Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham e-Theses
You are in:

Wavefunctions and wavefunctionals in complex configuration space

Leonard, David (2007) Wavefunctions and wavefunctionals in complex configuration space. Doctoral thesis, Durham University.

[img]
Preview
PDF
4Mb

Abstract

We show how to evaluate divergent asymptotic series using a modified Borei resummation method. We develop and test this technique using three different perturbative expansions of the anharmonic oscillator. In the first two expansions this provides the energy eigenvalues directly; however, in the third method we tune the wavefunctions to achieve the correct large X behaviour, as first illustrated in 1]. This tuning technique allows us to determine the energy eigenvalues up to an arbitrary level of accuracy with remarkable efficiency. We give numerical evidence to explain this behaviour. We also refine the modified Borei summation technique to improve its accuracy. The main sources of error are investigated with reasonable error corrections calculated. Having developed a suitable resummation technique we show how to generate a type of local expansion for vacuum, one-and two-particle states in the Schrödinger representation of quantum field theory. We also develop a large distance expansion of the ร matrix in terms of a momentum cut-off. Computer programs capable of producing the local expansions of the wavefunctionals and S matrix to an arbitrary order are generated.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Thesis Date:2007
Copyright:Copyright of this thesis is held by the author
Deposited On:31 Jul 2012 14:14

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter