Congruence Theorems

We have the following

Lemma 1.9 (i) Every element of a Frenet frame is a weakly conformal har-

monic map;

(i1) If one element of the harmonic sequence is conformal then every element of

that sequence 15 conformal.

Proof:
(1) Note that ¢, : S — M where S is a Riemann surface and M is a Kihler
Oz

manifold is weakly conformal iff dgﬁp(i) 1 do, (gt) Thus for M = CP", ¢,

is conformal it L,y L L, ;.
(ii) This is simply a consequence of Corollary 1.7 with k=3.
Definition 1.10 Let g, be the induced metric on S by ¢,. i.e.
gp(XY ) =R {do,(X),do,(Y)) VX.Y €TS.

Let w(X,Y) = (X, JY) be the Kahler form on CP" and dA, be the area form
on S (w.r.t. g, and the orientation of S). Then at each point on S where ¢, 1is
non-singular, we define the Kahler angle 6, of ¢, by ¢, = cosdA,. It is the

angle between (lép(%) and i(l(b,,(g;).

Note 1.11 If ¢, 15 conformal then its metric and Kdhler angle are given by

12 Tp — Yp—1 29;) Tp—1
9p = (Yp—1 + W)z}, cosf, = Z—T— = tan > = L=
Tp + Vp-1 = ip

¢, conformal implies u,qq 1 = 0.
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Note 1.12 The metric and Kahler angle of ¢, determine and are determined by

Ly, rp-la Upt1,p-1 (TI) = 7P|dz|2a Up,q = up’q|dz!”‘q),

Lemma 1.13 The metric and Kahler angle of any element of a harmonic sequence

determine the metric and Kdahler angle of any other element of the sequence.

Remark 1.14 Using the differential equations for the U-invariants it may be

shown that for k € N the T-invariants together with {Usy,...,Uso} determine

{l7q+2’q, ceey qu—}-k,q} V(] E Z

Theorem 1.15 (Congruence Theorem for CP" [BW1], p.372)
Let S be a connected Riemann surface. Let ¢, : S — CP" be harmonic maps

with Ty =T_,, Ty = Ly. If either
(1) & is pseudo-holomorphic, or
(1) fx"p,o =U,p forp=2,....,n+1

then there cxzists a holomorphic isometry g of CP" such that ¢ = gp. If b is

linearly full then g 15 unique.

As a corollary to Theorem 1.15 we have the following extension theorem.

Theorem 1.16 (Extension Theorem, [BW1}], p.373)
Let ¢ : S — CP" be a harmonic map of a connected Riemann surface S and let

h:S — S be a conformal diffeomorphism such that
(i) *T, =T, forp=0,-1, and

(i) KU, = Uy forp=2,...,n+1.
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Then there exists a holomorphic isometry g of CP" such that go = ¢h. If ¢ 15

linearly full then g is the unique holomorphic wsometry wrth this property.

Remark 1.17 This theorem is an “extension theorem”™ for the follounng reason:
Assume that ¢ is byjective. Then h induces a diffeomorphism h #(S) — ¢(S),

h = ¢hé™1. Extending h now means that 3g : CP" — CP" such that glys) = h =

oh¢™ or equally g = Ph.



Chapter 2

The Toda equations

In this chapter we will investigate the 1- and 2-dimensional Toda equations of
semasimple Lie algebras. Using harmonic sequences we will see that solutions to
the 2-dimensional su(n + 1)-Toda equations arise in a geometrical context from
special maps into the flag manifold SU(n + 1)/T". We unll also introduce Toda

frames whose integrability conditions are the Toda equations. The whole chapter

is based on [BW?2] and [Sem].

2.1 The 1-dimensional Toda Equations

Consider the following Hamiltonian dynamical system of particles of equal mass
m joined by identical springs.

pth {(p+1)st

Figure 2.1: Springs
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The equations of motion are
7"371) = f(.yp—H - yp) - f(yp - yp—l)-

if y, denotes the displacement of the p™ mass. In the classical case we have

f(y) = ny, where & is Hooke’s constant.

We have the following interesting configurations:

L-st n-th
Figure 2.2: Finite or open case: g = yp,41 =0
O-tha=(n + 1)-st

n-th

Figure 2.3: Periodic or affine case: yy = y,,41

pth (p+1)st

e —00QQ00-22990-0-0029~ ¢--

Figure 2.4: Infinite case

In the 1950s Fermi-Pasta-Ulam considered the case of a non-linear f(y) and in 1967
Toda considered an exponential force f(y) = ae™ with a, A constants. This turned
out to be a completely integrable Hamiltonian system. Let H be the Hamiltonian.

Then we have for the first two configurations:
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1 2 i+1—G — —
Open case H = } 50, % + Tjg 417% g = guys =0.
. - 1 ) —-
Periodic case H =} S0 p2 + Tyo €970 gy = ot

Here p, ¢ are the momentum and position coordinates; p; = %. The equations of

motion are
OH  dg; OH dp;
=1 d == =--21
8pj dt o an' dt

which give §; = e%i+17% — % ™%U-1,

In 1979 Adler, Kostant and Symes found that the Toda equations come from a Lie
algebra formulation with equations corresponding to the case g = su(n +1).

Let p; = q,;— gi—1- Then §; = e¥+17% — %741 pives
i = P — ePi — (eFi — ePim1) = Pt — 2P 4 fivt
or
i+ (=1) x e/ +2 x P + (—1) x "1 = 0.
The factors before the exponential terms are exactly the entries of the (extended)
Cartan matrix of su(n + 1): Let K be the Cartap matrix and K be the extended
Cartan matrix of g = su{n + 1) (see also Appendix B.3):

(2 -1 -1

-11 2 -1

K

K
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Definition 2.1 The open Toda equations are given by

[3.,' -+ Z Kl-je”j =0

=1

and the affine Toda equations are given by
ﬁi + Z fx’ije"" = 0.
7=0

Thus for every semisimple Lie algebra g the above gives a system of Toda equa-

tions via the (extended) Cartan matrix of g. As in the su(n + 1) case this system

1s completely integrable.

It is interesting to see that for su(n+1) the (extended) Dynkin diagram correponds

exactly to the spring constellation.

O—0—0— + —0—0—O0
o ay as Que3  Oper  Qn

Figure 2.5: su{n + 1) Dynkin Diagram
O
0~—0—0—+—0—0—0

o -] Qs Qn-2 Qn-1 Gy

Figure 2.6: su(n + 1) Extended Dynkin Diagram

2.2 The 2-dimensional Toda Equations

For details about Lie algebras, Cartan matrix, root systems, etc. see [Sa] and [Se].
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Let g be a simple Lie algebra of rank { with (extended) Cartan matrix i = (L;),

i =(0),1,...,¢

Let {ay,...,a¢} be a set of simple roots and let —ay = mya; + ... mea; be the

highest root. Set my = 1, so ¢ m;a; = 0.

Definition 2.2 The 2-dimensional open g-Toda equations are the non-linear

elliptic system of partial differential equations grven by

4
2AQ + Y me” P H, =0,

i=1
where A = a‘i—z + %, QU — it is a smooth map of an open subset U of R?
into the purely imaginary part of t€, the complexified Cartan subalgebra of g, and
H, = Wr%_?jaT) 15 the coroot to the root o (see Appendiz B.2). The 2-dimensional

affine g-Toda equations are given by

¢
2AQ + Z 771]-62“7(9)}'{0]. = 0.

1=0
This system is also completely integrable (see [G] for an excellent account of the

modern theory of integrable systems) and we will show next that this formulation

corresponds to the Toda equations of Section 2.1 with ;T replaced by A = af? +

(‘)2:4(‘)2

Oy? 8:83

Claim 2.3 The Toda equations 2AQ + Y m]-e%'f(mHa,J. = 0 may be written as

Alogni-}-ZKU?]j:O 1=1,....,0

where (K;;) 1s the (extended) Cartan matriz of g€ and n; := m;e?*i(V,
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Note that with p; := log7; this is exactly the form of the Toda equations in Section
2.1 (m; = 1 for all i = 0,...n in the su(n + 1)-case). The 5; will be discussed in
more detail in chapter 6.2.

Proof: We have tg = span{ay,...,a;}. Hence for H € tc we have
H=0 < o(H)=0 Vi=1,...,L
Therefore 2AQ + Y- m;e?® () H,, = 0iff
(280 + Y mye?nWH, ) =0 Vi=1,...,(
Using the linearity of a; and its independence of z, z we get
0=a;(2A0+>" mjcz"f(mHaj ) = A2a;()+ > mjez“j(ma',»(Haj )

Now H, = _2160'” and ai(af-) = f;(aff, a'gf) by definition of o* (see Appendix B.2).

sl{od o

With 1; = m;e? ) we see that A2aq;(Q2) = Alog;. Thus the Toda equations are

equivalent to

26(at, ot
IR e L

~ n ,ﬁ
K(aj, )
. . 2u(af o
However the Cartan matrix is defined to be KA = %’% Hence the Toda
GG

equations are

A IOg T + Z Ii—i]'T]j =0
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2.3 Geometric Interpretation of the 2-dimensional

u(n + 1)-Toda equations

In this section we will see how the harmonic sequence of a harmonic map ¢ :

S — CP" provides solutions to the Toda equations and gives rise to a map

¥ :8— SU(n+1)/T".

Suppose ¢ : S — CP" is a linearly full harmonic map. We then have a harmonic

sequence {¢,}, ¢, = [f,], defined by

9 <Zfp o>
_. %‘z Joe1 + %log |fp|2fp for1+ lfp)qp Ip

Ofps1 _ _ ppal’
© E =
® fp+1 L fp

Put |f,|? = ¢*» (assuming that f, does not vanish). Then from the basic equations
of the harmonic sequence, the integrability condition da—d = 6—85— fp. and using
2= log | £, = ¥, — 7p—1 e deduce that

a2
oaw,,

" 0:0%

— p2wpp1—wp) _ 2wp—wp_1)
=e e ,

1.e.

32 .
0 Wy = W) s ) 1 9e2wp—wpo1) _ 2wppi—wp) —

B 020z

Thus w, — wp_y satisfies the Toda equations and we can see how the harmonic
sequence is related to the Toda equations. In general we have infinitely many

equations for infinitely many unknowns: su(oc)-Toda equations.
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We will now concentrate on the two simplest cases

(1) Superminimal (or pseudo-holomorphic) case:

¢ : S — CP" is an element of the Frenet frame of a holomorphic curve.

8 ) 9 ;
— — — —
L() L] L? Ln
8 3 3 5
Figure 2.7: Ly, ..., L, mutually orthogonal

19

(2) Orthogonally periodic case: ¢,414p = ¢, for all p. Further assumption:

Ly, ..., L, are mutually orthogonal.

Ly

0,/ b NN\ 2

Ln Ll
aTla aTle
Ln—] L2

o\ O\, 8 &8,/

Figwe 2.8: L,,..... L, +, mutually orthogonal - circle

A lift to SU(n+1)/T"

Let F ={V; C ... C V,y; = C"™ : V} vector subspace of C"*! of dimension £}

be the manifold of full flags.
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Then, from the Orbit-Stabilizer Theorem, it is easy to see that F = SU(n +
1)/T" =U(n+1)/T"*.
We now use the harmonic sequence of ¢ to define the lift

Y :S — F=S8SUn+1)/T" by ¢ = (Vi,...,V41), where Vi = Lo, Vo = Ly @

We will see in chapter 4 that ¢ is 7-adapted and has a number of interesting
properties. For example, if ¢ is holomorphic the lift ¢ will be holomorphic as well
and we have the following correspondence
{¢: 8 — SU(n+1)/T" r-holomorphic} «— {¢:S — CP" holomorphic}
Y — T

2.4 'Toda frames

Away from singularities there locally exists a moving frame E : U — SU(n + 1)

- P g set ]— . ; . — . . — ] lL
from an open subset U of S given by E = (eg]...|en), €, dez(%g—')m}#:—l)lﬂnw AR

The normalising factor is needed to get E' € SU(n + 1) rather than E € U(n+1).

Then
de Jw
P w. —wp p
— = e p+1 e +1 _.+. — e
0z P 0z *
de, T e
9: —€ €p—1 — 3= &

and these equations can be expressed as

OF o0

E—laf = 5, t e Bye ™
OF o0
E‘la = ——d—_ + e 9 Byet

9z 0z
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where 2 = diag(wy, ..., w,) and

: b

By(open case) = . and By(affine case) =

The integrability conditions for this frame E are the Toda equations (see chapter
4 for details).

Using the differential equation above one can show that for a disc-like open set
U, solutions of the Toda equations correspond to special moving frames: Toda

frames.

Given a frame F : U — SU(n+ 1) we get a map ¢ :=7E : U — SU(n+1)/T"
where 7 denotes the canonical projection. These maps are precisely the ones which
arise from harmonic sequences of maps into CP" in the pseudo-holomorphic /

orthogonally periodic cases.



Chapter 3

Flag Manifolds

In this chapter we will introduce flag manifolds G/H and their properties. Flag
manifolds may be desribed by parabolic subalgebras and can be equipped with G-
wnvariant metrics and G-invariant complex structures. They also have an m-

symmetric space structure which is the crucial geometric property in the context of

this theszs.

3.1 Flag manifolds - definition, examples and Lie

algebraic description
The main reference for this Section is Burstall-Rawnsley [BR], Chapter 4.

Definition 3.1 ([FH], p.95) A flag is a sequence of subspaces of a fized vector
space. each properly contained in the next; it 1s « complete flag +f the dimension

of each subspace s one larger larger than that of the preceding subspace, and a

partial flag otherunse.

22



CHAPTER 3. FLAG MANIFOLDS 23

Definition 3.2 ([BH], p.39) A flag manifold s ¢ homogencous space of the
form G/H where G is a compact Lie group and H 1s the centralizer of a torus in

G. Note that H 1s therefore of marimal rank.

Example 3.3 (Flag manifolds G/H are manifolds of flags)

(1) G = SU(n+1), H=T". Then H is its oun centralizer and G[T 1s the
manifold of full flags G/T ={V, C Vo, C ... C V,, C C"*'} where V} is a

subspace of C™*1 of dimension j.

(i) G = SUn+1), H= S(U(r)xUn+1-r)). H is the centralizer of
T, 0
St = |0+ (n+1-1r)o=0,.
0 eiqﬁ]n—r+]

Here G/H = Gy-r(C”'H) — {‘/’r C C"-H},

(1) G = SO(2n) or SO(2n+1), H =T". Here the corresponding flag manifold
w{VicVyaCc...CV, C?" or C?"™} where V; 1s an j-dimensional

isotropic subspace of C* or C* 11 e (v,v) =0Vv € V.

(1) SO(2n)/U(n), U(n) = {4 € SO(2n) | AJ = JA} = centralizer of {cos 0] + sin6.J }
(= S'). This flag manifold is the space of all orthogonal complex structures

on R?".

Lie algebraic description of flag manifolds - parabolic sub-
algebras and subgroups

We will investigate the structure of G/H by looking at the corresponding infinites-

imal situation, i.c. Lie algebras. This will give an alternative definition for a flag



CHAPTER 3. FLAG MANIFOLDS 24

manifold, and we will see that for each H as above there exists a parabolic sub-

group P of G€ such that G/H = G€/P.

Let g be a compact real form of a semisimple complex Lie algebra g€. Let t be a

Cartan subalgebra of g. Consider the usual decomposition of g€ given by a choice

of simple roots «y,....a¢ ({ =rank g). We have
c c / cz.conj. \ .
gt-=te > g'a ) g™°.
a€AT a€At

Definition 3.4 A subalgebra b of g€ is a« Borel subalgebra if it is a mazimal
solvable subalgebra of g€, where a subalgebra ¢ of g€ is solvable if its derived
series {D*c}, defined by D'c = [c,c] and D*c = [D*~lc, D ¢], terminates in
the sense that D¥c¢ = {0} for some k.

A subalgebra p of g€ s a parabolic subalgebra if it contains a Borel subalgebra.

Each subset S of the set {a1,...,a.} of simple roots determines a further decom-
position of g€ as follows. Let T(S) be the set of positive roots which are linear

combinations of roots in S.

Then
h® where h = g Nps n = nilradical of pg
gC —_ tC e Z ga o Z g—u D Z gﬁ @ Z g—ﬂ
a€T(S) a€T(S) BEAH\T(S) BEAT\T(S)

parabolic subalgebra ps determined by S

Note that h® is the complexification of a real subalgebra because it is invariant
under complex conjugation, and that h is the centralizer of the toral Lie subalgebra

{X €t]a(X)=0Va e S} Alsothe bigger S is, the bigger the corresponding
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parabolic subalgebra is.

Example 3.5 (i) If S = {ay,...,o¢} then ps = g€ = centralizer of {0}. This

is the largest parabolic subalgebra.

() If S = 0 then py = t° O gea+ 8°. It is a Borel subalgebra (smallest parabolic
subalgebra). h = t = centralizer of t. Any two Borel subalgebras are conju-

gate.

(111) If |S| = £ — 1, the corresponding ps s a maximal parabolic subalgebra.

The corresponding h is the centralizer of a 1-dimensional toral subalgebra.

Lemma 3.6 ([BR]) Let GC be a connected semi-simple complex Lie group. A
parabolic subgroup of GC is a complex Lie subgroup which s the normaliser of
a parabolic subalgebra of g€. A flag manifold is ¢ homogeneous space of the form

G /P with P a parabolic subgroup.

Theorem 3.7 ([BR]) (i) If h is the centralizer of a torus in g then h =gNps

for some parabolic subalgebra ps.
(i) On group level G/H = G/ P.
(111) G /P 1s compact iff P is parabolic.

