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Abstract 

The Toda Equations and Congruence in Flag Manifolds 

Klaas Rienk Sijbraiidij 

This thesis is concerned with the 2-dimensional Toda equations and their geometric 

interpretation in form of r-adapted maps into flag manifolds. 

r-adapted maps are not only of interest due to their relation with the Toda ec}ua-

tions, but also for their adaption to the m-symmetric space structure of flag 

manifolds. 

This thesis studies the congnience question for r-adapted maps in flag manifolds. 

The main theorem of this thesis is a congruence theorem for r-holomorphic maps 

ip : S'^ G/T of constant curvature, where G can l)e any compact simple Lie 

group. 

I t is supplemented by a congnience theorem for general r-holomorphic maps 

il> : S'^ G/T if G has rank 2, and a number of congruence theorems for iso­

metric r-primitive y.! : li'^ —* G/T of constant Kahler angle. The second group 

of congruence theorems is proved for the rank 2 case, as well as a selection of Lie 

groups with higher rank: SU{i), 5^7(5), F 4 , -Eg, Sp{n). 
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Introduction 

This thesis is concerned with the 2-dimensional Toda equations and their geomet­

ric interpretation in form of r-adapted maps into flag manifolds. 

The relation between Toda equations and these maps is as follows. Let G be a 

compact simple Lie group with Lie algebra, g and maximal torus T. Then, under 

a non-singularity condition, r-adapted maps into the flag manifold G/T can be 

lifted to maps into G', so called Toda frames. These Toda frames satisfy a special 

differential ecjuation, and the integrabihty conditions for the frames are the Toda 

equations for the Lie algebra g. 

However, r-adajjted majis are not only of interest due to their relation with the 

Toda eciuations. A flag manifold G/T ma}' not only be equipped with G-invariant 

structures such as a G-inA-ariant metric and a G'-invariant complex structure, it also 

has the structure of an m-symmetric space. It is the m-symmetric space structure 

that r-adajited maps are, by their definition, adjusted to. r-adapted maps have 

many interesting properties, for example strong harmonicity properties. 
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In the context of this thesis we will study the congruence question for r-adapted 
maps in flag manifolds. First we will give a brief explanation what we imderstaud 
under congruence. 

Definition: 

Let G be a group of transformations of a manifold M. Let 5" be a Riemaun surface. 

Two maps '0, ij' : S M are called G-congruent if ip = gtjj for some g £ G. 

This leads to the fimdamental question that this thesis attempts to answer, namely 

what do wc need to know about ib, IJJ in order to decide whether they are congruent. 

Our solution to this problem consists of finding a set of invariants (as few as 

I)ossible) and their geometrical interpretation such that i f these invariants coincide 

for ip and tp then we can conclude that 'ijj and tj^ are congruent. 

A typical example of a congruence theorem would be the classical rigidity theorem 

for smooth maps in R'̂  where metric and 2nd fundamental form are the rec|uired 

invariants. 

The main theorem of this thesis is a congruence theorem for r-holomorphic V' '• 

S'^ —* G/T of constant curvature, where G can be any compact simple Lie group. 

It is supplemented by a congruence theorem for general r-holomorphic il' : S'^ 

Cr/T i f G has rank 2 and a number of congruence theorems for isometric r-primitive 

i' : ^ G/T of constant curvature and Kahler angle. The second group of con­

gruence theorems is proved for the rank 2 case as well as a selection of Lie groups 
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with higher rank: 5[/'(4), SU{5), F^, ^8. Sp(n). 

The Thesis is structiued as follows. 

In Chapter 1 we give a brief overview of the aspects of harmonic sequences and 

c:ongruence theorems for CP" . These harmonic seciuences are used to l i f t maps 

C P " to maps into the flag manifold SU(7i + 1)/T" and they give rise to a set of 

invariants which are related to the Toda equations and which determine these lifts 

up to congruence in SU{7i + l)/T". 

In Chapter 2 we investigate Toda ec^uations of semisimple Lie algebras and their 

relation to lifts derived from harmonic: sequences. 

In Chapter 3 we introduce flag manifolds and their various structiu'es. 

In Chapter 4 we consider r-adapted maps into G/T. We will look at two classes 

of r-adapted ma])s, r-primitive and r-holomorphic ma])s. r-adapted maps provide 

- via Toda frames - a geometric: interpretation of solutions of Toda equations. 

In Chapter 5 we sketch the proof of the constant curvature congruence theorem for 

r-holomorphic S''̂  in SU{n+l)/T'\ the motivation for subsequent generalisations. 

In Chajjter 6 we f:ompute the induced metric: of r-adapted maps and their asso-
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ciated curves. Invariants which determine r-adapted maps Tip to congruence are 
also introduced. 

In Chapter 7 the main theorem is proved, constant curvature congruence for 

r-holomorphic 5^ in G/T. We also prove a general congruence theorem for r -

holomorphic S'^ in G/T where G has rank two. 

In Chapter 8 a collection of congruence theorems for isometric r-primitive maps 

with constant Kahler angle is presented. 

Additional supporting material can be found in the Appendices. 



Chapter 1 

Harmonic Sequences and 

Congruence Theorems in C P n 

This Chaj>ter is intended as a hnef oveTviein of the aspects of ha.rw.on.ic sequences 

and congruence theorems for C P " needed, for this the-ns. More details and all. the 

proofs may he found in [BWlJ, [BPWJ and [Bern] which will also serve as reference 

for' this chapter. 

Starting from, a harmonic map 6 into C P " one can con.<itry.r.t a sequence of har­

monic maps (see [EWJ for the original holornorphic case). Under certain con­

ditions this sequence ca.n then he used to lip. (p to a m.a:p into the fl,ag m.ani.fold 

SU{n-\-l]/T". We will also introduce some invariants which are related to the Toda 

equa.t.ions and which, will determine these lifts up to congruence in SU{ri.-\- 1)/T". 

Finally we will corm.der a. well-known congruence theorem, m C P " which mill he 

used to prove our original congruence theorem, in SU(7i 1)/T". 
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1.1 Harmonic maps 

Definition 1.1 Let (f) : S —y M be a C°° map from a m.etric Riem.ann surface S to 

a R.iem.annian munifold M. 0 is called harmonic if a.nd only ifivVdcf) = 0. where 

V is the connection on Hom(T5,TM) induced by the Levi-Civita-Connections on 

S and M by: ( V # ) ( X , r ) := ( V . v # ) ( l ' ) := \^x[d9{Y)) - c/(?.(V.vy). 

For M — CP" ri(/) may be extended to a complex linear map from the complexified 

tangent space T 5 ^ = ® R C to TCP" , again denoted by d(b. 

With z a local complex coordinate on S the harmonicity condition may be 

written as 

( V . # ) ( — ) = 0 or V.(d,?>(—)) = 0 
9- OZ fl^ oz 

as V | _ ^ = 0 gives 

=0 

Eqivalently, we also have ^^{d(f)[^)) -• 0. 

1.2 Construction of the harmonic sequence 

Let S be Riemann surface and (p : 5 —> CP" be harmonic. 

In this section we wil l construct from (f> a seciuence of harmonic maps 5 CP" 

and a sequence of complex line bundles over 5 

. . . , i -2 ! L-i. LQ — (b*L. L\, L2. •.. 
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Here (p*L denotes the pull-back of the tautological line bundle L = {{q./v) £ 
C P " X C"+^ : G p}. Let be the subbundle of the trivial bundle C P " x C"+> 
whose fibre at g = [w] is {W}Q (w.r.t. the standard hermitian inner product (•, •) 
in C " + ^ ) : 

TT : C P " , n''{q) = {w}^. 

We will also use the bijective correspondence between maps (p : 5 —> C P " and 

smooth complex line subbundles of 5 x C""*"̂  given by (f) <^ ({)*L. 

Let (f) : S C P " be harmonic and let LQ, LQ be the puUbacks via 6 of L, L-^ resp. 

Due to the canonical identification T C P " = Hom(L,Z/-'") the derivative d6 may 

be regarded as a map dcp : TS'^ 0 LQ —> - L ^ defined by 

# ( A ' ® s) = d(j){X)s = TTi±{Xs} 

where A' is a tanget vector field on S, T T ^ J . denotes orthogonal projection into LQ. 

and the section s of Lo is considered a C""*"^-valued map on S. 

Let 0̂ : r5^ " 0 L,, ^ be the 1,0-part of do and : T5''^^ 0 Lo ^ be the 

0, l-paxt of d(p. If 2 is a local coordinate on 5 and s a section of LQ we have 

dni-T^) = (H{^) find do{-^) s = d0{ —) s. dz dz az az 

As r^'*'^ = spauc{ | :} and T^'^S = spanc{^} we will define for simplicity 

dz 
do : Lo-^ Lj, s t-^ d(f){ — )s and So : U ^ L^. s i-> d(i){ — )s. 

A complex vector subbundle V of 5 x C""^^ may be given a holomorphic structure 

for which a local section s is a holomorphic section ifl ' | | is orthogonal to V. 
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Therefore the harmonicity condition above is ecjuivalent to the bundle map OQ (do) 
being holomorphic (anti-holomorphic). 

If do (do) is not identically zero, i.e. (p is not anti-holomorphic (holomorphic), then 

the zeros of Oa {BQ) are isolated and there exists a unique complex line subliundle 

Li C L^ with Im(5o) C C I Q with lm{do) C 

As 6 is harmonic the bimdle map do : LQ ̂  L^. s t-^ d(j){-§:)s is holomorphic and 

the bundle map BQ : Lo s H-*̂  is anti-holomorphic. Also the maps 

(Pi,(i)-\ : 5 C P " corresponding to L] ,Z /_ i are again harmonic. Using induction, 

we obtain a secjuence of line bundles 

—> — > —> 
• • • L-i L{j L] L2 • • • 

<— i— <— 
do d\ d^t 

and tlie corresponding harmonic maps 

If for some g £ Z the map 0^ is holomorphic (anti-holomorphic), then 5,, [0^] is 

identicaUy zero, and the map ^ ,_ | (^,+1) cannot be defined. The seĉ ucncc {dj,] 

terminates at the left (right). 

1.3 Local description of the harmonic sequence 

Let z be a local complex coordinate on the Riemann surface 5 and let ^ ( 2 ) = [faiz) 

be a harmonic map into C P " where /o is a nowhere zero holomorphic local section 
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of Z/Q. Then 

l o = {{z.,v) :zeS,ve iMz)]}., = {{z,v) : z G S./v € [/o(c)]^}. 

These are vector siibbimdles of the trivial C""'"^-buudle oÂ er S and so each has 

a naturally induced connection. Also a section of L Q may be regarded as a map 

S 0""*"̂  in which case we may regard /o as a map into C""*"̂  \ {0} . 

The bundle map OQ : Lo Li is now given by dofo = 7rjr j . ( ^ ) = : / ] 

and 5o : Lo —> I _ i i s defined by dofo = ^L^i^) = / - i -

Again, we can build a harmonic sequence ({)p{z) = [/p(^)] where /p+i is the part of 

^ which is orthogonal to fp (w.r.t. (•, •)): 

-gZ - Jp+i + j : ^og Jp Jp - + h 

We also obtain 

fp dz - W 

and, from the definiton, /p+i ± holds. 

We therefore have 

dp : Lp Lp^\, /p+i and dp : Lp ^ Lp_i, i - ^ — T ^ J P - ^ • 

Recall that 

d<p[-7r) = 0̂ and d(j){ — ) = do, 
az dz 

so 

k % ( f ) r = i5.p = ^ and mlj'= = 

Lemma 1.2 do is a holomorphic bundle m.ap i f f Oo = [fo] '>-s « harm.onic m.ay. 

Lemma 1.3 If (bo is harmonic, then is harm.omc as well. 
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Terminating harmonic sequences 

Definition 1.4 Let S be Riemann surface and <p : S ^ C P " be a harmomc map. 

(j) is ca//ef7 pseudo-holomorphic for superminimal or totally isotropic^ if 

the harrnomc sequence terminates. 

Assume that (9o = 0, i.e. (t>{) is a holomorphic curve in C P " , and assume ©o is 

linearly full, i.e. Im^o is not contained in a totally geodesic CP*" C CP". Let 

{4>p = [/p]} be the harmonic sequence of 

Then for r > s 

^ < frj.s > = < / r+l + ^ l o g !/rP/r,/., > " < /r , > • 
OZ OZ Js-1 

Also note that do = 0 implies that ^ / o and /o are parallel. This, together with 

< fr+\, fr >— 0, gives the result that any two elements of the sequence are orthog­

onal: < fr-fs > = 0 for r 7̂  s. 

It follows that the harmonic sequence must terminate at the right hand end with an 

antilioloniorphic curve 0„ as there are at most n + 1 non-zero mutually orthogonal 

vectors in C""*"'. 

Definition 1.5 (cf. [BJRW] , p.602, [Wo], p.l67) The line bundles LQ, ..., L„ 

are rM.lled the Frenet frame of the hnlom.orphic curve ©o they are essentially 

the analogue of the Frenet fram.e of a real space curve. 

The Frenet frame of the holomorphic curve is obtained via the harmonic se-

cjuence. 
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1.4 T- a n d L'^-invariants of the h a r m o n i c sequence 
The 7-invariants 

Let 7p := \d(l)p{-§r)\^ = % 7 2 - as above. This depends on (pp. ^ but not on the 

choice of fp. In fact, Tp := jp\dz\^ is a globally defined form on 5. 

The integrabihty conditions gf^r/p = af^/p for 

f = I log l / „P / , and t = - g / „ - , 

are ecpivalent to 

^ l o g i / p l =lp-lp-.. 

I.e. 
5 2 

logTp = Tp+i - 2Tp + 7p-i-dzdz 

These are the Toda equations for SU(oo) in general and for SU{n -|- 1) i f the 

secpience terminates (see Chapter 2). 

The following Lemma is immediate from the above ecpiations. 

Lemma 1.6 Any tu>o consecutive j-mva.riants determ.me all the -^^-invariants. 

The [/-invariants 

Assume p > q and let «p ̂  = ^7^7^- "^^^^ is independent of the choice of /p, and, 

in fact, Up^^ = Up^^dz^"'' is a well-defined {p — q)-hxm.. 
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In the terminating case these invariants are identically zero, so we assume that we 
are not in this situation. Then 

d 
oz 

Corollary 1.7 If some k consecutive elements of a harmonic sequence are m.utu-

ally orthogonal then every k consecutive elem.ents are mutually orthogonal. 

Corollary 1.8 Every harmonic map (f): C P " ts part of a Frenet frame. 

Relationship between the harmonic sequence of ^ : S" —> CP" 

and its complex conjugate ^ :=</>: 5 —> CP". 

We will need this relation for the construction of some examples later. 

Denote by { f p } the local sections for the harmonic sequence {(pp}- Define 

f p - = { - i r 4 ^ y 
J-p 

Then i t is obvious that span{/o} = Lo = Lo and i t is easy to check that {fp} is in 

fact the sequence derived from fo- Hence we have 

= + £ log | / / / p and ( | ^ , / o ) = 0 . 

We also get the following relations between the metric invariants of (p and (j): 

• Lp — L^p. 

• Lp-L -(p+i) . 7p - - J-p - )P - 7-(p+])-

Up^o = (-lyuo.-p. 
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1.5 Congruence Theorems 

We have the following 

Lemma 1.9 (i) Every element of a Frenet fram.e is a weakly conforrnal har­

monic m,ap; 

(a) If one elem,ent of the harmonic sequence is conformal then every elem.ent of 

that sequence is conform.a,l. 

Proof: 

(i) Note that 0p : 5 ^ M w ĥere 5 is a Riemann surface and M is a Kahler 

manifold is weakly conformal iff d(bp{-^) J_ d(bp{-^). Thus for M = CP", 

is conformal iff' Lp+i ± -i-p-i. 

(ii) This is simply a consecjuence of Corollary 1.7 Avitli k=.3. 

Definition 1.10 Let Qp be the induced metric on. S by (j)p, i.e. 

gp{X. Y ) •= 9? {d0p[X), d0p{Y)) VA', 1" G TS. 

Let <jj{X,Y) — {X,JY) be the Kahler form on C P " and dAp be the area form 

on S (tv.r.t. gp and the orientation of S). Then a,t each point on S xvhere is 

non.-.singular, we define the Kahler angle 9p of (bp by (f>*uj = cosBdAp. It is the 

angle between rf©p(^) andid.(bp{^). 

Note 1.11 If (j)p IS conformal then its metric and Kdhler angle are given by 

g, = (7p-i + 7,>m'., COS0p = lEJpzl ^ tan^ | = 2zzi. 
Tp + Tp-i - (p 

(f>p conformxil implies Upj^i p^i = 0. 
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Note 1.12 The m.etric and Kdhler angle of (pp determ.ine and are determ.ined by 

Fp, r , _ i , c v i . P - 1 (^P = TPK^!', Up,q = upjdzip-y. 

Lemma 1.13 The m,etric and Kdhler angle of any elem.ent of a harm.onic sequence 

determine the m.etric and Kdhler angle of any other elem.ent of the sequence. 

Remark 1.14 Using the differential equations for the U-invariants it m.a.y be 

shown that for A; 6 N the T-mvariants together with {?/2,o, • • •, t̂ t.o} determine 

{Uq+2,q,... ,Uq+k,q} Vg G Z. 

Theorem 1.15 (Congruence Theorem for C P " [ B W l ] , p.372) 

Let S be a connected Riemann surface. Let (f), (f) : S ^ C P " be harmonic maps 

with r _ j = r _ i , To = To- / / either 

(i) (f) is pseudo-holomorphic, or 

(u) Upfi = Upfi for p - 2,... ,n + l 

then there exists a holom,orphic isometry g of C P " such that (j) = g(l). If (}> is 

linearly full then g is unupie. 

As a corollary to Theorem 1.15 we have the following extension theorem. 

Theorem 1.16 (Extension Theorem, [ B W l ] , p.373) 

Let (f> : S —>• C P " be a harmonic m,ap of a connected Riemann surface S and let 

h : 5 —> 5 be a confcnrnal diffeomorphism such that 

(i) h*Tp = Tp for j ; 0, - 1 , and 

(i.i) h*Up,o = Up^o forp = 2,...,n + l. 



CHAPTER 1. HARMONIC SEQUENCES AND CONGRUENCE THEOREMS IN CP'''U 

Then there exists a holom.orphic isom.etry g of C P " such that g(i) = (ph. If (p is 
linearly full then g is the unique holomorphic isometry with this property. 

Remark 1.17 This theorem, is an "extension theorem." for the following reason: 

As.<ium.e that (f) is bijective. Then h induces a diffeomorphism h : 0(5) —> ?^(S), 

h = (bh(j)''^. Extending h now means that 3g : C P " C P " such that g\d,{s) = h = 

(f)h(j)~^ or equally g(j) = (ph. 



Chapter 2 

The Toda equations 

la this cluipter we will invcntigate the 1- and 2-di.memional Toda equations of 

sem.isim.ple Lie algebras. Using harm.onic sequences we will see that solutions to 

the 2-dim.en.'iion.al su{n + l)-Toda equations arise in a geom,etrical context from, 

special maps into the flag m.an.ifold SU{n, + 1)/T". We will also introduce Toda 

frames whose integrabihty conditions are the Toda equations. The whole chapter 

IS based on [BW2] and [Bern.]. 

2.1 The 1-dimensional Toda Equations 

Consider the following Hamiltonian dynamical system of particles of equal mass 

m joined l̂ y identical si)riugs. 

p-th (p + l)-«t 

—MSiSb<>-^Si^L^ilr<y^^ 

Figure 2.1: Springs 

12 
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The equations of motion are 

mjjp = fiVp+i - Vp) - f{yp - Vp-i). 

i f yp denotes the displacement of the j?"* mass. In the classical case we liaA-e 

f{y) = K-Vi where K is Hooke's constant. 

We have the following interesting configurations: 

l-st n-th 

Figure 2.2: Finite or open case: yo = yn+i = 0 

0-the(n + 

Figure 2.3: Periodic or affine case: yo = yn+\ 

p-th (l> + l)-»i 

''-^^iSi^i^^^<>-^^lSlS^^ 

Figure 2.4: Infinite case 

In the 1950s Fermi-Pasta-Ulam considered the case of a non-linear f{y) and in 1967 

Toda considered an exponential force f{y) = ae^^ with a, A constants. This turned 

out to be a completely iutegrable Hamiltonian system. Let H be the Hamiltonian. 

Then we have for the first two configurations: 
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Open case H = | P] + S '̂-o <lo = Qn+i = 0. 

Periodic case H = \ EU Pj + E"=o 6"̂ +̂  '"^ Qo = Qn+i • 

Here p, q are the momentum and position coordinates; Pj — The equations of 

motion are 

dB^_dq^ and — 
dpj dt dqj 

dpj^ 
' dt 

which give qj = 6̂ +̂̂  * - ê J '>'-K 

In 1979 Adler, Kostant and Symes found that the Toda equations come from a Lie 

algebra formulation with equations corresponding to the case g = su{n + 1). 

Let Pi = qi - qi^i. Then iji = e'''+''''' - e''--'''-' gives 

p- = ê "+' - e"- - {ef' - e""') = e'''+' - le"' + e""' 

or 

p, + ( -1) X ef'^' - f 2 X ef' + ( -1) x e''-' = 0. 

The factors before the exponential terms are exactly the entries of the (extended) 

Cartan matrix of su{n + 1): Let K be the Cartan matrix and A' be the extended 

Cartan matrix of g = su{n -\-1) (see also Appendix B.3): 

2 - 1 

- 1 2 

2 - 1 

- 1 2 

2 - 1 - 1 

- 1 2 - 1 

- 1 2 
A" = 

2 - 1 

/ - 1 2 
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Definition 2.1 The open Toda equations are given by 

n 

and the affine Toda equations are given by 

n 

Thus for every semisimple Lie algebra g the above gives a system of Toda equa­

tions via the (extended) Cartan matrix of g. As in the s?/(n -|-1) case this system 

is completely integrable. 

