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Abstract 

We show how to evaluate divergent asymptotic series using a modified Borel 

resummation method. We develop and test this technique using three different 

perturbative expansions of the anharmonic oscillator. In the first two expansions 

this provides the energy eigenvalues directly; however, in the third method we tune 

the wavefunctions to achieve the correct large x behaviour, as first illustrated in 

1]. This tuning technique allows us to determine the energy eigenvalues up to an 

arbitrary level of accuracy with remarkable efficiency. We give numerical evidence 

to explain this behaviour. We also refine the modified Borel summation technique 

to improve its accuracy. The main sources of error are investigated with reasonable 

error corrections calculated. Having developed a suitable resummation technique 

we show how to generate a type of local expansion for vacuum, one-and two-particle 

states in the Schrodinger representation of quantum field theory. We also develop a 

large distance expansion of the S matrix in terms of a momentum cut-off. Computer 

programs capable of producing the local expansions of the wavefunctionals and S 

matrix to an arbitrary order are generated. 
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Chapter 1 

Introduction 

Quantum field theory (QFT) is undoubtedly the most successful mathematical the

ory we have in particle physics to date. It arose from eff'orts to unify cjuantum 

mechanics and special relativity particularly in many particle systems where parti

cles can be created and annihilated. QFT describes phenomena on scales ranging 

from the sub atomic to the cosmological. It is the mathematical framework for 

describing the standard model of particle physics within which three of the four 

fundamental forces of nature are unified. QFT also has applications in nuclear, 

atomic, condensed matter physics and cosmology. The standard model of particle 

physics exhibits many symmetries such as U{1) 0 SU{2) (8) 5(7(3) gauge invariance 

and Lorentz covariance. 

Despite this, QFT has been troubled with difficulties since its inception. The 

biggest problem in physics today is perhaps how to unify the fourth fundamental 

force in nature, gravity. A QFT of gravity is currently viewed as an effective field 

theory vahd below some cut-off scale. A quantum theory of gravity valid on scales 

of 10"^^cm and below therefore has to be described by a more fundamental theory. 

Present candidates include the use of extended objects such as strings and mem

branes or additional symmetries. This does not mean that QFT has been exhausted 

as a source of information about physical phenomena. In the development of a the

ory beyond the standard model the tools and lessons of QFT will undoubtedly stiU 

be of great importance. In a similar manner quantum mechanics is a useful testing 

ground for quantum field theory, as we show in this thesis. 

1 



Chapter 1. Introduction 

QFT theory is also fraught with technical difficulties. Perturbative techniques 

to extract physical observables from a theory often fail, particularly in strongly 

coupled theories. For example the renormalisation group implies that the energy 

eigenvalues in Yang-Mills theory cannot be solved for perturbatively. Our repository 

of mathematical techniques to deal with non-perturbative solutions is extremely 

limited. Lattice field theory is probably the most important numerical technique for 

extracting these physical observables. 

Unlike relativity, which is based on fundamental physical concepts, QFT is diffi

cult to motivate at a physical level. The Schrodinger representation of QFT however 

is perhaps the best approach from the point of view of maintaining as much connec

tion to fundamental physical concepts as possible. In particular it is more closely 

related to the original concept of quantum mechanics. This representation of QFT 

has largely gone undeveloped since its conception. This is due to technical difficulties 

in the definition and ability to work in this representation. Some of these problems, 

however, have been overcome by, for example, the work of Symanzik [3] [4]. We give 

a more detailed discussion of the Schrodinger representation, its difficulties and how 

some of these have been overcome in chapter 5. 

Quantum mechanics is conceptually and technically more simple than QFT; 

however, many of the problems regarding divergence of perturbative solutions and 

the existence of non-perturbative effects are still found. The Bender-Wu asymptotic 

expansion of the quartic anharmonic oscillator energy eigenvalue for example is 

known to be divergent for all non-zero values of the coupUng. In quantum mechanics 

a variety of techniques have been used and developed to produce accurate and 

in some cases exact energy eigenvalues. These quantum mechanical systems will 

therefore be of iinportance in developing techniques that we later intend to use in 

quantum field theory. 

In chapter 2 we present some basic concepts of asymptotic series and resumma

tion techniques. Chapter 3 presents and develops one of the key concepts of this 

thesis by introducing a modified Borel resummation technique. We develop this 

technique by producing energy eigenvalues using the quartic anharmonic oscilla

tor as a toy theory. We improve the technique in a number of ways including the 



Chapter 1. Introduction 

introduction of some basic error bounds. 

In chapter 4 we outline a remarkably efficient method for generating solutions to 

quantum anharmonic oscillators with an x'^^' potential. We solve the Schrodinger 

equation in terms of a free parameter which is then tuned to give the correct bound

ary condition by generating a power series expansion of the wavefunction in x and 

applying a modified Borel resummation technique to obtain the large x behaviour. 

The process allows us to calculate energy eigenvalues to an arbitrary level of accu

racy. High degrees of precision are achieved even with modest computing power. 

This technique extends to all levels of excitation and produces the correct solution 

to the double-well oscillators even though they are dominated by non-perturbative 

effects. 

In chapter 5 we introduce the Schrodinger representation of QFT, specifically 

focussing on scalar field theory. We discuss a type of local expansion for the cf)'^ 

field theory vacuum wavefunctional and show how a modified Borel resummation 

technique can be used to extract the full wavefunctional. In chapter 6 we further 

develop the idea of expanding the wavefunctionals of cf)'^ field theory. We show 

how to produce a semi-classical expansion of the vacuum, one-particle and two-

particle states. We then develop a method of extracting the S-matrix from the 

wavefunctionals. We exphcitly demonstrate this using the semi-classical expansion. 

The concept of a local expansion of the wavefunctionals is extended to one and two-

particle states. These local expansions are then used to generate a large-distance 

expansion of the S-matrix. We write computer programs to achieve this and discuss 

these in more detail in appendix A. 



Chapter 2 

Harmonic Oscillators and 

Resummation 

Harmonic oscillators are a corner-stone of many branches of physics. Conseciuently 

a large variety of methods have been used to study the eigenvalue properties of 

anharmonic oscillators (see [5] [6] and references therein for a general review). High 

levels of accuracy have always been difficult to achieve due to slow convergence 

or often non-convergence of asymptotic perturbative expansions. For example the 

Bender-Wu [7] expansion of the quartic anharmonic oscillator ground state energy 

eigenvalue in positive powers of the coupling is known to be divergent for all non

zero values of the couphng. Methods of resumming asymptotic series [8] have been 

applied to generate approximate eigenvalues [9] [10]. In addition some types of 

anharmonic oscillators are dominated by non-perturbative effects such as instantons 

11]. More innovative approaches have been required to produce a greater level 

of accuracy and account for these non-perturbative effects [12] [13] [14] [15]. In 

addition to the numerical approaches some progress has been made in determining 

the analytic structure of certain anharmonic oscillators [16] [17]. In particular [17 

outlines a type of anharmonic oscillator which is quasi exactly solvable with certain 

parts of the spectrum known exa,ctly. 

These problems extend into quantum field theory. For example, the renormal-

isation group implies that the energy eigenvalues in Yang-Mills theory cannot be 

solved for perturbatively. Strongly coupled theories in particular are hard to deal 

4 



2.1. Asymptotic and Divergent Series 

with using traditional techniques. Anharmonic oscillators are therefore of great in

terest because of their applicability in many branches of physics and because their 

mathematical properties often mirror those of other physical systems. 

In this chapter we define the concept of an asymptotic series. In particular 

we define the Gervy asymptotic expansion since the perturbative solutions of the 

quartic anharmonic oscillator in the coupling and Planck's constant are both of this 

type. Since these types of expansion are known to be divergent we discuss the use 

of Pade approximants and Borel transforms as methods of resumming these series. 

Suitable reference material includes [8] and [18 . 

2.1 Asymptotic and Divergent Series 

Suppose a function / is analytic in some sector S and a formal power series is given 

by / = IZ^o'̂ n^^"- We say that f{z) asymptotically equals f ( z ) as z ^ 0 in 5 if 

there exists C > 0 such that \rf{z,N)\ < C for every non negative N with z E S 

where 

7v(.,iV) = ^ - ^ ( / ( ^ ) - ^ a „ ^ " . (2.1.1) 
n=0 

Note that r/(z, N + 1) = z~^ {rf{z, N) - GN). So if r /(z, j V -h 1) is bounded at the 

origin then 

hmrf{z,N) ^ a^. (2.1.2) 

This shows that an analytic f{z) has a unique asymptotic expansion. 

An asymptotic expansion, however, does not necessarily correspond to a unique 

analytic function. Therefore a perturbative series does not necessarily specify a 

physical system uniquely. For example the function 5}?(cz"'̂ ) > 0 with c > 0 when 

|ar5(2)| < Tr/2/k. Therefore exp(—cz"*^) —> 0 when z —> 0 within this sector. This 

implies that f{z) would have the same asymptotic expansion as f{z) - f exp(—cz~'^), 

hence our claim that an asymptotic expansion does not necessarily correspond to a 

unique analytic function. 

Equivalently we may also say that f{z) is the asymptotic expansion of f{z). 

Given A; > 0 we may say that / is the asymptotic expansion of / of (Gervy) order 
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k ^ if there exist C, K > 0 such that for every non-negative integer A'' 

\rf{z,N)\<CK''r{l + N/k). (2.1.3) 

Gervy asymptotic expansions occur in many physical systems, including the 

Bender-Wu [19] perturbative expansion of the quartic anharmonic oscillator in the 

couphng. We will also encounter a Gervy asymptotic expansion in the semi-classical 

solution of this oscillator in section 3.2. One technique that has been applied to these 

types of expansion is a Borel-resummed Pade approximants technique. 

2.2 Pade Approximants 

With M + N = K, the [M, N] Pade approximant of a function f{z) with a truncated 

series expansion of order K, 

/ > ) = E / n ^ " (2.2.1) 
n=0 

is given by 

where the a„ and bn are chosen in such a way that the truncated series expansion 

up to order K of / l ^ ^ - ^ l is given by f{z). That is 

f[M,N] ^ f^^^ ^ 0{z^+') = 0. (2.2.3) 

The coefficients a„ and 6„ in principle can be chosen uniquely as follows. Multi

plying (2.2.3) by the denominator of / I ^ ' - ^ l gives us 

K n M 

E / " - ^ - ^ " = E + ^^'"^'^ (2.2.4) 
n=0 m=0 n=0 

with 6o = 1. Comparing coefficients of 2" for 0 < n < î T gives us K + \ equations 

which in principle uniquely determine the K -\-\ an and Firstly, consider the 

coefficients of (2.2.4) with M <n < K + 1, 
n 

E fn-mhm. (2.2.5) 
m=0 

These allow us to determine the 6„ uniquely in terms of the given /„ using the usual 

algorithms and techniques for solving the simultaneous equations. 



2.3. Borel Transformation 

The a„ are then determined by looking at the 2" coefficients of (2.2.4) with 

0 < n < M . The linear equations are solved for the a„, for each n, substituting the 

am with m < n and all of the bm, fn in at each stage. 

Whilst the series (2.2.1) may only converge within some circle \z\ < i? it is 

possible that the Pade approximant may converge outside this region. Pade approx-

imants can therefore be used to define an analytic continuation of f{z) outside of 

this region. 

One advantage of the Pade method is that even at low orders of approximation 

the Pade approximation is able to describe functions with poles. This is in contrast 

to the standard power series expansions. 

We note that the Bender-Wu asymptotic expansion of the quartic anharmonic 

oscillator is one such asymptotic expansion for which Pade approximants have been 

used [9]. In this paper it was proved that the diagonal Pade approximants of the 

perturbative energy eigenvalue series converge towards the correct eigenvalue. 

2.3 Borel Transformation 

The Borel sum, B{z) of an asymptotic series such as (2.2.1) is defined by dividing 

the ^" coefficients, /„ by n!. That is 

= (2.3.1) 
n=0 

Using the integral representation of the gamma function 

n\ = r ( n + l ) = / dte-'e (2.3.2) 
Jo 

we can reinsert the factorials at each stage 

fn n 
= E ^ - " " - ' (2.3.3) 

= E ^ / " ' ^ ^ ^ " ( ^ ^ ) " (2'3-4) 

= / dte-^B{zt). (2.3.5) 
Jo 

This (2.3.5) is the Borel transformation of the Borel sum (2.3.1). 
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It is pointless to directly apply the Borel transform to a truncated Borel sum since 
this simply reproduces the original divergent series. In general a form of analytic 
continuation of the Borel sum must be found and then inversion applied. The Pade 
approximant technique is one method of performing this continuation. In [10] a 
type of Borel sum was appUed to the Fade approximants of the quartic anharmonic 
oscillator and proved that this does produce the correct energy eigenvalues. These 
numerical approximations appeared to be better than those obtained with the direct 
use of the Fade approximants. 

We note that the Borel sum of a Gervy asymptotic expansion will be convergent 

within a non-zero radius. This is due to the dampening of the gamma function in 

the expansion's coefficients. 

2.4 Symanzik Scaling 

In a semi-classical solution of a quantum mechanical model, Symanzik noted that 

the energy eigenvalues are often related via a type of scaling transformation [20 . 

For example, a Hamiltonian 

H{p,g)=p^ + px''+gx^ (2.4.1) 

may undergo a scaling x —> ex. This scales the Hamiltonian 

H{p,g) ^ ^ - f p c V - f g c x ^ = \H{pc\gc'). (2.4.2) 

In this example there is actually only one free parameter that we should consider. 

The remaining degree of freedom can be eliminated without loss of generahty by a 

Symanzik scaling type argument. In particular, the energy eigenvalues are related 

by choosing c = g~^l^ 

E^{l,g)=g"'Er,[g-^l\\). (2.4.3) 



Chapter 3 

Direct Resummation of the 

Anharmonic Oscillator 

One technique that has been of interest in the Schrodinger representation of both 

quantum field theory and quantum mechanics is a modified type of Borel resumma

tion [21] [22] [23] [24]. The aim of this chapter is to explore this particular method of 

resummation. It is important to test and develop the accuracy of our technique in a 

theory with known results so that we can confidently apply it to problems in which 

other techniques fail. Since energy eigenvalues are already known for the quantum 

mechanical anharmonic oscillator to a high degree of accuracy, we shall apply the 

resummation technique to this problem. That is, we look for solutions to 

+ px'<lf + gx^<if = (3.0.1) 

lim * = 0 (3.0.2) 

where x is defined along the real axis and we choose units in which h = 2m = 1. 

We will generate three different perturbative expansions of the quartic anharmonic 

osciUator wavefunction as follows: 

• An expansion in the coupling, g (Bender-Wu expansion) 

• An expansion in Planck's constant, h (the semi-classical expansion) 

• An expansion in powers of x 
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In the first two approaches we take a perturbative expansion of the energy eigen
value and directly resum to find an approximate result. In the third method we 
resum the large x behaviour of the wavefunction. This provides a variational tech
nique in which the energy is tuned to ensure the correct boundary condition ( 3 . 0 . 2 ) 

is observed. This technique is remarkably efficient and provides energy eigenvalues 
up to an arbitrary level of accuracy. In this chapter we focus on the first two expan
sions. The third expansion is considered separately in chapter 4 due to its special 
interest and efficiency. First we must develop a method of resummation. 

The method of resummation we shall employ aUows us to extract the small s 

properties from an asymptotic expansion which is only valid for large s. Therefore 

consider an asymptotic expansion of a function f{s) in inverse powers of s: 

/ W « a „ + ^ + | + | + £l + g + . . . . (3.0.3) 

We analytically continue f{s) into the complex s plane, then Cauchy's theorem 

relates the large s to small s = SQ behaviour of f{s) via the integral 

r „A ( s - so ) 
L(A) = / d s f { s ) ( 3 . 0 . 4 ) 

Jc S-SQ 

where C is a large circular contour centred on the origin. We only assume f{s) 

to be analytic in the half plane 3?(s - SQ) > 0 . Any singularity contributions to 

( 3 . 0 . 4 ) in the half plane R{s — S Q ) < 0 are exponentially dampend by A so that 

limA_oo^(A) = /(so). 

We approximate L(A) using a truncated version of the asymptotic expansion 

( 3 . 0 . 3 ) and expanding the s — SQ denominator in powers of SQ/S truncated to some 

order P. Thus we define 

P D N 

"'C' p=0 n=0 
( 3 . 0 . 5 ) 

where in completing the integral we used the identity [ 2 5 

ds exp(As) = 27rzA"-Vr(n) ( 3 . 0 . 6 ) 
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for n < 0. The introduction of the gamma functions in this series improves the 
convergence of the original asymptotic expansion. We note, however, that LAr(A) 
is only a good approximation to L ( A ) within a limited range of A. For sufficiently 
large A the series will be dominated by the highest powers of A and exhibits a rapidly 
increasing or decreasing behaviour depending on the sign of the coefficient. We also 
note the similarity of this method to that of Borel summation. The Borel transform 
of an asymptotic series results in the introduction of an additional l/n\ factor in 
each Cn. The Borel procedure, however, requires us to analytically continue the 
Borel transformed series before inversion. This is accomplished via techniques such 
as Fade approximants or conformal mapping. The advantage of our technique is 
that this analytic continuation is encoded in the contour integral. 

We take A as large as practicably possible with the constraint that LN{X) be a 

good approximation to L{X). This is best achieved by requiring maximal A = A ^ 

such that LN{X) differs from L7v-i(A) by no more than a set amount. In this chapter 

we will choose A M so that they differ by no more than 10~^ percent. More terms 

(greater A'̂ ) allows for a larger A and therefore better dampening of any singularity 

contributions. 

One method for increasing the singularity dampening for a given N is to intro

duce a new parameter, a by replacing /(s) with f{s") and SQ with s^/" in L{X). 