Note 3.8 If S =0 then pg = tC & Y ca+ 8 and the corresponding flag manifold

is GJT.
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3.2 (G-invariant metrics on flag manifolds
The following holds for any homogeneous space G/H, not just flag manifolds.

Definition 3.9 Let G/H be a homogeneous space. Let dL, be the differential of

left-translation L, by g. Then a metric (-,-) on G/H 1is G-invariant if Vg.k € G

(X,Y),, = (dL,X,dL,Y) ,, VX,Y € Toy(G/H).

gk

Remark 3.10 For all g € G lefi-translation 1s an wsometry w.r.t. any G-wnvariant

metric.

Denote the base point eH = H € G/H by o. Any G-invariant metric on G/H can
be constructed by defining an Ad(H )-invariant inner product on 7,G/H and then
moving it around via left-translation. The metric on 7,G/H has to be Ad(H)-

invariant so that its left-translation is well-defined.

Proposition 3.11 ([G] p.16-17)

{Ad(H )-invariant inner products on T,G/H} &L {G-invariant metrics on G/H}.

3.3 Complex structures on flag manifolds

In this section we will construct G-invariant complex structures on flag manifolds
G/H. If g =h+m with m = T,G/H we therefore need an ad(h)-invariant com-
plex structure J on m, i.e. we néed an ad(h)-invariant complex subspace V of m®
such that m€ = V@V. We will see that for G/T we ean take V =m™ = ¥ ca+ 9*

where AT denotes a choice of positive roots. The main reference for this section
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is Borel-Hirzebruch [BH].

In order to classify G-invariant (almost) complex structures we need to investigate

some real adjoint representation theory.

Real adjoint representation theory for compact Lie groups

Let G be a compact Lie group, g its Lie algebra, 7 a maximal torus in G with Lie
algebra t.

The representation Ad : T — Aut(g) of T"in g is fully reducible and there exists
a direct sum decomposition of g into irreducible Ad(T) submodules

g=tBa; &... D a, such that
(l) Ad(T).(Lk = ay

(ii) dimay, = 2

_ ' cosag(h) —sinag(h)
(iii) For h € T Ad(h)|s, can be represented by
sinag(h) cosai(h)

Simply choose an ONB for a;, with respect to an Ad(7')-invariant inner prod-
uct on g. Note that a; : T — R/27Z is a homomorphism, so in particular

ap(e) =0.

(iv) Let ay := d,a : t — R. The £dy are called the (infinitesimal) roots of G
w.r.t. T. In the literature the roots are usually 3—: instead of &y. The adjoint

representation of t on g gives rise to the same direct sum decomposition of g:

. 0 —d’k
g=tdHa;®...®a,. For H € t ady|,, may be represented by
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which can be seen by differentiating the Ad(exp(sH)) with respect to s at 0.

(v) Let oy, = id@y,. These are the standard roots w.r.t. the adjoint representation
of t€ in g€. Let g€ =t @ a® @ ... © & be the complexification of g.
Then af = g @ g=**, where g* = {X € g€ | ady(X) = o(H)X VH € t}.

Conversely we have ap =g N (g* $ g~ ).

Complementary roots

Let G be a compact, connected, semisimple Lie group, ¢ = rank G, H a proper
closed connected subgroup of the same rank ¢, and 7 a maximal torus of H, i.e. we
have T < H < G. Thus we get the decomposition of h® into irreducible modules

(with respect to the adjoint action of T on h):
h=tda®...5a,.
We also have
g=tDa; D...Day.

Hence g = h & m splits as

h m
g€=t0a .. 00Dt ®...0an

where the a; have been suitably numbered.
The 2(m —n) roots £d,41, ..., £d, are called complementary roots (see [BH],

p.464).
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Almost complex structures on homogeneous spaces

Let G be a compact, connected, semisimple Lie group, ¢ = rank G, H a proper
closed connected subgroup of the same rank ( and T a maximal torus of H. so

T < H<G.

Definition 3:12 A G-invariant almost complex structure on G/H is an al-
most complex structure .J on G/H such that J = LyJL,~1 for all g € G where L,

denotes the differential of left action by g. Hence the following diagram commutes

T(G/H) -1 T(G/H)

l L.fl Jr LQ
T(G/H) —> T(G/H)

and for X € TpyG/H we have
LyJi) X = Jyya Ly X.
Proposition 3.13 There s a one-to-one correspondence between
(1) G-imvariant almost complex structures J on G/H, and

(2) complex structures J, on T,G |H which commute with the isotropy group, 1.c.

AdSM (h), = J,AdCMH(h) for all h € H.
Proof: For details about the isotropy representation see Appendix B.7.

(1) = (2) Let J be a G-invariant almost complex structure on G/H. Then
J, = Jiq is a complex structure on the tangent space T,G /H. Next note
that L, maps T,G/H into itself. Thus from the definition of G-invariance,

L,J =JL, Vg € G, it follows in particular that L,.J, = J,L, Vh € H. Now
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recall the definiton of the isotropy representation Ad9M (p) = Ly, to get

AdSH ()T, = J,AQS/H () for all h € H.

(2) = (1) Now let J, be a complex structure on 7,G/H which commutes with
the isotropy group. Define an almost complex structure .J on G/H by Ji; =
LyJ,Ly-s.

Clamm: ] is well-defined.
Proof: Let [g] = [¢']- Then there is an h € H such that ¢’ = gh. Thus,

using Ly J, = J, L, we get
J[yl] — Lg’JOLg’_l = LthOL(gh)—l = LthJOLh—l Lg—] = LgJOLg—l = J[y],

re. J is well-defined.
Clawm: J is G-invariant.
Proof:  We have to show that L,Ji;) = JjggL, for all {2] € G/H and all

g €G-
Jige)Ly = Ly JoLiysy-1 Ly = LyLyJoLo-1 Ly-1 Ly = LgJjy).

Hence J is G-invariant.

We will now describe all possible almost complex structures on G/H. From the
proposition above it is sufficient to find all complex structures .J, on T,G/H which
commute with the isotropy group Ad(H).

Since G/H is reductive we have g = h @ m, and we can identify 7,G/H with the

Lie subspace m and Ad°/#(h) : T,G/H — T,G/H with Ad(h) : m — m.
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The G-invariant almost complex structures on GG/ H are described by the following

theorem.

Theorem 3.14 There exists a 1-1 correspondence between G-invariant almost
complex structures on G/H and splittings of TCG/H into Ad(H )-invariant sub-
spaces TG /H = S g*™, TS'G/H = Y g~ with ¢, € {*1} and {£oy | k =

n+1,...,m} the set of complementary roots.

Corollary 3.15 There are 25 dimG/H  iferent G-invariant almost complez struc-

tures on G/H.

Proof of the Corollary:

Let dimH = ( + 2n, diimG = £+ 2m. Then m — n = $dimG/H and there are 2
choices for each ¢, k=n+1,....m. 0O

Proof of Theorem 3.14:

We have to find all complex structures on m which commute with elements Ad(h)
of the isotropy group. Let .J be a complex structure on m commuting with Ad(H).
We will now determine which properties J has.

Claim: .J commutes unth the adjoint representation of g in g

Proof:  Since J is G-invariant, we have Ad(h)JJ = JAd(h) Vh € H. We want
to show ad(H).J = Jad(H) for all H € h which follows from Ad(h).J = JAd(h)

by diffentiation. More explicitly, let H € h be arbitrary and h(t) = exp(tH) the
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corresponding curve in H with tangent vector H at the origin. Then
d d , v
ad(H)J = EIUAd(h(t))J = Eh,JAd(h(t)) = Jad(H).

This relation can also be seen from the following diagram

h Y 7,Aut(g) = End(g)

N n
TH ‘9 TaAu(g)
! !
H Y Aut(g)
id Tid
JAd()

H "— Aut(g)
T i
TH ‘24 Pau(g)
U U

h Y TAut(g) = End(g)

We have m = a,, 11 & ... D «q,, with the complementary root spaces a,41,....a0n,.
Recall a;, = gN (g™ & g ).

It will prove useful to consider the complexification of m to determine the almost
complex structures. Recall that .J extends canonically to a complex structure on
m©C, also denoted by J.

Clazm: J leaves the complementary complez root spaces g* invariant

(o € {£ayg1,. .. Eam}).
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Proof: This follows immediately from ady.J = Jady for all H € h. Let X € g°.
We will show JX € g°:

adyJX = Jady X = Ja(H)X = o(H)JX.
Alternatively, let X' € g%\ {0}. Suppose JX € g”. Then for all H € h

MY = exp(ady).JX = Ad(exp H).JX
= JAd(exp H).X = Jexp(ady).X

— JCQ(H))&’ — ea(H)J‘X

which implies a« = 3. O

Claim: J leaves the complementary root spaces ai tnvariant (k =n+1,...,m).

Proof: Let X € a), =gN(gy © g™ ).
(i) J :m — m implies JX e m C g.

(i) X = Xy + X_ with Xz € g&*. From the previous claim we also have

JXi €gtor. Thus JX = JX, + JX_ € gf @ g,

It now follows from (i) and (i1) that JX € ax. O

Claim: On each of the complementary root spaces ay (k =n+1,...,m) there are
only two different complex structures which commute with the 1sotropy group.

Proof:  Cousider the complexification af = g @& g~ of a;. The extension of
J s ap — ag to J:al — af has 1-dimensional i eigenspaces a;° and a)’ which

are invariant under J. Next note that a 1-dimensional complex space which is
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invariant under .J has J acting as multiplication by +i¢. However, by the claim
above, J leaves both g®* and g~%* invariant, thus acting by multiplication of +.

Since all space considered are 1-dimensional, it follows that eiher

o g% = Fig(i) = a;° and g~ = Eig(—i) = ap’ or
g k g , k

o g = Big(—i) = o} and g™ = Fig(i) = ;"

These are the only possibilities for a splitting of af which in turn determines the

complex structure J. 0O

Foralk=n+1,...,mlet ¢ € {£1} be such that

3993 0.1 —Cr g

a,’=g and e =g

The {eray | K = n+ 1,...,m} are called the roots of the almost complex
structure and determine J completely.
The splittings on each af into 4i eigenspaces of .J determine a direct. sum decom-

position of T°G/H = m€ into the +i eigenspaces of J:
T°G/H =T!°G/H e T*'G/H

with
Tol,OG/H: E gékﬂk T;),IG/H: Z g_fkak'

k=n+1 k=n+1

The spaces T)°G/H and T?'G/H are invariant under the isotropy group Ad(H)

and hence determine a direct sum decomposition

T°G/H = T'°G/H & T"'G/H
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with T,/G/H = L,T°G/H and T/ G/H := L,T)"G/H. On the other hand.
we can define a G-invariant almost complex structure on G/H by choosing the
roots for an almost complex structure, i.e. the space T,°G/H.

This gives a 1-1 correspondence

TPGIH =) g™ @) g ™,
— D N, s
{G-invariant a.cx. structures on G/H} —— TG/ H T8 G/ H

THG/H, T'*G/H Ad(H)-invariant
The complex isomorphism Z +— Z + Z from T}*G/H to T,G/H gives T,G/H an

Ad(H)-invariant complex structure .J. This completes the proof of Theorem 3.14.

Complex structures on flag manifolds

The question whether a G-invariant almost complex structure on G /H comes from

a complex structure is answered by the following theorem.

Theorem 3.16 ([BH], p. 499) The almost complex structure on G/H deter-

mined by T'°G/H = 3 g*** is integrable iff p = h® & Y. g*** is a Lie algebra.
Corollary 3.17 Flag manifolds allow G-invariant complex structures.

Proof:

For a flag manifold G/H = G®/P we have the direct sum decomposition

h€

c_tC@ Z g @ Z g @ Z g,.@ Z g—.ﬁ

a€T(S) a€T(S) BEAT\T(S BeAT\T(S)

b

parabolic subalgebra pg
where pg is the parabolic subalgebra determinig G/H, therefore a Lie algebra.

Thus the almost complex structure on the flag manifold G/H given by T)°G/H =
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Y peat\r(s) 8 is integrable. O

Theorem 3.18 The number of different G-invariant complez structures on G/T

is {W(G)| where W(G) is the Weyl group.

Sketch of Proof: Let At be any choice of positive roots. Then (S =)

g=ta Y g'e ) g’

BeAt geat
and T)°G/T = Yyea+ 8% TO'G/T = Lgea+ 87 define a G-invariant complex
structure on G/T. Now for each w € W(G) the set w(A™) gives another system
of positive roots. Hence the number of different G-invariant complex structures on

G/Tis [W(G)|. o

The next theorem states that certain homogeneous complex manifolds must be

flag manifolds.

Theorem 3.19 ([BH], p.501) Let H be a connected subgroup of the compact Lie
group G with rank H = rank G. Then G/H allows a complex structure iff H 1s

the centralizer of a torus in G i.e. iff G/H is a flag manafold. -

Note 3.20 If A is any choice of positive roots. then TG T = ¥ car g8 and
TYGIT = Y ,ea+ 8% define a G-invariant complex structure on G/T. A map
¥ :S — G/H from a Riemann surface S with lift F: S D U — G 1s holomorphac

iff F7UF(0.) € tC @ L aeat 8%
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3.4 The m-symmetric space structure of G/T

The main references for this section are Burstall-Rawnsley [BR] and Bolton-Woodward

[BW2]. See also section 5 of Salamon [Sal} for a treatment of 3-symmetric spaces.

Definition 3.21 An m-symmetric space s ¢ Riemannian manifold M such
that for each p € M there emists an isometry 7, : M — M of order m (7)) = 1),

such that p 1s an wsolated fired point and the mayp
M — Isom(M), pw— 1,

15 smooth.

In order to define and describe the m-symmetric space structure of G/T we will
need a special element of the Lie algebra g called the canonical element which will

be described below.

The canonical element of G/T

Definition 3.22 Recall that if « is a root then a(X) € iR VX € t. Ifay,....a¢

are the ssmple roots, let &,...,& € t be such that ap(§;) = 0. If ps 15 the

parabolic subalgebra, determined by the subset S C {aq,...,a¢} let
€ is called the canonical element.
Lemma 3.23 ([BR]) The canonical element has the following properties.

(a) & € centre of h = torus centralized by h.



CHAPTER 3. FLAG MANIFOLDS 38

(b) The eigenvalues of ad; lie in iZ.

(c) For v € Z let g, be the ir eigenspace of ad;. Then ps = ¥,508.. Also
) = Y i>r & where n™ s defined inductively by n™ = n, n® = [n,nl,
n® = [n,n®], .... This is called the central descending series. Property

(c) determanes ad, and since g has zero centre determines €.

Example 3.24 For G/T we have S = 0, pp = lower triangular matrices. h® s

the set of diagonal matrices and n consists of strictly lower triangular matrices.
i ( 0 *

pp=h®on= +

-\ x| .- % |0 f *

Thus with the choice of simple roots oy, ..., ap from Appendiz B.10 we have §; =

-1 r

i ‘—i— - nJ—J'rlInH and hence § = Z;Zl & =1{diag(0,1,2,...,n)—3inl,}.

0 10
|
Therefore ade(X ) = [€, X] = i[diag(0,1,2,...,n), X].

m-symmetric space structure

We will now coustruct the symmetry of order m at each point.

Theorem 3.25 ([Ji], p. 455) The order m of symmetry of G/T is given via the

highest root. Let

m =1+ hewght of highest root =1+ m + ...+ my
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where —ag = myaq+...meaq 15 the haghest root. The m; are non-negative integers
and {a1,...,ac} a set of simple roots. G [T 1s not homeomorphic to the underlying

manifold of an k-symmetric space for k=2,...,m— 1.

Example 3.26 G = SU(n +1). According to Appendix B.10 the highest root s
qiven by —ag = a1 +...+ay,, t.e.m; =1Vi=1,...,n. Therefore SU(n+1)/T" =
Un+1)/T"* is an m = n+ 1 symmetric space. The canonical element of T/G

is & = i{diag(0,1,2,...,n) — 3nl. 1}

We will now define the automorphism of G/T which defines the m-symmetric

structure of G/T.

Definition 3.27 ([BW2],.p.74) Let & be the canonical element and let h = exp(%¢) €

T. Define the inner automorhpism 7 =iy, : G — G by 7(g) = hgh™'. 7 is called

the Coxeter automorphism.

Example 3.28 For SU(n + 1) we have

7(g) = diag(1, p, ..., p") g diag(, fr,..., i"),

27

2xi 21
where jt = em = ent.

Lemma 3.29 (Properties of the Coxeter automorphism) e 7 has order

7.

o G7 =T, i.ce. the fived pownt set of T 1s T.
Example:  If m 1s smaller then qiven by the Theorem 3.25, e.g. m = 2 for

SU(n + 1) with n > 2 we have

7(g) = diag(1,-1,...,%1) g diag(1,-1,...,£1)

?
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and hence G™ = S(U([2E]+ 1) x U(["H]) # T.

o For all [z] € G/T 7 induces a map 1) : G/T — G[T of order m where [x]
is an isolated fized point.

Let 7,([g]) = [7(9)]-

G - 4

7 I
GIT - GJT
Then by the above o = €T = T 15 an wsoluted fized point of 7,. Define now

Tle) = (o) © Tpa) © ([o}- where € denotes left translation in G /T.

G/T 5 G/T
T Tl -
GIT = G/T
Then [z] is an isolated fized point of Tp,). T has the same order as 7,:

ord 1) = m.

o If G/T 1is equipped unth a G-invariant metric then (G/T,{rg)}) s an m-

symmetric space.

Canonical decomposition of T¢G/T

We now investigate the canonical decomposition induced by the derivative of the

Coxeter automorphism dr = Ad(h).

Lemma 3.30 (Properties of dr) o Ad(h) has order m

o Ad(h): g€ — g€ has m-th roots of unity as ergenvalues: pk with p= e
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o g€ splits into the direct sum of the p* eigenspaces of Ad(h).
gf=Mie M &...8 M,
where My, is the p* eigenspace.
o M, is the direct sum of eigenspaces of roots of height s = mod m.
o M, =tC

o M = Dig*: Let X € g**. Then Ad(h).X = exp %nfad\c.X = enlOY =

277 <o

e X = pX since ap(&;) = i0jp.
® [MraMs] - M1'+s-
o [Mo, M;] = M ensures that [My],r in Notation 3.32 1s well defined.

For the relation between 7-adapted maps and Toda equations (see Chapter 2) the

existence of a special element of M is required.
Definition 3.31 An element £ € M s called cyclic +f

(
£=>Y wmX,, with a; € C\{0} Vk

k=0
Notation 3.32 Denote by [M,] the vector bundle over G [T obtained by left trans-

lating My.. i.e. [Myr = Ly(My) C T(G/T).

From the above we therefore have

m—1 {

TC(G/T)= PM;i] and [M,]=Plg™]

k=1 7=0
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Example 3.33 For sl(n +1,C) = su(n + 1)€ we have m = n + 1. Therefore i

splits into the divect sum of the p* eigenspaces My, where p = eniT
slin+1,C)=M¢@ M, &... 5 M,.

Represented as matrices we have

-

M, = , M,

0 * 0

MQ: * :---aMn:




Chapter 4

T-adapted maps and Toda

equations

In this chapter we will consider T-adapted maps into G/T. These maps are adapted
to the m-symmetric space structure of G/T and have a number of interesting ge-
ometric properties. We wnll then look at two classes of T-adapted maps, namely
T-primitive and T-holomorphic maps satisfying a non-singularity / holomorphicity
condition. It unll be seen that T-adapted maps provide - via Toda frames - a ge-
ometric interpretation of solutions of Toda equations. Finally, we will introduce
wnvariants which determine T-adapted maps up to congruence. The main refer-
ences for this chapter are [BW2] and [BPW]. The concept of T-primitive maps
was first introduced in [BW4] and [BP] (simply called primative maps in [BP]). A
good account of (7-)primaitive maps and thewr relation ot harmonic maps may be

found in [G].

43
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4.1 7-adapted maps

In this section we look at maps from Riemann surfaces into flag manifolds which

are adapted to the m-syminetric space structure.

Definition 4.1 Let S be a Riemann surface and let G/T be a flag manifold
equipped with some G-invariant metric. Recall that G /T is an mm-symmetric space
with symmetry 7 of order m at each pownt of G/T. A conformal wmmersion
S — GJT 1s called T-adapted if, for each p € S, the symmetry 7y, maps

d, (T, S) into itself by rotation through 2.

Note 4.2 Since 7 : g — g is an automorphism of order m it gqives rise to the

follownng splitting

gC - -/MO &... EB me—l

where M is the p*-cigenspace (p = eL) Because My = t€ and g€ = t© © m®

we get for the complexified tangent bundle of G/T
TC(G/T) = [mc] = [M]] @ .. @ [-/\/im—l]

where [My] denotes the vector bundle over G [T obtained by left translating M.

Hence T-adapted means

dy(T™S) C [My],

7.¢.
2

0z )

Td'lﬁ(a%) = pdip(

Definition 4.3 Let I\ be a closed subgroup of G containingT. Then a smooth map

¢ : S — G/K is equiharmonic +f it 25 harmonic with respect to any G-invariant
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metric on G/K.

Theorem 4.4 ([BW2], [B]) Let ¢ : S — G/T be 7-adapted and let K be any
closed subgroup of G with T C K. Denote the natural projection by 7 : G/T —

G/K. Thenwov : S — G/K s equiharmonic and in particular ¢ 1s equibarmonzc.

Corollary 4.5 The conformal map v is a harmonic conformal immersion and

hence its image s a manimal surface.

Definition 4.6 Let S be a Riemann surface and let G/T be a flag manifold with
G-invariant metric. Choosing a set of positive roots for g gives rise to a complex
structure on G /T given by T'°G/T = ¥ ,ca+ 8% (see Chapter 3.3). Thus S and
G/T are complex manifolds. A conformal immersion v : S — G /T is called -
primitive if it is T-adapted and if d:(T"S) contains a cyclic element. i 1s called

r-holomorphic if it is T-adapted and holomorphic.

4.2 Toda equations are the integrability condi-

tion for Toda frames

Details about Toda frame

Definition 4.7 A local frame

F:52U—-CG
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15 called o Toda frame iof there is a complex: coordinate = : U — C and a smooth

map QU — it such that
F7'0.F = 0.Q + Ad(expQ).B € My & M,,

where B = me VI Xa, € My, The {ay,...,a} are a set of simple roots,
—ap = Y_mjay ts the highest root and {X,} s a set of Cartan-Weyl generators. If
g =1,...,0 the frame 1s called an open Toda frame, if j =0,....( it 15 called

an affine Toda frame.
Claim 4.8 We have
F'9.F=0.Q+ Z 'mjeaf(mXaj
J

For the proof of Claim 4.8 we will need the following Lemma.

Lemma 4.9 ([He], p.128)
Ad(exp X) = exp(adX).

In other words the following diagram commutes, where exp : End(g) — Aut(g) s

gren by A— 3 #A’”.
g 24, End(g)
exp | 1 exp

G Ad Aut(g)

Thas follows from the naturality of the exponential map.

Proof of Claim 4.8:

First we will show that for X, € g* we have Ad(expQ).X, = ¢*VX,.
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Since ad(§2).X, = o(Q)X, we have ad(Q)". X, = a(2)"X,. Thus

Ad(expQ).X, = exp(ad(Q)).Xo=)_ —ad(&l )X,
— !

By linearity 1t 1s now clear that
Ad(expQ).B = Ad(expQ).0d_ v/m;Xo,) =Y /mAd(expQ).X,, =)/ e,

Thus

F7'9.F = 0.0 + Ad(expQ).B = 9.Q + Z m,’c“f(mXa.j.
J

Toda equations are integrability conditions

Claim 4.10 The integrability conditions for the Toda frame are the Toda equations

al
au aly”

QAsz + 27,’&:’.620'1(9 H .= U 'U)h676 H

Proof:

For a Toda frame we have

F19.F = 8.0+ Z mjc“fmv)‘\'aj =Ao+ A4, A eM;

F7'9.F = —-98.Q- Z m;e” LS —fIO—}-f’L, A, e M_;
Let A = F7'9,F and C = F7'0.F, ie. 0.F = FA and 9;F = FC. Taking
derivatives gives
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and
0.0:F = 0.(FC)=(0.F)C + F0.C = F(AC + 9.C).
Now using the integrability condition

IF O*F
020z  9z0z

we get

F(CA+8.A) = F(AC + 8.C)

or

0:A — 0.C = [4,C).

Since A = Ay + A; and C = Ay + A; for the Toda frame F this becomes

O:(Ao + Ap) — 9.(4y + fil) = [dog+ Ai, 4+ fIl]

= [Ao, 4]+ [41, Al + [41, Ag] € M1 b My @ M,

Note that this expression is real and that My is abelian, so [Ag, 4¢] = 0.
For the My part we have

04y 04 -
o ~ o = A Al

where Ay, Ay, Ag. Ay are given by

‘41 = Z 77'I,jcaj(Q)_Xa,j
440 - —(JEQ

"Ail = - Z ")I,jca.j(Q)—\'—a.j.

(%)
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Therefore
0A, 04,

0z 0z

= 0:0.Q — (—0.0:Q) = 2AQ
and
(A1, A =3 e DX, = Y Vimge X ] = = 3 m;e* O H,,

as [Xa;, X_o;] = 6i;Ha, -

Thus
2AQ = — Z mje%'f(mHaj
or
2A0 + Z m -6201(9)——.2—(13- ={.
T K(ag,ah)
O

Remark 4.11 We have seen already in Chapter 2 that the Toda equations may be

expressed in terms of n-1mvariants.

4.3 1 :S — G/T 7-holomorphic <= 3 open Toda

frame F : U — G

In order to show the correspondence hetween T-holomorphic maps and Toda frames

we will need the following claim.
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Claim 4.12 Let B = 3¢ VI Xe, € My and let 4 = v a;No; € My be non-

singular, i.e. a; #0Vj =1,... (. Then there exists an = € t€ such that
Ad(expZ).B=A
Proof: As in the proof of Claim 4.8 we have for any = € t€
£ —
Ad(expZ).B = Z mje""'(:’Xaj.
j=t1
We want to determine = such that Ad(expZ).B = A = ¥ a;j Xy, l.e.

a; = mjc“f(z) Vi=1,...,¢

or

@

Vi=1,...,L

(,l’j(E) = 108 J :

m;
Since {ay,...,a¢} is a basis for (t©)* this linear system can be solved uniquely
(w.r.t. the chosen branch of the logarithm) to give the required =. For this =,

Ad(expz).B = A.

|

Lemma 4.13 (c.f. [BW2], p.77, and [BPW], p.126)

¢S — G[T s T-holomorphic iff there eassts an open Toda frame F : U — G.

Proof: Let ¢ : S — G/T be 7-holomorphic and let z : U — C be a complex
coordinate on a simply connected open subset 7 of S. Recall that a frame F :

U — G is a Toda frame if there exists a smooth map Q : U — it such that

F'9.F =0.Q + Ad(expQ).B € My & M,,
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where B = 37\ /m; X, € M. We will now construnet maps F and € satisfying
this relation.
Let F' be any local framing of 4 : U — G/T. Since ¢ is T-adapted we have

F"(’);F = A() + fl] € ./\/l() 23] ./\/11.

We need a map ) such that 4, = Ad(exp{2).B and, in general, we will have to

regauge F'in order to achieve this.

Construction of Q:

Since 4 is T-holomorphic, A, is non-singular except for a finite number of points
([BW2], p.76) and varies smoothly with z. Hence we can apply Claim 4.12 with
a unique branch of the logarithm on the simply connected domain U (possibly

reduced to exclude singular points) to find a smooth map = : U — t€ such that
Ad(exp=).B = A,.

We can write = as the sun of its real and imaginary part:
Y1

(1]

=A+Q,

where A = %(E—I»:::) = Aisthereal and Q = %(E—E) = —Q is the imaginary part.
Regauging F' so that it satisfies the Toda frame differential equation:
Because we need a frame F' with 4; = Ad(exp Q).B we will now regauge the frame

F from above by expA. Let F = F exp A. Since A is a map into t we find that

expA € T. Thus ¢ = #F = «F, so F is a local frame for . Now

Ao+ A, = F'9.F= (expA)~'F™! (£ expA + Fa_—'/} epr)
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oA
= (expA) '(Ag+ A;)expA + a—/

as Ad(exp A) acts trivially on the tangent space of t

_ %+'Ad((exp./\)—1_>.(Ao+A«J_>
= _a% + Ad((exp(—A)).(Ag + 4;)
= %ﬁ + Ag + Ad((exp(—A)). Ay,
SO
%=%+%
and

A = Ad({exp(—=A)).4,
= Ad((exp(—A)).Ad(expZ).B
= Ad((exp(—A)).Ad(exp(A +Q).B

= Ad(exp).B
For simplicity denote the new F by F again. We then have
FlO.F =404+ A, = Aj+ Ad(expQ).B € My M,

with a smooth map  : U — it (i.e. mapping into the purely imaginary part of

t€).- So it only remains to proi@ that
Ay = 0.9Q.
From 4, = Ad(exp2).B we get

85441 == {agﬂ. A]]
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On the other hand the integrability conditions give (c.f. equation (x))
85‘4] = {A.l,/'io].

Thus

[A] ) agQ + f_l()] = 0,

ie. 9:Q + Ay is in the centralizer of A; Vz.
But the centralizer of A; is a Cartan subalgebra orthogonal to Mj. Since 9:Q +

Ay € M, this yields 9:Q 4+ Ag = 0 or, taking the complex conjugate,

Ay =-0:Q=-0.Q=09.9Q
since Q0 = =,
Therefore F' is the required Toda frame. 0O

A similar theorem also holds for r-primitive maps. See [BPW].

Theorem 4.14 ([BPW], p.126) v : S — G/T 7-primitive <= 3 affine Toda

frame F : U — G.




Chapter 5

A congruence theorem for

SU(n+1)/T"

In thes chapter we will sketch the proof of the constant curvature congruence the-
orem for T-holomorphic S i SU(n + 1)/T". It was the first congruence theorem
obtained during the course of research for this thesis and it will serve as o motiva-

tion. for the subsequent generalisations in chapters 7 and 8.

5.1 The Veronese sequence and congruence the-

orerns

Definition 5.1 ([BJRW] p.608) Let ¢ : S* — CP" be the holomorphic embed-

ding defined by

, \ n _ n —k k
¢([207Z]]):[Z(7)17 ( )2’(7)1 1217"' ( )2(1)1 AZ{LV”VZ{')
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where [z, 2] € CP' = S2. Alternatively, in terms of the holomorphic coordinate

z = z9/z; on §* we may write

B(z) = 1, J<T) - \J@A )

1

¢ s called the Veronese embedding.

7 ;

Let g, ... ¢ be the harmonic sequence of ¢ = ¢y, We call oy, . .., ¢y, the
Veronese sequence. For the specific form of the ¢, and more further information

see [BIRW], p.609.

For the Veronese embedding and sequence we have the following two remarkable

theorewus.

Theorem 5.2 ([Ri]) The Veronese embedding 1s of constant curvature and, up to

holomorphic isometries of CP™, us the only such linearly full holomorphic curve.

Theorem 5.3 ([BJRW] p.611) Let ¢ : S* — CP™ be a lincarly full conformal
'/I'rrl.'rr_l.m's'/ﬁ()'r/. of constant curvature. Then, up to a holomorphic wsornetry of CP™,

the harmonic sequence determined by ¢ is the Veronese sequence.

5.2 A congruence theorem for 7-holomorphic 1 :
S? — SU(n+1)/T"
We will prove the following theorem.

Theorem 5.4 Let ¢ : S* — SU(n+1)/T" be a t-holomorphic map with induced

metric of constant curvature. Then 1) is congruent to the Veronese sequence.
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As a corollary we get the following congrmence theorem for 7-holomorphic maps of

constant curvature.

Theorem 5.5 Let 4,4 : S2 — SU(n+1) J/T" be T-holomorphic maps with induced

mctrics of constant curvaturc. Then ¥ and ¥ arc congrucnt to cach other.

Sketch of Proof of Theorem 5.4:

Through the following steps we will see that a 7-holomorphic ¢ can be assigned a
set of invariants which in turn determine ) up to congruence (weak congruence the-
orem). The induced metric of ¢ can be expressed as the sum of these y-invariants,
and the associated curves v; have metric ;]dz|?. Using a factorisation theorem,
we will theu see that if 4/ is of constant curvature then so are the ;. However, if
the 10 are of constant curvature then the y-invariants of ¢ coincide with those of

the Veronese sequence. Therefore 1 is congrnent to the Verouese sequence by the

weak congruence theorem which concludes the proof.

T-holomorphic maps and their y-invariants:

From Chapter 2 and Chapter 4.3 we have the following correspondence

{¢:8 — SU( +1)/T" r-holomorphic} «—— {é:S — CP” holomorphic}

((DOI‘@n) — D = 0
Let ¢ : S* — SU(n + 1)/T™ be r-holomorphic. Then, by the above correspon-
dence, ¢ gives rise to a harmonic sequence [fo],...,[f.] (¥ = (fol...|fa)). The

7-invariants for the harmonic sequence are given by 4, = Lf]’% From the defini-
r
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tion of the harmouic sequence we have

0.0z log lfpl2 = T~ -1
0: 05 108 Tp = Yp-1— 27}) + Tp-1
O:fp = fper +0:10g|f,*f,

affp = _A,"p—lfp—l

Thus every 7-holomorphic ¢ : S* — SU(n + 1)/T™ can be assigned the set of

y-Invariants: Yo, ..., Yn_i-

A weak congruence theorem:

Let 9,4 : $% — SU(n 4+ 1)/T" be 7-holomorphic maps whose 7—inva1‘ie1n£s coin-
cide, i.c. *,J = % V j. Then m¢¢ and 74 are both holomorphic maps into CP”
with v_; = 5, = 0 and vy = %. Thus, by Theorem 1.15, 7¢ and 7¢: are con-
gruent in CP"‘ and there exists a ¢ € SU(n + 1) such that 7¢ = [g]ﬁ'dj' = ,T_qg;'
(lg] € PU(n +1)). From the above correspondence we get v = gib (lift to 7-

holomophic maps). Therefore the y-invariants determine 7-holomophic maps up

to congruence.

The metric of 4 and its associated curves if;:

The induced metric of ¢ is ds? = 3 v;|dz|? (see chapter 6.1 with metric coefficients
by =1 and 5 = 5;-1).

Counsider the projections

i1

mj : SUMA1)/T" = Gy (C™Y) = SU(n+1)/S(U(j+1)xU(n—j)) C P(\ C"*)

“J
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given by m;(¢T) ={go A ... Ag;] (9=1{90l---|9.))
Let {fo],--.,[fa] be the Frenet frame for ¢ = mp : S — CP" Let F =

Then F = oF € SU(n +1) is

lff" € Uln+1) and o = 7w

|fnl| Il

the Toda lift for .

Therefore the j-th associated curve

j+1

Yy =mh 1§ > G (C™) = SU(n +1)/S(U(j +1) x U(n — j)) € P(\ C™*)

1s given by

Fz(dl—]f%l,...,a'l';—:l)r—}[alﬁol A IfJI]_[fO L AF
S22t SU(m+1)/T"
N\ il
G (C"FY)
Claim: The metric induced by ¥; is ds? = v;|dz {2
Proof:

O(foN o ANfi) = oA oA+ fo Ao Ao A fin

orthog. to plane foA. .Af;

The change of this plane orthogonal to the plane fy A ... A fj is

[fo N AFici A fimal? _ [fol? - - Ifi= 1Pl fisa — |fi]? =
[fo A N £ |fol?---1£5 s

Thus ds? = v;|dz|>. But also
Aloglfon...Afi]P = Alog|fol* - 1fil* = (0 =0)+ (11 —70) +- . (13— %-1) = 7.

Hence ds} = y;|dzf> = Alog [fo A ... A f;]?|dz ]2



CHAPTER 5. A CONGRUENCE THEOREM FOR SU(N +1)/T™ 59

If ¢ has constant curvature then the b have also constant curvature:

From above we lhave

R

’)’0+. . -+7n—1 = Al()g lf0l2+ . +A 108 lf()/\ . -/\fn—1|2 = Al()g l_fol? s Ifo/\ . ./\f,,_ll"

fo may be chosen to be a polynomial in z for ¢ : $? — SU(n +1)/T" (both S?
and SU(n 4+ 1)/T" are algebraic varieties).
From

o AFA-ANEP=1foAfoA---A )

it follows that p; := [fo A fi A--- A f;]? is a real polynomial in z, Z.

Now let ¢ : S* — SU(n + 1)/T" be of constant curvature. Then

. : . C .
(]-5‘2 = (70 +...+ 7,,_])|le|2 = mldi’lz

With v = Alog|fo A... A f;]> = Alogp; we get

Along"'pn—l =Y t.. .+ o1 = :(Alog(]-_*_zg)

(14 22)?
Applying the prime factorisation argument used in the proof of Lemma 7.5, we
obtain

.

J .
= — V.
i (1+z%)? J

Consequently, the associated enrves 4, are of constant curvature.

¢ 1s congruent lo the Veronese sequence:
From above ¢ := ¥y : S? — CP" is of constant curvature. Thus by Theorem
5.3 the harmonic sequence determined by ¢, i.e. the T-holomorphic Lift 4 of ¢, is

congruent to the Veronese sequence. g



Chapter 6

Induced metric of T-adapted maps

and associated curves

In this chapter we will compute the induced metric of T-adapted maps & : S — G /T
and their associated curves. We anll then antroduce the n-tnvariants and unll derve
different expressions for them. These were needed to establish the relation belween
the different forms of Toda equations (c.f. Chapter 2.2) and wnll be crucial i the

proof of the constant curvature congruence theorem.

6.1 The induced metric by ¥ on S

Let (-,-) be a G-invariant inner product on G /T and denote the norm induced by

(., .) by ‘ . iG/T
Let the complex structure on G/T be given by TV°G/T =3 ca+ 8" where At is

a chioice of positive roots.

60
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We will show that the metric induced by m-adapted/holomorphic ¢ is given by

¢
ds® = Z kj77j|d2|2

j=0,1
where the 1; are invariants of ¢ to be defined below, and the k; are real constants
depending on the G-invariant metric on G/T.
We will compute clsg with the help of a local lift F': U — G of /. In order to do
this consider the following commutative diagrams. Let p € S be fixed and denote
left multiplication in G by ( and in G/T by L.

Then

Sl I

" Lppy-1
S>U 5 g/ S gt

induces on the tangent bundles

o rert peg

dF

o ldr ldnm
Toy 2. rog)T "t ToG)T

Since (-, -) is G-invariant, we have
(910, (Dl gy = (AL (@), AL i1 D)),
But from the commutative diagram above we get
ALy -1 d(0.],) = de(F~ dF(0.,) = dn(F~'.F)
or, alternatively,

d(0.],) = dLppydm(F~'dF(8.,) = dLdr(F'0.F)
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Note that by construction
F(p)™'0.F(p) € g°
For simplicity we will from now on owit the particular poiut p; so we have
dip(9.) = dLpdn(F~'dF(9.)) = dLpdn(F~'0.F).
Since ¥ is T-adapted we have

dgb(a:) € [./\41]

Thus
dr(F7'0.F) € My,
SO
FTO.F et aM =Mys M.
Let

F_1(92F = A() + 441
where A; € M;. Thus

dr(F7'0.F) = dn(Ay + A;) = dn(4,)
and hence
dp(0.) = dLpdr(F~'0.F) = dLpdr(A;).
Denote the projection of A € g€ onto a subspace k by Ak,
So

A= A" 4 AS" 4 48"

and

+ oy oy - ag
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where A5" € T)9G /T and A% € T*'G/T.
A similar calculation gives

dip(d.) = dLpdn(F'0.F) = dLpdr(4,),

and splitting

—ay

A = A8 4 4877 4 A8
into 1, 0-part and 0, 1-part gives
AE = A8 e TOG/T and A5 = A5 "' 4+ .. 4+ A8 e TO'GJT.

Example 6.1 For the SU(n+1)/T" cause we have

0 * 0%
x| 0 0
A= A=
0 0 |x
* 10 * 0
so that
0 * 0
0 %10
AP = AP =
0 0
0 0

63
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487 — . 48" _
‘4] - * . :"'7‘"11 -

0 * 10

and

g=%0 __
AT =

Definition 6.2 Let ¢ : S — G/T be t-adapted. Let {X,,} be a set of Cartan-

Weyl generators. Wath the notation as above let
co2 . A8 2 g p
I‘XO'jIG/T"}j = | A 'G/’]‘v J=0,....¢

The v; are called y-invariants of .

We will see in section 6.2 that the 7; are indeed invariauts only depending on the

choice of Cartan-Weyl generators.

Lemma 6.3 Let o : S — G/T be t-adapted/holomorphic. Then the induced

metric on S s guwen by

¢
ds*= Y kin;ldz|?

j=0/1

where k; = | X, |é/T = <_\'aj,Xaj> V.
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Proof:
We have
6(0.) 8y = |dLedn(F~0.F) I}

= I(lLFdTF(A%+)|;Z’j/T
= |d7r(A%+)|é jr as the metric is G-invariant
= |A5)%;  identifying mC with T,G/T via dx
= A5 L+ A,
= |48 2 +... +{45 |5,y  Lemma B3

= kyp 4.+ Ry
and

|d'¢’(35)1’0|é/1‘ = IdLFdW(F_]OzF)]’Olé/T

= |dLrdm(A5)|%)m

= |dn ()G

= |":1%+ |2.'/T

e

= A5 /T as complex conjugation preserves lengths

= ko1jo-
Therefore, using the usual identification of T(G/T) with T"*G/T, the induced
metric is given by ds® = 32, kjn;|dz1?. Also since dv(9.) L di:(9:) we see that ¢ is
conformal. Also note that the k; € R* depend ou the choice of G-invariant metric

but the 7; do not, see Corollary 6.9. O
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Corollary 6.4 The Kdihler angle 15 given by

, 0 Eor
tﬁ,llz ; = —Tﬂ—
2 i=1 k;in;

Remark 6.5 If ¢ is T-holomorphic we have |d¢:(9.)"' |5 = |d(0:)""fg/r = 0,

50 kono = 0. Thus ds? = Zgzl kin;ldz|? for T-holomorphic 4.

6.2 The n-invariants

Lemma 6.6 The 5j-invariants are left invariant by left translation, 1.c. of = gy
forg € G then iy =0; Vj=0,...,(

Proof:

Let ¢ = gip. Then if F is a Toda lift for «, F = ¢F is a Toda frame for ¥. Then
F'9.F = F7'9.F and hence Ay = 4y and A, = 4, (terminology as in section
6.1). Since the Cartan-Weyl generators remain unchanged we see from (leﬁni tion

6.2 that 5; = »; for all k. =0,..., (.

Lemma 6.7 (c.f. [BW1]) For all j =0,...,( 1s H; == n;|d=|* a globally defined

2-form.

Lemma 6.8 For 7-premitive / 7-holomorphic ¢ the n-invariants may be cxpressed

s

n; =mye Y vi=0/1,...,L
Proof: Let F be a Toda frame and + be 7-primitive / 7-holomorphic. Then

o
g7 _ — a; ()
Ay T o= (et X,
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SO

I X, 'é/Tﬂj = |AF o/r = |\/mjeaj(mxﬂf Ié’/T

205 (v |2 SR 2050
= m;e® X, G = 1 X [Gypme? )

aund hence

— 2a;(Q)
n; = mje Y,

Corollary 6.9 The y-invariants are wndependent of the particular choice of G-

invariant metric on G/T.

6.3 Induced metrics of associated curves.

For details about fundamental representations see [FH].

Let P; be the maximal parabolic subgroup with maximal parabolic subalgebra pg
determined by S = {aq,...,qj_1, 0j41,...,ac} (c.f. chapter 3). Let 9; 1 § —

G€/P; = G/H; be the j-th associated curve given by
s X Gr

N L
G/H,
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If Fis a Toda framne for ¢ then we have

G

F

Sl
Jis
S>U % G/H;
Lemma 6.10 The metric and Kahler angle induced by 4; are grven by
: ) . . 5 8 k()‘l/()
ds? = (kono + k;n;)|dz)? tan? L = =,
§ (kom0 JT]J)I ’ an 9 kﬂlj

For 7-holomorphic ¥ we obtain ds? = k;jn;|dz|*.

Proof:

Simnilarly to the calculation in section 6.1, we find
dv;(0.) = dLpdr;(F~'0.F) = dLpdr;(4;)

and

dyj(9:) = dLpdmj(F~'0;F) = dLpdm;(A4;).
Now |- |g/n, is given by restricting | - [g/r to T(G/H;). Therefore
Id@(az)""lén = ldms (A5 )eyr = AT [y = by
and
|d‘1/)j(854)"0|é/71 = |d”j(fiﬁz+)|é/qﬂ = IA?lé/T = I-‘P]z_oo ‘(23/T = |A%00|20/T = koo

which proves the assertion. 0O
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Lemma 6.11 Forj=1,..., ( let Vi be the j-th fundamental representotion space

Y 7

and let | - |v; be a Hermatian metric on V. If ¥ 1s 7-holomorphic, there exist

holomorphac functions F; : U C S — V; such that
1 = Alog leﬁg-

Furthermore, the F; may be chosen so that pi(z,%) := IFJHJ 15 a polynomial n

18T

Proof: Let v; be the lowest weight vector in V. The orbit of the v; is given by
;G — V;\ {0}, Fw~ Fuj.

Let i; : G/H; — P(V}) be the embedding given by the lowest weight vector in
v; € Vj. Define

by S = P(Vy), =14

so that locally zzj = [Fuv;}. The following diagram commutes
¢ I v\ {0}
F
/ b ! Y
So>U % G/H; L P(V)
Finally let {};} be the fundamental weights given by A;(H,, ) = 6;; and define

ﬁ’.j =Ny U -V, Fi(z) = ¢~ N E P2,

Claim: F i is holomorphic for 7-holomorphic ¢.

Proof: We will show asﬁ',» = 0.

0:Fv; = FF! J:Fu;
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= F(Ag+ A1)y
= FAyv; + FA v,
= F(=X;(4p)v;) + FAu;
= —X;(A)Fv; + FA® v
note that Zf—ok vj =0forall k =1,...,since v; is the lowest weight vector
= —\j(Ag)Fu; for T-holomorphic v
Assume now that F is a Toda frame. Then Ay = 9,0, so A, = —9:Q.

Thus

0:F; = 9:(e MV Fuy))
= 9.0V Py 4 MDY, Py

= =9:2(Q)e N Fy; 4 e M\ (Ag) Fu; + Fj’f"’“uj_)

= 0N (e NV Fuyy 4 e N () (~0:0) Fy; + A )
= —9N(Q)e N Fy; 4 e D9 (Q)Fu; + FAS ' v;)

= e_’\"(Q)FA]g v;

= 0 for 7-holomorplic 4

Thus F; is holomorphic.

Next note that P(V;) and S are projective varieties, so [ﬁl] may be cxpressed in

terns of polynowmials. Hence there exists a polynowial 1y : U — C such that

|E o '| [¥; is a polynomial in 2, 2, so define Fj := = Fjmi— IF I . Thus
2 2 2
.y | A (82 h 2| £ 22;())7, 12
|Fi[3. = |F; 3 e Py - = 2|
I T\ Fujlv, | i ]IF’U]'I\ vilv; |y :
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and hence

—2X(Q) = log | Fj [y, — log |;".
Therefore
-2AX;(2) = Alog [Fijl‘{),»j — Alog |hy]?
= Alog |Fj[%,-j as Alog |1]? = 0 for holomorphic .
The positive simple roots are related with the fundamental weights via the Cartan

matrix KX
a; = Z KA or A= Z K,.;‘a,-.

Expresssed as matrix equation we have

Now from the Toda equations we have
A2a;(€2) + Z 'rn,je?“?(m]{,-j =0, i=1,...,¢,
and hence (1; = m;e?*i ()
A2a4(Q) = — Z iy, t=1,...,C
Applying the iuverse of the Cartan matrix now gives
—; = K 'A204(2) = 2A (Z A‘,.;‘a,-(sz)) = 2AX,(Q).
Thus

1 = —2AX;(2) = Alog lel%,J



Chapter 7

Congruence theorems for S? in

G/T

In this chapter we will prove the constant curvature congruence theorem for 7-
holomorphic S* in G [T. At first we will prove a weak congruence theorem, namely
that the n-invariants determine 7-adapted maps up to congruence. Then we unll
investigate the case when all associated curves 5 of a T-holomorphic map v

S? — G/T are of constant curvature themselves. Neat, using a prime foctorisation
argument, we uill prove that ¢ being of constant curvature wmplies that the ; are
of constant curvature as well. Thas then results in the constant curvature theorem.
Finally we will prove a general congruence theorem. (without the constant curvature
condition but an additional assumption on the metric) for T-holomorphic S? in

G/T where G has rank two.

I
o
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7.1 A weak congruence theorem

Theorem 7.1 (Weak congruence theorem) Let G be a compact sumple Lie

'

group and T its mazimal torus. Let ¢, : S — G [T be T-adapted maps. Then ¢
and ¥ are congruent by an isometry A € G, ¥ = Ap iff their n-invariants comncide,

Ny = I~]1L V.

Proof: Let 7 : G — G/T be the canonical projection.

Locally v and ¥ have Toda frames F, F:U — G satisfying

F79,F = 38,0+ e Be™®

and

F'9.F =8.0+ ' Be 4,

where Q,Q : U — it are smooth maps and B = ¥, /X, -

However, since the #-invariants coincide, it follows that Q = Q. Thus
F0.F = 0.0+ ¢"Be™? = 0.0+ ¢"Be™® = F'0.F.

Claim: F = AF with A € G constant.

Proof: Let A = FF~'. We need to show that A is constant, i.e. 9.4 = 9:A = 0.
Using F~'9.F = F~'9.F we get
O.(FF ) = (0.F)F '+ Fo.(F™)
= (0.F)F '+ F(-FY3.F)F™")

= (8.F)F' = FFY9.F)F™!



CHAPTER 7. CONGRUENCE THEOREMS FOR S*? IN G/T 74

(0.F)F~' — (3, F)F!

However, since F' and F arc both real, it also follows that
OAFF ) =0.

Hence A4 is constant.

It now follows that F = AF and hence locally o = Av) with A dependent on the
open set U: A = A,. However, whenever two open sets U and V' overlap, then

Ay = Ayv. Hence ¢ = »hl globally with A = const.

7.2 Calculations for constant curvature 1),

The following Lemma shows that there is ouly one possibility for all 4; to be of

constant curvature.

Lemma 7.2 Let the o be the maps induced by the fundamental representations.
Supposc they all have constant curvature, t.c. 1 = e Yy unth r; constant.

Then vy = ¢; Yj where the ¢; € N are giwven by
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-]
o

Proof: Let n; = (—1:’—2)2 Vj. From Claim 2.3 we know that the Toda cquations

may be written as

Alogmp m

Alogn, Y,

where I is the Cartan matrix.

Now 7; = (IJ:—’Z)Q yields

Alogn; = —20.0:log(l+ 2%
- 929,
1422
_ o 1 zZ ‘
1+2z (14 22)?
-2
B (1+ 2z)?
Thus
-2 1
=-K ,
-2 ¢
i.e.
T 2 Cy
=K =
¢ 2 Ce

Therefore r; =¢; Vj. 0O

Corollary 7.3 In the above case the metric induced by ¢ is ds® =

¢ = Y kjej where kj = | X, [

C

(142z2)2

dz|* with
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7.3 Irreducible polynomials

To prove the congruence theorem for S* we will need the following Lemma about

irreducible polynomials.

Lemma 7.4 Let oy,...,0,,71,...,7, be polynomials in =,z such that

a;
2=
T

1

n
1=

1

and ged(oi, 7)) = 1 for all i and ged(7;,7;) =1 for all i # j. Then o; = 0 for all

Proof: We will prove the lemma by induction. For n = 1 the assertion is clear.