It is interesting to see that for sn{n-\-l) the (extended) Dj-nkin diagram correponds 

exactly to the spring constellation. 

o—o—o— —o—o—o 
O] O} as aa_i o»_i a . 

Figure 2.5: su{n -f- 1) Dj^nkin Diagram 

0—0—o— —O—0—0 
oi O] Os a,_2 o,_i o. 

Figure 2.6: su{n + 1) Extended Dynkin Diagram 

2.2 The 2-dimensional Toda Equations 

For details about Lie algebras, Cartan matrix, root systems, etc. see [Sa] and [Se . 
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Let g be a simple Lie algebra of rank f with (extended) Cartan matrix A' = (A';j), 
i.,j = (0)A,...,£. 

Let { Q I , . . . , tt^} be a set of simple roots and let — Q Q = miQ'i + ... m^CKt be the 

highest root. Set mo = 1, so Ylo'^i'^i ~ 

Definition 2.2 The 2-dimensional open g-Toda equations are the non-lmear 

elliptic system, of partial differential equations given by 

t 
2AQ-|-X]"i^e'"^^'"^a, = 0 , 

where A — + il : U it is a smooth map of an open subset U of 

into the purely imaginary part of , the complexified Cartan subalgebra of g, and 

Ha = ^ja"^^i) '''•^ coroot to the root a (see Appendix B.2). The 2-dimensional 

afiine g-Toda equations are given by 

I 

2A?lJtY.mje^'''^^^Ha^ = 0 . 

This system is also completelj' integrable (see [G] for an excellent account of the 

modern theory of integrable systems) and we will show next that this formulation 

corresponds to the Toda equations of Section 2.1 with 4p7 replaced by A = 4^ + 

9-' =4^9= 

Claim 2.3 The Toda equations 2AQ -|- 7nje^"j*"'ijQ,_^ = 0 m.ay be written as 

A log 7/; + 5] A',j ?Jj = 0 1 = 1,... A 

where [Kij) is the (extended) Cartan matrix of and rjj := mjc^^'^^K 



CHAPTER 2. THE TODA EQUATIONS 17 

Note that with pi := log 77, this is exactly the form of the Toda equations in Section 
2.1 (mi • 1 for all i = 0, ...n in the su{n + l)-case). The 77, will be discussed in 
more detail in chapter 6.2. 

Proof: We have t^ = spanlcci,..., ac}. Hence for G tc we have 

H = 0 ^ Qv(i7) = 0 Vi = l,...,t. 

Therefore 2AQ + E mje^"'^^'>H^^ = 0 iff 

a,(2An + ^ T T i . e ' " ^ * " ' ^ , , / ) = 0 Wi=l,...J. 

Using the linearitj- of Q , - and its independence oi z.z we get 

Now Ha = l̂att̂ ttH)̂ '" o:i{a'j) = />; (Q'J , Q ^ ) by definition of a'' (see Appendix B.2). 

Wi th 7]j - m,e^°'*^' we see that A2Q',(fi) = A log?/,;. Thus the Toda equations are 

ecpivalent to 

„ 2^(0';. Q'I) 

A log 7;,+ 1: 7/, ' =0 

However the Cartan matrix is defined to be A',-,- = -v-r—rr- Hence the Toda 

ecluations are 

• 
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2.3 Geometric Interpretation of the 2-dimensional 
su(n + l)-Toda equations 

In this section we will see how the harmonic sequence of a harmonic map © : 

S C P " provides solutions to the Toda equations and gives rise to a map 

V; : S SU{n + l)/T". 

Suppose (f) : S C P " is a linearly fu l l harmonic map. We then have a harmonic 

sequence {(pp}. (pp = [fp], defined by 

d 

• t = + i i«g i / . i Vp = /p^i + ^ ^ w ^ f p 

* m - i/,,r-' Jp 

• fp+x ± f p 

Put l/pp = e'^'^^ (assuming that f p does not vanish). Then from the basic equations 

of the harmonic sequence, the integrabihty condition yr^/,; = Wd^fp- and using 

log 1/̂ 1''̂  = Tp - 7p-i we deduce that 

~dzdz~ 

i.e. 

dzdz 

Thus u.'p — a,'p_i satisfies the Toda equations and we can see how the harmonic 

sequence is related to the Toda equations. In general we have infinitely manj" 

equations for infinitely many unknowns: .stt(oo)-Toda equations. 
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We will now concentrate on the two simplest cases 

(1) Superminimal (or pseudo-holomorphic) case: 

(p : S ^ CP" is an element of the Frenet frame of a holomorphic curve. 

d d d a 
— > — > — > • — > 

L() Z/j Z/2 . . . L„ 

a d d a 

Figure 2.7: LQ,. .. .L„ mutually orthogonal 

(2) Orthogonally periodic case: ^ „ + i + p — (pp for all p. Further assumption: 

Lo,... . L,i are mutually orthogonal. 

d / ^ d d \ \ a 

L„ Li 

f^Ud a U 9 

Ln--\ L-i 

a \ \ - a a / / a 

Figure 2.8: Lp,.... A„_j_p mutually orthogonal - circle 

A lift to SUin + l)/T' 

Let T = m C ... C V;+i - C"+i : V̂ . vector subspace of C"+^ of dimension k} 

be the manifold of full fiags. 
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Then, from the Orbit-Stabilizer Theorem, it is easy to see that JT — SU{n •+• 
1)/T" = U{n + l)/T"+\ 

We now use the harmonic sequence of (p to define the l i f t 

: S ^ T = SU{n + 1)/T" by 'iP = {V\,..., K + i ) , where Vi = Lo, V2 = Lo ® 

L^,...,Vk = Lo® ...®Lk-i,... 

We wil l see in chapter 4 that -di is r-adapted and has a number of interesting 

properties. For example, if (p is holomorphic the l i f t i;̂^̂  wil l be holomorphic as well 

and we have the following correspondence 

{i'-. S ^ SU{n -F l ) / r " r-holomorphic} <—^ {(P : S C P " holomorphic} 

'Ip TT'lp 

{(po\ . . . \(pn) ^ (p = (pO 

2.4 Toda frames 

Away from singularities there locally exists a moving frame E : U SU{n -\- 1) 

from an open subset U of S given by L ; = (eo|... je„), Cp = . . . j j ^ . //„ u/i^+n ife" 

The normalising factor is needed to get E G SU{n -\-1) rather than E G [''̂ (n -|-1). 

Then 

dz ' '^^ ^ dz " 
de,, ,., _,, du-'r 

dz ~ ' dz^' 

and these equations can be expressed as 

dz dz 
dE dQ 
5? dz 
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where Q = diag(u.'o,... .LVn) aiid 

5o(opeu case) 
1 •• 

1 0 

and Bo(affine case) 

1 0 

The integrabihty conditions for this frame E are the Tbda equations (see chapter 

4 for details). 

Using the differential eciuatiou above one can show that for a disc-hke open set 

U, solutions of the Toda equations correspond to special moving frames: Toda 

frames. 

Given a frame E : U ^ SU{n + 1) we get a map ^ : = nE : U ^ SU{n + 1)/T" 

where TT denotes the canonical projection. These maps are precisely the ones which 

arise f rom harmonic secjuences of maps into C P " in the pseudo-holomorphic / 

orthogonally periodic cases. 



Chapter 3 

Flag Manifolds 

In this chapter we vnll introduce flag manifolds G/H and their properties. Flag 

m.anifolds m,ay he desrihed by parabolic subalyebras and can be equipped vnik G-

invariant metrics and G-invariant complex structures. They also have an m-

symmetric space structure which is the crucial geom,etric property in the context of 

this thesis. 

3.1 Flag manifolds - definition, examples and Lie 

algebraic description 

The main reference for this Section is Burstall-Rawnslej- [BR], Chapter 4. 

Definit ion 3.1 ( [ F H ] , p.95) A flag is a sequence of sub spaces of a fixed vector 

space, each properly contained m the next; it is a complete flag if the dimension 

of each, suhspace is one larger larger than that of the preceding suhspace, and a 

part ia l fl.ag othervnse. 

22 
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Definit ion 3.2 ( [ B H ] , p.39) A flag manifold rs a hom.ogeneous space of the 

form. G/H where G is a compact Lie group and H is the centralizer of a torus in 

G. Note thai H is therefore of m.axim.a.1 rank. 

E x a m p l e 3.3 ( F l a g manifolds G/H are manifolds of flags) 

(i) G = SU{n + 1), H = T". Then H is its own centralizer and G/T is the 

manifold of full flags G/T = {Vi C V2 C ... C K, C C"+^} where V) is a 

sub.space 0/C""*"̂  of dimension j. 

(it) G = SU{n + 1), H = S(U(r) x U(n + 1 - r)). H is the centrahzer of 

( e'^Ir 
S' = 

V 

rO + (n + l -r)0 = O 

Here G/H = GrAC"^') = { V ; C C"+^}. 

(ill) G = SO{2n) or S0(2n + 1), H = T". Here the corresponding flag manifold' 

IS {V\ C V2 C . . . C y\, C C^" or C^""'"-'} xnhere V} is an j-dim.en.siona.l 

isotropic suhspace of C^" or C^""*" ,̂ i.e. {v.v) = 0 Vi; E V}. 

(tv) S0{2n)/U{n), U{n) = {A e S0{2n) \ AJ = .JA} = centralizer of {cosBI + sinO.J} 

( — S^). This flag manifold is the space of all orthogonal complex structures 

on 

Lie algebraic description of flag manifolds - parabolic sub-

algebras and subgroups 

We w i l l investigate the structure of G/H by looking at the corresponding infinites­

imal situation, i.e. Lie algebras. This w i l l give an alternative definition for a flag 
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manifold, and we w i l l see that for each H as above there exists a parabolic sub­
group P of G^ such that G/H = G^IP. 

Let g be a compact real form of a semisimple complex Lie algebra g*". Let t be a 

Cartan subalgebra of g. Consider the usual decomposition of g*" given by a choice 

of simple roots c v i , . . . . Q( {t — rank g). We have 

y ex.conj. \ 

g^ = t ^ © E ® E g"° • 

QeA+ a6A+ 

Definit ion 3.4 A subalgebra b of is a B o r e l subalgebra if it is a maximal 

solvable subalgebra of , where a subalgebra c of g^ is solvable if its derived 

series {P^'c}, defined by P ' c = [c,c] and.V'^c = [P^~^c, P'^'^c], terminates in 

the sense that P*"c = { 0 } for some k. 

A subalgebra p o/g*-' is a parabolic subalgebra if it contains a Borel subalgebra. 

Each subset S of the set {Q ] , . . . , cvf} of simple roots determines a further decom­

position of g^ as follows. Let T{S) be the set of positive roots which are linear 

combinations of roots in 5. 

Then 

h*-̂  where h = gOps n — nilradical of 

g^ = t ^ © E g " ® E E ® E g"' 
Q g r ( 5 ) Q 6 : r ( 5 ) l3eA+\r{S) ^ , / 3 6 A + \ T ( 5 ) 

parabohc subalgebra ps determined by S 

Note that is the complexification of a real subalgebra because i t is invariant 

under complex conjugation, and that h is the centrahzer of the toral Lie subalgebra 

{ . Y e t I Q ( A ' ) = 0 Vcv € 5 } . Also the bigger 5 is, the bigger the corresponding 
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parabolic stibalgebra is. 

E x a m p l e 3.5 (i) If S = { « ! , . . . , Q ( } then ps = = centralizer of { 0 } . This 

IS the largest parabolic .mhalgehra. 

(ii) If S = 0 thenpij = t*"®X^^g^+ g^. It is a Borel subalgebra (smallest parabolic 

suba.lgebra). h = t = centralizer o f t . Any two Borel subalgebras are conju­

gate. 

(iii) If \S\ = £ — 1, the corresponding ps is a m a x i m a l parabolic subalgebra. 

The corresponding h is the centralizer of a 1-dim.ensi.onal toral subulgebra. 

L e m m a 3.6 ( [ B R ] ) Let G^ be a connected sem.i-simple complex Lie group. A 

parabol ic subgroup of G*-^ is a complex Lie .mbgroup which is the normaliser of 

a parabolic .nibalgebra of . A flag manifold is a hom.ogeneous space of the form. 

G^/P tuith P a parabolic subgroup. 

T h e o r e m 3.7 ( [ B R ] ) (ij I f h . is the centralizer of a torus in g then h = g r\ps 

for some parabolic .'iubalgebra ps-

(ii) On group level G/H = G^/P. 

(iii) G^/P is compact i f f P is parabolic. 

Note 3.8 7 / 5 = 0 then = t^ © g" and the corresponding flag manifold 

IS G/T. 
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3.2 G-invariant metrics on flag manifolds 

The following holds for any homogeneous space G/H. not just flag manifolds. 

Definit ion 3.9 Let G/H be a homogeneous space. Let dLg be the differential of 

left-translation Lg by g. Then, a m.etric (•, •) on G/H is G-invariant ifVg, k £ G 

{X, Y),,, = {dLgX., dLgY)^,^ VA', Y € n^iG/H). 

R e m a r k 3.10 For all g G G left-translation is an isom.etry w.r.t. any G-invariant 

metric. 

Denote the base point eH = H E: G/H hy o. Any G-invariant metric on G/H can 

be constructed by defining an Ad(// ' )- invariant inner product on TQG/H and then 

moving i t around via left-translation. The metric on T^G/H has to be Ad{H)-

invariant so that its left-translation is well-defined. 

Propos i t ion 3.11 ( [G] p.16-17) 

{Ad(i5/')-invariant inner- products on ToG/H] - f ^ ^ {G-mvariant metrics on G/H}. 

3.3 Complex structures on flag manifolds 

I n this section we w i l l construct G-invariant complex structures on flag manifolds 

G/H. I f g = li + m w i t h m = ToG/H we therefore need an ad(h)-invariant com­

plex structure .7 on m, i.e. we need an ad(h)-invariant complex subspace V of m ^ 

such that m*^ = V@V. We w i l l see that for G/T we can take V = m+ = I ] a 6 A + 5" 

where A"*" denotes a choice of positive roots. The main reference for this section 
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is Borel-Hirzebruch [BH . 

In order to classify G-invariant (almost) complex structures we need to investigate 

some real adjoint representation theory. 

Real adjoint representation theory for compact Lie groups 

Let G be a compact Lie group, g its Lie algebra, T a maximal torus in G w i th Lie 

algebra t. 

The representation A d : T Aut (g) of T in g is fu l ly reducible and there exists 

a direct sum decomposition of g into irreducible Ad(r) submodides 

g = t © «] © . . . © fl,„ such that 

(i) A d ( T ) . « , = a, 

( i i ) dimflfc = 2 

cos «<:(/;) —sma^.{h) 
( i i i ) For // G T Ad(/t)|a^. can be represented by 

^ smai.{h) cosaf.{h) J 

Simply choose an ONE for a.), w i t h respect to an Ad(r)-invariant inner prod­

uct on g. Note that â . : T —> R/27rZ is a homomorphism, so in particular 

(iv) Let d;. : = d,,a : t ^ R . The ±ai^ are called the ( infinitesimal) roots of G 

w.r. t . T. I n the literature the roots are usually ^ instead of Q ^ . . The adjoint 

representation of t on g gives rise to the same direct sum decomposition of g: 

g = t © a ] © . . .ffla„, . For H Et ad// may be represented hy 

ai. 0 
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which can be seen by differentiating the Ad{exp{sH)) w i t h respect to s at 0. 

(v) Let Q'fc = These are the standard roots w.r . t . the adjoint representation 

of t*̂  i n g*̂ . Let g*̂  = t*̂  © «p © . . . © be the complexification of g. 

Then af = g"*' © g-"*, where g ° = { A ' e g*̂  | ad//(A') = a(H)X ^H 6 t } . 

Conversely we have a^ = g n (g*̂ * © g""'̂ ). 

C o m p l e m e n t a r y roots 

Let G be a compact, connected, semisimple Lie group, i = rank G, H A proper 

closed connected subgroup of the same rank £. and T a maximal torus of H. i.e. we 

have T < H < G. Thus we get the decomposition of h*-' into irreducible modules 

(w i th respect to the adjoint action of T on h): 

h = t - f f i a i © . . . © a „ . 

We also have 

g = t © r t i © . . . ® a „ . 

Hence g = h © m splits as 

g = t © tti © . . . © a„ © a„+i © . . . © a,„ 

where the â . have been suitably numbered. 

The 2(m — n) roots ± Q „ _ | . I , . . . , ± Q V „ are called complementary roots (.see [BH], 

p.464). 
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Almost complex structures on homogeneous spaces 

Let G be a compact, connected, semisimple Lie group, i = rank G, H a proper 

closed connected sul^group of the same rank ( and T a maximal torus of H, so 

T<H < G . 

Definit ion 3.12 A G- invariant almost complex structure on G/H is an al-

m.ost com.plex structure J on G/H such that J - Lg.ILg-\ for all g G G where Lg 

denotes the differential of left action by g. Hence the following diagram, commutes 

T { G / H ) M T { G / H ) 

i Lg i Lg 

T [ G / H ) T { G / H ) 

and for X € T^^^G/H rve have 

LgJ[x]X — J[yx]LgX. 

Propos i t ion 3.13 There is a one-to-one correspondence between 

(1) G-invariant almost com.plex structures J on G/H, and 

(2) com.plex .structures .I^ on TgG/H which com,m,ute with, the isotropy group, i.e. 

M^-'"[h)J„ = J,M'''"{h) for all h e H. 

Proof: For details about the isotropy representation see Appendix B.7. 

(1) ^ (2) Let J be a G'-invariant almost complex structure on G/H. Then 

.7̂  - .7[c] is a complex structiu-e on the tangent space ToG/H. Next note 

that L/, maps ToG/H into itself. Thus f rom the definition of G'-invariance, 

LyJ -- JLy Vg E G, i t follows in particular that L/,./o = JgLh V/i e H. Now 
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recall the definiton of the isotropy representation Ad*^/^(/?,) = Lh\o to get 
Ad^' /^( /0 .7o = J o A d ^ / ' ' ( / / ) for all h G H. 

(2) =j> (1) Now let Jo be a complex structure on TgG/H which commutes wi th 

the isotropy group. Define an almost complex structru'e .7 on G/H by J[g] = 

LgJoLg-l . 

Claim: .7 is well-defined. 

Proof: Let [g] = [g']. Then there is an h ^ H such that g' — gh. Thus, 

using LhJo = JoLh: we get 

'^[g'] — LgiJoLg,-\ = LghJoL(gh)-'^ — LgLh-hLh-^Lg-i = Lg.I^Lg-i = J[g], 

i.e. J is well-defined. 

Claim: J is G-invariant. 

Proof: We have to show that LgJ\x] = J[gx]Lg for all [a,] G G/H and all 

g € G: 

j[yx]Lg — Lg^JoL(gj,)~\Lg = LgL^JoLx-^Lg-lLg — L g J[x]-

Hence .7 is G-invariant. 

• 

We w i l l now describe al l possible almost complex structures on G/H. From the 

proposition above i t is sufficient to find all complex structures .7o on T'oG/H which 

commute w i t h the isotropy group A d ( 7 7 ) . 

Since G/H is reductive we have g = h © m, and we can identify TgG/H w i th the 

Lie subspace m and Ad^^"{h) : T.G/H T^G/H w i t h Ad(/i) : m m. 
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The G-invariant almost complex structures on G/H are described by the following 

theorem. 

T h e o r e m 3.14 There exists a 1-1 correspondence between G-mvariant almost 

com.plex .structures on G/H and splittings of T^G/H into kd[H)-invariant .sub-

spaces T'/G/H = E g ' * ° \ - T^G/H = Y.g"""' with ek £ { ± 1 } a.nd { ± Q A . | k = 

n -H 1 , . . . , m } the set of complementary roots. 

Corol lary 3.15 There are 21"^'™'^/^ different G-invaria,nt almost com.plex str^uc-

tures on. G/H. 

P r o o f of the Coro l lary: 

Let diniTJ = f - f 2n, d imG = C.2rn. Then rn - n - ^^dimG/H and there are 2 

choices for each ej., k = n ... , rn. • 

P r o o f of T h e o r e m 3.14: 

We have to find al l complex structures on m which commute wi th elements Ad(/i) 

of the isotropy group. Let .7 be a complex structure on m commuting wi th Ad(77). 

We w i l l now determine which properties J has. 

Claim.: .7 comm.utes with the adjoint representation of g m g 

Proof: Since .7 is G-invariant, we have Ad(//,)./ = . /Ad( / i ) V/i G H. We want 

to show ad(77).7 = .7ad(77) for all 77 G h which follows f rom Ad(/!).7 = .7Ad(//) 

by diffentiat ion. More explicitly, let 77 G h be arbitrary and h(t) — exp{tH) the 
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corresponding curve in H w i t h tangent vector H at the origin. Then 

a d ( ^ ) J = ^ | u A d ( / i ( / ) ) J = ^\oJAd(h{t)) = .7ad(77). 
dt dt 

This relation can also be seen f rom the following diagram 

h ••'^ T,Ant{g) = End(g) 

n n 

TH '^'-^'^ TAutig) 

H A u t ( g ) 

i d t I i d 

H A u t ( g ) 

T T 

TH ' " ' - ^ ^ T A u t ( g ) 

u u 

h T,Aut{g) = End(g) 

• 

We have m = a„+] © . . . © a,„ w i t h the complementary root spaces fl„+i, . . . , « , „ . 

Recall flA. = g n ( g ° ^ © g - ° * ) -

I t w i l l prove useful to consider the complexification of m to determine the almost 

complex structures. Recall that .7 extends canonically to a complex structure on 

m'^, also denoted by .7. 

Claim: ,1 leaves the complementary complex root .spaces g " invariant 

(a G {±cv„+ i , . . .,±a,n}). 
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Proof: This follows immediately f rom ad/y.7 = .7adyy for all H G h. Let A" G g". 
We w i l l show .7A' G g ° : 

ad//JA' = Jad//A' = Ja{H)X = a{H)JX. 

Alternatively, let A' G g ° \ { 0 } . Suppose JA' G g'^ Then for all 77 G h 

S m j x = exp (ad / / ) . JA '= Ad(exp7r)..7A' 

= J Ad( exp 77) . A = J exp( ad//) . A 

= Je"<^^lY = e"<^^'.7A' 

which implies a = p. • 

Claim: .7 leaves the complementary root .'ipaces a^ invariant (k = /t + 1 , . . . .rn). 

Proof: Let A G a, = g n (g,° © g-*'). 

(i) ,7 : m —> m implies ,7A' G m C g. 

( i i ) A' = A'+ - I - A'_ w i t h A'± G g"̂ "*'. From the previous claim we also have 

•7A± G g^°*. Tims .7A = 7A'+ + .7A'_ G g^ © g""". 

I t now follows f rom (i) and (i i) that .7A' G a^. • 

Claim.: On each of the complementary root spaces a^. (k = n-\-l,... , rn) there are 

only tvjo different complex structures which com.m.ute with, the isotropy group. 

Proof: Consider the complexification — g"*-' © g~°*^ of â .. The extension of 

.7 : â . —> a], to .7 : «|p —> op has 1-dimensional ±i eigenspaces a^f!^ and a^^^ which 

are invariant under .7. Next note that a 1-dimensional complex space which is 
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invariant under .7 has ./ acting as multiplication by ±?'. However, by the claim 
above, J leaves bo th g°* and g~"* invariant, thus acting by multiphcation of ±i. 
Since all space considered are l-dimensional, i t follows that eiher 

• g"* = Eigii) = al'^ and g""^ = Eigi-i) = al'^ or 

• g-'̂  = Eig{-i) = al'' and g"'̂ ^ = Eigii) = aj:'. 

These are the only possibihties for a spli t t ing of af which in tu rn determines the 

complex structure J. • 

For aU /: = n -h 1 , . . . , m let G { ± 1 } be such that 

The {efcOffc | k — l , . . . , m } are called the roots of the almost complex 

s tructure and determine J completely. 

The splittings on each o f into ±i eigenspaces of .7 determine a direct sum decom­

position of T^G/H = m ^ into the ±i eigenspaces of J: 

r^Cr< / IT _ -rl ,"/^' / TT ^ 'rO.l T^G/H = r^ -^G/H © T^G/H 

w i t h 

Tl'^'G/H^ g'*"* TyG/H= g"''"* 

The spaces T j ^G/TJ and T^'^G/H are invariant under the isotropy group Ad(77) 

and hence determine a direct sum decomposition 

r ^ G / 7 7 = r^"G777 © T^'-'G/H 



CHAPTER S. FLAG MANIFOLDS 35 

w i t h Tl^G/H : = I , T j «G/77 and T^^G/H := L,T^ 'G/H. On the other hand, 
we can define a G-invariant almost complex structure on G/77 by choosing the 
roots for an almost complex structme, i.e. the space T'l'^G/H. 
This gives a 1-1 correspondence 

^ r „ C G / F = Eg'^"'®Eg"''"% 
{G-invariant a.cx. structures on G/H} -e-^ < 

T^G/H, T^G/H Ad(77)-invariant 

The complex isomorphism Z Z -\- Z f rom Tl'^G/H to ToG/H gives ToG/H an 

Ad(77)-invariant complex structure .7. This completes the proof of Theorem 3.14. 

Complex structures on flag manifolds 

The question whether a G-im-ariant almost complex structure on G/77 comes from 

a complex structure is answered by the following theorem. 

T h e o r e m 3.16 ( [ B H ] , p. 499) The a.lm.ost com.pl.ex .structure on G/H deter-

m.ined by T^'^G/H = E g ' * " * ''s mtegrable i f f p = © E g'*"̂  is a Lie algebra. 

Coro l lary 3.17 Flag m.a.n.ifolds a.llow G-invariant complex structures. 

Proof: 

For a flag manifold G/77 = G^/P we have the direct sum decomposition 

gc = t ^ © ^ g°© g'"ffi E g'"® E g" 
aeT(S) Q € T ( S ) / 3 e A + \ T ( S ) , < 3 G A + \ T { S ) 

parabolic subalgebra ps 

where ps is the parabolic subalgebra determinig G/77, therefore a Lie algebra. 

Thus the almost complex structure on the flag manifold G/H given by T^'^G/H = 
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E / 3 e A + \ T ( 5 ) is integrable. • 

T h e o r e m 3.18 The number of different G-invariant com.plex structures on G/T 

is |T'V'(G)| where W{G) is the Weyl group. 

Sketch of Proof: Let A"^ be any choice of positive roots. Then (6" = 0) 

g^ = t ^ © E g ' © E g"' 
/3eA+ /36A+ 

and T^G/T = Ef)eA+ g^ T^G/T = E ^ € A + g " ^ define a G-invariant complex 

structure on G/T. Now for each w G T'1'''(G) the set w ( A + ) gives another system 

of positive roots. Hence the number of different G-invariant complex structures on 

G/T is\W{G)\. • 

The next theorem states that certain homogeneous complex manifolds must be 

flag manifolds. 

T h e o r e m 3.19 ( [ B H ] , p.501) Let H be a connected subgroup of the compact Lie 

group G with rank 77 = rank G. Then G/H allows a com.plex structure i f f H is 

the centralizer of a torus in G i.e. i f f G/H is a flag manifold. 

Note 3.20 7/"A+ is any choice of positive roots, then T^ '^G/T = T,aeA+g" ('•'"•(^^ 

T^'^G/T = Y.aeA+ g " define a G-invariant complex structure on G/T. A map 

: S ^ G/H from, a Riemann surface S with lift F : S D U G is holomorjjhic 

i f f F - ' d F { d , )et''®ZaeA^ g". 



CHAPTERS. FLAG MANIFOLDS 37 

3.4 The m-symmetric space structure of G/T 

The main references for this section are Burstall-Rawnsley [BR] and Bolton-Woodward 

BW2] . See also section 5 of Salamon [Sal] for a treatment of 3-symnietric spaces. 

Definit ion 3.21 An m - symmetr i c space is a Riem.anman manifold M such 

that for each p € M there exists an isom.etry Tp : M —> Ad of order m (r™ = I)-. 

such that p is an isolated fixed point and the ma.p 

M I s o m ( M ) , p Tp 

is smooth. 

In order to define and describe the m-symmetric space structure of G'/T we w i l l 

need a special element of the Lie algebra g called the canonical element which w i l l 

be described below. 

The canonical element of G/T 

Definit ion 3.22 Recall thai if a is a root then a (A') G iR VA' G t. If a-^,... . 

are the simple roots, /e/ ^ i , . . . , ^ ^ G t he .mch that Qi-(sj) = i ^ t j . If Ps ^•^ the 

parabolic .subalgehra.. determmed by the subset S C {Q-] , . . . . Q(} let 

{j i Uj^.S} 

{ ?.s called the canonical element. 

L e m m a 3.23 ( [ B R ] ) The canonical element has the following properties, 

(a) { G centre ofh = torus centralized, by h. 
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(b) The eigenvalues o / a d c lie m iZ. 

(c) For r ^ Z let he the ir eigenspace o/ad^. Then ps — Z)r>ogr- Also 

_ ĝ . where 71' ' ' ' is defined inductively hy n^^' = 7?. 77,̂ '̂ ' = [77, 71], 

n(^' = [n ,n ' ^ ' ] , This is called the central descending series. Property 

(c) determines ad^ and since g has zero centre determines ^. 

E x a m p l e 3.24 For G/T we have S = 0, = lower triangular matrices, is 

the set of diagonal m,atrices and n consists of strictly lower triangular matrices. 

\( 
0 

\ 

•k 

+ 

V 

\ 1 

Thus with the choice of simple roots Q J 0 7 from, Appendix B.IO we have 

I < 

0 

0 0 ^ J 

- ;^In+i \ and hence ^ = Y.j=i 0 = ^{d i ag (0 ,1 ,2 , . . . , 7 ? . ) - | n / „ + i } . 

Therefore ad^{X) ^ A'] = 7 [d iag(0 ,1 ,2 , . . . , n) , A' . 

7n-symmetric space structure 

We w i l l uow construct the symmetry of order //t at each point. 

T h e o r e m 3.25 ( [J i ] , p. 455) The order m of symmetry of G/T is given via the 

highest root. Let 

rn = 1 + height of highest root = 1 + rni + . . . + 77X£ 
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where —ao = 77?,IQ] + . . . nif ai is the highest root. The nii are non-negative integers 
and { a ' l , . . . , Qf} a set of simple roots. G/T is not h,omeom.orph.ic to the underlying 
manifold of an k-symm.etric space for k = 2,... ,m — 1. 

E x a m p l e 3.26 G — SU{n + 1). According to Appendix B.IO the highest root is 

given hy —QQ = Q ' I + . . . + Q:„, i.e. m, = 1 V ?' = 1 , . . . , n. Therefore SU{n+l)/T" = 

U(n + 1)/T"^^ IS an m = n + 1 symmetric space. The canonical element ofT/G 

IS e = i { d i a g ( 0 , 1 , 2 , . . . , 77) - |77J„+i} . 

We w i l l now define the automorphism of G/T which defines the 77t-symmetric 

structure of G/T. 

Definit ion 3.27 ( [ B W 2 ] , . p.74) Let ^ be the canonical element and let h, = e x p ( ^ ^ ) G 

T. Define the inner autom.orhpism. r = 7/, : G G hy T(g) = hgh~^. r is called 

the Coxeter automorphism. 

E x a m p l e 3.28 For SU{n + 1) we have 

T{g) = d iag( l , / 7 , . . . , /<") g d iag( l , /"<,...,p."), 

where // = e >» = 6"+'. 

L e m m a 3.29 (Propert ies of the Coxeter automorphism) • r has order 

777 . 

• G'̂  — T, i.e. the fixed point set of T is T. 

Exam,ple: If m is smaller then given hy the Theorem. 3.25. e.g. rn = 2 /r7r-

SU{n + 1) with n > 2 we have 

T{g) = d i a g ( l , - h . . . , ± l ) g d i ag{ l , - 1 , . . . , ± 1 ) 



CHAPTERS. FLAG MANIFOLDS 40 

and hence = S{f' ( [ ^ ] + 1) x U{ [ ^ ^ ] ) ) 7̂  T . 

• For all [x] € G/T T induces a map T^^] '• GjT G/T of order m luhere [x 

IS an isolated fixed, point. 

Let To{[g\) =^ [rig) . 

G G 

G/T ^ G/T 

Then by the above o = eT = T is an isolated fixed point of T„. Defi,ne noin 

T[x] = '̂[j.] o Tfj.] o ^[j.]-! vihere t denotes left translation in G/T. 

G/T ^ G/T 

G/T ^ G/T 

Then [x] is an isolated fixed point of T[.J,]. T^^] has the same order as T„: 

ord Ffa;] = in. 

• If G/T IS equipped, with a G-invariant metric then ( G / r , {r[3,]}) is an. m-

symm.efric space. 

Canonical decomposition of T^G/T 

We now investigate the canonical det:ompositioii induced hy the derivative of the 

Coxeter automorphism dr = Ad( / i ) . 

L e m m a 3.30 (Propert ies of dr) • Ad(/)) has order in 

• A d ( / 0 : g*̂  —* g*̂  has m-th roots of unity^ as eigenvalues: /f^' with //, = e"^. 
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• g*" splits into the direct sum of the eigenspaces of Ad{h). 

where M.^ is the ^i^ eigenspace. 

• . M , . is the dir ect sum of eigenspaces of rvots of height s = T mod 7?).. 

• Mo = 

• Ml = e^g"^- Let X £ g"*. Then Ad{h).X = e x p ^ a d c . A = e^"*(^^A' = 

ei^rA' -- fiX .since Q'fc(^j) = 

• [Mr,M,] = Mr+s-

• [Mo,Mk] = Ml; ensures that [Mk]gT in Notation 3.32 is well defined. 

For the relation between r-adapted maps and Toda equations (see Chapter 2) the 

existence of a special element of M\ is recjuired. 

Definit ion 3.31 An element^ £ Mi is called cyclic if 

C = E a,X,^, with a, G C \ { 0 } V A:. 

Notat ion 3.32 Denote by [Mk] the vector bun.dle over G/T obtained by left trans-

latmg M,. i.e. [ . M , ] , r = L,(M,) C T^jiG/T). 

From the above we therefore have 

r i i - l i 

T'^iG/T) = 0 [ y V ( , ] and [Mi] = © [ g ^ ^ ] . 
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E x a m p l e 3.33 For .s7(77 + 1, C ) = su{n + 1)*^ we have m = n + 1. Therefore it 

splits into the direct sum of the ^.^ eigenspaces Aii, where / i = 6"+^ 

sl{n + l,C) = Mo®Ml®...® Mn-

Represented as matrices we have 

Mo 

1 \ 

.Ml = 

( 
0 

\ 
k 

.Ml = 

•k 0 

.Ml = .Ml = 

0 

\ " J 

.Ml = 

\ •k 

Mo = 

0 k 
\ k 

\ 

0 •k 0 

.. .....M„ = 

0 0 k 

k "J I * V 



Chapter 4 

r-adapted maps and Toda 

equations 

In this chapter we will consider r-adapted maps into G/T. These maps are adapted 

to the m-symm-etric space structure of G/T and have a number of interesting ge­

ometric properties. We will then look at two classes of r-adapted m.aps, namely 

T-prim.itive and T-holomorphic ma,ps satisfying a non-singularity / holom.orphicity 

condition.. It will be seen, that r-adapted maps provide - via Toda frames - a ge­

ometric interpretaiKm. of solutions of Toda ecpuitions. Finally, we vnll introd.uce 

invariants which determine T-adapted maps up to congrueri.ce. The m.ain refer­

ences for' this chapter are [BW2] and [BPWJ. The concept of r-prim.itive m.aps 

was first introduced in. [BW4J and [BP] (simply called, primitive maps in [BP]). A 

good account of (r-jprimitive m.a.ps and their relation ot ha.rm.onic maps m.a.y be 

found in ]G]. 

43 
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4.1 T-adapted maps 

In this section we look a,t majjs f rom Riemanu surfaces into flag manifolds which 

are adapted to tlie //v-symmetric space structure. 

Definit ion 4.1 Let S be a Riemann surface and let G/T he a flag manifold 

equipped with some G-inva,rian.t metric. Recall that G/T is an in-symmetric space 

with symmetry T of order m at each point of G/T. A conformal im,rnersion 

V' : 5" G/T is called r -adapted i f , for each p G S, the sym.m.etry r^p) m.aps 

dil'p{TpS) into itself hy rotation through 

Note 4.2 Since T : g —> g is an autornorj)hi.sm of order rn it gives rise to the 

folloviing splitting 

gf̂  = yWo ® . . . e M,n-l 

where Mk 'i-s the ^i^-eigen.space (fi - e'^). Because Mo = and g*-̂  = t*-̂  © m^ 

we get for the complexifi.ed tangent bundle of G/T 

T^'iG/T) = [m^] = [Mi\®...® \M„.-i\ 

where [Mi^] denotes the vector bundle over G/T obtained by left, translating Mk-

Hence r-adapted m,ean.s 

# ( ^ • " 5 ) c [Mil 

I.e. 

— ) = M / ; ( — ) . 
dz oz 

Definit ion 4.3 Let K be a closed subgrvup ofG containing T. Then a sm.ooth m.ap 

•il.! : S G/K is equiharmonic if it is harmonic with respect to any G-invariant 
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metric on G/K. 

T h e o r e m 4.4 ( [ B W 2 ] , [B]) Let ^ : S G/T be T-adapted and let K be any 

closed subgroup of G with. T C A' . Denote the na.tural projection hy n : G/T —> 

G/K. Then TTOII) : S G/K is equiharm,onic and in. particular il' is equiharm.onic. 

Corol lary 4.5 The conform.a.l m.a.p V-' i-^ a ha.rm.onic conform.a.l im.m.ersion. and 

hence its image is a minimal ••iurface. 

Definit ion 4.6 Let S he a Riemann surface and let G/T be a flag manifold with 

G-invaria,nt metric. Choo.Hing a set of positive roots for g gives rise to a com.plex 

structure on G/T given by T^ '^G/T ^ E a 6 A + (see Chapter 3.3). Thus S and 

G/T are complex manifolds. A conforrnal immersion ip : S G/T is called r-

primit ive if it is T-adapted and if d'4'(T^'"S) contains a cyclic element, i/' is called 

r-holomorphic if it is r-adapted and holomorphic. 

4.2 Toda equations are the integrability condi­

tion for Toda frames 

Details about Toda frame 

Definit ion 4.7 A local frame 

F -.SDU^G 
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is called a. T o d a frame if there is a. c.om.plex coordinate z : U C a.nd. a. .sm.ooth 
m.ap Q : C/' —>• v't .such that 

F-'aF = d-M + A d ( e x p f i ) . 5 G A^o 0 Mi, 

ivhere B = Jlij y/riijXa^ G Mi. The {ai,...,ai} are a set of sim,ple roots, 

—Q'o - Yj iiijaj is the highest root and { A ' Q . } IS a set of Cartan-Weyl generators. If 

j — 1,....(' the frume is ca.lled an open T o d a frame, if j = 0,...,(' it is called 

an. affine T o d a frame. 

C l a i m 4.8 We ha.ve 

F-'d-S = d,Q + v^e '^^ '^^A'a, 
J 

For the proof of Claim 4.8 we w i l l need the following Lemma. 

L e m m a 4.9 ([He], p. 128) 

Ad(expA' ) = exp(cicL\'). 

In other words the following diagram com.m.utes, wher-e exp : End(g) Aut (g ) is 

given by A ^Y.^,A"\ 

g ^ End(g) 

exp i i exp 

G ^ Au t (g ) 

This follows from th,e natv.rulity of the exponential map. 

P r o o f of C l a i m 4.8: 

First we w i l l show that for A'^ G g ° we have Ad(exp fij.A'^. e^'^'A'a. 
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Since ad(0).A'a = Q(Q)A'a we have ad(n)" .A '„ = Q'(Q)"A"a. Tims 

A d ( e x p f i ) . A „ = exp(ad(r2)) .A„ = y-^ad(i"2)" .A„ 

= l«(a)"A„ = e " ( " 'A„ . 

By liiieaxity i t is now clear that 

Ad(cxp n).B = Ad(cxp v A ^ A ' , , ) = E y ^ A d ( e x p n).X^^ = E y7H7e">("'A,. 

Tlius 

• 

Toda equations are integrability conditions 

C l a i m 4.10 The mtegrability con.d.tt.ions for the Toda fram.e are the Toda equ.a.ti.on.s 

2An + E /n.e'^^ '^^i^a, = 0 where H^ = 

Proof: 

For a, Toda frame we have 

F''d,F = dM + J2 y ^ e « ^ < " ' A - „ , = Ao + A,, A, G M, 

F''d,F = - a , Q - E y ^ ^ e ° ' < " * A _ „ , = / l o + i j , AiGM^, 

Let .4 = F - ' a F and C = p-'d-.F, i.e. d,F = FA and d=F = FC. Taking 

derivatives gives 

d,d,F = d,{FA) = id,F)A + Fd,A = FiCA + d,A) 
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and 

d,d,F = d,{FC) = [d,F)C + Fd,C = F{AC + d,C). 

Now using the integrability condition 

ff'F _ d''F 
dzdz dzdz' 

we get 

F{CA + d,A) = F ( A C - f d,C) 

or 

d,A-d,C = [A,C]. 

Since A = -|- . 4 I and G = .4o + M foi ' the Toda frame F this becomes 

d,{A^ + Ai)- d,{Ao + i i ) = [Ao + - 4 i , i o + -4i] 

= [.4o,-4i] + [Ai,Ai] + [,4i,.4o] € . M _ i ©yWo ® Mi. (*) 

Note that this expression is real and that MQ is abelian, so [.4o,-4o] = 0. 

For tlie MQ \y<\i't we have 

OAQ _ OAQ 

dz dz 

where .4o..4i,.4o-'4i are given by 

[ - 4 i , ^ ] 

^0 = 

Ai = $ : y ^ e " ^ < " ' A „ ^ 

Ao = '-d,n 
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Therefore 

dAo dAo 9^Q^Q_(_o^d^^)=2An 
dz dz 

and 

as [A'a,, A _ o . J = % i ? a , -

Thus 

or 

K(a';-,Q|) 

• 

R e m a r k 4.11 We have seen already in Chapter 2 that the Toda equations may be 

ex]iressed in terms of r/-invariants. 

4.3 ip : S ^ G/T T-holomorphic ^^==^ 3 open Toda 

frame F : U ^ G 

I n or(ier to show the (:orres})onden(:e l)etween r-holoni()ri)hi(: ma,])s and Toda frames 

we wi l l need the following claim. 
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C l a i m 4.12 Let B = Y,[ y/^-^a^ E Mi and let A - Y,{ f j A ' ^ . e Mi he non-
singular, i.e. ttj 7̂  0 V j = 1 , . . . t. Then there exvHts an E 6 t*̂  such that 

A d ( e x p E ) . 5 = A 

Proof: As in the proof of Claim 4.8 we have for any E G t^ 

^ 

Ad(expE). j5 = Y . V^e"'^^\X^^. 

We want to determine E such that Ad(expE). i? — A = J2{ ^jXa., i.e. 

aj = ^e''^^-^ yj = !,...,(: 

or 

av(E) = l o g ^ yj = l , . . . J . 

Since { o ' l , . . . is a basis for (t*-̂ )* this linear system can be solved uniquely 

(w.r . t . the chosen branch of the logarithm) to give the recjuired E. For this E, 

Ad(expE) . i? = A. 

• 

L e m m a 4.13 (c.f. [ B W 2 ] , p.77, and [ B P W ] , p . l 2 6 ) 

'(,/' : S G/T is T-holornorphic iff there exists an open Toda frame F : U ^ G. 

Proof: Let V' '• S —+ G/T be r-holomorphic and let z : U ^ C he a complex 

coordinate on a simply connected open subset U of S. Recall that a frame F : 

U — i C is a, Toda, frame i f there exists a smooth map Q : U ^ it suf:h that 

F-'d-_F = DM + A d ( e x p n ) . 5 G .Mo ® . M i , 
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wliere B = ^ ^TTIJA'Q.^ G MI. We wi l l now construct maps F and Q satisfying 
this relation. 

Let F be any local f raming of -0 : U G/T. Since ^ is r-adapted we have 

F-'d,F = A, + Ai £Mo®Mi. 

We need a map fl such that Ai = Ad{ex\)U).B and, i n general, we w i l l have to 

regauge F in order to achieve this. 

Construction, of Q: 

Since is r-l ioloniorphic, Ai is non-singular excei)t for a finite nimiber of i)oiuts 

( [BW2] , p.70) and varies smoothly w i t h z. Hence we can apply Claim 4.12 wi th 

a unicpe branch of the logarithm on the simply connected domain U (possibly 

reduced to exclude singular points) to find a smooth map E. : U such that 

Ad(expE). i? = .4,. 

We can wri te E as the sum of its real nud imaginary part: 

E = ..\ + n, 

where A = | (E - f -E ) = A is the real and Q = | ( E —E) = —Cl is the imaginary part. 

R.egav.ging F so th.a,t it satisfi.es th.e Toda. fr am.e differential equation: 

Because we need a frame F w i t h Ai = Ad{expQ).B we w i l l now regauge the frame 

F f rom above by cxpy\. Let F = F c x p A . Since A is a map into t we find that 

cxpA G T. Thus V" = TTF = ivF, so F is a local frame for ih. Now 

Ao-hAi = F - ' a F = ( e x p A ) - ^ F - M — e x p A + F - ^ e x p A 
\ dz dz I 
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(exp A) - J {Ao + A , ) exp A -f-
dz 

as Ad{expy\.) acts t r iv ia l l ) ' on the tangent space of t 

O 4 

^ + Ad((expyV)-\) .(Ao + A j ) 

O A 

— + A d ( { e x p ( - A ) ) . ( A o - H A i ) 
oz 

^ + A o + A d ( ( e x p ( - A ) ) . A j , 

so 

. ^ A 
Ac = Ac + — 

(^2 

and 

Ai = A d ( ( c x p ( - A ) ) . A i 

= Ad( (exp( -A) ) .Ad(exp E).B 

= Ad( (exp( -A) ) .Ad(exp(A + 

=̂  Ad(expf2 ) .5 

For simplicity denote the new F by F again. Wc then have 

F-^0,F = Ao + Ai = Ao + A d ( e x p l l ) . B G Mo ® Mi 

w i t h a smooth map Q. . U ^ it (i.e. mapping into the purel j ' imaginarj ' part of 

t^) . So i t only remains to prove that 

Ao = d,n. 

From A J = Ad(expn) . i ? we get 

dUi = [d-M,Ay. 
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On the other hand the integrabihty conditions give (c.f. equation (•)) 

d,A, = [AuAo\. 

Thn.s 

[Ai,d,n + Ao] = 0, 

i.e. + .4o is i n the centrahzer of Ai Vs. 

But the centraUzer of Ai is a Cartan subalgebra orthogonal to Mo- Since d=Q + 

AQ E MO this jdelds d^Q + = 0 or, taking the complex conjugate, 

Ao = -d=n = -dM = d,n 

since Q = —Q. 

Therefore F is the required To da frame. • 

A similar theorem also holds for r -pr imi t ive maps. See [BPW . 

T h e o r e m 4.14 ( [ B P W ] , p . l 2 6 ) 0 : 5 ^ G/T T-prtmiUve <l=> 3 affine Toda 

frame F : U ^ G. 



Chapter 5 

A congruence theorem for 

5 ' C / ( n + l ) / T ^ 

In f,his cliapte'i- wt mill sketcfi tlie pioof of tfi.e conntant curoatwe conyTuence tlte-

orem for T-holonwrphic 5^ m SU{n + 1)/T". It was the first congruence theorem 

ohtdined dnrincj tlie coui se of research, for tins th.esis and it vrdl ser-oe as a motiva­

tion, for ih.e .Huhseqaent (jeneralisa.ti()n.s in cluipters 7 arul. 8. 

5.1 T h e Veronese sequence and congruence the­

orems 

Definit ion 5.1 ( [ B J R W ] p.608) Let (/> : ^ C P " be the holomorphic ernhed-

dmg defined by 

<?([20,2]]) = 0 : 
. n - 1 

54 
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wher'e [zo.^i] € C P ^ = 5^. AlternaUvely, m terms of the fioUnnorphic coordinate 
z = Zo/zy on S'^ ive may write 

m = [1, 
11 

(!) ts called the Veronese embedding. 

Let f/>u,... , f/;„ he th.e Ii.arin.oni.c .sequence of ('p ' (ho- We call (l)o.. •. .'/>„ l^i<-

Veronese sequence. For th.e specific fonn oj th.e o;̂  a:ii.d. nune f'ii:rt]i.er information 

see [BJRW], p.609. 

For the Veronese eml)edding and sequence we have the following Lwo remarkable 

theorems. 

T h e o r e m 5.2 ( [Ri] ) The Veronese ernheddiruj is of constant curvature and, up to 

li.oloni.orpli.tc tsotnetries of CP", is th.e only .Huch. linear ly full holornoiphic curve. 

T h e o r e m 5.3 ( [ B J R W ] p.611) Let <p : ^ C P " be a linearly full conformal 

imnier.HKm. of con.'ita.nt curvatu're. Th.en., up to a. lioloiaoiplm: isorn.et.ry of C P " , 

th.e h.ar rn.onic sequence deterrnined. by (j) is the Veronese sequence. 

5.2 A congruence theorem for r - h o l o m o r p h i c ^ : 

S'^ SU(n + l)/T" 

We wi l l prove tlie following theorem. 

T h e o r e m 5,4 Let ip : S"^ ^ SU{n + 1)/T" be a r-holornorphic map with induced 

metr ic of constant curvature. Tlien //; is comjruerd to the Veronese sequence. 
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As a corollary we. get \\w following corigriierice tlieorem for r-lioloii\orplil(: ]iAai)s of 
constant curvature. 

T h e o r e m 5.5 Let •ii','4' '• S'^ —^ SU(n + l)/T" be r-holomorphic maps with induced 

metrics of constant curva.ture. Then 0 and. yj arc congruent to each otJicr. 

Sketch of P r o o f of T h e o r e m 5.4: 

Tlirongl i the following steps we wi l l see that a r-lioloiuorpliic d- can l)e assigned a 

set of invariants which i n turn determine up to congruence (weak congruence the­

orem). The induced metric of ij: can be expressed as the sum of these -.-invariants, 

and the associated curves 0^ have metric '^j\dzY. Using a factorisation theorem, 

we wi l l then see that i f v/̂  is of constant cui'vature tlien so are tlie However, i f 

the are of constant curval.ure then the 7-invariaiits of •ij; coincide wi th those of 

t l ie Veronese secpieuce. Tlierefore 1/' is congruent to tlie Veronese secjuence by t.lie. 

w(vi,k congTueuce tlieorem which <:ou(:lu(les the i)rof)f. 

T-h.olo'i 11,01 pii.ic •in.aps and. th.evr j-mvartants: 

From Chapt.er 2 and Cha|)t,er 4.3 we have the following corresi)onden(:e 

{y: : S SU{n + l)/T" r-holomorphic} < > {0 : S C P " holomorphic} 

•(/•• Tit/j 

(̂ i'ol • • • l^.i) ^ 0=G>o 

Let V' : S' —> SU{ri + 1)/T" be r-holomorphic. Then, b}- the above correspon­

dence, 'ijj gives rise to a harmonic sequence [/o], • • • , [/«] {'4> = (/o| • • • | / n ) ) - The 

-/-invariants for the harmonic sequence are given by 7p = ^-^ff^- From the defini-
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tion of the liarnionic seciuence we have 

OJ, = / p + i + a i o g | / , | v , 

Ozfp = -'ip-lfp-l 

Thus everj' r-holomorphic t'' '• S'^ SU{n + 1)/T" can be assigned the sot of 

7-invariants: 70 , . . . : 7r,-i-

A vieak corujruence f.h.eorern: 

Let 0, 0 : S'^ —> SU{n + 1)/T" he r-holomorphic maps whose 7-invariants coin­

cide, i.e. 7j = 7j V j. Then T T ^ and iri' arc both holomorphic mtips into C P " 

w i t h 7_i - 7_i = 0 and 70 = 70. Thus, by Theorem 1.15, Tr4' and nd' arc con­

gruent i n C P " and there exists a g 6 SU{n + 1) such that -RV'; = {g]ntl: = ngd-

{[g] 6 PU{a -1-1)). From the above correspondence w'c get -ili - gdi (hf t to r -

holomoi)hic ma])s). Therefore the 7-im'ariants det(>rmiue r-holomo])hic ma])s n\) 

to congruence. 

TJi.e metr ic of ij' and. its associated, crrrves d-j: 

The induced metric of •(!' is ds'^ = Ijldz]'' (see chapter 6.1 w i t h metric coefficients 

kj = 1 and ijj = 7;_i). 

Consider the jjrojectious 

i+i 
TT, : SU(rj+l)/r' -> G',+ ,(C"+\) = SU{n+l)/S{UU+l)xU{n-j)) C P(/\ C"+') 
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given by nj{gT) = [g^ A . . . A f/̂ ] [g = (ryo|.. . |c/„)). 

Let [/o], . • • , [ / « ] be the Frenet frame for ^ - TT^- : S'^ C P " . Let F = 

( ^ 1 • • • ^ ^ ' + 1) ^^'^ = d;n^V+-TT- Then f = cvf G St'(77 1) is 

the Toda l i f t for v/'. 

Therefore the j - t h associated curve 

= TT.-t/; : 5'̂  ^ G,+i (C"+\) = SU[n + 1)/5{L^(.; - M ) x U{n-j)) C P{/\ C"+^) 

is given by 

F = { a r ^ , . . . , a ^ ) ^ [ a J ^ A . . . A a ^ ] = [ f , A . . . A f , ] . 
I/O / n Jo f j 

S'' ^ SU(n + l)/T" 

V'; 

Clami: The metric induced by •d'j is = 7j | f /2p. 

Proof: 

5-(/o A . . . A / , ) - (*)/o A . . . A / j + /o A . . . A / ; _ ! A 

orthog. to plane /oA. . .A/j 

Tlie c:hange of this j)lane orthogonal to the plane /o A . . . A / j is 

l/o A • . . A A ^ l/ol'^ • • • \fj-,W,^A' ^ l / . + i P ^ 
| / o A . . . A / , P W - - - \ f , \ ' \ f j \ ' 

Thus c/*! = jj\dz\'^. Bu t also 

A log l/o A . . . A = A log l/o P • • • \fj\'' = (To - 0) + (71 - To) - f • • • ( t , - 7 J - I ) = T,' • 

Hence ds'j = 7j|c?^p = A log |/o A . . . A /jP|(^.Jp. 
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If ij:- h.as con.'itan.t curvature tlien. tlie (/;_,• }i.(i,ve also con.'it.ant curva,i.ure: 
From above we have 

7 o + . . . -F7„_i = A log I / 0 P + . . . + A log l /oA. . . A / „ _ i | ' = A log |/op • • • | /oA. . .A /„_ , f ' 

/o may be chosen to be a polynomial i n z for i/'' : —> SU{n + I)IT' (both S~ 

and SU{n + l ) / r " are algebraic varieties). 

From 

l / o A / i A - - - A / , P = 1 / O A / ; A - - - A / < ^ ' P 

i t follows that pj : = |/o A / i A - • • A / j p is a real polynomial i n z, z. 

Now let i' : S'^ SU{n + 1)/T" be of constant curvature. Then 

ds' = (70 -H . . . + i'n-, )\dz\' = ^ - _ i _ ^ | , / 3 p . 

W i t h 7j = A log 1/0 A . . . A /^ P = A logp^ we get 

Alog;>o • • •p„_i = 7o - f . . . + 7„_i = = c A l o g ( l + zz). 

Ax)plying the ])rime factorisation argument used in the jjroof of Lemma 7.5, we 

obtain 

Cj 

Consecpiently, tlie associated curves are of constant curvature. 

•(/• is congruent to the Veronese: sequence: 

From above 0 : = Wo : S'^ C P " is of constant curvature. Thus by Theorem 

5.3 the harmonic setjuence determined by </>, i.e. the r-holouiori)hic l i f t I/J of r/i, is 

congruent to tlie Veronese secpieuce. • 



Chapter 6 

Induced metric of r-adapted maps 

and associated curves 

In this chapter- we will compute the induced metric of T-adapted maps 'ih : S G/T 

and th.ei.r- associ.a.ted cur ves. We will tlien intr oduce th.e ii-vn.va,ri.an.ts a.nd •will deri.ve 

differ ent expressions for them. These wer'c needed to e.'itabli.'ih. the relation between 

the different forms of Toda equa.tions (c.f. Cluipter 2.2) a.nd will be crucial in the 

proof of Die constant cur vatur e con,gr~aence theoiern. 

6.1 T h e induced metric hy ^ on S 

Let (•, •) be a G'-invariant inner product on G/T and denote the norm induced by 

( - ) by l - k v r -

Let the complex structure on GjT be given by Tj-^G' /T = Ea€A+ S" where A"^ is 

a choice of positive roots. 

60 
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We w i l l show that the metric induced by r-adapted/holomorpliic 'il.' is gi'^'en by 

( 
ds^ = ^ k.ji^j\dz\^ 

where the rjj are invariants of 'ip to be defined below, and the kj are real constants 

depending on the G-invariant metric on G / T . 

We w i l l compute c/Sp w i t h the help of a local Hft F : U ^ G of tp. In order to do 

this consider the following commutative diagrams. Let p E S be fixed and denote 

left mult ipl icat ion i n G by f. and in G/T by L. 

Then 

G G 

} i n i T T 

SdU ^ G/T G/T 

induces on the tangent 1)undles 

J . C Q 

dF 
i dn 

T'^U • r ^ G / r 

G-invariant. W'C have 

{diid,\p),d(p{d,\p))^^^^ = {dLp(p)-,diid,\p),dLp(p)->d-ip{d,\p))^ 

But f rom the commutatiAe diagram above we get 

dL,^^p)-.dm\p) = dTriF-'dF{d,\p) = dwiF-'O^F) 

or, alternatively, 

di>{d,\p) = dLf^p)dTT{F-^dF{d,\p) = dLF(p)dn[F~^0,F) 



CHAPTER 6. INDUCED METRIC OF T-ADAPTED MAPS 62 

Note that by ccmstruction 

F{pr'd,F{p)eg'' 

For simplicity we wi l l f rom now on omit the particular point ]). so we have 

dil^iO,) = dLFdT^{F-'dF{d,)) = dLfd7r{F-'d,F). 

Since 'ij) is r-adapted we have 

dilj{d,) e [Ml 

Thus 

dTv(F-'0,F)eMu 

so 

Let 

F-'d,F = Ao + A, 

wlioue Ai G Mi- Thus 

dn{F-'d,F) = dTr{Ao + A^) = dn{A,) 

and hence 

di'{d,) = dLt^dTT{F-^d,F) = dLpdi^iAi). 

Denote the projection of .4 G g*^ onto a subspace k by .4*'. 

So 

M = A r + A r + . . . A f 

and 

A t ^ A r +... + A f \ A f ^ A r 
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wdiere Af G T^G/T and Af G TyC/T. 

A similar calculation gives 

dtPid.) = dLFdTv{F-'d=F) = dLpdniAi), 

and spl i t t ing 

A,=Ar"+Ar'+...Ar' 

into 1,0-part and 0, l - i )ar t gives 

Af = Af"' G T^G/T and Af = Af"' +... + Af"' G T^G/T. 

E x a m p l e 6.1 For the SU{n+l)/T" ease we ha.ve 

Ai = 

( 
0 

\ 
•k u 

\ 

0 0 

0 0 •k 

\ •k "J V 
.HO th.a.t 

Af" = 

/ 
0 

\ 
•k [o 

0 -k 0 

0 0 

V "J \ 0 
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Af = 

0 

Af" = 

(o \ 

0 

Af" = 

u 

Af" = 

0 

Af" = 

0 

Af" = 

[ 

and 

Af" = 

0 
\ 

0 

0 

V 

Definit ion 6.2 Let 0 : 5 G/T be T-adapted. Let { A ' ^ ^ } he a set of Ca.rta.n-

Weyl gener-ators. With, tlie no1.a.i.i.on. as above let 

| A - a , l l v T % : = l ^ f J = 0 , . . . , £ . 

The rij are ca//e(///-invariants of ip. 

We wi l l see in section G.2 that the / / j are indeed invariants ordy de])en(ling on the 

choice of Cart.an-WVyl geueral;ors. 

L e m m a 6.3 Let u: : S —̂  G/T be T-ada.pted./holornorph.ic. Then the m.d.uctd 

metric on. S is given, by 

ds' = E kpy\dz\' 

where kj = j A ' ^ . J ^ / ^ = ( A a , , A ' „ J V j . 
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Proof: 

We have 

\dm)'%/T = \dLj.d7r(F-'d,Fy'%/-r 

= \dLpd7r{Af)\l^.:r 

— \d7T(Af as the metric is G'-invariant 

— I ^ I ^ I G / T identifying m*-̂  w i t h ToG/T via dn 

= + . . . + . 4 r S / r 

= \Ar\l/r + --- + \Af'\l/r Lemma B. 13 

= kiiii 4-. - . + kti/c 

and 

\dmy%fT - \dLfdn(F-'o,Fy-%T 

= dLfdn{Af)\l^T 

= m A f } \ i / T 

— G/T 

= | .4f ° l ^ . / j , as complex conjugation preserves lengths 

= :̂o'/o-

Therefore, using the usual identification of TiG/T) w i t h T^'^G/T, the induced 

metric is giA-en by ds"^ = J2j />j'/i|t^-^P- Also since d4'{d,) ± dd^{di) we see that ib is 

conformal. Also note that the kj G R"*" depend on the choice of C-invariant metric 

but tlie '//j do not, see Corollary 6.9. • 
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Corol lary 6.4 Th.e Kdhler angle 8 is given by 

2 ^ '̂11'/O 
tan - = 2 E ; = I A : , , / / 

R e m a r k 6.5 If 4' r-holomorphic we have \d.d-{d-f-^\Qij- = (f/i!Xc'=)' " | ^ / j - = 0., 

so A;o'//o = 0. Thus ds^ = Yl!j=i k.jr].j\dz\- for T-holomorphic •li). 

6.2 T h e r;-invariants 

L e m m a 6.6 The ri-mvuriants are left invariant by left translation, i.e. if 4' = g'i' 

for- g E G .t.}i.en rjj = rjj V j = 0 , . . . , ('. 

Proof: 

Let -d' = g-il'. Then i f F is a Tbda l i f t for </•, F = gF is a Toda frame for t/'- Then 

F~^d.F — F^^d.F and hence Ao - Ao and Ay = Ay (terminology as in section 

6 . 1 ) . Since the Cartan-Weyl generators remain unchanged we see f rom definition 

6.2 that / / j = rij for a l U ; = 0 , . . . , L 

L e m m a 6.7 (c.f. [ B W l ] ) For a// j = 0 , . . . , C is Hj : = / / j i f / ; j ' ^ a globally defined 

2-forrii.. 

L e m m a 6.8 For- T-prirnitive / T-h.ol.om.orphic d) the ri-i.nva.r-i.ants may he expr essed 

as 

7/j =m,e'"^<"^ yj = o/i,...,e. 

Proof: Let F he a Toda frame and (./• be r-primiti^'e / r-holomorphic. Th(>u 

A f = y m 7 e " ^ ' " ' A - , , , 
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so 

and lienc( 

• 

Corol lary 6.9 Th.e i/-invar iants aie independent of the particular choice of G-

inva.riant metric on G/T. 

6.3 Induced metrics of associated curves. 

For details a1)Out fundamental representations see [FH]. 

Let Pj be the maximal jjarabohc subgrouj) wi th maximal i)arabolic sul)algebra 

determined by 5 = { o i , . . . , a j _ i , O j + i , . . . , cif} (c.f. chapter 3). Let 'ijjj : S —> 

G^/Pj = G/Hj be the j - t h associated curve given by 

S G/T 

•>h \ i P'-j 

G/H, 
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I f F is a. Toda, fi'aiLie for 0 then we have 

G 

S D U G/Hj 

L e m m a 6.10 Th.e metric u,nd KdJder a.ngle induced by a,re given, by 

ds] = {hr^o + k,ni)\dz\' t W | = ^ . 
2 kpij 

For T-holomorphic (/' we obtain ds'j = kji]j\dzf. 

Proof: 

Similarly to the calculation in section 6.1, we find 

(%((},) = dLpdix^iF-'O-S) = dLpdn,{Ai) 

and 

dt/'jids) = dLfd7r^{F-'diF) = dLrdn^iAi). 

Now I • [G/HJ is given by restricting | • \G/T T{G/Hj). Therefore 

\diPj(0.y'%/T = \d^jiAt)\'a/T = \Af\l/T = h>u 

and 

d'pj{dzf''^\G/T — \dT^j{A^ ) I G / T = I G / T = l - ^ i I G / T — M l I G / T = '̂o'/o 

whicli ])r()ves the assertion. • 
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L e m m a 6.11 For- j = 1 . . . . . /' lei Vj J)H iJia j-tli. jun.dd.me.'ii.id.l vt-qyitHenlMtuni sjxic.f-: 
and let | • |\A be a Hermitian metric on Vj. If IJJ IS T-holomorphic, there exist 
Iiolomorplnc junctions Fj : V G S \'j such th.at 

rij = A\o^\Fj\ly 

Furthermore, the Fj may be chosen so that pj{z,z) := \Fj\y. is a polynomial in 

Proof: Lei; vj he {,he lowest weight vector i u Vj. Tlie orbit, of the vj is given 

•>h • G ^ V} \ { 0 } , F ^ F.vy 

Let ij : GjHj ^ P { V } ) 1)e the embedding given by the lowest weight vector in 

Vj G V}. Define 

'6,:S^V{Vj), i ' j ^ i j ^ j , 

so that locciUy 'ipj = [Fvj]. The following diagram commutes 

G ^ VA{0} 

SDU ^ G/Hj ^ P (V}) 

Finally let { A j } be the fundamental weights given by Aj(i7a^.) = Sj/^ and define 

F^ : = c-^^(">f v;, : U ^ V^, F,(z) = c-^^<"'^»F(c)v;,. 

Claim: Fj is holomorphic for r-holomorphic 0. 

Proof: Wc w i l l show d^F^ = U. 

0=Fv, = FF-'0,Fvj 



CHAPTER 6. INDUCED METRIC OF T-ADAPTED MAPS 70 

= F(Ao + A,)vj 

— FAoVj + FAyVj 

= F{-X,(Ao)v^) + FArv, 

= -Xj(Ao)Fvj + FAf''°vj 

note that Af vj = 0 for al l A; = 1 , . . . , (' since Vj is the lowest weight vector 

—Xj{Ai))Fvj for r-holomorphic -tlj 

Assume now that F is a Toda frame. Then An = dM, so An = —d=Q. 

Thus 

= d,e-''^''^Fv, + e-''^^d,Fv, 

= - a , A , ( 0 ) e - ^ ' ( " ' F . , + e-^^(" ' (-A,(Ao)Fv; , + FAr'v,) 

= -aA,(r!)e-^^<">Ft. ' , + e-^^<"'(-A,(-£».=n)Fi; , + Flf'^'v,) 

- - 5 , A , ( f 2 ) e - ^ ^ ' " ' F i ; , + e-'^^^'Hd.X^mFvj + FAf^^v^) 

~ 0 for r-liolomori)hi(; yj 

Thus Fj is holomorphic. 

Next note that P ( V j ) and 5 arc projective varieties, so [Fj] may be expressed in 

tcrruis of polynoiiiials. Hence tliere exists a ])olynoniial Jij : U —> C such tliat 

^j\Fv \y, Ivj polynomial i n z, z, so define Fj := Fjjprjj^- Thus 

Fv^ 

Fv^lvj 
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and bene 

- 2 A , ( Q ) = l o g i F , | ? . - l o g | / i , r 

Tlieie.f<)r< 

- 2 A A , ( f ^ ) = A l o g l F , ! ^ . - A l o g | / i , p 

= A log |Fj|v- as A log | / ip = 0 for holomorphic /;.. 

The j)Ositive simple roots are relat.ed w i t h the fundamental weights via the Cartau 

mat r ix K 

a, = J2 = E ^"^'ij'• 

Expresssed as matr ix ecpiation we have 

Now f rom the Toda. ecjiuitions we have 

A2a,( f2) + mje^^'^-^K^j = 0, / - L . . . , 

and hence (//^ = /n.ye-''"'̂ *"') 

A2am =-Y^'h^^'v ' = l , - . - , f . 

Applying the inverse of the Gartau matr ix now gives 

-'U = Y.^^^'^m - 2A ( E A' ,^ 'av( i i ) ) = 2AX,m. 

Tims 

;/, = - 2 A A , ( f ] ) = A l o g | i ^ | ^ ^ . 

• 



Chapter 7 

Congruence theorems for in 

G/T 

In this chapter we will prove tlie constant curvature congruence theorem for T-

holomorphic in GjT. At fir st we will prove a weak congruence theorem, namely 

thai the i]-invariants determine r-adapted maps up to congruence. Then vie viill 

investigaie th,e case wh.en all assoctaied curves ti-j of a T-holonwrphic map i./; : 

S' GfT are of constant curvature themselves. Next, usmg a prime factorisation 

argument, we will prove that -d' heing of con.^tant cur^vatur e implies that the 'ipj ar e 

of constant curvaiure as well. This tlien results in th.e constant cvrvatwe th.eor ern. 

Finally we mil pr ove a (jener al congr uence tfieor em (witliout the constant cur vatur e 

condition hut an additional assumption on the metr ic) for- r-holomorpIt.ic S~ in 

G/T wliere G lias rank two. 

72 
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7.1 A weak congruence theorem 

T h e o r e m 7.1 (Weak coiigruence theorem) Let G be a compact simple Lie 

group and, T its maxim.al torus. Let (/', </'' : S —> G'/T be T-adapted m.aps. Then •ib 

and i> are congruent by an isometry A £ G, tp = Atp i f f their i]-invariants coincide, 

m = nk v^;. 

Proof: Let TX : G GfT be the canonical projection. 

Locally 0 and i/ ' have Toda frames F, F : U G satisfying 

F~^d,F = d,n + e^Be-^ 

and 

F~^d,F = d,n + e''Be-^. 

where : U it are smooth maps and B = ^ymjXa^. 

However, since the /^-invariants coincide, i t follows that 17 = 1]. Thus 

F-'d,F = d,n + e"i?e-" = 3 ,0 + e^Se"^ = F-%F. 

Claim: F = AF w i t h .4 G G constant. 

Proof: Let .4 - FF~^. We need to show that A is constant, i.e. d,A = 5= .4 = 0. 

Using F-'d,F = F-'d,F we get 

d,{FF~') = {d,F)F-'+ FdAF-') 

= {d,F)F-^ + Fi-F-\d,F)F-^) 

= id,F)F-' - FF-Hd,F)F-' 
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= (d,F)F-' - {d,F)F-' 

However, since F and F are bo th real, i t also follows that 

d,{FF-') = 0. 

Hence A is constant. 

I t now follows that F = AF and hence locally 'tp = Au> w i t h A dependent on the 

open set U: A = An- However, whenever two open sets [/' and I ' ' overlap, then 

Au = Ay. Hence ^ = Atp globally w i t h A - const. 

7.2 Calculations for constant curvature ij^j 

The following Lemma shows that there is only one possiliihty for all 0^ to Ije of 

constant cur^'aturc. 

L e m m a 7.2 Let tlie -tjjj he tlie maps induced hy the fundamental representations. 

Suppose they all have constant curvature, i.e. //j = with rj constant. 

Th.en i-j = cj Vj wher e tlie Cj G N are given hy 

( \ 

= / t - ' 
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Proof: Let ry = j ^ : ^ V j . From Claim 2.-3 we know that the Toda equations 

may be wr i t ten as 

^ A log ?/i ^ 

A log r]( 

where K is the Cartan matr ix . 

= - A ' 

^1 

Thus 

I.e. 

Alogr/,- = - 2 a , 5 = l o g ( l + 2 2 ) 

= - 2 a -

= - 9 

1 + 2 2 

1 

- 2 

( \ 

= -K 

C l 

Therefore rj — Cj \ f j . • 

Coro l lary 7.3 / n the above case the metric induced by 0 is ds'^ = -ij^^\dz\^ with 

c = E A - C j where kj = | A ' o . ( ^ . 
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7.3 Irreducible polynomials 

To prove the congruence theorem for 5^ we w i l l need the following Lemma about 

irreducible p olynomials. 

L e m m a 7.4 Let ( 7 i , . . . , ( T „ , r i , . . . , r„ he polynomials in z, z .HUCJI that 

! = ] 

and gcd{ai, r , ) = 1 for all i and ^cf/(r, , r , ) = 1 for all i / j. Then a; = 0 for all 

i = 1. ..., n. 

Proof: We w i l l prove the lemma by induction. For n = 1 the assertion is clear. 

Let now the assertion be true for //,. We want to show that this is also the c;ase for 

n + 1. Let 

Ef = o-
i=l 

Then 

and hence 

Tl ti 
i = l i = l i / j 

Therefore T„^I divides CT„^I I l I L i ^i- However, neither (7„+i nor r ^ , . . . . r„ have com­

mon fact{)rs w i t h r„^. j . Thus a^+i = 0 and hence f7, = 0 for all i = 1,... ,n + I as 

the asserticm is true for • 
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7.4 Computing the 77-invariants of ijj 

The next Lemma shows that i f -ip has constant curvature then all -ipj indui:ed Ijy 

the fundamental rei)resentati()ns have constant, curvature. 

L e m m a 7.5 If the induced metric is of constant curvature ds^ = then 

(1 + 2 2 ) 2 

where tlie Cj G N are given by 

( \ 
Cl 

= K . - -1 

Proof: Recall that the metric is given in terms of the //-invariants l)y 

ds^ ' ^ kjr\j\dz\^ 

w i t h kj — |A'u^ p. The kj depend on the choice of G'-invariant metric on G/T. We 

w i l l show r]j = ^i_l^i^y2 

Recall IIj = A log jF j l , , - . = Alogpj where pj is a real polynomial i n 2 , 2 . Let 

Pj{z. z) = (1 + 2 2 ) ' ^ - ' y j where ipj is a polynomial that has no common factors w i th 

1 + 2 2 . Then 

•'h = A ^ogp, = A log( 1 + 22) ' -^ + A log ipj = + A log ipj 
i + 2 2 ^ 

Since 0 is of constant curvature we have 

Y k j r i j \ d z f - d s ^ = — ^ \ d z \ \ 
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Thus 

Let 7 r i , . . . , 7 r A r be the prime factors of H j ^ i ' / ' j - Then = n\'^ • • • ̂ v'^ '^^'ith 

T j , G Nu, so 

A log = 0/ 2 • 
»=1 

Hence 

Since T T J A T T ; — d^irid^TVi and 7rf are coprime i t follows by Lemma 7.4 that 

However, al l kj are sl;rictly positive, hence al l •/ j , have to be zero. Thus <fj = dj G R 

and pj = + z i y j . I t follows also f rom Lemma 7.4 that J^j kjCj = c. 

For tlie //-invariants we finally get 

rij - A l o g ^ , = A l o g ( l + zzr^ +Alogdi = '2 ~^r 
(1 -h zzy 

• 

7.5 The constant curvature congruence theorem 

T h e o r e m 7.6 Let G he a. compact simple Lie group and T its maxima/ torus. Let 

'tp,'4> : 5 ' G/T he T-holomorphic maps of constant curvature with same induced 

metric. Then %' and •ip arc congruent hy a holom.orphic isom.etry g G G, W = g'lb. 
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Proof: Let i/s ^ '• 5^ —> G/T be of constant curvature. By Lemma 7.5 the 

respective //-invariants are 

(l + z-zy 

and 

(1 + 2 2 ) 2 

for all j = 1 , . . . , f. Thus 7/j = 7/j V j . By Theorem 7.1 i/.' and -ih are congruent. • 

E x a m p l e 7.7 For s'u{t + 1) the curvature constants are as follows. The inverse 

of the cartan matrix is given by ([OV], p. 295) 

. - -1 
i + 1 

i{f. + l - j ) : i < j 

i f , + l - i ) j : i > j . 

Using the formula in Lemma 7.2 the constant curvaiure constants c,-. i = 1, 

may be computed as c; = J2j KTj^'^ — 2Z) j ̂ Tj^ '• 

' i - i 
2 _ 

1 

9 / ' - I 

« + \ i = l j=i I 

?:(f + i - 0 
/' + 1 

7:(/' + i - i ) . 

( • / ; - i + /;' + 2 - / ) 
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Thus 
/ \ 

C2 

Q - 1 ( £ - 1 ) 2 

J 
The con.'itant c is given as c = Ylj^'j^j- Clioose a G-invariant metric sacli that 

kj = 1 /(;/• ullj. Then 

6 6 

Note that the curvature of a r-holomorphic constant curA'ature 5^ is strictly posi-

l;ive. I t is given by 

Jv = 
k\Ci -\-... kfCc 

7.6 A general congruence theorem for rank 2 Lie 

groups 

Recall rij = A log \Fj\y. = Alogpj where pj is a real poljmomial i n z, z. Then 

•<lj = Alogp^-

Let T T i , . . . , 7i!\T be the normalised prime factors of H j ^ j Pj- Thenp j = Ujir^ 

w i t h rjk G No, aj G R. 
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For a general trougrueuce theorem we need to l)e able to iletermiue the / j),. f rom 
the prime factors of ds"^. 

Let KJ : = {k \ r^k / 0} C { 1 , . . . , / \ ^ } , so 

p, = a, n 

So we get for the //-invariants 

Vj = ^ l o g i ' i = E rj/tAlogTTt = E T 

or, alternatively, 

= E u~T^^ • 

Define 

• = E ''ji^ ( ^ ^'•^ ~ 0-z TTk) n 
Then, for al l // G Kj, Qj and T T , , are coprime, {qj. T T , , ) = 1, and 

< . ( E 2 d e g 7 r „ ) - 2 . 

Also 

'h = 

So 

A log i / j = A log qj - E 2 A log 7r„ 

or changing the index 

A log //, = A log qi - E 2 A log 7r„. 
riGA, 
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From the Toda ecjuations we also have 

A log?/,- = - ^ 

or 
/ A log 7/1 

A log i]c 

= -K 

( \ 

Hence 

A log (ji - ^ 2 A log 7r„ = A log ?/,• =-J^ I'^ij E O'^'^ 

SO 

A log q, = ^ 2A log ^ n - ^ Y l ^>jrji.A log T T , 

"6A', j=l heKj 

( N 

= E 2 A log T T , , - ^ ^ A;-,- A log 
k&Ki j=l 

.V f 

= E 2A log T T , - ^ ^ A;yr,i. A log T T ^ . 

= E ( 2 - E ^ ^ u ' > ) A l o g 7 r , - f ^ (-5] A V > ) A l o g 7 r , . 
<-eA'i j = i /-eA-f^ j=^ 

Thus 

n „ 6 A - . A l o g , , = A l o g — 
l l i = i Ihehj T^k 

On the other hand we know that (/; has no common factors w i th O/teA, ''"A- Thus 

for a suitable holouiorphic funct ion gi 

and hence 

Alogf / , = E -̂ iA AlogTri.. 
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Comi)aring this w i t h the last sum expression for log (/, above we get 

E sa-A log = E (2 - E ^ ' u ^ i f c ) ^ log TTt + E (- E ^iJ^'jf')^ 
keKi- keKi j=\ i-eA7 j=\ 

or 

E (2 - E ^ ' u ' - j ' t ) A log TT;̂ . + E i-^ik - E log TT;̂ . = 0. 

keKi i = 5 A-eA-f i = i 

Therefore for a l l / = 1 , . . . , / ' 

2 - E Kijrju = 0 VA; G A',- and s;̂ . = - E ^ ' i i ^ i - t VÂ  G A7. (̂ ) 

From the first equation i t follows that i f aU pi have the same prime factors, i.e. i f 

Ki = { 1 , . . . , A^} V/ = then the y,i. are uniquely determined and given via 

the Cart.an mat r ix as follows. 

For all A- G f l L i 1^^ '̂̂  

V 2 / 

r\k 

= K 

I.e. 
/ \ 

T\k 

= />:-> 

\ 2 / 

So i f al l Pi have the same prime factors (c.f. Theorem 7.G) this would give a general 

congruence theorem. HoweA'er, in general the pi have different j^rime factors as can 

1)e seen in Example A.2. 
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The rank 2 case 

T h e o r e m 7.8 Let G he a compact .maple Lie gr oup of r ank two and T its maximal 

torus. Let 0, 0 : 5^ —> G/T he T-holomorphic m.aps with, same induced metric. If 

ki := l A ' u j p ^ l-^asl"^ = • ^'2 w.r.t. the G-mvanant metric on G/T then •ip and p 

are congruent hy an isornetry g G G, i / ' = gi^-

Proof: 

1. Simplif icat ion of (•) 

For the rank two case we can simplify the above equations [•*:) as foUows. We have 

{ 1 , . . . , A^} = A"^ U (/M n A'2) U Kl 

Therefore 2 — Kip'jk = 0 VA; G A',- becomes two sets of equations. For both 

/' we have 

2 - (A7i 7 u- + K^r2k) - 0 VA: G A ' l n A-2 

as Ijefore. However, {-k) simplifies for / = 1 to 

2 - A - i , / u . = 0 VA;GA-^ 

and for /' = 2 to 

2 - A'227-2A: = 0 VA; G A7. 

Also Sik = - E j = ] I'^rp'jk VA- G A7 becomes 

.su- = -Kvi'i -ik V/; G A7 
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and 

Since A ' l ] = /v22 = 2 we get 

r^f^ = 1 VA: € A'2 aud r^^ = 1 VA; € K'-

For A; E A ' l H A"2 however we find 

A']] A i2 ( ^. \ 

so 
/ \ / 

I<n A12 

y I'-ik J y A21 A22 y V - / 

or 

1 
det A ' 

A'22 - A ' l 

- A " 2 i A 'n I 
4 - A'i2A'2i 

4 - 2A 12 

4 - 2A'v 

VA; e A , n A 2 . 

21 y 

In particular / jA. = Vj^., V A:, A:' G A ' l f l A ' 2 . 

Note that al l constants Vji^ for A: = 1,...,N are uniquely determined b}" A ' l and 

A ' 2 . 

The above ex])ressi{m for t;he ŷ .̂ yields for the A-coustanl;s 

.s'u- = — A ' i 2 VA; e K'{ aud .ŝ d- = —A'21 VA; G A'.^. 

Therefore 

A log (/I = - A ' i 2 ^ H ^ * ^ ^ A log (/2 = - A ' 2 1 X] ^ l^K^- t -
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2. Metr i c calculations 

The. uieLiic i u t;he rauk 2 case is giveu l)}' 

ds^ = {ki'>]i + k2ii2)\dz\'^. 

Therefore i f tlie two r-holomorphic curves i \ •ip have the same metric wc have 

Now 
A' 

Vj = Yl '>Alog7ri. = r j tAlogTTt 
/(•eAj- k=\ 

so rising Lemma 7.4 we get 

h i ik + hr-ik = h'l-ik + hhk VA: = 1,..., A". 

Define K, : = | ^ ^ 1 by assumption. Then 

•' u- + K'l'-ik = •'"•ifc + Kr-zk VA; = 1 , . . . , N. 

Summing u]) gives 

A' 

E l + E , , - ( 4 - 2 A - I 2 + K ( 4 - 2 A - 2 I ) ) + E 

^ i r - n r- , 4 - 2A-i2 + K ( 4 - 2/v2i) , 

4 - A ] 2 i V 2 1 

Setting Ni — [ A ' ^ j , N-i — \K\ H A ' 2 j ; and N-i = | A ' [ | we get 

, ^ 4 - 2A'i2 + A-(4 - 2A21) 

^ 4 - A12A2] 
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Note that 

|A'^| + I A-, n A'2| + |A-[ | = N, + + N, = N. 

A siiuilar coini)utation for the // gives 

4 - R\oK 12-f»-21 

Thus 

4 - A' l 9 A 12-'V21 4 - A', 9 A 12-'»^21 

Now A'3 = A' - A' l - A'2 and A'3 = A' - A'l - A'2. So 

4 - A 1 2 A 2 1 

i.e. 

4 - A 1 2 A 2 1 4 - A 1 2 A 2 1 

We w i l l now show A', = A", and A', = A', which then gives the congruence theorem. 

3. Calculat ions for specific L i e groups 

We w i l l conclude the proof for the Lie group G2 (the calculations for 5^7(3) aud 

5 0 ( 5 ) are completely analogous). 

The Cartan mat r ix for G2 is given by 

A' 

- 3 2 
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Thus 

y-u. = 1 V^- e iq and = 1 "ik £ A ^ 

and for k € A ' j f l A ' 2 we have 

/ u- = G and • 10 VA; G A ' l f l A ' 2 . 

For t.he .s-cousl.ant,s we have 

= l \ / k e A7 and .',2 .̂ = 3 VA,- G A ' ^ , 

so 

^logqi= Y ^ l o g T T t and A log ^2 = 3 Y ^ H ^ r t -
kei<'{ keKr; 

The metric equations are, as before, 

•' u- + '^•'•2^ = rik + K.r2fc VA; = 1 , . . . , A' 

and their sum yields 

A'1 (1 - K ) + A'2(6 + 9K) = A'l (1 - K ) + A ;̂ (6 + 9K). 

The metric equations give for a l l k £ A ' l f l A ' 2 

6 + K.IO = Vik + A.''2A:. 

However, i f /,: ^ A ' l f l A'2 then vn. + K7'2^ eciuals 1 or K, deiiending on whether 

/,• e K2 or A: G A ' l which results i n a contradiction. Therefore A: £ A ' j D A'2 imphes 

A; 6 A ' l n A ' 2 , so l)y symmetry 

A ' l n A'2 = A ' l n A ' 2 . 

I t follows that A'2 = A'2 and A'l = A'l . 
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Now 

1 = f'lk + K.f2k ecjuals \ ov K depending on whether A; G A'2 or A; G A'[ . 

Again we get 

i q ^ i q and A'[ = A ' [ . 

and hence 

A'l = A' l and A'2 = A'2 

Therefore 

'Ij = Yl 'Vi-^logTrA,. = J2 '-jkAloiyTri, = J2 'V-AlogTr^t. = Vj J = 1,2 
k€Kj k^kj 

as the Vji,. are uniquely determined by A ' l , A'2. Thus 0 and 1/' arc congruent t̂ y the 

weak congruence theorem. • 

R e m a r k 7.9 It might be mterestmg to investigate the folloivmg. Let -tp-, i' be r -

fiolomorphtc vri-th .same indueed metric. If the { A i , . . . , A;;} are symmetric m the 

sense of ki = A;,_|.i_, V/, does tJi.ere exist an. isometry g .•iueli. tliat eitlter 

• V; = gW or 

• -d' = (/'l' or 

Also, if the [ki,..., Ay} are not symmetric, is then •d' = yd! for some isometry g? 



Chapter 8 

Characterisation of isometric 

r-primitive maps t/̂  : ^ G / T 

with constant Kahler angle 

In this chapteT we give a collection of congruence theorems for isometric t -primitive 

m,aps (/' : —> G/T with constant Kdhler angle for different Lie groups. Although 

it was not possible within the scope of this thesis to prove the most general version 

of this theorem, for all Lie groups G, the approach for each Lie group is illustra,ted 

quite explicitly, so that it might he possible to solve the problem for all Lie groups 

m the future. The essential idea is to use the Toda equations and the expressions 

for metric and Kdhler angle to find and solve polynomial equations for the g-

mvanants. 

90 
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8.1 General calculations 

Give the standard flat metric and f ix a coordinate system z on R'^ such that 

ds^ = ds'^ = c\dz^ ( C G R - ^ ) . 

C l a i m 8 . 1 Let 'W : R'*^ —+ G/T be an isometric r-prtmitive map with con.stant 

Kdhler angle. Then r|^, is consta.nt. 

Proof: Let ds^ = c\dz\^ as above and tan^ | = (/ G R . 

Then 

Y ^Ph = c -

and f rom Corollary 6.4 we also have 

2 ^ ^o '/o tan - -
2 E5=IA:,»// 

Therefore 

^ _ A;o //u 
c — A:o//o 

or 

cd. 
koVn = d{c - A;o7/n) 4==» '//o 

A;o ( l+ f / ) 

Hence //o is constant. • 

C l a i m 8 . 2 

A\ogY[ifr = o 

Proof: From the Toda eciuations we have 

( 
A log//; = - E ^ ' O ' / ; 
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and f rom the singularity of the extended Cartan matr ix A' we have 

( 

Y rrnKij = 0 

f rom Claim B.8. Thus 

f ( 
^ l o g l J ' / r = 5]m,Alog/y, 

( ( 

i=0 j=0 

= - E o - % = o. 

• 

Definit ion 8.3 A function, li sati.'ifyi.ng A//. > 0 in a domain, D is called sub-

harmonic . If All < 0 so that —li IS .subliaunonic, h. is ca//et/superharuionic. 

T h e o r e m 8.4 (Liouvi l le 's T h e o r e m , [ P W ] , p.130) If liis subharmonic m the 

whole x, y-plane except pos.yibly at the or igin and if h, is unifoiinly bounded above, 

th.en h is con.'ita.nt. 

C l a i m 8.5 Let h : R^ —> R be bounded and Ah = constant. Then h is constant. 

Proof: This is a direct consequence of Liouville's Theorem. Let c = A//., c G R . 

I f e < 0 the //, is subharmonic and Theorem 8.4 yields that //, is constant. I f c > 0 

then // is superharmonic, so Theorem 8.4 applied to —//. gives that —//. and thus h 
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is constant. • 

C l a i m 8,6 If all i]-invariants of an isometric r-primitive map 4' '• R'^ ~^ G/T are 

constant then (y/o, • . . , '///:) %s a multiple of n, where KerA' = span{n}. 

Proof: Let the //-invariants be constant. Then A log //, — 0 for aU / = 0 , . . . , t. 

Thus 

A log 7/0 
( \ 

= - A " 

i.e. ( / /o , . . . , //f) G KerA' . Now d im KerA' = 1 since rank A' 

proof. • 

t which finishes the 

E x a m p l e 8.7 For G = SUi^n + 1) we have ii = ( 1 , . . . , 1) and KerA' = span{ii}. 

Coro l lary 8.8 If all q-invariants of an isometric T-prirnitive map p • R^ 

(lie constant th.en v) has constant Kdhler angle 0 given by 

., 0 koiiQ 

G/T 

tan ' 
2 E - = i ^ j n / 

u)here n = [no,..., ri() spans KerA' . 

Proof: 

This is a direct consequence of Corollary G.4 in conjuction wi th Claim S.G. • 

R e m a r k 8.9 Tins corollary will be used implicitly m tJie proofs of ilie con.gruev.ct 

theorems of this chapter as folloivs. 
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Let V', V' be isometric T-primitive maps with constant Kdhler angles given by tau^ | = 
d G R and tan^ | = G R. T/ie constant curvature and Kdhler angle conditions 
im.ply that all ij-mvariants are constant. Thus d = tan^ | = tan'^ f — ^ conse­
quently 7/0 = '/}o (c.f. Claim. 8.1) xohich then implies ijj = f j j V j . 

8.2 The rank two case 

T h e o r e m 8.10 Let G be a compact simple Lie group of rank two and T its max­

imal torus. Let ^', '0 : R^ —̂  G/T be isometric r-primitive maps with constant 

Kdhler angle. Then -ip and i / ' are congruent by an isometry g G G, 4' = 94'-

Proof: We w i l l show that constant curvatme metric and constant Kiihler an­

gle determine the ;/-invariant,s of a r -pr imi t ive map completely. Thus the weak 

congruence theorem (Theorem 7.1) gives the reciuired result. 

Let. ds^ = c\dz\^ and tan^ f = G R. Then 

k^•n^ + k2'ih = c - A;o/7o where 7/n = . / f ' ... 
ko(L -\- a) 

Thus 

, cd c 
kiVi + k-im = c l-\-d \ + d' 

Claim 8.2 gives A log//q '" //"'^//™' = 0. From this, and the fact that //o is constant, 

we get A log 7/™'//2"' = 0. From Claim 8.5 i t now follows that 

/ / r ' / r = « e R . 

However 
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which means t l ia t //2 satisfies the following polynomial equation 

By continuity //2 is constant, so / / i is constant as well. From Claim 8.C i(- follows 

that (//u, ' / i , 7/2) is a multiple of n. Since 7/0 = i t follows that (7/0,7/1, 7/2) is 

imi(iuely determined, so we can ai)i)ly the weak congruence theorem anil reach the 

desired result. • 

8.3 Congruence theorem for the SU{n + l)-case 

In this section we w i l l prove a constant curvature and Kahler angle congruenc;e 

theorem for SU{A) and SU{o) under the ridcHtonal assumption that kj = 1 V j . 

As far as possible the proof is done for general SU{ii + 1) and we hop(! that tlu^se 

l)arts might l)e useful i u a future attemi)t to juove the general SU{n. + l)-case. 

Initial calculations 

Let G/T he ecpiipped w i t h a G-invariaut metric such that kj = 1 for all j. I f -ip is 

of constant curvature and Kahler angle we know 7/0 = C07/.ŝ  and Yl" Vk = c — >h = 

const. 

From //o — const and the Toda equation 

0 = A log 7/0 = -27/0 + ' / I + <ln 
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we get 

?/i + i]n = 27/0 = con.st. 

We want to show that 7/1//„ = co//,.s/ to tle(hu;e that 7/1 and //„ are constant. This 

woidd then imply that a l l //̂ . aie const^mt. 

Let 7/ = 2m - 1 or = 2in and let H{ri,.. .,/•,„) : = UT^ii'lkiln+i-kY'• ^^-^^ liHA'e to 

f ind real constants / ' i , . . . , 7 „ , such that A log H = const. From this we can then de­

duce that H is constant, and i f this woidd be t.he case for / i ^ 0 and 7-2; • • •, 7',„ — 0 . 

we would get A log 7/1//,, = const^ and hence 7/1//,, — con.st as required. 

m 

A\ogH(r,....,r„,) = A log J] ta.+i-/)^* 
k=i 

m 

k=i 
rn 

= E ^^l'•{iVk-^ - + + [Vn-k - 2// , , + , -A- -f- 7 / „ + 2 - i ( - ) } 
k=\ 
in 

= E 'l^UVk-l + Vu+-2-k) - 2 ( 7 / i + Vn+l-k) + i'lk+l + Vn-k)} 
k-1 
711 

= E ' ' /-{( '/^^-l + ' / d - H - ( / , - ! ) ) - 2(7/^. + 7/,,+i^A.) + (7/A.+ 1 + 7 / „ + , _ ( ; ( . + i ) ) } 

k.= i 

where 

"A- : = 'Ik + Vn+i-k k = 0,... , V. 

Not,e that (/„ = 2//0 = a-i and ai,. = ( ; „ + i _ i . . In particular we have 

• "»,+! = 'i/H-i-(»«+!) = " 2 m - / H - i = "r«-i Hud a,„ = 27/„, for // + 1 = 27/i, and 

• « r » + i = a „ + i - ( „ , + i ) = a 2 m + i - 7 M - i = « m foi ' " + 1 = 2/// + 1. 
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Sorting the above expression w.r.t. the giA'CS 

A log i y ( r i , . . . , r ,„) = - + a*-+i) 
k=i 

= Y I'k+iQk - 2 ^ 7-jtfl*,- + Y '•'t-i^Jt 

m-l 

= '-lau + 7-201 -I- Y ''k+iC'k 
k=-2 

TTl-1 

-2?-i«i - 2Y ^'kCk - 2r„,ff„, 
k=2 

m - l 

A-=2 
ni -1 

= »•]ao + (r2 - 2r])ffli + Y i^'k-i " n.+i)aA. 
A:=2 

+ ( ' m - i - 27-,„)a„ -h 7-„,a„,_,_i 

Our aim is to find real mmibers v i , . . . .y,,, sut:h that this is constant. To simplify 

this expression for A log we will use i2o 'Ik = ^ f ^ i ' " + 1 — 27/i and 7/,-|-l - 27//,-|-l 

separately. 

5̂ 7(2/77.+ 1) calculations 

For n. + 1 = 2m 1 using a,,,.,.! - o„, wc get 

771-1 

Alog /7(7',,... ,r„,) = 7-iao + (»-2-2r])rti-h Y (*'/i-i - 2 a +rA:+i )rtA:-h(r,„_] - /•„,)«„,. 
k=2 

Also 

71 2 "' 

(^ = Y 'i>-- = 9 + 5Z 
0 - 1 

so 
777-1 
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Thus our equation becomes 

771-1 1 TTJ-l 

r^ao -f (7-2 - 2r | ) f l i -|- Y (*'̂ -̂  " ^r^. -|- rk+i)ak -\- (7-„_i - r,„){c - ^-a^ - Y "k) 
2 

= (r„,_t - r„ , )c -I- (/-i - ^ ( r ™ . ! - /•,„))ao + (?2 - 2 r i - 7-„_i -|- ?-,„)ai 
2 

77J-1 

-f- ^ (ri ._i - 2r .̂ -I- n.+i - 7-„,_] + ?•„, )ak 
k=2 

This w i l l be constant i f 

r t _ i - 27'̂ . - I - 7-^+1 - 7-„,_i -h 7v„ = 0 VA; = 2 , . . . , 7/i - 1 

or 

ri, - 2rk+i - I - 7 jt.+2 - I r„, = 0 VA; = 1 , . . . , 7/7 - 2 

Now 7„,_i and r„t are free variables which determine i i , . . . . i„,-2- I n order to see 

this we w i l l wri te the aljove equations as equations w i t h the 7̂ . terms on the left, 

hand side for A- = 1 , . . . , 7n — 2 and the 7„,_i, 7„, terms on thcoe right hand side. 

7-A. - 27 /̂ .+i - I - 7-;.+2 = •'•771-1 - •'•771 VA = 1, . . . , 7/;, - 4 

7 „,_y - 27 „ , - 2 = -rrn (k ' W. - 3) 

and 

•'•77.-2 = 37 „,_i - 27 „, (A; - 77/, - 2). 
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This c;an be wr i t t en as a matr ix ei^uation 

1 - 2 1 

1 - 2 1 

1 - 2 1 

1 - 2 

•'2 

1 

V 
Now the inverse of this matr ix is 

/ 
1 2 3 7 7 / - 2 

1 2 3 . . . 7 n - 3 

1 2 

/ \ 
- 1 

- 1 

- 1 

- 1 

Therefore 

/ \ 
' • i 

•'-2 

/ \ 
1 2 3 7 / / - 2 

1 2 3 . . . 7 / / - 3 

1 2 3 

1 

m - l + r„ 

/ \ 
- 1 

- 1 

- 1 

- 2 
\ / 
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Now 

1 2 3 m - 2 

1 2 3 . . . / 7 t - 3 

1 2 

1 

ET=1'~'+ Hrn - 1 - 1) 

E I ^ f ~ ' ' + 3 ( m - l - 2 ) 

m - 3 - ( m - 3 ) E7(l — + 3(77/ - 1 - ( / / 7 . - 3 ) ) 

E : i f - " " " " ^ + 3 ( 7 / / - i - ( 7 / / - 2 ) ) 

i ^ ^ - ^ f ' - ^ - " + 3 ( 7 » - l - l ) 

' " ' - ^ - ^ f ' - ^ - - ' + 3 ( 7 / 1 - 1 - 2 ) 

( , „ - 3 - : ^ ) ( , „ - 2 - 3 ) + 3 ( , , „ , _ i _ 3 ) 

V 

( m - 3 - | m - 3 ) ) ( m - 2 - ( m - a ) ) 
2 

( T 7 ? - . - j - ( m - 2 ) ) ( » i - 2 - ( ? 7 ) - 2 ) ) 

+ 3 ( m - l - ( 7 7 / - 3 ) ) 

+ 3 ( 7 7 1 - 1 - (/// - 2)) 

• g / ( „ . - 3 - . K » . - 2 - ^ ^ 3 „ „ _ , _ , A ^ 

' ; ^ ^ ( / / / - A : ) ( 7 / | - A; + l ) 
E 
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and 

1 2 3 m 

1 2 3 . . . - / n - 3 

1 

^ - - • 2 - 1 , : + 2(rn - 1 - 1 ) 

^ 2(771 - 1 - 2 ) 

E : 4 f " ' ' * + 2 ( m - l - 3 ) 

^ „ ^ - 2 - ( m - 3 ) . 2 ^ „ ^ _ 1 _ ( „ i _ 3 ) ) 

^ ^ _ 2 - { m - 2 ) .̂ _^ 2 ( „ x _ 1 - (7,1 - 2 ) ) ^ 

( m - 2 - i H 7 » - i - i ) . _ j . 2[,n - 1 - 1 ) 

( , „ - 2 - 2 K n . - l - 2 ) . 2 ^ „ , _ 1 _ 2 ) 

( „ , - 2 - : n ( m - l - - ^ ) ^ 2(77i - 1 - 3 ) 

( „ , _ , _ ( , „ _ 3 ) ) ( , . - l - ( n , - : i ) ) _^ - 1 - (777 - 3 ) ) 

V 
( m - 2 - ( n i - 2 ) ) ( r » - l - ( f f l - 2 ) ) 

2 
+ 2(777 - 1 - ( 7 7 7 - 2 ) ) 

_ g / ( 7 . - 2 - . ) ( ^ , 7 - l - . ) ^ ^ ^ ^ _ ^ _ 

E ^ 
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T i m s 

{rn-k){m - k + l ) jm - k + 2 ) ( m - ;̂ - 1 ) 
rk = » ' m - ] -7^ : V/.. - i , . . . , m _. 

Note t l ia t = r,„ = 1 gives = ' " ' - ^ - ' T ' " ' ' ' - = 1 which 

coiiespouds to the t r iv ia l solution, i.e. A l o g //1//2 • • • ' / „ = 0 . 

C l a i m 8.11 If 4' '• R-^ —> SU{2m + 1)/T is of constant curvature and Kdhler 

angle, and the metric coefficients kj all coincide, tlien 

tan'' - = — . 
2 2 m 

Proof: 

First uote that i f A log H{ri,..., ) = const then A log / i . . . . . / ,„) = 0 . Thus 

for constants as above we have 

(r,„_i - r ,„)c + (ri - ^(rv„_i - r ,„))ao + {r^ - 2r^ - r„,_i + 7v„)«i = 0 . 

Noting that ai — «o and setting / „, = 1 and v,,,-! = 0 this becomes 

- c + (r i + ^ + To - 2 r i + 1 )ao = 0 

or 

3 
c = (—n + 7-9 + - )ao 

(,,„, _ 1 + 2 ) ( m - 1 - 1 ) (m - 2 + 2)(77i - 2 - 1 ) , 3 ^ 
= ( ^ ^ + 

f/;? + l ) ( m - 2 ) / 7 7 , ( ; ; i - 3 ) 3 ^ 
= { ^ ^ + 2 ^ " " 

,2m-2 3 ^ 

2777 + 1 
= —^—-^o-
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Thus 

Vo = o « o = 

Comparing this w i t h 

where tan^ ^ — d, gives 

2 2/77 + 1 

cd 
1 + d 

so 

cd 
1 + d 2'in + 1 ' 

2/77 

• 

This was to 1)e expected Ijecaii-se we have i u general 

2 ^ •̂o '/o 
t an ' 

2 eU 

and we are aiming to show that {ijoi • • • -/'hm) = ' ( l , - - - ; ! ) ' • l i ' ' - ' ' ^'i — ^'j 

V/, j , we would get 

t,a,n - — 
2 E ? = i r 2777-

Knowing the Kahler angle now gives a nicer expression for 7/u. Recall that 

al 
Vo = 1 + d 

Now J = ^ , . s o 

'/O 1 + d 1 + J ^ 2/// + 1 

Also 

fl^ = rto 
2777 + 1 
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and 

J ! ! , 1 3 c ( 2 7 7 / - 2 ) c 
> a , . = c — a i — - « o — c = — —. 

A^2 2 2/77 + 1 2777 + 1 ' 

which also was to be expected. 

T h e o r e m 8.12 Let SU{o)/T be equipped unth a G-invariant metric such that the 

metric coefficients satisfy kj = 1. Let •lij./ip : SU{b)/T he isometric r-

primitive maps with constant Kdhler angle. Then the Kdhler angle satifies tau^ | = 

^ and -ij'j and V' we congruent by an isornetry g G G, '0 = gtp. 

Proof: From the above we obtain a-^ — c — a] — |uo — ^ — ^oiist. Thus 

Hi^ii^ r-i) — const for all 7 i ,7 -2 G R which giA-es that v/i and 7/4 are constant. How­

ever, i f two consecutive 7/-invariant;s ( in this case 7/0 and 7/1) are <;onstant, then al l 

of them are constant which gives the congruence theorem by Claim 8.6 together 

wi th t,he weak congruence theorem. • 

SU{2m.) calculations 

For 7/ + 1 = 2777 using rt,„+i = a,„_i we get 

TO-2 

A log //"(?•!,. . . , r,„ ) = ?•] r/n + ( r 2 - 27't )r/,i + ^ ( 7 7 - 1 - 2r^. + r^.+i )ai,. 
k=2 

+ (7-,„_-2 - 27„,_i + 7-,„ + 7-,n )«„,-] + (7-,„_i - r„,)a., 

,n-2 

= «o + [r-i - 27-] )r/,, + ^ (7i._] - 27-̂ . + r^^^ )ak 
k=2 

+ ( 7 V „ _ 2 - 2 7 ' „ . - l + 2 7 V „ ) a , „ - l + ( 7 - „ , - l - 27 ' ,„ )r t , 
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From the const.ant curvature condition we get 

77 TTJ —1 2 

0 - 1 -

SO 

tfl-1 

a , „ = 2 c - r t o - 2 ^ ft^.. ( • ) 

1 

Tlnis o;ir ecpiation becomes 

t n - 2 

r^ao + (/•2 - 27'i ) a i + ^ (r^.^^ - 2rt,. + r^,+] )a^ 
k=-2 

+ ( r , „ _ 2 - 2 / v „ - i + 2 r „ , ) « , „ , _ , + (7-„,_i - 2 7 - , „ ) ( 2 c - r/o - 2 ^ a ^ ) 

= 2 ( 7 V n - j - 27-,„ ) f ; + (7-j - 7 - ,„_ i + 2 7 - „ , ) « o + (7-2 - 27-, - 2 ( 7 - , „ _ i - 2 / - , „ ) ) r / , 

711-2 

+ (7-i._i - 27- .̂ + r^.+i - 2 ( r „ , _ i - 2r„,))r7.i 

+(7-,„-2 - 2 / v , - i + 27-„, - 2 ( 7 V „ - i - 2 7 - „ ) ) a , „ _ i 

= 2 (7 - , , , _ i - 2 7 „ , ) r ; + (/•, - 7 - , „ _ , + 2 7 „ , + {r-, - 2 v i - 2 ( v , „ _ i - 2 / - , „ ) ) a i 

m - 2 
+ (7-A.-1 - 2r^, + 7-<.+, - 2 ( r „ , _ i - 2 r , „ ) ) a i , 

+ ( ' /V»-2 - 4 7 - , » - l + 6 7 - , „ ) ( - / „ , _ ! 

This w i l l l)e constant i f 

7 - , _ i - 2 y , + 7-,+j - 2 ( 7 - „ , _ , - 2 / „ , ) = 0 V^; = 2 , . . . , 7// - 2 

and 

7 „ , _ 2 - 47 „ , - | + 6 / „, = 0 (/// > 3 ) . 

Note that ( 1 , . . . . 1 , 1 ) is a solution as A log //] • • • / /2,„ — 0 . 

T h e o r e m 8.13 Let SU{^)/T he. equipped vntfi, a G-mvmianf. raetric sucli. tliat, f,li.e 

metric coefficients .satisfy kj = 1. Let V', '/' : R"̂  —>• SU[i)/T he isometric T-
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primitive maps with constant Kdhler angle. Then -d' ^md. w are congruent by an 
isometry g 6 G, i' = g-tl'. 

Proof: From equation {*) above we obtain « 2 — 2c — — 2ai = con.'it. Thus 

H{ri.r2) = cr777..s/ for all ri,r2 G R which gives that, iji and 7/3 are constant. How­

ever, i f two conse(,utive //-invariants are constant, then al l of them are constant. 

This gives the congruence theorem by Claim 8.6 t.ogether w i t h the weak congru­

ence theorem. • 

8.4 A Congruence theorem for Eg 

As before we w i l l t ry to give the proof for the Es congriience theorem in its most 

general fo rm, i n (jrder to have the opj^ortuniti}' (;o improve the residt, i n the fu t iue . 

T h e o r e m 8.14 Let Eg/T he equipped v)itJi. a G-invariu.nt metric such. th.ai th.e 

metric coefficients satisfy kj = 1. Let 'ti'.'-,'4' '• R-'̂  Es/T be isometric r-primitive 

maps with constant Kdhler angle. Then V' and 4' congruent by an isom.etry 

g G G, 4' = ^V' (^''^d curvature and Kdhler angle are given by c — J2o '^j = 30 and 

t a n ^ f = i . 

Proof: The afhne Toda equations of Eg can be read off f i o m the extended Dynkin 

diagram (for details see [CSM], p.17-22). 

From Claim 8.1 we know that 7/0 = kgi^f+d) t:oustant {ds^ — c\dz\'^ and tan^ | = c?)-

We w i l l now compiite / / i , . . . , //̂  w.r . t . 7/0. 
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2 4 6 5 4 3 2 1 
/~\ ^ ^ /~\ 

as ay .as a4 aj a, 

« 0 3 

Figure 8.1; Extendend Dynkin tUagram of Eg 

0 = A log //u = 7/1 - 27/u / / I = 2//0 

0 = A log 7/1 = 7/0 - 2//] + 7/2 7/2 = 3//o 

0 = A log 7/2 - 7/1 - 27/2 + VS '/3 = 47/u 

0 = A log 7/3 = 7/2 - 2 //3 + 7/4 < ^ 7/4 = 57/o 

0 = A log 7/4 = 7/3 - 27/4 + 7/5 < ^ 7/5 = C7/(, 

0 = A log 7/5 = 7/4 - 27/5 + 'h + 'I- '/G + Vl = "'/U 

Now use the fact that the induced metric is of constant curvature: 

8 5 

W i t h //(i = 77/0 - 7/7 and //̂  = ( j + l)//o for j = 0 , . . . . 5 this becomes 

'̂ = E ( i + l)%?A) + ^'{i(7?/(l-?/7) + -̂7'/7 + ^-8?/S = ( X ! ( i + l )^ ' i+' '^ '6 )% + (^'7-^"fi)??T + ^-S'/,S-, 

so 

.-) 

( - h )•'/- + 7/8 = r; - ( ^ ( i + 1)A:,- + 7A;6 )7/o 

= < « : . + M - ( | : b + l ) * , + T * : . M ) ^ 

= ( * . - ( | : o + i f t + 7 * . ) , ( ) j ^ . 
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Note that the left hand side of this equaticm is constant since the right hand is. 

Claim: I f c = X]o Vj ^^^^ constant curvature and Kahler angle determine congru­

ence. 

Proof: I f kfi = kj i t follows that //« is constant. But then 

0 = A log 7/8 = 7/7 - 27/8 < ^ V7 = 2 '/8, 

so 7/7 is constant, and f rom //e + 7/7 = 7//o i t then foUows that also //g is constant. 

Theiefore al l //-invariants are i;onstant, f rom which the i;()ngruence theorem follows. 

We w i l l now compul;e al l //-invariants i n the case that //« is constant. 

0 = A log 7/8 = 7/7 - 27/8 <J=^ 7/7 = 27/8 

0 = A l(7g 7/7 - 7/8 - 27/7 + 7/5 < ; = ^ 7/0 = 37/8 

Since also 7/5 = 67/0 we f ind 

7/8 = 27/u and 7/7 = 27/8 = 47/u. 

From I la + 7/7 = 7//̂  \̂ •e finally get. 

Tlierefore the //-invariant.s are given l)y 

(•'/O, ' / l , Ul: 'li; 'l4: ' / S , '/(i, ' /T , ''/8.) = •'/o(l, 2, 3, 4, 5, C, 3, 4, 2). 

Note 8.15 Note that iliese u:re exactly th.e coefficients of 1,h.e .nm]>I.e roots giving 

th.e linear- com.l)ination of the maximal root. Tins was also the ease for SU{n + \). 

It miglit he interesting to inve.'itiga.te wh.etli.er tins is a genera.l rule. 
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The metric is given l)y 

so 

s 

c 
•//O = = 8 

Thus 

c 
(•'/o, ' / i , •'/2, ''/3, ''/4, ''/5, '/e, ' / T , Vs) = r 7 " ( l ' 2 ,3 ,4 ,5 ,6 ,3 ,4,2) 

= —g— — (7?7u, 777 J , 7772, n h , 77I4, 7/75, 777r,, n i j , ).. 

Finally, we f ind for the Kahler angle 

•> ^ ko 'io kg I/O ko 

2 c-koVo E?=o "*j^'j''/o - '̂o'/o E f = r " i j % 

and i f we assume kj — 1 for al l then c - Eo =̂  30 and tan"^ 2 ~ 2y- ^^^^ ^^"^ 

the proof is complete. • 

8.5 A Congruence theorem for Eq 

T h e o r e m 8.16 Let Efj/T he equipped •witJi. a G-invariant metric sucfi, th.at tlie 

metric coefficients satisfy kj = 1. Let 'li'-.'i' '• R"̂  Ec/T he isometric T-primitive 

m.aps with constant Kdhler angle. Then i,/- and (/'' are congruent hy an isometry 

g eG, 4' = g f . 

Proof: As before we can read off the affine Toda equations of £"0 f rom the 

extended Dynk in diagram. 

We w i l l nt)w use the Toda ecjuations to see which //-invariants are constant. 
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A • a 2 • • 

Figure 8.2: Extendend Dynk in diagram of E^ 

0 = A log 7/0 = //] - 27/0 <l=^ 7/1 = 2//0 

0 = A log 7/1 = 7/0 - 2 //1 + 7/2 7/2 = 3//o 

0 = A log 7/2 = 7/1 - 27/2 + V-i + V-i 'hi + 'h = 47/0 

Now 7/0 = const implies that also 7/1, 7/2 and 7/3 + 7/4 are constant. However, i f we 

assume that c = X!o '/j we also f ind that 7/5 + //e is constant. 

I t follows that 

A log 7/0̂ " //[> 7/.^ (7/37/4)'--^ ilM,Y' - COnst.{= 0) V7-0, . . . , 74 

Thus 

ijS'li = const iind i/^i/ti — const. 

which im^jlies that / / 3 , . . . ; 7 / ( ; are all constant. Consequently all //-invariants are 

constant and hence uniquely determined. This proves the theorem. • 
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8.6 A Congruence theorem for F4 and Sp(i) 

T h e o r e m 8.17 Let G — F4 or Sp(f.). Let G/T he equipped with any G-invariunt 

m.etric and let : R'^ G/T he isometric T-prim.itive maps with constant 

Kdhler angle. Then 'tp and p are congruent hy an isometry g E G, i' = gi'. 

Proof: 

As before, constant curvature and Kahler angle im\y\y //o = const. Since l;he ex­

tended Dynk in diagrams of F4 and S p { f ) have no ramifications, i t is clear that 

//y = const gives 7/1 = const, and hence ijj — const V j as i n this case two consecu­

tive 7/-invariants determine all 7/-invariants. Therefore Claim 8.G t.ogether wif,h the 

weak congruence theorem finish the proof. • 

8.7 No Congruence theorem for Ej 

The only Lie grou]) for which i t was not possil)le to find a congruence theorem 

w i t h i n this setting was E-j, due to the particrdar form of its extended Dynkin 

diagram. I t is hoj^ed that, using some of the ideas develoi^ed i n this thesis, i t wi l l 

be possible i n the fut.ure to find a congruence theorem in this case as well. 



Appendix A 

Computations for maps into 

SU{?>)/T^ 

A . l Computing the Frenet frame of S'^-symmetric 

holomorphic maps S- —̂  C P " 

Let Q) : S'^ CP^ be holomorphic and 5'-symmetric. There then exists a holo­

morphic coordinate z on 5^ such that cp can be expressed as 

(£»(z) = [a,bz'',cz' 

w i t h «, h; c e R + and k, C G N , A: < C. (See [BW3] for details.) 

112 
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We now compiite the Frenet frame of (p. Let 

113 

^ ^ 

/ o ( 2 ) = / ( 2 ) bz 

y c . y 

Then 4> = [/o]- To compute / i and / 2 oliserve that for the harmonic sequence 

f , _ f . d l o g j f l 
J, — / /+ ! H dz 

holds. I n general we have 

d\og\g\^ dlog{g-g) 1 d{g • g) I _ dg dg > 
gr \ dz dz J dz dz \g\-' dz 

but for holomorphic g this simplifies to 

ai»g|g|' I - Og 1 _ , 

- l > r ~ = W'"-aI = W"--"-

C o m p u t a t i o n of / i 

Let 

A{z)^\f,{' = a' + l/\z\'' + c'\zr. 

The derivative of /o is 

^ 0 ^ 

= ^{g-g' + g' • g) 
g 

f'{^) = khz'-' 

Thus 

c>log | /p _ I ^- I 
dz i / r ' i / p 

\ ( 
a 0 

hz' khz*'-' 

cf ^ 
V 

tcz'-' 
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From 

= ~ ( 0 + kl^z'-'l'^ + tc'z'-'z') 

= i y j ^ ( ^ - 6 2 | . p - i ) + f c 2 | , p ( f - i ) ) . 

f . g log 1/1% 

we hence get for the components of / i 

= 0 - j ^ ( A ; 6 ^ | . p - ^ ) + £ c ^ | z p - ^ ) ) f a , 

a{k\i'\z\'(^-'^ + tc^\z\'^'-'^)z 

( / l ) 2 = ] ^ ^ - ' - ~ ^ \ Z ^ - ' ^ + i^W-'^)zhz' 

khz'-'\f\^ - (î 6 |̂2p^- + <?C^[zpO?)2^-' 

2 U | 2 t _ / ' ^ 2 U | 2 < A A , i - l (/l-l/P - kh''\zf^ - lc^\z\'')hz'' 

tcz f . - \ 

\f\' 

;{kb'\z\'^'-'^ + ic'\z\'^'-'^)zcz' 

('.cz'-'\f\' - {kl/\z\"'- + ('x^\z\-")cz'-' 

( W - k h 2 U | 2 ^ _ iJ-2\^\2C^,.J-1 tc'\z\''')cz 

\f\' 

Thus for z / 0 

/ 

f d z ) = 
1 

-a{kh^\z\^^'-'^ + (c'\z\''^'-'y)z 

{k\f\' - kh-'\z\'' - £c''\z\^')bz'-' 

ie\f\' - kh''\z\^'' - ic^zf )cz'-') 

^ -a(kb''\z\"'-+ (!c''\z\^') ^ 

fc(A:|/p - kh''\z\^' - /'c^l^p').*-

c ( / ; ' / 2 - / t 6 2 | , p - ^ c 2 | , - | 2 ^ ) - f ) j 

Note that this expression extends continuously to / i ( 0 ) = 0 as required. 

Let fur ther 

B{z) = kh''\z\'''+ £c'\zf 
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Then 

1_ 
zA 

-aB 

h{kA - B)z'--

y c[tA-B)z' ) 

C o m p u t a t i o n of fo 

Next uote that f-i has to be orthogonal to both, /o and / i . Using this orthogouahty 

relation we can compute / 2 up to a factor (consisting of a meromorphic function). 

Let 

/ 2 

I t must satisfy 

/ 2 - / o = 0 and / 2 - / i = 0 (1). 

Thus 

( \ ( \ 
a 

a 

hz' 

r.-( 

= ĉ a + I3bz^ + 7cf ^ = 0 

and 

/ 2 - / 0 = 

a 

fi 

\ 
-aB 

b{kA-B)z^ 

y c(tA-B)z' J 

= -aaB+l3b{kA-B)r+-fc{iA-B)f = 0. (2) 

Hence (1) x + (2) gives 

PbkAz'' + jcLAz^- = 0, 
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so 

hk^ ^-

Put t ing this into (1) gives 

I ( c(. c A c{t-k) f 

Therefore 

f2 = 

i.e. fi is a midtiple of 

/ \ / c(t.-k) -t ^ 
ak ~ 

_ct_^t-k 
bk~ 

^ bc(f. - k)f ^ 

9 •-- -ac£z t-k 

abk 

We have 

f2 = Xg 

where A is a funct ion oi z,z. 'We w i l l now compute A to determine f^. 

From the constuction of the harmonic sequence we know that 

d h ^ J h l 
dz 1/,P 

Taking the complex conjugate of this and taking the dot-product w i th / i gives 

d f i r _ \f2\~j- _ 2 ,.^ 
-QT • . / I = ~JJ^^^ • . / ] - - / 2 • [*l 

Since 

dh d\ dg 
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aud / i -L /2, i.e. ± (j we get 

Ou the other hand 

so we get from {-k) 

With 

\f2\' = m g \ = \ M 9 \ % 

g\^dz 

^ -aB ' 

h{kA-D)z^ 

\ c ( M - B)~J j 

and 

-act. 

V abk 

we hence get for A 

Now 

dg 

dz 

A - ^ f 

bc{t-k)tz^-^ 

-ac{(! - k)tf-^-' 

\ 
so 

dz 

V 

0 

bc{<! - k)(:z'-^ 

-ac{('. - k)('.z^-^-^ 

0 



APPENDIX A. COMPUTATIONS FOR MAPS INTO SU{3)/T^ 118 

Hence 

dz -ac{e - k)t 

0 

\ 
-aB 

h{kA - B)z^ 

y c{lA - B)z' j 

{-abc{e - k)tBz^-^ - ahc{t - k)t{kA - B)z^z^-^-^) 

'-^ =-abc{e - k)k£z'-\, 

••\f\' 

i / r 

so 
1 

A = r^abcii - k)k(z'-^ 

and finally 

/2 = ^g = 
abcji - k)k£z'-^ 

^ bc{i-k)f ^ 

-aciz^-^ 

abk 

^ bc{t-k.)z' ^ 

abc{t - k)kt .1-2 

•11 

V abk 

Therefore the Frenet frame of (j){z) = [aJ)z'''.c^] is given by 

/ \ 

/ o ( - ~ ) = 

^ -a{kb^\z\'"'+ ec''\z\-'')z 

b(k\f\^ - B^l^p*^ - / ' c ^ l ^ p ' ) . ' ^ 

c(t\f\^ - kb-'lzl^' - (!c^\z\")z' J 

and 

^ bc{£-k)z^ ^ 

abcie - k)ki. J-2 

-adz'-^ 

abk 
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or 

and 

Mz) = 

( a ^ 

bz' 
1 

7a 

-aB 
\ 

b{kA -B)z^ 

c[tA-B)z' j 

f2{z) 
abcji - k)klz' 

^ bc{e - k)z^ ^ 

-acCz^-^ 

abk 

Lift of to SU{3) 

A local hf t of (j) is given in terms of the Frenet fi-ame by 

thus 

F{z] 

F{z) ( A 
j^W^' V l / o l l / i l 

^ -la(kl/\z\'>^^fc^\zr) jj{(!-k)bcz'^ 

j.bz' lb{ka^ -{(:- k)c''\z\^')z' -^fjicz'-' 

Kcz' \c{ta' + - k)U'\z\'^)z' ^kab 
M' 

hbz' 

Kcz' 

-aB 

{b{kA-B): 

\c{tA - B): 

ii-k)bcz 

Uacz'-' 
M 
-^kab 

where K{z).L{z) and M[z) are normalising factors such that F € SU{Z). 
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A.2 Ty-invariants of ^ : S- SU{3)/T-

Lemma A . l Let 0 : —I- SUi-i)/T^ be the T-holornorpIne ewves obtained JTUTH. 

lifting the holurrwi 'pJiic -symrnetTic map 

(t>:S-^ CP-, z ^ (}){z) = [o, bz\ cz% 

Then the q-mvariants of •ib are given by 

b'c'ii - kf\z\''^'+''-'^ + aV^2|.|2(^-l) ^ ^2^2p| . |2(A-l) 

m = 

(a2 + 62|2|2A-+c2|2|2f)2 
+ /;2|^|2^- + c2[.|2^)^2^2^2 /̂2^2(^ _ ^^)21 |2(m-3) 

(b^C^l - A:)2|2|2(m-1) + a2c2/'2|.|2(f-l) + „2;,2^.2|2|2(A-l)y2-

Proof: 

Recall that the harmonic sequence of ̂  gives rise to 7-invariants. The -/-invariants 

of (f) are related to the '//-im'ariants of the l i f t by //p = 7p_i and we will hence 

compute 7(), Ti for 6. 

Computing the 7-invariants of (f): 

Let 

Then 

f{z) = fo{^ 

( \ 
a 

bz' 

^ 0 ^ 

bkz'-' 

adz'-' 

and f"{z) = 
bk(k - 1)2^-2 
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Now 

70 = ^ and 7 1 = - ^ . 

In order not to have to compute the Frenet frame of / (which is rather complicated) 

we observe the following. 

/ o n / i r = i / o A / i r = i / A / ' i ^ 

so 

To 
i / ip i / o n / i P _ i / A / ' '12 

W W I / I " 

aud 

' A t>'\2 l/on/iTlM = I / o A / i A M ^ = | / A / ' A / 

so 

71 
M - ^ i / A f A r p ^ i / n / A f A r p ^ i m f A f A f f 

l/iP \MW l / A / ' P I / i P l / N / A / ' n / i P l / A / ' l " 

We have 

= . f - ^ ^ + c - ^ l .f-^^ = A+Bx'+Cx' where x : = \z\\, A = a\, B = b'' and C = c'. 

For the cross-product we get 

^ bc{t-k)z'^^'-^ ^ 

/ A / ' = —act 

.A—1 

SO 

= BCMx'^^-' + .4GI;r'-^ + .45A'.7;*-' where M = (<; - A')^, A' = A'̂  and I = (2. 
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The determinant is 

a 0 0 

/ A / ' A / " = det bz' bkz^-^ bk{k - l ) 2 ' = - 2 = abcki{i - k)z''^^-'^ 

clz'-' n ~ ' - 2 - i j ^ J 

so 

1/ A / ' A / ' f = aH'^c^HHi - fc)2|zp(^+^-^'|zp('^-+'-'' = ABCKLMx'^'-'. 

Thus 

>/i = To = |/|4 ~ ( A + B x ' ' - + C x O ^ 

^2^2^^ _ j ^ . ^ 2 | ^ | 2 ( m - l ) + ^2^2^2[^ |2(^- l ) ^ ^2^2j^.2 |^ |2 ( f c - l ) 

( a 2 + 62 |^ |2 / . + c 2 | z | 2 f ) 2 

and 

m = 7i 
/ | 2 | / A / ' A / ' f _ (A + Bx^ + C x Q A B C A ' L A f a : ^ -

( f l2 ^ ^ 2 | . | 2 / . ^ ^2 |^ |2 f^„2^2^2j^ .2^2(Y' _ ) t y 2 1 ^ | 2 ( m - 3 ) 

( f e 2 c 2 ( £ - i;:)2|^|2{^+A-l) + „ 2 ^ . 2 £ 2 | . | 2 K - 1 ) + ^2^,2^.2 | |2(A-1) )2 

• 

A.3 Example of two non-congruent r-holomorphic 

curves of the same metric 

Example A.2 Let i'./tj) : 5^ —> SU{3)/T^ be the T-holomorphic curves obtained 

from lifting the holomorjjhic, 5 ' -symmetric maps 

(p:S^^ CP^, z^6{z) = [l,z, z^] 
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and 

0 : 5 ' ' ^ CP\ z ^ 4,{z) = [l,3z\ 2z']. 

Let SU{3)/T^ be eqinpped with a G-invariant metric such, that \Xa^ \ = \Xa-,\- Then 

tl', 4' have the same induced metric but are not congruent. 

Proof: We will assume that \Xa^ | = I A ' Q , | = 1- Then the induced metrics of %b, ib 

are ds"^ = iji + 7/2 and ds^ = r/i + 172. We will show that 7/1 - 7/2 / 7/1 = 7/2. Thus 

the metrics coincide but the //-invariants do not, i.e. 'IIJ and 0 ai-e not congruent. 

From Lemma A . l we know that the //-invariants of the l i f t of [a,bz^,cz^] : 5^ 

CP^ are given by 

b'^c^C - A-) V + ^ - ^ + a^c^fx'-' + a'Wx'-' 
Vi = 

m = 

(a2 + &2x-*-- + c'x^Y 
(0,2 + b'^x'' + ^x^)aH^c'k^ei( - k fx'+'-'' 

( fe2c2( / ' - i t )V+*^-i -j-a^cH^x'-^ +am'^x'^-' f ' 

where x = \z\'^. 

For 'ijj we have a = 1. /; = 1, c = 1 and A: = 1, f — 3, so 

V\ = 

'h = 

{1 + x + x-^y 
(1 -I-X -f-a;-*)363; 
(4.7r̂  + 93;2 + 1)2 

For 0 on the other hand we have a = 1, i/ = 3, c = 2 and A: = 2, f = 3, so 

36.r'' + 36.T^ + 36x _ 36x{x^ + .i' + 1) 
(1 + 9a;2 + 4.i;3 )2 ~ (1 + 9.'/;2 + ix^ )2 

(1 -h9.7/̂  +4.r^)36'^.r^ _ 1 + 9;?/̂  + 4x/^ 
(36.r^ 4-36:1-2-h.36.r)2 - (.̂ 3 + .x-+ i )2 • 

Thus 
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?/] = 7/2 and f]2 = 7/1, 

so V' and '0 liave indeed the same induced metric, but as / / i ̂  / / i they cannot be 

congruent by the Weak Congriience Theorem (Theorem 7.1). • 

Remark A.3 The above example comes from, the following fact. If[f]-S—> CP" 

is a linearly full liolornorpic curve with Frenet frame /o, ••• , / , ! tlien [/] = [/„] is 

also a holom.orphic curve and since 7p = 7„-,;-i it follows that 

7o + • • • + 7)1-1 = To + • • • + Tn-i • 

Since 7o ^ 70 iri general [/],[/] are not congruent. However the corresponding 

m.aps into SU{n-\- 1)/T" have the same induced m.etri.c. Thus the m.etric is not 

enough to determine T-holomoiphic maps into GjT up to congruence. The chosen. 

(j) above is [f-i] for f ( z ) = (l.z.z^). 



Appendix B 

Basic background material 

For details about Lie algebras, adjoint representations, root spaces, Cartan matri­

ces, etc. see [Ban], [BtD], [Se], [Sa] and [FHj. 

B . l Ki l l ing form 

Let g l)e a ex. Lie algebra. The Killing form on g is a complex-valued, biUnear 

form given by K ( A ' , 1') = tr(adA' o ady). 

The Kilhng form of a simple Lie algebra g is non-degenerate. It is also Ad(G')-

invariant ([He], p.131). However, this thesis relies only on its Ad(r)-invariancc. 

B.2 Properties of roots 

Definition B . l ([Ban], p.110) Let li be a maximal toral subalgebra of a complex 

sennsimple Lie algebra g and let h* be the dual space of h. The element ha = a' 

125 
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defined by 

a{H) = K{h^,H) = n{aKH) 

is called the star vector or root vector. 

Theorem B.2 ([Bau], p.110) Let h be a maximal toral subalgebra of a complex 

sem.isirnple Lie algebra g. Let h*be the dual space ofh. 

(i) The root sxjstem A spans the dual space h*. 

(ii) Let a 6 A, that is Q- 7̂  0 and g° ^ 0. Then —a is also a root. Hence Q- G A 

implies — a G A. H 

(iii) For a G A, x 6 g" a,nd y G g~° the commutator is given by 

x,y\ = K{x,y)ha - n{x,y)aK 

(iv) For a G A the subspace [g",g~'^\ is one-dim.ensional an it is spanned by the 

star vector h^ = cr. 

(v) Let a be a root. Then 

K(a\a^) =tt(Q'») ^ 0 . 

(vi) Let Q' G A a.n.d E^ an arbitrary non-zero elem.ent in the root space g". Then 

there exists a non-zero elem.ent F^ in g~" such that the set {Ea.Fa,Ha}; 

where Ha is defined by 

E^jFa, 

spans a three-dimensional simple Lie algebra denoted by SQ. The Lie algebra 

Sa is isomorphic to the Lie algebra s/(2,C). 
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(vii) For- each Q G A there is a special choice of vectors X±a £ g"*"" f*"'̂  E: t 
such that the set {A'Q, A'_Q , iJc} spans the three-dimensional simple sl(2,C) 
Lie algebra S^. The {A'Q, A _ Q , iJa} ore called Cartan-Weyl generators 
and satisfy 

• [A'o , A _ ^ ] = 6a3Ha 

• [Ha:X±a] = ±2X^a-

(viii) The vector Ha satisfies 

H^ = 
2//„ 2aS 

" K{ha,ha) K{aKaiy 

Ha - —H^a 

and 

C^Ha) 

Ha is called a coroot. 

(ix) The Cartan-Weyl generators satisfy K.{Ha,Ha) = 2K(Aa, A'_Q). 

B.3 C a r t a n matrix, highest root and extended 

C a r t a n matrix 

The Killing form : g x g C gives rise to a metric on h*. There is a bijective 

correspondence 

A : h ^ C ^ ^ • . ( A ^ • ) : h ^ C . 
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Definition B.3 ([Bau], p.121) Let g be a complex serrnsimple Lie algebra. De­
fine 

(•,•): h* X h* ^ C ( A , / i ) ^ (A,/i) 

with (A,//.) = K ( A % / / " ) . 

Definition B.4 ([He], p.459, [Bau], p.l44) T/te Cartan matrix A ' = (A,,)f^^, 

of a semisim.ple Lie algebra g is defined by 

^ ^ 2 ( a ; , a , ) ^2 / . ( a f , a ; ) 

Definition B.5 ([Bau], p.146) Let a be a root with, expansion a — ^iO'i w.r.t. 

the set of positive roots A"*". Then the sum. of the coefficients rii is denoted by 

I. 
hi a := ^ n,-

and it IS ca.lled the height of a. 

Lemma B.6 ([Bau], p.146) The root .sy.stem. A of a fin.ite-dim.ensional complex 

sernisim.ple Lie algebra contmns a unique root 

] 

with. hX,0 > hta for all a / 0 in. A. The root 9 is called the highest root. 

Definition B.7 The extended Cartan matrix A' = (A'i^)-^-^o of a semisimple 

Lie a.lgebra g is d.efi.ned by 

Here —QQ = Yl{ nt-if-^i is the highest root. 



APPENDIX B. BASIC BACKGROUND MATERIAL 129 

Note that for / , j = 1 , . . . (' this definiton coincides with the definition of the Cartan 
matrix. Thus the extended Cai'tan matrix A" contains the Caitan matrix A". 

Claim B.8 . The extended Cartan matrix K is singular and satisfies 

j^m,Ki, = Q V j = 0, . . . ,^ . 

1=0 

In other words, addding up all rows with, their multiplicities gives the zero row 

vector. 

Proof: First let j / 0. Then 

Koj = - 51 mi-A'tj = - ^ m.kKi,.j, 

so 

J2 mikij = koj + X! rn-ikij = - ^ m^Kkj -h miKij = 0. 

j=0 i=l k-l i=l 

Now let j = 0. Since 

2(Q,-,ao) 
A ; 0 

(a'o,ao) 

and 

2(ao,ao) 2(a,,ao) ^ 
Aoo = ^ = - 2. m^-/ r- = - 2^ m^Ato 

(Q'o,a'o) f^^^ (ao,Q'o) ^.^i 
we get 

( ^ ^ i ^ ' . ' . 
J2 nuKio = A'oo + "^i^^io = -J2 "*fcA\.o + Y "''-̂ '̂O = 0. 
;=0 J=l k-=l i = l 

• 
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B.4 Complexification of Lie groups 

A short treatment of this can be found in [PS], p. 13, and [G], p.8. 

For the complexification of a vector spaces see B.6. Using this process, we find 

that any (abstract) Lie algebra g has a complexification g*̂  = g ® R C . 

Definition B.9 ([PS], p.13) Let G be a real Lie group and g be its Lie alge­

bra. A com.plex Lie group G'~ with g*- = g ® R C as its Lie algebra is called a 

complexification of G if it contains G as a subgroup. 

Remark B.IO ([PS], p.13) A com.plexification of a Lie group does not need to 

exist. However, if G is compact, then it does possess a complexification G""; every 

com.pact Lie group can be em.bedded in som.e U{n). The compl.exifi,cation ofU{n) 

is GL(TI,C) and G*" can be realised as a subgroup of GL{n,C). This group G'-' 

is unique up to isom.orphism and will be refered to as the complexification. of G. 

Hence the complexification of is C*. Other possible complexifications such as 

C / Z ^ = 5^ X 5̂  cannot arise as complex subgroups of a general linear group. 

Example B . l l 

Lie Group G G ' L ( 7 i , R ) Uin) SL(n,TL) 

Complexification G^ GL(n, C ) GL{n, C) SL{n, C) 

Remark B . l 2 As can be seen from, the exam.ples it is po.isible to have G ' f = G^ 

but G j 
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B.5 Orthogonal root spaces 

Lemma B.13 The root spaces g*̂  are orthogonal to each other w.r.t. any Ad(T)-

mvariant herm.itian metric on T^-^G/T = Y,aeA+ g°-' S" -L '/c> / P-

Proof: 

Let (-, •) be an Ad(T)-invariant hermitian metric on T^^'^G/T — Z ]a6A+ g"- Sup­

pose there are A'„ G g", X/) G with (A'„, A'^) / 0. We will show Q' = (3. Recall 

Ad(expi7) = e'"^". Thus for all A' G g" and all G t we have Ad(exp.ff).A' = 

g a d / / Y = e"*^'A'. Now since (•, •) is Ad(T)-invariant we have the following equal­

ities for all H et. 

( A ' , , A » = (Ad(exp^) .A '„ ,Ad(expiy) .A» 

= (e^'".Xa,e-^".X 

= e'^<'^>-^'^('^'(A'o.A» 

= e - ( / ' ) + / 3 ( / / ) ( A ' „ , A » a s a : t ^ z R . 

Since (A'a, A » / 0 by assumption we have e^^"^-''^"^ = 1, i.e. (3{H)-a{H) G 2nlZ 

MH G t. 

Since j3 — a is a linear map it is continuous, so (3{H) — a{H) = c G 2niZ. 

But now fj{0) - Q(0) = 0 imphes c = 0. Thus fi = tv and hence g° ± ĝ  if a / ,6. 
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B.6 Complex structures on vector spaces 

Definition B.14 Let V be a 2n-dimensional real vector .npace. complex struc­

ture 07?. V is an. en.dom.orphism. J : V V such, that = —/. 

Note B.15 V must be even-dimensional since {det J)'^ = det .P = det(—/) = 

( — 1)'" where rn is the dimension ofV. 

Definition B.16 Let V be a real n-dirnensional vector .npace. The complexifi-

cation of V is the com,plex vector space V'-' = V ® R C = {A' - f iY \ X, Y' G V'}. 

//{'(;*'} is a basis ofV, then {v'' ®l} ts a basis ofV^ (since C = s p a n c { l } / 

Lemma B.17 ([Wi], p.154) Let V be a. 2n-di.rnen,si.ona,l rea.l vector space with 

complex structure J. Let be the complexification of V. Then the complex 

structure J ofV extends canonically to a complex structure .J of . = - 1 . -J 

has ±/ as eigenvalues and conesponding eigenspaces 

V ' = Eig(7) = { Z G V^' JZ = iZ} = {X - iJX X G V } 

V" ' = Eig{-i) = {z e I JZ = -iZ} = {X - f 7 ; j A - 1 A' G V}. 

V'^ S])lits (w.r.t. tlie complex structure .J) into a.n orthogonal direct .num. of these 

eigen.'ipaces: = V" '̂" ® V'"'!. 

As V'̂  " = V'"̂ ^ and I " " ' = V'̂  *' we have the correspondence 

Comi)lex conjugation with respect to V is a real hnear isomorphism. 
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Knowing l ' ' ", V'"'^ one can reconstruct tlie original complex structure as follows. 

Define J : V ^ V by 

iZ : z e V^'" 

-iZ : ZeV'K 

J leaves V = {Z + Z \ Z e 'V'i '"} invariant: 

J(Z + Z) = iZ - iZ = Z + iZ e V. 

So i f X = Z -\- Z ^ V then J A ' = i{Z — Z). We liave recaptured the map 

J : V -> V. 

A complex vector space V is canonically isomorphic to F^'^ 

Claim.: The map r/; : ( l ' ' ^ ", / ) —* (V, J ) given by Z i—> Z + Z is an isomorphism 

of complex vector spaces. The inverse of (f> is obtained by taking the ( l ,0) -par t of 

A" = A'^^o + A ' ^ ' i = Ti'-\X) + 7r ' ' - i (A') : © - ^ ( A ) = T T I - ^ I A ) = | A ' - t.J\X. 

Pruof: 

5^(Z, + Z , ) = <^(Zi) + .?i(Z,) 

cp{iZ) = iZ + iZ = IZ - iZ = JZ + JZ = J ( Z + Z ) = ./<p(Z). 

Almost complex manifolds 

Definit ion B . 1 8 ( [ W i ] , p.157) An almost complex structure on a Teal dif-

ferenttable rnamfold M is a tensor field J which a.i every point x E M ts an 
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endornorphism of the tangent space T^-M such that 

J ' = - I d . 

A manifold with stick a structure is called an almost complex manifold. 

Def init ion B .19 An almost complex structure is called integrable if it comes 

from, a complex structure on M. 

B.7 The isotropy representation 

Definit ion B .20 ( [ G ] , p.16, [ B H ] , p.462) Let GjE he a homogeneous space. 

The isotropy representation of H on ToG/H is the homomoiphism, 

Ad'^-/^ : H ^ AvLt{nG/H) 

defined by 

A d ° / ' ^ ( h ) . X = LH {X) VA' € ToG/H, 

where : G/H G/H is left translation Ch{[g]) = [/ 'p](= [' ' '5/'"') ""'^ Li, = 4 * : 

T{G/H) T{G/H) IS Its differential. The group {Ad^^"{h) \ h e H} is called 

the l inear isotropy group. 

Tlie lelat iou betweeu the standard adjoint representation and the isotropy repre­

sentation can be seen in the commutative diagram below. 
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Acl{ / i ) 

g ^ ^ ^ -> g 

n n 

TG '-^ TG 

I \ / i 

i G ^ G i 

1 i [ i 

i G/H G/H i 

i / \ i 

T{G/H) ^ ^ ^ T(G/H) 

U U 

T.G/H ^ ^ T.G7/f 

-1 Here //, : G ^ G' is the standard inner automorphism given hy = hxh 

V.r e G. 

I f we denote the projection g ^ T^G'/iy by [•] then Ad^^^(// ,) .[A'] = [Ad(/O.A' 

V A ' e g ( [ A ' ] e r o G / i J ) . 

Recall that for a reduf:tive homogeneous sjjace M = G/H there exists a subspace 

m of g such that g = h 0 m and Ad(//,).m C m V/; € H. 

I f G (or H) is comi)a(;t, then G/H is reductive. 
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For a rcthictive homogeneous space we see that, 

A(f'/"{h) : ToG/H T„G/H 

can be identified w i t h 

Ad(/?,)|„ : m m, 

as can l)e seen f rom the commutative diagram IJCIOAV and the fac:t that the projec­

t ion g = h © m —> m is bijective i f restricted to m. 

g = n @ m —> g = n © m 

i i 

ToG/H^m T„G/H^m 

More generally we have 

Propos i t ion B.21 ( [ G ] , p.16) Assume that G/H ts reductive. Let Ii, E H, and 

let X € h; Y G m. Then we have 

A d ^ / ' ' ( / 0 . ( X Y) = {Ad"ih).X,Aif/"{h).Y). 

B.8 Facts about real harmonic maps 

Tlie proof of the congruence theorem makes use of n factorisation aigumeut. In 

order to apply this we need the following Lemma. 

L e m m a B . 2 2 Let he a real-valued junction. .HUCJI. ih.u.t 

A l o g ( / = 0-^d=\o^(i = 0. 

Then g{z.z) — \h{z)f with. h{z) holornorphic. 
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Proof: Since log g is harmonic, i t follows that i t is the real part of a holomorphic 
f imct ion / : logr/ = Then g = exp(logr/) = exp(3?/). Now let h{z) = 

e x p ( | / ) . Then h is holomorphic and 

\hf = hit = e x p ( ^ / ) e x p ( i / ) = e x p ( ^ ( / + / ) ) = e x p ( » / ) = g. 

• 

B.9 Root spaces of 5/(72 + 1, C) 

Ref:all that the standard Cartan subalgebra of sl{ii.C) is the sivdcc of diagonal 

matrices w i t h zero-trace. 

The roots of .s/( //. + 1, C ) are 

{a,j :^a,-aj \ i^j:i,j = 0,...,7i} 

where 

a/(diag(;vo, • • •, ;(/„)) = Vi, / = 0 . . . . , n. 

Let 

{oij = o, - aj I / > j; z, J = 0 , . . . , //.} 

be the positive roots and choose 

: = a j j _ i = (Tj - j==l,...,n, 

to be the positive simple roots. Then 

fXij = Q v - I - Q - , - i + ... + cyj+i 
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for all positive roots (/ > j ) and 

Qij = -(.Yji = -{a J + (y.j_Y + ... + cvi+i) 

for all negative roots (/' < j). 

Computing the Cartan-Weyl basis and root space 

Let 

Eij = iSii,6j()f,^(=o,...,n ' 7̂  j; i;j = 0,..., n. 

This is a matrix with a 1 in the v'-th row and j - th column and zeros everywhere 

else. 

/ \ 
3 

I 1 

Claim B.23 The root spaces are 

g"- - spanc{^;;J =0 , . . . ,n . 

Proof: Recall that the adjoint representation is given by 

Hd// : g g, A' 1-̂  ad//( A ) = [H, A']. 

As the root spaces are one-dimensional it suffices to show that 

G g"'̂  = {A' € sl{n + 1, C) I ad//(A') = tt,y(i7)A Vi? G h} 
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where h = {diagonal matrices w i t h zero-traf;e} is the standard Cartan sul.)algcl)ra 
of sl{n + L C). Let i7 = diag(Y/o,..., v/„) = G h. Then 

HEij = {yi,-h-c)kX=0.,...,72{^iL^jTn)cm=0,...,n = UiEij.. 

80 for the k, rn-th. component of HEij have 

71 

Also 

EijH - {6il^6ji)l.^t=0,...,u{yC^tm)c,m=0,...,n = UjEij, 

so for the k, m-ili component of EijH we have 

[EijH]i,„i = ^ik^jOJt.^hn = Vj^ih^jm-
f=0 

Thus 

adyyf^,/) - [H,E,j\ = HE„-E,jH 

= [Vi^ik^jm - Vj^ik^jin)k,m=0 n — [Ui " Vj)Ei^ 

= {o,{H) - aj{H))E,j = (a, - CJJ){H)E,^ 

= 'y.AH)E,,, 

so Eij G g°'j and as dinig^'J = 1 we have g"'-" - spanc{-E'ij}-

• 

For the root space we get the following picture in terms of matrices 
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0 -CV2 ,0 
\ 

-Qn,0 

a'1,0 0 -Q'2,1 

O'2,0 

0 

V 

So i n terms of the positive simple roots, we have the corresponding root spaces at 

the following positions. 

/ 0 - ( Q I +02) 
\ 

- ( Q I - f . . . -1- a „ ) 

0 - ( Q ' 2 - i - . . . - | - Q ' „ ) 

Q'l -f- ^ 2 0 2 

0 - a , , 

Q'] + . . . -1- a„ CV2 + . . . + a „ 
V 

The highest root is now — Q-Q = ( T „ — = 0.1 + ... + a „ . Its height is n. 

Heni:e we can wri te the root spaces as follows: 

/ 0 - ( Q ' 1 + 0 2 ) 
\ 

QO 

0 - 0 2 a'o -1- Q'l 

Q'l + 0:2 0:2 

0 

-Q'O -Q'O + Ql 
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B.IO Representations, weights and lowest weight 
vector for SU(n + 1) 

Recall that the maximal torus of SU{n + 1) is gi\eii by 

T = {d iagfe '^o , . . . , e''") | G R , + • • • ^„ = 0 } . 

The Cartaii subalgebra of the Lie algebra su{n + 1) is then 

t = {dvAg{iyo, • • •, •/•;{/«) \ y j eR.,yo + ••• + :Vn = 0} 

and f rom B.9 the roots of sl{n - f 1, C ) = su{n + 1)^ are 

For the set of positive simple roots we take o^..... c\'„. where aj = aj — ( 7 j _ ] . 

Then 

a i + 2Q'2 + . . . + na„ = (fTi - fTo) + 2(^2 - a^) + ... n{a„ -

= - ( a o - f - . . . - h ( T „ _ j ) - f - 7 V , f 7 „ 

= - {-On ) + as V/0 + . . . - I - Y/„_i = -V/„ 

and 

tt't+l -1- tt/t+2 + • • • + «n = (f^i.+l - Ok) + (0"i.+2 - O-jt+l) - I - . . . ((T„ - (7„_i] 

= On - Ok 

SO 
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â . = (Q-J +2a2 + ... + na„) - ( Q / . + I + 0^+2 • . • + Q ' „ ) 
n + 1 

R e m a r k B . 2 4 The highest root is - Q Q = cr„ - (TQ = Q J - I - a 2 + . . . -|- Q „ . 

The irreducible representations of SU{n -\-1) are given by Y, A: = 0 , . . . , H - l , 

where V = C""*"^ denotes the standard representation. I f { C Q , . . . , e,,} denotes the 

standard uni tary basis for C""*"^ then 

{ e , / A . . . A fti, I 0 < zi < . . . < ik < n} 

is a imi ta ry basis for A'' C " + ^ Moreover, since diag(e'^",. . . , e'̂ " )ej = e'^'Cj the 

restriction of the action of SU{n -\-\) on A * Y to the maximal torus is given by 

diag(e '^", . . . , e'"" ).e,j A . . . A e,-, = e'**'> + -̂ '*)e,̂  A . . . A e,-,. 

We recciU that i f 

}\p:SU{n + l)^GL{}\C''^') 

denotes the representation A* Y. then its differential 

d'/\p:su{n + l)^glCt\C''^' 

defines the action of su[n + 1) on A* Y which is given by 

diag(r ; /o , . . . , /y„).e,-j A . . . A e,-, = / (Y / , , -|- . . . y,, A . . . A e,. 

Since 

(c7„ + . . . + <Ti ,)(diag(/v/o,.. . , = i{yi^ + . • • v/. J 
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we see immediately that the weights of this representation are 

o-,-, + . . . + a i ^ , 0 < i j < . . . < ik < 11, 

and the corresponding weight spaces are 

:=spanc{e i , A . . . A e , , } . 

I n terms of the positive simple roots we have that 

fT,-, -h . . .+(7^. = ^ J ^ { a ^ + 2 a 2 + . . . - | - 7 i a - „ ) - ( Q ; , + i - h . . • + « „ ) - . . . . + t t „ ) . 

From this i t is clear that the lowest weight is 

(Ta + . . . - f = — ^ ( a , + 2 ^ 2 + . . . + n a „ ) - ( Q | + . . . + &„)-•• • - { a k +• • • + «„), 
n + l 

w i t h corresponding lowest weight vector CQ A . . . A e^^i. 

The stabiHzer of [eo A . . . A e^-i] G P(A^' C " + i ) is S{U{k) x U[n + 1 - A;)) and the 

orbit is G i . (C"+^) = SU^n + l)/S{U{k) x U{n + 1 - k)). 
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