For Q > 1 the size of the last term in LN relative to its penultimate term L A T - I 

is reduced due to the gamma function in (3.0.5). This allows us to take a larger 

value of A whilst LN{X) remains a good approximation to L{X). Increasing a, how

ever, causes singularities of / to be rotated about the origin. For a too large the 

singularities enter the half plane 3f?(s — SQ) > 0, at which point they are no longer 

exponentially suppressed. L ( A ) will then exhibit oscillations resulting from these 

singularity contributions. We therefore take a = Q:A,/ to be as large as possible but 

still ensuring Liv(A) is monotonic as a function of A for A < A M . The technique 

originally (i.e. without the introduction of a) only worked for functions which are 

analytic in the half plane 9?(s - SQ) > 0. With the introduction of a we could also 

consider functions in which f{s) has singularities with $ft(s - SQ) > 0. By reducing 

a < 1 we can rotate these singularities back into the half plane 5R(s — SQ) < 0, where 
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they become exponentially dampened. 

In all three approaches we will solve the anharmonic oscillator ground state by 

writing = since the ground state of any quantum mechanical system has 

no nodes. In the case of the quartic anharmonic oscillator (3.0.1), the potential 

and boundary condition are even in x. We therefore expand W in the form W = 

Yl'^=i ^n^'^"'• Substituting this expansion into the differential equation (3.0.1) and 

comparing coefficients of the x^" we get relations between the as follows 

-2ai = E, -12a2 - 4a?+ p = 0, -30a3 - IGaiOa + ^ = 0 (3.0.7) 

and for n > 3 

/ n \ 
o„+i = - I ^ 4m{n - m + 1) 

Qm'^n—m + l 
/(2(n + l ) ( 2 n + l ) ) . (3.0.8) 

V m = l / 

The equation (3.0.8) allows us to find a„+i in terms of the with m < n. We 

can therefore solve all of the a„ in terms of ai, 0 2 and a^. In turn these first 

three coefficients are determined by the physical parameters E, p and g via (3.0.7). 

However, for a given p and g only specific values of E allow the solution to satisfy the 

boundary condition (3.0.2). In sections 3.1, 3.2 and chapter 4 we propose different 

methods for ehminating this final degree of freedom. 

3.1 Bender-Wu Expansion 

Bender and Wu [19] showed how to construct the ground state energy by summing all 

connected Feynman diagrams with no external legs. In general a Feynman diagram 

with 2n external legs has at least n — 1 vertices. So we ensure that an x^" term is 

at least order n — 1 in the coupling by making the expansion a„ = Ylm=n-i '^n,m5'"-

This is a similar approach to another method outlined by Bender and Wu in the 

same paper. We substitute this coupling expansion into the above relations between 

the a„ and compare coefficients of g". The first coefficient is given by â  g = 1/4 

which requires a choice of sign for aî o- In keeping with the Bender-Wu methods [19 

we choose a negative sign. In chapter 4 we show that this sign choice is required to 

ensure the correct boundary condition (3.0.2). 
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Having made the choice for aî o, the remaining coefficients are uniquely deter
mined. We first find each a„_„_i by looking at the g"~^ coefficient in (3.0.7) and 
(3.0.8). The g^ coefficients give a„,„ then the f?""*"̂  coefficients give the a„,„+i etc. 
At each stage we are substituting in the previous solutions. Eventually we can find 
each an up to any order in g. Of course the coefficients will also depend on p how
ever for the purpose of this section we set p = 1 without loss of generality since the 
eigenvalues for arbitrary p may be reproduced via a form of Symanzik scaling. 

We now have a solution for the ground state wavefunction of (3.0.1) as the 

exponential of a power series in x and g. The energy eigenvalue is computed from 

ai using (3.0.7) as a power series in g. This gives the well known [19] [26] [27 

Rayleigh-Schrodinger perturbation expansion for E{g), 

^ , 3 21 2 333 3 30885 , 916731 , 65518401 . 
E =1 + -g g^ H g^ + g*̂  + .. . . (3.1.1 

4^ 16^ 64 ^ 1024 ^ 4096 ^ 32768 ^ ^ ' 

This expansion has a zero radius of convergence, as can be seen from the asymp

totic form of the ai_n coefficients at large n as given by Bender and Wu [19]. It has 

been used to generate some energy eigenvalues via a Borel-resummed Fade approxi

mants technique [9] [10] although many other techniques have been used to find the 

energy eigenvalues more accurately and efficiently, e.g. [1] [12] [13] [14] [15] [28] [29 . 

We will apply our resummation method to E{g) in an attempt to get meaningful 

results for non zero values of g. To do this we analytically continue g in the complex 

s = l/g plane. We write SQ = 1/g and c„ = -2a i ,„ then apply the contour integral 

technique so that Liv(A) in (3.0.5) approximates the energy. 

The results generated via our resummation method are hsted in Table 3.1 (recaU 

QfM and XM represent the optimal values of a and A) and compared to the results 

as generated by the method [1]. We label the eigenvalues generated by [1] Ehest 

since they are accurate to within the number of significant figures expressed. The 

seemingly strange choices for g that we use become more natural in thq semi-classical 

expansion as outlined in the next section. We use the same values of g in both 

sections to allow comparison. 

The results for small g are quite impressive, with errors in the region of 10~^ to 

10"'' percent. However, for larger g the results are less impressive, with the error 

approximately 23.8% for the largest value of g. 
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g A M L 3 0 Error (%) 

0.05783 1.6398 2.9266 1.0397406 1.0397505 0.00095 

0.13458 2.4250 7.6353 1.0846489 1.0846523 0.00031 

0.23702 2.8159 10.4624 1.1359213 1.1359237 0.00021 

0.37556 2.8160 9.9602 1.1952265 1.1952286 0.00017 

0.56672 2.8160 9.6275 1.2649090 1.2649111 0.00017 

0.83794 2.8159 9.3800 1.3483970 1.3483997 0.00020 

1.23759 2.8160 9.1841 1.4509422 1.4509525 0.00071 

1.85793 2.8160 9.0197 1.5810649 1.5811388 0.00467 

2.89469 2.8160 8.8769 1.7536476 1.7541160 0.02671 

4.83194 2.8160 8.7472 1.9974138 2.0000000 0.12948 

9.19266 2.8160 8.6252 2.3766424 2.3904572 0.58127 

23.50256 2.8160 8.5039 3.0767794 3.1622777 2.77882 

206.09853 2.8160 8.3641 5.1098167 6.3245553 23.77265 

Table 3.1: Results for resummation of E in the coupling. 
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i.v(A) 

a.) g = 0.05783 

3.5 

A 

h) g = 206.09853 

Figure 3.1: Plot of L3o(A) and L29(A) with a = 

Figure 3.1a (a small g example) shows the expected behaviour of L29{X) and 

L3o(A) with P = 50. For sufficiently large A the two curves become a good approx

imation to L(A) and we see a flattening of the curve. For A sufficiently large we 

notice an appreciable divergence of the two curves. Figure 3.1b, where g is rela

tively large has somewhat different behaviour. Here we notice that the curves have 

not started to flatten before they appreciably diverge. For these larger g we need 

more terms (greater N) in the expansion so that we may consider larger A where 

the curve starts to flatten. Additionally we note that this curve exhibits oscillatory 

behaviour although it remains monotonic. When we introduced the requirement 

for the curve to be monotonic we assumed that a singularity contribution would 

consist of an exponentially weighted sinusoidal correction to a flat curve. In this 

case we do not have sufficient terms to consider A in the region where it becomes 

flat but instead are considering a region of the curve where it is still appreciably 

increasing. If we considered more terms with this value of a we might well find our 

monotonic condition is violated. Given the behaviour observed in Figure 3.1b it is 

not surprising that we have such a large error. 

In the next subsection we show that^E' ~ g^^^. Therefore as (/ —> oo or equiva-

^This can be seen by Symanzik scaling of the Hamiltonian [20]. 
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lently SQ 0 we notice that E has a singularity. It is this singularity that is causing 
difficulty in the resummation process since we need larger A for large g to ensure it is 
damped sufficiently. This in turn requires a larger N. The problems no doubt could 
be solved if we took a sufficient number of terms in the expansion of E however this 
would be at the expense of greater computing resources. In the next subsection we 
outline a more efficient method in which the singularity contribution is absent. We 
will therefore be able to calculate the infinite coupling hmit. This is something that 
cannot be done via resummation of the Bender-Wu expansion. 

3.2 Semi-Classical Expansion 

In this section we resum a semi-classical expansion in h for the a„ coefficients in W. 

We write ^ = e^^'^ and consider the modified differential equation 

-h''-^ + {bo + hx^ + b2x'')^ = 0. (3.2.1) 

The original problem (3.0.1) in which h = 2m = 1 is then recovered via a rescaling 

X —> cx provided 

E = - b 4 . 1 = 6 . ^ ; . , = 4. ( 3 . 2 . 2 ) 

We substitute ^' into the /i-dependent differential equation to generate relations 

between the a„. The equivalent expressions to (3.0.7) are 

bo = 2aih, bi = 4aj + 12a2h, 2̂ = 16aia2 + ^Oa^h (3.2.3) 

and the new version of (3.0.8) is 

n 

2h{n + l )(2n + l)a„+i + ^ 4m{n -m + l)a„a„_,„+i = 0. (3.2.4) 
?n=l 

The advantage of performing this rescaling is that we now have some freedom to 

choose ai and 02- We will restrict the choice, however, by requiring h> 0, with both 

c and h real. This will allow us to choose ai and 03 up to a sign. We will choose 

Oi = —1/2 and 02 — —1/8. We show in chapter 4 that this is the appropriate sign 
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choice to ensure that the boundary condition (3.0.2) is satisfied. With these choices 
(3.2.3) simplifies to 

3 

bo = -h, bi = l - -h, b2 = l + SOash. (3.2.5) 

Some particularly useful relations can be derived by eliminating c from (3.2.2) 

and then substituting in (3.2.5), 

E= . ^ =, g = h{l + 30a3h)E\ (3.2.7) 

We now assume an expansion a„ = Z lm=o '^n .m^ ' " f*̂ '̂ ^^^^ " — 3- This is 

substituted into (3.2.4) and coefficients of compared for each n. We first compare 

coefficients of hP to get the a„^o, then the coefficients of give the a „ j etc. At each 

stage previous results are substituted into the new equation. By continuing this 

process sufficiently many times we can find each a„ to any order required. A simple 

program can therefore be created to calculate 62 (by using the h expansion of 0 3 ) as 

an expansion in h. The first few orders are 

, 5^ 35^2 2555,, 69545,4 4849705,, 202337485,. 
62 = 1 + + + ^ + ••• (3.2.8) 

8 32 512 2048 16384 65536 ^ ' 

The expansion of ^2 in ^ is an alternating sign series, so we plot the ratio of 

successive coefficients of ft" in 62 in such a way that we are dividing by the preceding 

term and removing the minus sign. We illustrate this in Figure 3.2 for the first 100 

coefficients and note the approximate linear behaviour for large orders. This suggests 

that the asymptotic behaviour of the coefficients in 62 has the form ( —l)"+^A;"r(7i-|-

/C2) where ki and k2 are real constants. Such asymptotic expansions have a zero 

radius of convergence as demonstrated via the alternating sign series test. 

We shall therefore resum (3.2.5) for a particular SQ = 1/h, from which E and g 

can be calculated. The c„ in L^i^) now correspond to the coefficients of ft" in the 

^2 expansion. We note that ft = 0 corresponds to ^ = 0 and E = 1 whilst ft 2/3 

corresponds to g 00. We actually find that ft e [0, 2/3) corresponds to g G [0, 0 0 ) , 

which can be confirmed by the results of [ I j . We therefore calculate some couplings 
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80 j v 

Figure 3.2: Ratio of coefficients of / I " in 62 

h 0(M A M b2 Sest Sbest E r r (10-4%) 

0.05 1.5190 3.5078 1.0289799 0.0578315 0.0578320 8.85 

0.10 2.2473 8.4878 1.0546589 0.1345810 0.1345815 3.68 

0.15 2.5696 11.0496 1.0780575 0.2370176 0.2370183 2.69 

0.20 2.7754 12.7628 1.0997450 0.3755562 0.3755570 2.20 

0.25 2.8514 13.2331 1.1200769 0.5667191 0.5667201 1.83 

0.30 2.8555 13.0189 1.1392958 0.8379415 0.8379430 1.71 

0.35 2.8557 12.8266 1.1575774 1.2375925 1.2375945 1.66 

0.40 2.8557 12.6736 1.1750540 1.8579236 1.8579267 1.65 

0.45 2.8557 12.5499 1.1918288 2.8946853 2.8946902 1.70 

0.50 2.8557 12.4457 1.2079838 4.8319353 4.8319442 1.83 

0.55 2.8557 12.3584 1.2235859 9.1926365 9.1926555 2.07 

0.60 2.8557 12.2820 1.2386905 23.5024991 23.5025564 2.44 

0.65 2.8557 12.2158 1.2533439 206.0979166 206.0985278 2.97 

Table 3.2: Results of resummation in the semi-classical expansion 
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and energy eigenvalues within this range. The results, pest, are given in Table 3.2 
again compared to results, gbest (accurate to the stated number of significant Figures) 
generated from [1]. The energy eigenvalues produced are exact; however, it is the 
couphng that we are trying to approximate via the resummation process. We note 
that errors in the coupling are in the order of 10"''%. Most importantly however, 
the error remains within this order of magnitude for the fufl spectrum of h, in 
contrast to resummation in the coupling. We can attribute this success to the fact 
that h G [0, 2/3) as opposed to g E [0, oo) and that the resummation process is 
most effective for small h or g. Also we encountered difficulties in resumming the 
coupling expansion for large g due to the singularity at the origin in the s plane. 
This problem has been removed in the semi-classical expansion. 

For higher h we expect the error to be greater since the contribution from sin

gularities increases. It is interesting to note, however, that whilst this is true for 

the larger values of h, the highest error is when h = 0.05. We attribute this to 

an insufficiently large value of P. We plot L3o(A) and L29(A) in Figure 3.3a with 

P = 50 and note the decaying behaviour of the curves. With P = 100, say, we 

recover the expected behaviour of a flattening curve followed by the divergence of 

the two curves. One curve increases whilst one decreases from the point of diver

gence, as illustrated in Figure 3.3b. This is because the expansion of (s — s^")"^ in 

powers of s^^/s is only valid for large s. Whilst this is a valid assumption given the 

contour of integration, the series does require more terms to achieve a suitable level 

of approximation when SQ becomes larger, or equivalently h becomes smaller. The 

error as a result of truncation in this expansion is systematic, hence the decaying 

nature of the curve for larger values of A. This effect becomes more pronounced for 

larger a. It is possible that a becomes sufficiently large to cause this decaying be

haviour before singularity contributions becomes significant. However, in this case 

the curve will still fail the monotonic condition. We resultingly take both a smaller 

a and a smaller A and therefore get greater singularity contributions than if we had 

taken a larger P. Despite the improvement expected with larger P we are still able 

to extract good approximations with P = 50. 

The case h 2/3 is particularly interesting because this corresponds to the 
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a) P = 50 b) P = 100 

Figure 3.3: Plot of L3o(A) and L29(A) with h = 0.05 

infinite coupling limit. With £"00 = (3/?'2(2/3)/2)^/^ this hmit corresponds to E 

Eoo9^^^- Using our resummation method we find Eoo — 1.0603632150, compared 

to the value Eoo — 1.06036209 which is exact to the stated number of significant 

figures. That is an error of 1.06 x 10"''%. Parisi [30] was also able to calculate this 

limit as £'00 = 1.06038. 

The method outlined so far for the ground state can be generahsed to find the 

energy and wavefunctions of the excited states. We write the qth. excited state 

= Pq'^o with energy E = Eg + EQ. Now consider 

T9 T 

- / ? ' ^ + (60 + 63 + bix^ + 62X' )* = 0 

which using (3.2.1) reduces to 

- h ' ' ^ - 2 W ' h ^ + b3R = 0. 

(3.2.9) 

(3.2.10) 
dx'^ ~" ' dx 

We scale x ^ cx to recover the AHO oscillator (3.0.1) provided that in addition to 

(3.2.7) we also have 

b^ 
ft2 h 

Eo = 
h j i - | / i 

(3.2.11) 

We now need to find 63 and Uq using (3.2.10), which is easily done using a similar 

approach to that described for the ground state. That is, expand 

n=0 m=0 
00 

3̂ = E ^ a . - ^ " ' 

(3.2.12) 

(3.2.13) 
m=0 
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and substitute into (3.2.10). By comparing coefficients of h'^ and x" we get 
fc 

- b3^iCnM-i + {n + 2){n+ l ) c „ + 2 , f c - 2 
2=0 

( « + l ) / 2 fc-1 

+ 4 ^ ^ m ( n + 2 - 2 m ) a , „ , , c „ + 2 - 2 m , f e - « - i = 0. (3.2.14) 
m = l 1=0 

for > 1. The k = 0 case reveals 63,0 = 0 or co,n = 0 for all n. Clearly the former is 

required. The A; = 1 case is given by 

( n + l ) / 2 

-h,iCnfi + 4h ^ m{n + 2-2m)ajn,oCn+2-2m,o = 0. (3.2.15) 
m = l 

We consider this equation for each n starting with n = 0 and find at each stage that 

Cn,o = 0 until we reach a point where 

634 = 4nai,o = -2n. (3.2.16) 

Clearly 63,1 = 0 is required for the ground state, 5 = 0. Note also that a Taylor 

expansion of (3.2.11) would reveal 634 = Eg^. This corresponds to the qth harmonic 

oscillator with energy eigenvalues E = 2q -\- 1 ov Egfl = 2q. So we have c„̂ o = 0 for 

n < q and 634 = 2q. 

We can fix one of the x" coefficients in Ug by a choice of normalisation and 

therefore set c, o = 1 with the remaining Cg,„ = 0. Now consider the k = 2 case for 

each n then /c = 3 etc. We see that at each stage (3.2.14) can be solved for c„_fe_i 

provided n ^ q ov [{ n = q we get 63,fc. 

By solving a series of linear equations we have managed to determine 63 and Ug 

and hence found the excited wavefunctions and energies up to any order required. 

We can then apply our resummation method to evaluate the series expansion. 

One advantage of this method is that we can calculate the energy eigenvalues 

for an infinite coupUng. We have already seen that this is given when h= 2/3. By 

using (3.2.11) and (3.2.7) we can write 

h-i / a \ ^ 

^^ = - ¥ U r • ^3.2.17) 

So in the infinite coupling limit, 2/3 we have Eg — Eg^ooQ^^^ where 

^,,00 = -\h{2l2>)Eo,oo. (3.2.18) 
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q A M 
u.best 
"3 Error (%) 

1 3.3554 17.9902 -1.722251 -1.722249 0.0001 

2 3.2057 15.4576 -4.020691 -4.020850 0.0040 

3 3.1254 13.8688 -6.654020 -6.654572 0.0083 

4 3.0734 12.7075 -9.555955 -9.557404 0.0152 

5 3.0341 11.7759 -12.681877 -12.686239 0.0344 

6 3.0046 11.0209 -16.000874 -16.012209 0.0708 

7 2.9831 10.4064 -19.489826 -19.514237 0.1251 

8 2.9675 9.8993 -23.130233 -23.176133 0.1980 

9 2.9560 9.4721 -26.906049 -26.984993 0.2926 

10 2.9473 9.1068 -30.803510 -30.930247 0.4098 

Table 3.3: Infinite coupling values of 63 

Applying our resummation method we can calculate 63 and hence Eq^ac- A table 

listing the first ten approximations of ^3, labled 63*^ is given in Table 3.3. 

3.3 A Shifted Expansion 

Let us momentarily remove a from L(A) by setting a = 1. We were unable to directly 

evaluate L(A) even having replaced f{s) with the truncated asymptotic expansion. 

This was due to the s — SQ denominator in the integrand, which we expanded to give 

a sum of integrals of the form 

L ds — = (3.3.1) 
,c ^' r (n ) 

which are more easily evaluated. Unfortunately the expansion of this denominator 

required summing over two variables in LN{\). We truncated the expansion of the 

(s — SQ)"^ term to a relatively high order to avoid complications arising from a 

truncated form of this expansion. This effectively meant we had to compute a series 

involving a sum of iVF terms. With our chosen A'' and P this amounted to 1500 

terms. 

Instead we shall briefly investigate the possibility of shifting s -̂ ^ s -f- SQ in L(A) 



^^^^) = ll~'n^y (3.3.3) 
n=0 
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and then using the truncated expansion of /(s) to approximate L{X). That is, we 
write 

oo oo 

n=0 ^ ' n=0 

by expanding the (s -I- S Q ) " " terms in powers of SQ/S. Our new coefficients c„ would 

then be dependent on SQ, so a separate expansion would be required for each SQ we 

try to evaluate. 

We then truncate the new expansion and substitute into L{X). Having done this 

we reinsert the parameter a with the substitution s —> s". 
N 

r 
r ( an ) 

The advantage of this type of expansion is that we no longer need to worry about 

a double summation truncated to order A and P. This reduces the computational 

time to evaluate the series but also prevents the problems encountered in 3.2 as a 

result of truncation in P. 

We should note, however, that the a parameter in the original (3.0.5) is 

different to the a in (3.3.3). In the original formulation a caused singularities to be 

rotated about the origin. This is still the case in the new formulation; however, we 

now have a different origin since s has been shifted. It will depend on the location of 

singularities as to which method will allow a larger a and therefore better dampening 

of pole contributions. 

We complete our resummation process by using the shifted h expansion and 

present the results, g^^u in Table 3.4. We note that the errors are considerably larger 

than in the previous method. So whilst this method does have some advantages it 

is clearly less efficient for the semi-classical expansion. We attribute this to the 

different geometry involved when rotating poles by varying a. It is clear that in 

the shifted method we have smaller values of au and therefore A M , which results 

in less dampening of any pole contributions. Although this method is inferior for 

the expansion of 62 we should note that, depending on the location of singularities 

it may prove to be better in other expansions and therefore should not be ignored. 

We could question, however, whether it is fair to compare this method with N = 

30 to the previous method, which effectively had A P = 1500 terms. In the shifted 
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h A M b2 Sest Sbest E r r (%) 

0.05 1.0000 0.5166 1 0289943 0.0578329 0.0578320 0.002 

0.10 1.0040 0.5631 1 0545995 0.1345734 0.1345815 0.006 

0.15 1.0627 0.7669 1 0791362 0.2372547 0.2370183 0.100 

0.20 1.0971 0.9049 1 1021792 0.3763874 0.3755570 0.221 

0.25 1.1303 1.0487 1 1244110 0.5689119 0.5667201 0.387 

0.30 1.1569 1.1569 1 1457268 0.8426714 0.8379430 0.564 

0.35 1.1832 1.3033 1 1665395 1.2471800 1.2375945 0.775 

0.40 1.2060 1.4223 1 1866922 1.8763800 1.8579267 0.993 

0.45 1.2264 1.5340 1 2062905 2.9298231 2.8946902 1.214 

0.50 1.2435 1.6317 1 2252384 4.9010160 4.8319442 1.429 

0.55 1.2625 1.7442 1 2441147 9.3469363 9.1926555 1.678 

0.60 1.2777 1.8371 1 2622842 23.9503681 23.5025564 1.905 

0.65 1.2941 1.9401 1 2803813 210.5377762 206.0985278 2.154 

Table 3.4: Results of resummation in the shifted semi-classical expansion 
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example we could afford to take more terms given the reduced computational power 
required to perform the resummation. We note, however, that in some perturbative 
expansions calculating an expansion to higher orders can often be the l imi t ing factor. 