Let now the assertion be true for n. We want to show that this is also the case for

n+1. Let
n+1
> 2 =0
i—1 Ti
Then
n
Ontl Z i
Ta+1 =1 Ti-

and hence

n n
Ont1 H Ti = —Tat Z 7; HTj-
i=1

=1 i#j

Therefore 7,1 divides 0,44 [17—, 7:. However, neither 0,4y nor 7y, ..., 7, have com-
won factors with 7,9, Thus 0,47 =0 and hence o; =0 forall i =1,...,n+1 as

the assertion is true for n. @O
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7.4 Computing~ the n-invariants of

The next Lemma shows that if ¢/ has constant curvature then all ¥; induced by

€ —|dz|? then

(14z5)?

the fundamental representations have constant curvature.
Lemma 7.5 If the induced metric is of constant curvature ds* =

(‘J’ .
n=—a Vj,

where the ¢; € N are given by

(S

C1

=K1

Ce

Proof: Recall that the metric is given in terms of the y-invariants by

ds* = > kjn;ldz)?

with k; = |X,,|%. The k; depend on the choice of G-invariant metric on G/T. We

z. Let

Lo i
;

will show n; = 772
Recall 3, = Alog |F Jﬁ, = Alogp; where p; is a real polynomial in z

(1 + 2%)9¢; where o) is a polynomial that has no common factors with

P
1+ zZ. Then
n; = Alogp; = Alog(l + 22)7 + Alogp; = a -I—JJLZE)Q + Alogy;
Since 1 is of constant curvature we have
]’

> kynildzP = ds* = TEEE



-
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Thus
]\‘:]-( - Z kAL ¢
—1d og Y, = ——— .
(142 BYI = (T 22)2
Let m,...,7x be the prime factors of H§:1 @;. Then ¢; = mf" -+ 7" with

Tji € N(), SO
T A7Tl 0 /x,a Ur

ﬂ'.

2

Alogp; = Z Tji

Hence

-c+ Z] kJC] 7T,'A7Ti — 057«‘,-057& —c+ Z k. C] 7T,'A7T,' — 8Zﬁ,'057r,~
L Rt A ) by _ — —
(1 + 22)2 +Z 375 2 (1 +27) Z Z kjrji ) 0

Jii i i

Since mAm; — 0.m;0;7m; and 72 are coprime it follows by Lemma 7.4 that

Z ]i?j'l‘j,‘ = 0.
J

However, all k; are strictly positive, hence all rj; have to be zero. Thus ¢, = d; € R
and p; = d;(1+ 2%)%. It follows also from Lemma 7.4 that 3°; kjc; = c.

For the y-mvariants we finally get

i; = Alogp; = Alog(l+ 22)% + Alogd; =

™
I8

(1+22)%

7.5 The constant curvature congruence theorem

Theorem 7.6 Let G be a compact simple Lie group and T its maximal torus. Let
G ST G /T be T-holomorphic maps of constant curvature with same induced

metric. Then v and ¢ are congruent by a holomorphic isometry g € G, ¥ = gib.
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Proof: Let ¢,¢ : S2 — G/T be of constant curvature. By Lemma 7.5 the

respective n-invariants are

N = C]'

li (14 22)?
and

s~ Cj

li (1+4:22)?

forall j=1,...,¢ Thus n; =%; Vj. By Theorem 7.1 ¢ and ¥ are congruent. 0O

Example 7.7 For su({+ 1) the curvature constants are as follows. The inverse

of the cartan matriz is given by ([OV], p.295)

R R Y
iij :_f
+1
(C+1-4d)j : i>j.

Using the formula mn Lemma 7.2 the constant curvature constants ¢;, 1 =1,...,(,

may be computed as ¢; = ; I\",-;“_) =23, Ki? :

-—1
J

i—1 £
= _2_( (C+1—i)j+Zz’((3+1~j))

j=i

1
i—1 +1-i
= ~:—( (C+1-0)j+ > 1j

j=1 j=1
? dli—1)  (E+1—i)e+2—1)
— ( — ) i .
e+1(( 1= 2
i(0+1—1) .
T T i 14 +2 -
T 1 (e—1+0+ i)



CHAPTER 7. CONGRUENCE THEOREMS FOR S5* IN G|T 80

Thus
Cy ¢
Cy 2([/ - 1)
Cr-1 (6 —1)2
Ce {

The constant ¢ us given as ¢ = 3, kjc;. Choose o G-invariant metric such that

k; =1 for all j. Then

J

¢ = Ylt+1-7)=35(l+1) -5

_ penfUHD O

2 6
((
= ;1)(3“3—25—1):

{4+ 1)(0+2)
6

Note that the curvature of a 7-holomorphic constant curvature S? is strictly posi-

tive. It is given by
4

N=———
! kicy + ... kece

7.6 A general congruence theorem for rank 2 Lie

groups

Recall 9); = Alog |Fj[{, = Alog p; where p; is a real polynomial in z, 2. Then

1; = Alogp;

~TiN

. ) [ .
Let my, ..., 7y be the normalised prime factors of I[];_, p;. Then p; = q; T

with 15 € Ny. a; € R.
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For a general congruence theorem we need to be able to determine the »j. from

the prime factors of ds2.

Let K :={k|ru #0} C{1,...,N},s0

7. —— 7. Tik
pi=a; [[ ="
kel

So we get for the y-invariants

— 0.7, 07y,

2
Tk

T AT
n; = Alogp; = Z rikAlogmy = Z Tik —

ke K'j ke l('j
or, alternatively,

(m A7y — 0.7.0:7) [lne s\ (k) 7o

= Tk p
Z HnEI\'j w2

kCK; n

Define

g = Z i (A, — 0,7, 057 ) H w2,

kER; neK;\{k}

Then, for all n € Iy}, ¢; and 7, are coprime, (g;, 7,) = 1, and

deg ¢; < | Z 2degm,) — 2.

nek;
Also
1, = ———(IL——Z
Hnel\",' Ty
So

Alogy; = Alogy; — > 2Alogm,

nek;

or changing the mdex

Alogy; = Alogy; — Z 2A log .

n€h;
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From the Toda equations we also have

£
Alogn; = — Z K;;n;
J=1

or
Alogm m
= -
Alog e
Hence
¢
Alogq; — Z 2Alogm, = Alogn; = — Z K;; Z rirAlog my,
nek; j=1 kek;
S0
¢
Alogq;, = Z 2Alog m,, — Z Z KjrjpAlog my,
nék; J=1 k€EK;
¢ N
= Z 2A lOg T — Z Z I"ij7’jkA log T,
k€ER; j=1 k=1
N
= Z 2A10gﬂ'k - Z erijrjkAlogﬂ-k
keK; k=1j=1
¢ ¢
= Z (2 - Z Kijri)Alog mp + Z (— Z Kijrj)Alog my.
keK; 7=1 keEKS 1=1
Thus
HnEl\',' 7‘_721
Alogq; = Alog ; o

=1 ker; T

On the other hand we kuow that ¢; has no comnmon factors with [1pep. me. Thus

for a suitable holomorphic fuuction g;

¢ = iyi|2 H ', sk € Ny
. keKY

and hence

Alogqi = Z .SikAl()gﬂ'k.

kERF
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Cowparing this with the last sun expression for log ¢; above we get,

¢ ¢
Z sikAlog T = Z (2 — Z I\",-jrjk)Alog T + Z (— Z I{ijTjk)A log T

keK? kEK; 7=1 keK? j=1
or

4 ¢
Z (2 — Z Kijrjk)Alog T + Z (V—Sik - Z Kijrjk)Alog m. = 0.

keK; j=1 keKT Jj=1

Therefore for all e =1,...,¢

£ 4
2-Y Kyrju=0 VkeK; and sz =—) Kyrj VekeK{.  (x)

j=1 j=1
From the first equation it follows that if all p; have the same prime factors, i.e. if
K;={1,...,N} Vi=1,... ( then the ry are uniquely determined and given via
the Cart,a,l.l matrix as follows.

For all k € N/_, K; we have

2 Tik
=Kk
2 Tek
1.e.
1k 2
=LK!
Tek 2

So if all p; have the same prime factors (c.f. Theorem 7.6) this would give a general
congruence theoremw. However, in general the p; have different prime factors as can

be seen in Exawmple A.2.
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The rank 2 case

Theorem 7.8 Let G be a compact simple Lie group of rank: two and T its mazimal

ki = |Xa, |2 # | Xa,)? =t ko wor.t. the G-invariant metric on G/T then ¢ and ¥

are congruent by an isometry g € G, ¢ = gy

Proof:
1. Simplification of (x)

For the rank two case we can simplify the above equations () as follows. We have
{1,...,N} = K; U(K, N ;) UK7F.

Therefore 2 — Zle IK;ry =0 VE € IV becomes two sets of equations. For both

i we lLiave

2— (Ii—iIT']k + I(,‘Q'I'Qk) =0 V& € I\—l M I\'Q
as before. However, (x) simplifies for 7+ = 1 to

2 — If]]"d/r = 0 VI\ c IX—;

and for i = 2 to

2 — RKyyry, =0 Vi € I\T.
Also sy = — X7y Kyjrj Yk € KY becomes

Sk = —[¥—127'2k VI\, € IX’I‘
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and
sap = =Ky VE € R,
Since Ky = Ky = 2 we get.

For k € 'y N K, however we find

2 Ky Ky Tk
2 If‘Zl I\"zz 94
S0
-1
1k I(]] I{]Q 2
T2k Ky Ko 2
or
"1k 1 I\"QQ —IX—]Q 2 1 4 — 2[\—]2
= - = Vln € I\- ﬁ]\-z
det Ik ; . 4 — Koy . ]
24 _I\Zl I\ll 2 4 — 2]\‘21

In particular rj, = vy Y K € Iy NK,.

Note that all constants rj, for k' =1,..., N are uniquely determined by I and

K.

The above expression for the »; yields for the s-constants
sy =—Npp Vh € K7 and sy = -y Vh € I
Therefore

Alogy, = —hypy Z Alogm and Aloggp = -y Z Alog .
kEK? kERS
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2. Metric calculations

The metric in the rank 2 case is given by
ds® = (kynpy + konp)|dz|?

Therefore if the two 7-holomorphic curves v, (ﬁ have the same metric we have
kyin + kana = kyiy + k.

Now

i1 A log mp,

1

nj= D riAlogm =

1\7
keK; k=

so using Lemma 7.4 we get
Eyirig + korop = kg + kyry, V=1, N.
Define « := 2—: # 1 by assumption. Then
i R =T+ ey VE=1,.00, N,

Suning up gives

N

Z("'lk + Kry) = Z Tik + Z (rie + Krar) + Z KTk
k=1 kERS kER MK keK¢
1 - -
= Z 1+ Z mr—(4—21x12+h(4—21\2]))+ Z K.
keRS kEKNK> 122421 keR?
e - R 2[\’]2 + h',(il - 2]\—21) -e
= A+ KN —— + x| L)
5|+ |1 NG| 1= Kophy, K| x1|
Setting Ny = [K§|, Ny = |1 N K|, and Ny = |K§| we get
N , - 31"
d 4 —=2N 1+ k(4 - 2K, -
Z(TM + krar) = Ny + Ny S ( = 21) + &Ny,
4 — 1\121\2]

k=1
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Note that

|G|+ | Ky 0 K| + KT = Ny + N, + Ny = N.

A siilar computation for the 7 gives

N ' P -
. . - - 4—2K5 + k(4= 2H .
Z Tik + KTor = Ny + Ny 12 h( — ‘21) + KNN3
k=1 4 — IX12I\21
Thus
4 -2K o(4 — 2K. - - 4 — 2K, (4 — 2R, -
N, + N, V12 + K( 1) + KNy = Ny + N, (12 + #( \21) + K1V,

4 — KoKy 4 — Koy
Now Ny=N—N, — N, and Ny= N — N, — N,. So

4 — 21{12 + li(4 — 2[\".21) - I\T(4 — I(m[fﬂ)

Ni(1l -k N. «N =
L= m)+ N 4 — Kol o
](71(1 _ Ii) " ]{7'24 - 2K + h,(4 — 2]]\':21);— h,(4 - IX"QI(Q]) " f.}_]\r,
) 4 — I\]QIXQI

1.e.

4— 2Ii—12 + h',(.[\’lz - 2)[\’21
4 — I\Hglfm

- 2[\’12 + H,(I\"m — 2)[(21

! 4
= Ny(1—&)+N. -
1{1=R)+N 4 — KKy

]Vl ( 1 —H:)+]\r2

We will now show N; = N; and A; = I\; which then gives the congruence theorem.
3. Calculations for specific Lie groups

We will conclude the proof for the Lie group G, (the calculations for SU(3) and

SO(5) are completely analogous).

The Cartan matrix for Gy is given by
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Thus
riy =1V € Ky and 1y =1Vk € K7
aud for & € Iy N 'y we have
ri =6 and iy =10 VE e K| NK,.
For the s-coustants we have
sy =1Vhk € KT and sy =3VEk € K7,
SO
Alogg = Z Alogm, aud Alogg =3 Z Alog mp.
keK® kEKS
The wetric equations are, as before,
i+ R =Ty F Ry Yh=1,... N
aud their sum yields
Ni(1 = &) 4 No(6 + 95) = Ny (1 — &) + Ny(6 + 95).
The metric equations give for all & € Ky N K,
6+ r10 = 7y + KT9.

However, if & ¢ f{, N K, then 7y, + KTy equals 1 or s, depending on whether
I e fx} ork € fxi which results in a contradiction. Thercfore k € X'y N K, implies

ke KyNh,,so by symmetry
IX—I_ N Ix—z = R.l n I—X-Q.

It follows that N, = N, and Ny = N|.
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Now
1 =7y 4+ K79 equals 1 or x depending on whether £ € I;Q ork € Ii’;’.

Again we get
K5 =LK3 and A7 =AhT7.
and hence

ffl = I{J and f\—g = I\—‘Z.

Therefore

= Z 7‘jkAlog7rk = Z 7‘jkAlog7rk = Z ’fjk./llogﬂ’k = 77j j: 1,2
kek; keR; keR;

as the 1 are uniquely determined by Iy, K. Thus ¢ and W arc congruent by the

weak congrueuce theorem. 0O

Remark 7.9 It might be interesting to wnvestigate the following. Let ¥, be -
holomorphic with same induced metric. If the {ky,... k¢} are symmetric m the
sense of ki = kepq_; Vi, does there exist an wsometry g such that either

° 1,7 = gy or

o U = g or

o =gy 7

Also, if the {ki,...,kc} are not symmetric, is then ¢ = g for some isometry g ?



Chapter 8

Characterisation of isometric
r-primitive maps ¢ : R* —» G/T

with constant Kahler angle

In this chapter we give a collection of congruence theorems for isometric T-primitive
maps ¥ : R* — G /T with constant Kéhler angle for different Lie groups. Although
it was not possible within the scope of this thesis to prove the most general version
of this theorem for all Lie groups G, the approach for each Lic group 1s dlustrated
quite explicitly, so that it might be possible to solve the problem for all Lie groups
in the future. The essential idea is to use the Toda equations and the expressions
for metric and Kdihler angle to find and solve polynomaial equations for the 1)-

mnuartants.

90
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8.1 General caiculations

Give R? the standard flat metric and fix a coordinate system z on R? such that

d3? = ds® = c|dz|? (c € R™).

Claim 8.1 Let ¢ : R? — G/T be an isometric T-primitive map with constant
Kahler angle. Then 1y 1s constant.

Proof: Let ds® = c|dz|? as above and tan®? ¢ = d € R.

Then

¢
Z kinj = c — kong
j=1

and from Corollary 6.4 we also have

tan? Q [k(ﬂ/u
2 Yo ks
Therefore
(] _ Iio‘l[u

¢ — koo
or

_ cd

ko = d(c — ko) <= 0 = "o
‘0

Hence 1y is constant. O

Claim 8.2
‘
Alog [[wi™ =0

=0

Proof: From the Toda equations we have

t
Alogn; ==Y Kym;
1=0
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and from the singularity of the extended Cartan matrix ' we have
( ~
Z m;Ki]- =0
=0

from Claim B.8. Thus

¢ ¢
Alog [Tw™ = Y miAlogy

=0 =0
£ 4
- Z m; Z —R—‘ij',]j
=0 =0
4 4 R
= =3 (ks )0
j= =0

f
= _ZO'W:O-
3=0

Definition 8.3 A function I satisfying Al > 0 in o domawn D 15 called sub-

harmonic. If Al < 0 so that —h s subharmonic, I is called superharmonic.

Theorem 8.4 (Liouville’s Theorem, [PW], p.130) If I us subharmonac in the
whole @, y-plane except possibly at the origin and of I s untformly bounded above,

then ho4s consiunt.

Claim 8.5 Let h: R? — R be bounded and Ah = constant. Then h is constant.
Proof: This is a direct consequence of Liouville’s Theorem. Let ¢ = A, ¢ € R.
If ¢ <0 the I is subharmouic and Theorem 8.4 yields that I is coustant. If ¢ > 0

then /i is superharinonic, so Theorem 8.4 applied to —/h gives that —/ and thus /v
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is constant. O

Claim 8.6 If all y-nvariants of an isometric T-primitive map ¢ : R? — G/T are

constant then (1o, ..., 7¢) s a multiple of n, where Kerh = span{n}.

Proof: Let the n-invariants be coustant. Then Alogy; =0 for all t = 0,....(.
Thus
0 Aloge Mo

=-hI

0 Alog e

ie. (no,.--,Me) € Kerk. Now dimKerk = 1 since rank ' = ¢ which finishes the

proof. O

Example 8.7 For G = SU(n + 1) we have n = (1,...,1) and Kerk = span{n}.

Corollary 8.8 If all n-invariants of an isometric T-primative map ¥ : R? — G/T
are constunt then ¢ has constant Kihler angle 6 gwen by

2

]\Z()H,O

: { .
=1k

ftan

[NCTIS

where n = (ng, ...,n) spans Kerly.

Proof:

This is a direct cousequence of Corollary 6.4 in conjuction with Claim 8.6. O

Remark 8.9 This corollury will be used implicitly i the proofs of the congruence

theorems of this chapter as follows.
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; T . - . g 3 . . . 8
Let 4,4 be isometric T-primitive tnaps with constant Kdhler angles given by tan’ § =
d € R and tanzg =d € R. The constant curvature and Kdhler angle conditions
imply that all n-invariants are constant. Thus d = tan? —g— = tan’ % = d and conse-

quently 1o = 7o (c.f. Claim 8.1) which then implies n; =1; V 5.

8.2 The rank two case

Theorem 8.10 Let G be a compact simple Lie group of rank two and T its maz-
wmal torus. Let ¢,'(Z : R?2 — G/T be isometric T-primitive maps with constant

Kahler angle. Then ¢ and I,Z are congruent by an isometry g € G, 1,21 = gv.

Proof: We will show that coustant curvature metric and constant Kahler au-
gle determine the n-invariants of a 7-primitive map completely. Thus the weak
congruence theorem (Theorem 7.1) gives the required result.

Let ds? = c|dz|? and tan? £ = d € R. Then

cd
ky kone = ¢ — kyi here =
1M+ K21 c 0o Wwhere 1) k0(1+d)
Thus
cd ¢
k A:.‘ = St = .
1Th + kamp = ¢ 1+d 1+d

Claim 8.2 gives Alogng*®n" 5 = 0. From this, and the fact that 7 1s constant,

we get Alog 1y = 0. From Claim 8.5 it now follows that
iyt =a € R.

However _
C ’\12
= —— — .
e La+d) R
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which means that s, satisfies the following polynomial equation

¢ ]\_z_

k(l+d) ki

my, o

72)" y" = a.

(

By contiumity 7, is constaut, so 7y is constant as well. From Claim 8.6 it follows
that (4g,71,72) 1s a wultiple of n. Since 1y = m’l"i—d) it follows that (1, 11, 72) 1s
uniquely determined, so we cau apply the weak congruence theorem and reach the

desired result. O

8.3 Congruence theorem for the SU(n + 1)-case

In this section we will prove a constant curvature and Kahler angle congruence
theorem for SU(4) and SU(5) nuder the additonal assumption that k; =1V 5.
As far as possible the proof is done for general SU(n + 1) and we hope that these

parts might be uscful in a future attempt to prove the general SU(n + 1)-casc.

Initial calculations

Let G/T be equipped with a G-invariant metric such that k; =1 for all j. If ¢ is
of constant cirvature and Killer angle we know 5y = const and Y7 =c—p =
const.

From 1y = const aud the Toda equation

0=Alogne = =2+ 11 + 1
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we get

M + 9 = 219 = const.

We want to show that 11, = const to deduce that 7y and 1), are constant. This

would then imply that all 1 are constant.

Let n=2m —1 or = 2m and let H(ry,...,rm) = [They (Mktinsi-1)™. We have to
find real constants rq, ..., 7, such that Alog H = const. Frowm this we can then de-
duce that H is constant, and if this would be the case for r; # 0and ry,...,1,, =0,

we would get Alog iy, = const, and hence i1, = const as required.

AlogH(ry....,7,) = Alog H(ﬁ];,n,,ﬂ_k)”k

k=1
= Y A log(tns1-+)
k=1
= Z 711\:{("1\3—1 - 2771‘3 + "IIH-]) + (Un—k - 27]n+l—k + 7711+2——k)}
k=1
= Y ri{Olmt F+ Brz—t) = 200 + Ui —k) + (s + 20-1) }
Lf:l

il
NE

7‘1-'{("’7&—1 + Mnpr-(k-1)) = 200 + Pnpr-4) + (Prs1 + 77n+1—(k+1))}

>
Il

re(ar—r — 2ag 4 apqr)

I
NE

=
1l

where

ar =i Ftppr1-x k=0,...,n.

Note that ag = 219 = aq and 4 = dyp1-4. In particular we have

® (i1 = Ungi—(m41) = Umem—1 = oy aud ay, = 2upy, for n+1 = 2m, and

® Uyt = Unyl—(m+1) = E2myi-m—1 = Uy for n +1= 2m + 1.
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Sorting the above expression w.r.t. the a; gives

m
Alog H(rq,...,Tm) = Z ri(ap_1 — 205 + a441)
k=1
m-—1 m m+1
= Z Th41Gp — 2 Z TG + Z Th_10%
k=0 k=1 k=1
m-—1
= Iy + Ty + Z Vi1
k=2
m—1

—2rya; — 2 Z TR — 20,00,
k=2

m—1

+ Z Tho1Qf + T 10p + TGy
k=2
m—1
= 7ryap+ (7‘2 — 27‘])0] -+ Z ('I'k_] - 27, + 7’k+1)ak
k=2

+(7‘m-—1 - 27‘171)(Lm + T'm ('fm—i—l

Our aiw is to find real mumbers v, ..., 1 sucl that this is constant. To simplify

this expression for Alog H we will use 3¢ 1, = ¢ for n+1 = 2m and n4+1 = 2m+1

separately.

SU(2m + 1) calculations

For n4+1=2m+ 1 using a,,+; = a,, we get

m~—1
A ]08 H(".l IR Tm) =n (ln+(7'2 '—27'] )n'l + Z (7'k_] _27’&7 + 7k )”’k'*'(".m—] _7'111)("711‘
k=2
Also
n 1 m
c= Z N = 5(1,0 + Z o
0 - 1
SO

m—1

1
a = C— —(g — Z .
m 9 0 - k
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Thus our equation becomes

m—1 m—1
. . 1
riag + (12 — 2ry)a; + Z (Phe1 = 27 + Tpg1 )0 + (T — T )(C = 500 — Z ax)
k=2 =

v 1 .
= (Tm—l - 7'm)c + (Vl’.l - _—(Tm—] - Tm).)a(] + (7.2 - 27.1 —Tm-1 + Tm)al
2
m—1
+ Z (Tk—] - 271‘ + Thet — Tm-1 + Tm )(L}‘-
k=2

This will be constant if
Thet = 20 + 7kt — Tl +m =0 VE=2,...,m -1

or

T — 20kt F kg2 — T +1m =0 VE=1,...,m -2

Now 7,,_; and r,, are free variables which determine r, ..., r,_y. In order to see

this we will write the above equations as equations with the ry terms on the left
hand side for & =1,...,m — 2 and the r,,_y,r,, terms ou theoe right haud side.
P — 201 F g = V-1 —tm VE=1,...,m —4
Tin—y — 2lm_2 = —Tn, (A =1m — 3)

and

Tm—2 = 3m-1 — 21y, (]‘ =m — 2) .
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This can be written as a matrix equation

Now the inverse of this matrix 1s

Therefore

Ty

Tim=2

8]

.

8]

m — 2

m—3

IN]

9

= T'm—1

Tm-2

m — 2

3 ... m-—3

—t
o
o

(Tm— I

+ THI

+ T'm

99
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Now

-

T —

3 ... ... m—2 1

2 3 ... m-=3 1

1 2 3 1
1 2 0
1 3 )
S+ 3(m—1-1)

mi4+3(m—1-2)

i=1

S+ 3(m—1-3)

i=1

Z111—3—("1-3) i + 3(m -1 - (m — 3))

i=1

\ Zm—S—(m—?) i + 3(‘7” —1= (’I'll — 2))

i=1

tm=3=0lm=2-1) 4 3(m — 1 - 1)

(m—3-—2).(771—2—-2) + 3(.7”4 -1 - 2)

2

(=329 4 31 — 1 - 3)

(m—3—(m—3))2(m—2—(m-3)) + 3(,17' S (772 _ 3))

(m—3—{m=2))}{m—-2—(m-2)) + 3(‘”1 — 1= (77'1 _ 2))

2

2 (m—=3-k)(m-2-k)
e

1
Z(m—k)m—k+1)

5 €.
‘ 2

m—1-— k)) e

100
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and

[N]

m—2 <( (m—=2—=Fk)(m~—-1-k)

3 ... ... m=2 -1
2 3 ... m—=3 -1
1 2 3 -1
1 2 -1
1 -2

mr i+ 2(m—-1-1)

m2=2 4 2(m—1-2)

i=1

me2 i+ 2(m—1-3)

i=1

221;12—(711—3) 1+ Q(m, —-1- (m - 3))

Em—2—(m—2) i+ 2(771 R (m - 2))

i=1

W+2<771—1—1)

(m=2-2)m=1-2) 4 91y — 1 — 2)

2

(m—2=3)(rn—1-3) + 2(7” _1— 3)

2

{m—2—(m-3))(m—1-{m-3)) + 9(777 —_ 1 - (-”7' - 3))

2

(m—2—(m=2}){m-1-{(m=2)) +2(m—=1-=(m—2))

2

k=1 2
2 (m=k+2)(m—k-1)
Z _ 5 er.
k=1 -

+2(m—1-— L’-)) gt

101
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Thus
m— kY m—k+1 m—-—k+2)(m-k-1
Tk =7'm_1(’” i +1) — Tm ( +2)( ) Vik=1,...,m-—2.
2 2
Note that 7,y = 1, = 1 gives 1, = (m—/f)(r217—k+]) _ (m—k+2)2(m—k—1) — 1 which

corresponds to the trivial solution, i.e. Alogwpip -+ -1, = 0.
Claim 8.11 If ¢ : R? — SU(2m + 1)/T is of constant curvature and Kdihler
angle, and the metric coefficients k; all coincide, then

tan® i
an” — = —.
2 2m

' Proof:

for coustants r; as above we have
(rm—1 - T,,,)C + (Tl - ;(Tm—1 - Tm))(Lo + (7'2 - 2T1 — Tm-1 + 7‘711)(1'1 = ().
Noting that ¢) = ey and setting v, = 1 and r,,_y =0 this becomes

1
—c+ (7’] + 5 + 79 — 27‘1 + 1)(1,() =10

or

3
c = (—r+re+3)ae
o m=142)m-1-1) (m—-2+2)(m—-2-1) 3
= 2 N 2 g0
_m+1)(m=2) mmn— 3) 3
= | 2 Tyt
2m -2 3
= (gl
2m+1
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Thus

Comparing this with

where tan? g = d, gives
cd C
1+d  2m+1

SO

d=—

1
om’

This was to be expected because we have in general

2 Y kg

and we are aimiug to show that (1o,...,72,) = r(1,...,1) so that with k; = k;

Vi, j, we would get,

, 0 y 1
tan ; = Z'Zm r = 2 :

Kuowing the Kililer angle now gives a nicer expression for 9. Recall that

ed
N = .
fo 14d

Now d = —21 )
m

cd e c

2m —_

7,0:1—{—([:14—#_2111-{—1‘

Also
¢ .

2m +1

r =g =
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and

i 1 3c (2m — 2)c
p =C—ay — =g = C — = :
o 2 2m+1 2m+1

which also was to be expected.

Theorem 8.12 Let SU(5)/T be equipped with a G-invariant metric such that the

metric coefficients satisfy k; = 1. Let ¢,¢ : R* — SU(3)/T be wsometric 7-

primitive maps with constant Kahler angle. Then the Kahler angle satifies tan’ g =

i and y and zz are congruent by an wsometry g € G, L]) = gu.

2

Proof: From the above we obtain uy = ¢ — a4y — %ao = £ = const. Thus
H(ry,1) = const for all r1,r, € R which gives that 1), and 9y are constant. How-
ever, if two consecutive g-invariants (in this case 1y and 1771) arc constant, then all
of thewm are constant which gives the congruence theorem by Claim 8.6 together

with the weak congruence theorem. 0O

SU(2m) calculations

For n+1 =2m using a4+ = @y,-1 We get

m—2

A 108 H(TT IERER 7111:) = 7riag+ (TQ - 2711 .)(l'] + Z (7’1.'-1 - 27'/.' + 7'/~t+1.)("/r

k=2

+("‘m-—2 - 27'm—1 + T'm + Tm)”'rrz—] + (7'711—1 —m v)”‘m

m-=2
= 7109+ (Y'I'z — 2']’] )(l,] + Z (Tk—] — 27‘k + 7'k+])(.l-k
k=2

+(7.m—2 - 2"'111—1 + 2"'771)("711—1 + (7'771—1 - 2"'171)”‘m-
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From the coustaut curvature condition we get

m—1

.::Z :—(10+ Z ay + l(l,u
0

SO

m—1

Ay = 20~ ag — 2 Z aj. (x)
1

Thus our equation becomes

m—2

71(10+('z—9'1 ar+ Y (Tho1 — 20 + Tip )0,
=2

m-—1

+(.7'1n~2 - 27'111—] + 27’171)(1'711-—1 + (Tm—] - 27'111)(20 — flg — 2 Z n’k)

1
= 2(.7'm—l — 21y, )( + (.7'1 — Vot + 2ry )”’0 + (_7"2 - 2ry — 2(7'711—1 - 27'171))("1

m—2

+ Z (Tk—] — 21 + T+ — 2(7‘171*1 - 27'1!1))(1'/»'
k=2

+(Tm—2 - 21"m—l + 2".m - 2(7.711—1 - 27.m))“m—1'

= 2(7'771-—1 - 2"'171)(: + (7".1 — Tm—1 + 27'"1)”'0 + (7'2 - 2""l - 2(_Tm—'l 9 m))('l

m-—2

+ Z (7.L'—1 - 27'k + Th41 — 2(7'711—1 -2 m))(lk
k=2

+(7'm—2 - 4"'111-—1 + 67.111)(1'”1—1
This will be constant 1f
Prot = 21 + 151 — 2(rmey — 20,) =0 VEk=2,...,m —2

and

Tim—2 — 4"‘111-—1 + 6"'171 =0 (7'”‘ Z 3)

Note that (1,....1, %) is a solution as Alogy, - - -1, = 0.

Theorem 8.13 Let SU(4)/T be equipped unth a G-invariant metric such that the

metric cocfficients satusfy k; = 1. Let ¢, ¢ : R? — SU4)/T be wsometric 7-
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primative maps with constant Kdhler angle. Then ¢ and ¥ are congruent by an
wsometry g € G, 0= gu.

Proof: From equation (x) above we obtain uy = 2¢ — ag — 24y = const. Thus
H(ry,72) = const for all 11,12 € R which gives that and 73 are constant. How-
ever, if two consecutive y-invariants are constant, then all of thew are constant.
This gives the congruence theorem by Claim 8.6 together with the weak congru-

ence theorem. 0O

8.4 A Congruence theorem for Lj

As before we will try to give the proof for the Eg congruence theorew in its most

general form, in order to have the opportunity to improve the result in the future.

Theorem 8.14 Let Ey/T be equipped with o G-invariant metric such that the
metric coefficients satisfy k; = 1. Let '4,/.'»',12.' : R? — F3/T be 1sometric T-primative
maps with constant Kdahler angle. Then 4 and U are congruent by an isometry

g €G, ¢ = gy and curvature and Kdihler angle are given by ¢ = Som; = 30 and

Proof: The affine Toda equations of Ey can be read off from the extended Dyukin
diagram (for details see [CSM], p.17-22).
From Claim 8.1 we know that 7y = Wﬁd— is constant (ds? = c|dz|? and tan’ § = d).

)

We will now compute 1, ..., w.I.t. 1.
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2 6 5 4 3 2 1

Bt St e S e
)3

Figure 8.1: Extendend Dyunkin diagram of Ejy
0=Alognyy =11 — 21 = = 2y
0=Alogy =1 — 2 + 1, — 1 = 3
0=Alogwy, =11 — 292+ 13 = n3 = 4
0=Alognys =1y — 23 + 114 — 114 = d1jy
0=Alogny =13 — 204 + 15 == 05 = Gy

0=Alogwys =y — 25 + 16 + 15 S e + 17 = 1)y

Now use the fact that the induced metric is of constant curvature:
8 5
= Z kin; = Z kin; + kene + konr + kans.
7=0 7=0
With 15 = T — 57 and n; = (j + 1)y for j =0,...,5 this becomes

5

= "G+ kmaths(Tno—nz)+hem+hsns = (O (F+1)k;+ Tk )10+ (kr—

j=0 j=0

S50

(ke = ke)nr +hsms = = (Q_(73+ 1)k + The)no
5=0

cd

- 1)y + Th)
21 ‘)L0(1+d)

- c(ko Fhd = (S + 1)k + TA:G)(I>

107

ke )nr+ksns,

= ko(1+ d)

:')
C
= (& 1)k, fL,l)—————.
<" ;H" TR ) D)
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Note that the left hand side of this equation is constaut since the right hand is.

Claimn: If ¢ = Y3 1; then constant curvature and Kéhler angle determine cougru-
ence.

Proof: If kg = k; it follows that #g is coustant. But then
0=Alogys =1 = 2yg <= 15 = 23,

s0 77 is constant, and frow ng + 7 = Ty it then follows that also g 1s constaut.
Therefore all y-invariants are constant, from which the congruence theorew follows.

We will now compute all y-invariants in the case that iy is constant.

0= Alognys =17 — 2 = =2

0=Alogny; =us — 217 + 15 — 1) = dij3
Since also 775 = Gy we find
g = 2199 and ;= 20 = dupy.
From 1 + 17 = Ty we finally get
6 = Io.
Therefore the y-invariants arve given by
(105 115 1025 U35 145 5 U U5 18) = 10(1,2,3,4,5,6,3,4,2).

Note 8.15 Note that these ure exactly the cocfficients of the sunple Toots giving
the linear combination of the maximal root. This was also the case for SU(n+1).

It might be interesting to investigute whether this 1s a general rule.
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The wetric is given by

8
c=( Z m;k;)no,
=0

SO
C

1 .

fo Zj‘:o mk;
Thus
. . c _ .
(7]0; M2 13,1045 15, 65 175 7}8) = —x—_—(l 2: 3: 47 I, 67 3: 4 2)

Zj:l) 'Illjl\‘]'
C .

= (Mg, My, My, My, My, M5, Mg, My, Mg)..

Z?:o mjk; "
Finally, we find for the Kahler angle

tan? _9_ o koo . Kotjo _ ko
2 c—kone Z?:o mk;no — koo Z;?:l mjk;

= -, and thus

28 1
2 — 297

and if we assume k; = 1 for all j then ¢ = Ygm; = 30 and tan

the proof is complete. 0O

8.5 A Congruence theorem for L

Theorem 8.16 Let Eg/T be cquipped with: o G-invariant metric such that the
metric cocfficients satisfy k; = 1. Let 'zj:.,*JJ : R? — Eg/T be isometric T-primitive
maps with constant Kahler angle. Then + and W are congruent by an isometry
gEG, ¥ =gy.

Proof:  As before we can read off the affine Toda equations of Eg from the
extended Dyunkin diagran.

We will now use the Toda equations to see which y-invariants are constant.
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0
a“\ \ :/Taa
r -
- -
U-:\ 3/ ay

E,: a;lj
a,jﬂ
a,-!

Figure 8.2: Extendend Dynkin diagrawm of Eg

0=Alogny =11 — 21 = m = 2
0=Alogy =19 — 211 + 12 = 12 = 3o

0=Alogn, =1 — 2y, 4+ 13 + 14 = 13+ g = dip

Now 19 = const implies that also w1, and 3 + 14 ave coustant. However, if we
assume that ¢ = Yg1; we also find that 75 + 76 1s constant.

It follows that
Alog g n7 5 (yans) > (ysne)™ = const(=0)  Vrg,... 14
Thus
ysipg = const and sy = const.

which nmplies that us, ..., ng are all constant. Consequently all y-invariants are

3 H

constant aud hence uniquely determined. This proves the theorem. 0O
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8.6 A Congruence theorem for F; and Sp(/)

Theorem 8.17 Let G = Fy or Sp({). Let G/T be equipped with any G-invariant
metric and let 'I,L',’t,Z' : R* — G/T be isometric T-primitive maps with constant

Kdhler angle. Then v and ¢ are congruent by an isometry g € G, ¥ = gi.

Proof:

As before, constant curvature and Kaliler angle imply 5y = const. Since the ex-
tended Dynkin diagrams of Fy and Sp(f) have no ramifications, it is clear that
10 = const gives 1y = const, aud hence 5; = const V j as in this case two cousecu-
tive n-invariants determine all 7-invariants. Therefore Claim 8.6 together with the

weak congruence theorem finish the proof. O

8.7 No Congruence theorem for F;

The only Lie group for which it was not possible to find a congruence theoremn
within this setting was F;, due to the particular formn of its extended Dyukin
diagramn. It is hoped that, using some of the ideas developed in this thesis, it will

be possible in the future to find a congruence theoremn in this case as well.
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Computations for maps into

SU(3)/T?

A.1 Computing the Frenet frame of S'-symmetric

holomorphic maps S? — CP?

Let ¢ : S2 — CP? be holomorphic and S'-symmetric. There then exists a holo-

morphic coordinate z on S? such that ¢ can be expressed as
B(z) = [a,bzF, ¢z

with a.b,c € Rt and k,{ € N, k < (. (See [BW3] for details.)
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We now compute the Frenet frame of ¢. Let

cz

113

Then ¢ = [fo]. To compute f; and f, observe that for the harmonic sequence

dlog|fil?

0z fi

fi=Ffin+

holds. In general we have

dloglg|* _dlog(g-g) _ 1 0(F-g) _ 1 (_ 9dg  0g

a: 9z g o9: g \? a: "oz
but for holomorphic ¢ this simplifies to

Jloglg> _ 1 _d¢ _ 1 _

o= g’ 0z T g

Computation of f;

Let

) 1
g =15
|lg|?

A(z) = [fol® = a® + 0|2 [* + ="

The derivative of fy is

0
fi2)=1| kpr
lezt!
Thus
a
12
@_agzﬂl_ = #f_-ffﬁ bzt

1y

-9 +7-9)
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1
= 0+I\b2k11\+£/2(1()
lfl2
— ,fIQ(]”b?l 'QL —-1) +(702' ‘26 1)< )
- If|2 Ak
From
3log|fl2
g
h=F=—"
we hence get for the components of f;
1
(fih = 0-— W (kb2|2| 25D 4 e 22Dz
(kb2|4l2(k—l) + 502|ZI2(£—1))Z
- 7
(fi)e = kbz*1 — |f|2(]”b2l 221 222D ) zp
B E e €. e ol Lo
- T2
_ (k|fI? = kb2|2)?% — (c?|z]*)bz*!
Vil
» 1
(fl)z = (ezt! |f|2 I"b2| |2(K 1) +€c2| |2(e 1)) ot
_ e TSP = (R0 P e
P
_ (C1F12 = k2|2 — (c?]z]*) ezt
| f1?

Thus for z # 0

—a ]J)I |2(k 1)+€(J| |2( ]))—

f,(z‘)z_l__ (k|f|2 = kb2|z|2* — €2|z|2)b2*0 | = 1‘
7| (P BT AP

(UFF = R = €62z

—a(kb?|z|* + £c2|z|*Y)

b(k|f|? — kb?|z|?* — €c?|z]?)2*

l1fI? = 2|2 = €2]22)2")

Note that this expression extends continuously to f;(0) = 0 as required.

Let further

B(z) = kb*|z|* + (*]z]*
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Then

COMPUTATIONS FOR MAPS INTO SU(3)/T?

—aB
~ R 1 K k
filz)=—7 ] b(kA- B)2
c((A — B)z*

Computation of f5

Next note that f, has to be orthogonal to both, fy and f,. Using this orthogonality

relation we can compute f, up to a factor (consisting of a meromorphic function).

Let

It must, satisfy

Thus

and

frfo=

-2

‘)/

f2-fo=0 and fo-fi=0 (1)

(43 a
forfi=| g || vt = aa + b3 + yezt = 0
Y ¢zt
—aB
b(kA — B)z* = —aaB+fb(kA—B)z* +yc(tA-B)z' = 0.
(A — B)z

Hence (1) x B + (2) gives

BbkAZ* 4+ yel Azt =0,

(2)
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S0

Putting this into (1) gives

1 14 (—k
o= (_6_257+7055) _ 2 )2(7.

k ak

Therefore

c(f—k) ¢

f2 = ﬁ = ’)’ _2’._;[*-‘?

bk~
Y 1
1e. fo is a multiple of
be(l — k)z*
9= —aclzt=*
abk
We have
fr=Mg

where A is a function of 2, Z. We will now compute A to determine f,.

From the constuction of the harmonic sequence we know that

f Il

FERRTE

fr

Taking the complex conjugate of this and taking the dot-product with f, gives

_1AP
|f1)?

E Fiofi==lhl ()

h =

Since

% _B %
9z azg+’\85
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and f; L fy, 1e. fi L g we get

W, .
5 f=3 g

Oun the other hand
1£21* = [APlgl? = AXlgl?,

so we get from (x)
1 dg

~Tlpa: I
With
—aB
1
fiz) = SR | bkA - Bt
c(tA — B):*
and
be(l — k)z*
C:=|gl=|] —actzt=* |*=a®*k* +a* )"0 £ b2 (0 - k)2
abk
we hence get for A
1 9y
=g v
lg|* 0z
Now
be(l — k)ezt!
g
52 = | —ac(0 - k)eztrT
0
so
be(l — k)ez1
99
2= | —ac(l = k)ez7k1
0
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118
Hence
be(f — k)ez'=! uB
B;g—. fi = —ac(f — k)€~'f—k—1 . 1 DA - B)~k
0z 2 T ]
0 ¢(tA - B)=!
- 7|;|2(-—abc(€ — k)eBz""Y — abe(l — k)e(kA — B)2*2t7F)
= —'aTblZ‘(g — k)ka;f—2 = —abc(f — k)k(’zf_z’
S0

1

/\ —_ T
lg]?

abe(f — k)ke2'?

and finally

be(l — k)zt
abe(€ — k)k(z'2
f2 = Ag = ( |(l|2) —(LCKZl_k
abk
be(l — k)z
abe(l — k)k(z'2

= 5 < . 5 9/ " _’C):l—k

a2b?k? 4 a?c22|z|2EK) 4 b2e2(( — k)?|z | actz

abk

Therefore the Frenet frame of ¢(z) = [a, bz, ¢f] is given by

a —a(kb?|2|?* + £c?|z|*)z

folz)=1 bk |, Hil2)=

T | U = R — ezt

cz c(l|f|2 = kb?|z|?* — €c?|z|*)z"
and
be(f — k)5t
. abe(l — k)kezt2
fa(z) = 21212 1 12,202 (~ k) 1 p2.2 2215 [2¢ —aclztF
a?b?k? + a?c2(?|z| + b2 (L — k)?|z|

abk
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or

a —abB
folz) =1 bz* | [i(2) = — | b(kA - B)z*
cz’ c((A - B):*
and
be(l — k)z*
o abe(f = k)ke:f
faz) = ( 220) —aclzt*
abk

Lift of ¢ to SU(3)

A local lift of ¢ is given in terms of the Frenet frame by

2 — 1 fo | H ] [
O e (e ] )™\ 1 1221
Sl AT 1]
thus
wa  —ra(kU|z|* + (AP (00— k)bezt
F(z) = | Lbz* Lh(ka? — (£ - k)2|z)z* —lacs—*
ezt pella® + (= k)b?|z[*)2" Lkab
a —%CLB 3%(? — k)bez!
= Lbzb | Th(kA — B)ZF | —Llaczh
|

Fc:" %c([’A— B):* ﬁkab

where A(z), L(z) and M(z) are normalising factors such that F € SU(3).

119
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A.2 p-invariants of ¢ : S? — SU(3)/T?
Lemma A.1 Let ¢ : S? — SU(3)/T? be the T-holomorphic curves obtained from
lifting the holomorphic S*-symmetric map

¢: S = CP?, v ¢(z) =[a,bz", 2.

Then the n-mmvariants of ¥ are grven by

b202(€ _ k)2|2|2(£+k—1) + GQC2(;2IZ|2(£—1) + a262]i72|z|2(kv1)

m = (a2 + b2|z|% 4 c2|z|2)?
- (a% 4 V2|z]% 4 2|2[#)a® 2P k22 (0 — k)?|z]|2E+R=3)
2 = (B2c2(€ — k)2|z|2UHk—1) 4 q2¢2(2)z|2(6-1) 4 q2h2k2 |z [2(k-1))2°

Proof:
Recall that the harmonic sequence of ¢ gives rise to y-invariants. The y-invariants
of ¢ are related to the p-invariants of the lift by 5, = 7,1 and we will hence

compute v, 7y, for @.

Computing the ~-invariants of ¢:

Let

@

?

flz)=folz) = | bt

¢

cz

Then

fz)=1 pkz*1 | and f(z) =
bh(k — 1)z

clzt1

cl(f—1)252
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Now

A7 | f2]?
=" and 7y = —.
Yo |f0|z T Ifllz

In order not to have to compute the Frenet frame of f (which is rather complicated)

we observe the following.

P LAP = 1f A AP =1 AT,

S0
o = Vil _ | fol?| f1]? _ fAFP
| fol? | fol* |fI!
and
FPIALIEE = 1fo AAARE=1FAF AL
SO
B _VAPIRPIER U AS AL T AP AL R A AL
L f1]? | fol2| ful* |FAFRIAR L2 AFPPRLAR lfAfI
We have
1F12 = 40|z |2+ = A+Ba*+Ca’ where v := 2|, A=a*, B=1" and C ="

For the cross-product we get

be(l — k)ztHr1
fAf= —aclzt!
abkz*-1

SO

If/\frl‘z — b202(c— k)?|3|2(!1+k—1) +(L2C2ﬁ2|2|2(£_l) +a2b2k‘2|2|2(k—1)

= BCMa™* '+ ACL:y™' + ABR2*™' where M = ({ — k)2, K = k% and L = (%.
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The determinant is
a 0 0
FAF NS =det| pzk bhzb=1 bk(k—1)zk2 | = abekl(l - k)24,

ezt el cl(l— 1)z

SO
lf A fl Afll|2 — a2b262k2£;2(€_ k)2lzl2(€+k—3)|ZI2(k+l—3) — ABCI\'LA/IJ:IH—(—,?.
Thus
— _ lf A f’|2 _ BC Mzt 4+ ACLz" ' + ABK %!
nEYE A T (A + Ba* + Ca)?
B b202((.’ _ k)2|Z|2(£+k—1) + a202€2|2|2(£—1) + a2b2k2|212(k—1)
- (a2 + b2lz|2k + c2|z|2‘)2
and
o _ UPUAFAFP (At B+ Ca)ABCRLMatt
PETCE CTUUFARRE T (BCMatl 4 ACLat' + ABKuh1)?
B (‘(12 + b2|2|2k + C2IZI2£)(12b2C2k2F,2(€ _ k)2lzl2(l+k-3)
- (b2c2((/— k)?l;lZ(f—H.:-l) +a,2c2€7|3|2("1) +(12b21\':2|s|2("“1))2
0

A.3 Example of two non-congruent 7-holomorphic

curves of the same metric

Example A.2 Let ¥, ¢ : S2 — SU(3)/T? be the T-holomorphic curves obtained

from lifting the holomorphic, S'-symmetric maps

$:82 = CP%, v 6(z) =[1,z,27
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and

QEZS.Z——)C’P2, ZH¢(2):[1’322’2;3].

Let SU(3)/T? be equipped with o G-invariant metric such that | X,,| = {Xa,|. Then

¥, ¢ have the same induced metric but are not congruent.

= 1. Then the induced metrics of 1}, t//

Proof: We will assume that |X,,| = |Xa,
are ds? =, + 12 and d5? = 1 + 7jy. We will show that 1, = 1y # i, = »». Thus
the metrics coincide but the n-invariants do not, i.e. ¥ and 1 are not congruent.
From Lemma A.1 we know that the y-invariants of the lift of [a,bz% ¢z : S? —
CP? are given by

V220 — k)2 ™h1 4 o222t 4 o202 k2 k)

o= (a® + b22* + c2at)?

o (a? 4+ b%z* + 2xb)a? b2 Pk — k)? i3

2 = (B22(0 — k)2ath=1 + @22 (2201 + a2b2k22k-1)2’
where 2 = [z[?.

For ¢y we have a=1,0=1,c=1and k =1,0( =3, so

4% 4+ 927 + 1
(14 2+ a3)?

(1 4z + 2%)362
(423 4+ 922 + 1)

2

For ¢ ou the other hand we have e =1,b=3,c =2 and k = 2,£ = 3, so

362" + 3627 + 362 36x(a” + x4 1)
o= (14922 442%)2 (14 922 4 423)2
(1+92° +42°)36%2> 1+ 927 + 4a?
(3624 + 3622 + 362)2 (a¥+az+1)2°

My =

Thus
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My =1ny and 19 =,

so ¢ and ¥ have indeed the same induced metric, but as 7, # #; they cannot be

congruent. by the Weak Congruence Theorem (Theorem 7.1). [

Remark A.3 The above ezample comes from the following fact. If[f]: S — CP"
is a linearly full holomorpic curve with Frenet frame fo,. .., f. then [f] = [f.] is

also a holomorphic curve and since ¥, = Yo—p—1 t follows that
Yot oot 1 =0+ Tooa

Since vo £ o in general [f],[f] are not congruent. However the corresponding
maps mto SU(n + 1)/T" have the same induced metric. Thus the metric s not

enough to determine 7-holomorphic maps into G/T up to congruence. The chosen

b above is (f2] for f(z) = (1,z,2%).
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Basic background material

For details about Lie algebras, adjoint representations, root spaces, Cartan matri-

ces, etc. see [Bau], [BtD], [Se], {Sa] and [FH].

B.1 Killing form

Let g be a cx. Lie algebra. The Killing form on g is a complex-valued, bilinear
form given by #(X,Y) = tr(adX oadY’).

The Killing form of a simple Lie algebra g is non-degenerate. It is also Ad(G)-

invariant ([He], p.131). However, this thesis relies only on its Ad(T)-invariance.

B.2 Properties of roots

Definition B.1 ([Bau], p.110) Let h be a magimal toral subalgebra of a complex,

semisimple Lie algebra g and let h* be the dual space of h. The element hy = o
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defined by

a(H) = k(hg, H) = k(a*, H)
15 called the star vector or root vector.

Theorem B.2 ([Bau], p.110) Let h be a mazimal toral subalgebra of a complex

semasimple Lie algebra g. Let h*be the dual space of h.
(1) The root system A spans the dual space h*.

(ii) Let o € A, that is o« # 0 and g% # 0. Then —a s also a root. Hence o € A

implies —a € A. I
(i) For a € A, 2 € g* and y € g~ the commutator s given by
[z, 9] = k(z,y)ha = K(z,y)d.

(iv) For a € A the subspace [g*,g~"] is one-dimensional an it is spanncd by the

4
star vector h, = o.

(v) Let « be a root. Then

k(af, o) = a(af) #0.

(vi) Let o € A and E, an arbitrary non-zero element in the root space g*. Then
there exists a non-zero element F, in g=% such that the sct {E,, Fy, H,},
where H, 1s defined by

Ha = [Ea, Fa]a

spans a three-dimensional simple Lie algebra denoted by S,. The Lie algebra

Sa 1s 1somorphic to the Lie algebra sl(2,C).
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(vii) For each o € A there is a special choice of vectors Niq € gf* and H, € t
such that the set {X,, X_,, Ha} spans the three-dimensional simple s1(2, C)
Lie algebra S,. The {Xo, X_o, Hy} are called Cartan-Weyl generators
and satisfy
o [Xo,X_] = b0,

o [Ha: )(j:a] = ﬂ:‘ZXia,.

(viil) The vector H, satisfies

#
Ho= e ] mEt
H.=-H_,
and
a(Hy) =2

H, s called a coroot.

(ix) The Cartan-Weyl generators satisfy v(Hq, Hy) = 25(X,, X o).

B.3 Cartan matrix, highest root and extended

Cartan matrix

The Killing form « : g x g — C gives rise to a metric on h*. There is a bijective

COI'I'(:‘.SpOlldellCC

AhoCES k(M) :h—C.
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Definition B.3 ([Bau], p.121) Let g be a complex semisimple Lie algebra. De-

fine

(.):h*xh* = C (A p)— (A pn)
with (A, ) = (A, 1i8).
Definition B.4 ([He], p.459, [Bau], p.144) The Cartan matrix k' = (K;;)!
of a sermisimple Lie algebra g s defined by

2 (o, a;5) _ 2&(0‘?,0’?)

(aj,5) k(o) al)

IX—{j =

Definition B.5 ([Bau], p.146) Let a be a root with ezpansion o = ¥\ nya; w.r.t.

the set of positive roots A*. Then the sum of the coefficients n; 1s denoted by

‘
htoa = Z n;
1
and it s called the height of a.

Lemma B.6 ([Bau], p.146) The root system A of a finite-dimensional complex

semasimple Lie algebra contains a unique root

¢
f= Z m;o;
1
with htf > hta for all « # 6 in A. The root § s called the highest root.

Definition B.7 The extended Cartan matrix L = ( I;'ij)f-zjzo of u semistmple
Lic algebra g s defined by

[ 2 (a;, 05) QN(a;’f,a'?)
v s el ad AEy
(o, aj) k(aj, o)

Here —ay = Zf m;a; 15 the highest root.
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Note that for 7,5 = 1,... ( this definiton coincides with the definition of the Cartan

matrix. Thus the extended Cartan matrix & contains the Cartan matrix .
Claim B.8 . The extended Cartan matriz K is singular and satisfies

4
2777,{[&—{]‘ =0 V_] = O(

i=0
In other words, addding up all rows with thewr multiplicities gqives the zero row

veetor.

Proof: First let j # 0. Then
~ { e ~
Ifoj = - Z mka"kj = — Z min'A.j,
k=1 k=1

S0

£ [4 [4 £
S miky = Koy + Y miky = = Y mily + Y il =0

i=0 =1 k=1 =1

Now let j = 0. Since

IA\"io _ 2 (Cl‘iyao)
(0’0,00)
and
: 2 (v, &) 2 (v, o) Lo
Koo = ! = - my d =— m I,
"7 {a, ao) E “(a, a0) E Lk
we get

t ¢ ¢ ¢
Z miIA\"io = IA\"OO + Z 7711-[;',-0 = — Z mkf{ko + Z m,-f\"io =0.

=0 i=1 k=1 =1
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B.4 Complexiﬁcation of Lie groups

A short treatment of this can be found in [PS], p.13, and [G], p.8.
For the complexification of a vector spaces see B.6. Using this process, we find

that any (abstract) Lie algebra g has a complexification g = g @r C.

Definition B.9 ([PS], p.13) Let G be a real Lie group and g be its Lie alge-
bra. A complex Lic group G¢ with g€ = g @r C as its Lie algebra is called a

complexification of G if it contains G as a subgroup.

Remark B.10 ([PS], p.13) A complezification of a Lie group does not need to
exist. However, if G is compact, then it does possess a complezification G€: every
compact Lie group can be embedded in some U(n). The compleziﬁcatiaﬁ of U(n)
is GL(n,C) and G can be realised as a subgroup of GL(n,C). This group G°
s unique up to isomorphism and wnll be refered to as the complezification of G.
Hence the complexification of S' 1s C*. Other possible complexifications such as

C/Z? = S' x S cannot arise as complex subgroups of a general linear group.

Example B.11

Lie Group G n L{(n,R) ' U(n) l SL(n,R)

G
GL(n,C) I GL(n,C) ’ SL(n,C)

Complezification G
Remark B.12 As can be seen from the cxamples it is possible to have G¢ = G§

but Gy # Gs.
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B.5 Orthogonal root spaces

Lemma B.13 The root spaces g* are orthogonal to each other w.r.t. any Ad(T)-

invariant hermitian metric on TG /T = Y oear 820 g% L g% if a # 5.

Proof:

Let (-,-) be an Ad(T)-invariant hermitian metric on T}°G/T = Y ea+ g% Sup-
pose there are X, € g%, X5 € g” with (X,, X;) # 0. We will show a = . Recall
Ad(exp H) = e, Thus for all X € g* and all H € t we have Ad(expH).X =
e X = 2 X Now since (-,-) is Ad(T)-invariant we have the following equal-

ities for all H € t.

(Xa,Xp) = (Ad(exp H).X,, Ad(exp H).Xp)
_ < adfl X adlf Y >
= (7. Xy, e Ap
— <e°(")Xa, eﬂ(ll)Xﬂ>
" UDHBUD (Y X 5)

— 6-0’(”)+ﬁ(”) <4Xa74¥ﬂ) as a : t — iR.

Since (X4, X3) # 0 by assumption we have e##)-2H) =1 j e B(H)—a(H) € 27iZ
VH € t.
Since 3 — « is a linear map it is continuous, so (H) — a(H) = ¢ € 2miZ.

But now 3(0) — a(0) = 0 implies ¢ = 0. Thus # = o and hence g* 1 g? if o # 3.
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B.6 Complex structures on vector spaces

Definition B.14 Let V be a 2n-dimensional real vector space. A complex struc-

ture on V is an endomorphism J : V — V such that J* = —1I.

Note B.15 V must be even-dimensional since (det J)? = det J* = det(—1) =

(=1)" where m is the dimension of V.

Definition B.16 Let V be a real n-dimensional vector space. The complexifi-
cation of V' is the complex vector space V€ =V @ C={X +i}¥ | X,Y € '}

If {v*} is a basis of V, then {v* ® 1} is a basis of V (since C = spanc{1}).

Lemma B.17 ([Wi], p.154) Let V be a 2n-dimensional real vector space unth

complex structure J. Let VC be the complezification of V. Then the compler

structure J of V extends canomically to a complex structure J of V€, Jt=-1.J

has +i us eigenvalues and corresponding eigenspaces
";LO

= Eig(i)={ZeV°|JZ=iZ}={X-iJX | X eV}

VO = Eig(-i)={ZeVY|JZ=-iZ}={X+iJX | X eV}

V'€ splits (w.r.t. the complex structure J) into an orthogonal direct sum. of these
eigenspaces: VC = V10 @ VOl
As V10 = V01 and V01 = V10 we have the correspondence

";1‘0 cr. conj. ‘(‘,0’1

Complex conjugation with respect to ¥ is a real linear isomorphism.
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Knowing V1 V®! one can reconstruct the original complex structure as follows.

Define J : V€ — V€ by

iZ . ZeVll
JZ =

—iZ : Z eV
J leaves V ={Z + Z | Z € V*} invariant:
JZ+2)=iZ —iZ=Z+iZ€V.

Soif X\ = Z+ 27 € V then JX = i(Z — Z). We have recaptured the map

J: V=V,

A complex vector space V is canonically isomorphic to V'

Clatm: The map ¢ : (V10,i) — (V,J) given by Z — Z + Z is an isomorphism
of complex vector spaces. The inverse of ¢ is obtained by taking the (1,0)-part of

X=X X0 = g1 (X) 4 7(X): 67 1(X) = a"O(N) = 1N —iJ1X.

Proof:
o NZy+ 7)) = dZ)) + d(Z,)

o WiZ)=iZ+iZ=iZ—iZ=JZ+]7=J(Z+Z)=]d2).

Almost complex manifolds

Definition B.18 ([Wi], p.157) An almost complex structure on a real dif-

ferentiable manifold M is a tensor field J which at every pomnt x € M 15 an
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endomorphism of the tangent space T, M such that
J? = -1d.
A manifold with such a structure s called an almost complex manifold.

Definition B.19 An almost complex structure is called integrable if it comes

from a complez structure on M.

B.7 The isotropy representation

Definition B.20 ([G], p.16, [BH], p.462) Let G/H be a homogeneous space.

The isotropy representation of H on T,G/H s the homomorphism
Ad“M - H — Aui(T,G/H)
defined by
AdM(p).X = Ly(X) VX €T,G/H,

where (- G/H — G[H 1s left translation (,([g]) = [hg](= [hgh™") and L, = Uy, -
T(G/H) — T(G/H) is its differential. The group {Ad“/"(h) | h € H} is called
the linear isotropy group.

The relation between the standard adjoint representation and the isotropy repre-

sentation can be seen in the commutative diagram below.
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Ad(h)
—

g - - - = g
N N
¢ - - W5 L L TG
| N / !
! ¢ & G !
{ l { l
| G/H - GJ/H !
! / N !

U U
AdG/H (p)y
T.,G/H — — — - — T,G/H
Here i, : G — G is the standard inner automorphism given by i,(x) = hah™
Vi € G,
If we denote the projection g — T,G/H by [] then Ad/#(1).[X] = [Ad(h).X]

VX € g ([X] € T,G/H).

Recall that for a reductive homogeneous space M = G/H there exists a subspace
m of g such that g=h $m and Ad(L)m Cm V) € H.

If G (or H) is compact, then G/H is reductive.
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For a reductive homogencous space we sce that
A" (h):T,G/H - T,G/H
can be identified with
Ad(h)|m : m — m,

as cau be seen from the commutative diagram below aud the fact that the projec-

tion g = h @& m — m is bijective if restricted to m.

Ad(h
g=hdm il g=hdm
! l
AdG/H ()

T,G/H=Z=m —  T,G/H=m

More generally we have

Proposition B.21 ([G], p.16) Assume that G/H s reductive. Let I € H, and

let X € h, Y e m. Then we have

AdSM () (X, Y) = (AdT (h).X, Ad9/H (h).Y).

B.8 Facts about real harmonic maps

The proof of the congruence theorem makes use of a factorisation argumnent. In

order to apply this we need the following Lemma.
Lemma B.22 Let g(z,Z) be o real-valued function such that
Alogg = 0.0-log g = 0.

Then g(z, %) = [h(2)]? with l‘z.(;,) holomorphic.
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Proof: Since log g 1s harmonic, it follows that it is the real part of a holomorphic
function f: logg = R(f). Then g = exp(logy) = exp(Rf). Now let h(z) =

exp(% f). Then h is holomorphic and

( 5(f+ f)) = exp(Rf) = g.

I\DI)—*

|h|? = hh = exp(= f) exp(-f

B.9 Root spaces of si(n+1,C)

Recall that the standard Cartan subalgebra of si(n,C) is the space of diagonal
matrices with zero-trace.

The roots of sl(n +1,C) are
{aj =0, —0; | i#7;4,5=0,...,n}

where

oi(diag(yos---syn)) =yi, 1=0,...,n.

Let

{(_l'.,']' =0; —0j |I>]71,_/ :0,...771,}

be the positive roots and choose
Q=i =0, — 0, J=1,...,mn,
to be the positive simple roots. Then

Oy =o;+ o+ ..oy
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for all positive roots (¢ > j) and

for all negative roots (i < j).

Computing the Cartan-Weyl basis and root space
Let
Eij = (5ik5jt)k,£:0,...,n (#4655 =0,...,n
This is a matrix with a 1 in the ¢-th row and j-th column and zeros everywhere

else.

Claim B.23 The root spaces are
gY =spanc{E;} i# 44,5 =0,...,n.
Proof: Recall that the adjoint representation is given by
ady:g—g, X ady(X)=[HX]
As the root spaces are one-dimensioual it suffices to show that

Eij € gmj = {.X' € .S‘l(‘IL + 1, C) I ad,,(X) = Cl’,‘j(H_).‘Y VH € h}
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where h = {diagonal matrices with zero-trace} is the standard Cartan subalgebra

of sl(n+1,C). Let H = diag(yo,...,y,) =€ h. Then
HEZJ = (_yk(sk[)k_.[:(),...,n((siléjn‘z)[,771:0,.“,71 = yiEij-,

so for the k,m-th component of HE;; we have

n

[HEij]km = Z ;I/k(sx-ﬂsizﬁjm = ?/A-(Sik‘sjm = yiéil.-(sjm-

£=0
Also
Eii H = (6:i.0;0)k t=o0,..n(Yebem ) em=0,...n = ¥; Eij,

ssss

so for the &, m-th component of E;jH we have

(Eij Hlem = > bibityebem = Yi6ikbjm-

=0
Thus
ady(E;) = |H,E;]=HE, - E;H
= (YibirOjim — Yj0ikOjun )k m=0...n = (Yi — y;) Eij
= (0y(H)—0;(H))E;; = (0, — 0;)(H)E};
= ay(H)Ey,

so Ej; € g% and as dim g™ =1 we have g% = spanc{Ej; }.

O

For the root space we get the following picture in terms of matrices
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0 | —ayg | —azp —Qnpo
10 0 —02 —0n)
oo | (a1

0 —Qpp-1
Qno| Qni ayon—1 0

140

So in terms of the positive simple roots, we have the corresponding root spaces at

the following positions.

The highest root is now —ay = 0, — 0y = ay + ... + w,,. Its height is n.

Hence we can write the root spaces as follows:

0 —ay —(ay + az) —(o14+...+ay,)
o 0 —ay —(a2 + ...+ ay,)
ay + Qz a2
0
ay+...+a, o+ ..ty Qg

0 — —(a1 + ay) Qg
'y 0 — k) gy +
a1+ Qo Qa
0 —a,,
—ag | —ag+ oy a, 0
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B.10 Representations, weights and lowest weight

vector for SU(n + 1)
Recall that the maximal torus of SU(n + 1) is given by
T = {diag(e®,...,e") | 6; € R, 0y +...0, = 0}.
The Cartan subalgebra of the Lie algebra su(n + 1) is then
t = {diag(ivo,..-,tyn) | y; ER.yo+ ... + 4y =0}
and from B.9 the roots of sl(n +1,C) = su{n + 1)© are
o

j " Ok J:lék

For the set of positive simple roots we take oq,...,@,, where a; =0;—0;_,.

Then
ay+209+ ...+ na, = (01 —00)+2(02—0)+...0(0, — 0,_y)
= —(op+...+0,-1)+n0,
= —(—0on)+no, asyo+...+ Y1 = —Yn
= (,“‘ + 1)0n
and
ey + Gkt oot an = (Okgp1 — 0k) + (Okg2 — Opg1) + .. (00 — 0ny)
= 0On — O}

SO
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1
n+1

O = (a] + 20’2 +...+ na’n) - (ak—{—] + gy + ...+ a’n)

Remark B.24 The highest root is —ag =0, —0g = a; + ay + ...+ .

The irreducible representations of SU(n + 1) are given by A*V, k=0,...,n+1,
where V = C™"t! denotes the standard representation. If {eq,...,e,} denotes the

standard unitary basis for C"*' then
{c,-ll/\.../\eik IOS 11 < ... <’ik Sn}

is a unitary basis for A* C"*'. Moreover, since diag(e®,... e )e; = e'ie; the

restriction of the action of SU(n 4 1) on A*V to the maximal torus is given by
diag(em”, e et )eo, N Ne, = e’w"l“L"'g"k)e,-1 AN Ne,.

We recall that if
k

k
Ap:SUm+1) - GL\C™)

denotes the representation A* V', then its differential
k k
d/\p rsu(n+1) — gl(/\ ct
defines the action of su(n+ 1) on A*V which is given by
diag(iyg, - .- iyn).eq Ao Ney =i(y;, + ...y )eq, N Nej,.

Since

(0’,‘1 +...F aik_)(diag(ll:y% s Iyn)) = 1(y11 + ... yik)
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we see imunediately that the weights of this representation are
o, +...+0;, 04 <...<iy<n,
and the corresponding weight spaces are

Vi i i=spanc{e; A...Ae;}

il seeoytfe

In terms of the positive simple roots we have that

-] (a1+2a9+. . .4nay)—(a;, 41+ - +an)—. . .= (i 1+ . - Fay).

7; +.. .+0’,'k =

From this it is clear that the lowest weight 1s

(+2a2+...+nay)—(ar+...+ay)—...—(ap+...+ay,),

n+1

00+. . .+O-k_] =

with corresponding lowest weight vector e A ... Aej_y.
The stabilizer of [eg A ... Aey_1] € P(A¥C™) is S(U(k) x U(n+1—k)) and the

orbit is G(C") = SU(n + 1)/S(U(k) x U(n+1 — k)).
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