3.4 Error Estimates 

There are two main sources of error in our prescription for evaluating / ( S Q ) . The 

first is due to LN{X) only being an approximation to L{X). We require LN{X) to 

differ f rom Lj^^i(X) by no more than, say, a percent. Therefore we can think of a 

as being an error. Smaller a requires evaluating L(A) for a smaller A, which has the 

unwanted side effect of reducing the exponential dampening of any singularities of 

f{s) in the left half plane. This is the second source of error. We shaU outhne a 

method for estimating the error in L(A) as a result of singularity contributions. 

Consider a pole of f{s) located at Sp. We wi l l only be working w i t h asymptotic 

expansions for which all coefficients, a„ are real. This implies that for a pole to 

exist at Sp we must necessarily have a pole at the conjugate location s*. We shall 

for now assume that f{s) has just one pair of poles in the left half s plane but is 

analytic on the remainder of the complex plane. The pair of conjugate poles gives 

a contribution to (3.0.4) of the form 

ccos(A2/p + i / )e^(^f- 'o^") (3.4.1) 

where is split into real and imaginary parts Sp^" = Xp + iyp and c, u are real 

numbers. In the large A l imi t this contribution approaches zero provided a is not 

taken so large as to rotate the poles into the right half plane. For a general a 

the correction (3.4.1) looks like an oscillating curve either growing or decreasing 

in amphtude. For Xp > SQ"" the osciUations are growing and for Xp < SQ°' the 

oscihations are being damped. We w i l l use this to tune a un t i l the oscillations are 

fixed in amplitude, say a = ar, at which point Xp = s^". Having determined Xp 

we determine yp by calculating the period of oscillations. This is best achieved by 

considering the A derivative of LN{X) and looking for zeros w i t h a = ar- The phase 

u and amplitude c are then easily calculated by fixing the location of zeros in the 
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derivative of Li^{X) and also ensuring the correct amplitude of the sinusoidal curve. 
Now wi th a = ar the pole contribution is 

— + cc = ccos(A?/p + i/) (3.4.2) 

where pr is the residue of / ( s " ^ ) at s^"^ and cc denotes the complex conjugate. So 

we have determined pr numerically i n terms of the parameters c, yp and u. 

We want to evaluate L(A) (or Li\f{X)) when a = aM, the maximal value of a for 

which the curve is s t i l l monotonic. W i t h this value of a the pole contribution is 

P^' _ i / . M + (3.4.3) 

where 

S c = ( s y " ' " + 2 2 / p ) " ^ ^ " " (3.4.4) 

and P M is the residue of f{s°"") at Sc. We can relate and PM via 

and therefore can calculate the pole contribution f rom (3.4.3). We think of a as 

being the error in approximating L(A) w i t h LN{X) which in this case was chosen to 

be (7 = 10"'^%, and (3.4.3) as being the correction to L(A) as an approximation to 

/ (so) as a result of a pole pair contribution. 

In general f { s ) w i l l not have just one pair of poles but a number of poles and 

cuts. The contributions f rom these singularities w i l l be exponentially weighted w i t h 

singularities lying furthest to the right being most dominant. Due to this exponential 

weighting a cut contribution w i l l look like a pole dominated by the right most end 

of the cut. We can therefore apply our procedure assuming the existence of just one 

pole pair and then interpret the correction (3.4.3) as being the dominant or leading 

order correction. We note, however, that the right-most end of a cut can actually 

change as i t is rotated by increasing a. The left and right ends of a cut may actually 

switch i f a becomes too large. I n this case the error estimate may not be the most 

dominant but w i l l be a more minor correction. 

In order to apply our technique we w i l l require sufficient terms to ensure at least 

two peaks or troughs for a = ax- These must exist w i th in a region where LN{X) 
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9best aT dcorr Resum Err Corrected Err Relative Err 

0.057832 1 0000 0.057833 0.00165 0.00002 90 

0.134581 1 0040 0.134613 0.00600 0.00023 26 

0.237018 1 0627 0.237378 0.09976 0.00152 66 

0.375557 1 0971 0.376543 0.22112 0.00263 84 

0.566720 1 1303 0.568924 0.38674 0.00389 99 

0.837943 1 1569 0.842246 0.56430 0.00514 110 

1.237595 1 1832 1.243168 0.77452 0.00450 172 

1.857927 1 2060 1.866679 0.99322 0.00471 211 

2.894690 1 2264 2.908286 1.21370 0.00470 258 

4.831944 1 2435 4.864863 1.42948 0.00681 210 

9.192656 1 2625 9.237419 1.67830 0.00487 345 

23.502556 1 2777 23.666373 1.90537 0.00697 273 

206.098528 1 2941 207.519940 2.15394 0.00690 312 

Table 3.5: Corrected couplings due to dominant singularity contributions 

is a good approximation to L(X). Clearly A'' = 30 in the Bender-Wu expansion 

is insufficient for large couplings, as L/v(A) did not approximate L(A) sufficiently 

well. We also note that w i t h the semi-classical expansion, the errors are of the order 

10"'*%. So in this case the dominant error is provided by cr. I n fact the exact values 

lie between L30 and L29 in this expansion, so a is actually an error bound. I t would, 

however, be pointless to calculate the error correction due to singularities without 

first reducing a (or A''). We wi l l instead apply this technique to the shifted semi-

classical expansion (section 3.3). I n this technique we found the actual error to be 

much greater than a. 

We subtract the dominant singularity correction and list the results (gcorr) in 

Table 3.5. The percentage errors after resummation, and percentage errors having 

subtracted the dominant singularity contribution, are listed. The relative error is 

the ratio of these two errors and indicates that the percentage error has improved 

by a factor of between 90 and 312. We expect the error as a result of singularities is 

greater for larger h, and this is reflected in these increasing corrections for higher h. 
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3.5 Summary 

The concept of direct resummation to approximate a divergent asymptotic expansion 

is important despite the existence of more accurate techniques for calculating anhar-

monic oscillator energy eigenvalues. We produce a particularly efficient method for 

finding such energy eigenvalues in the next chapter. I t w i l l not always be possible 

to apply this technique to other physical problems such as calculating the S matr ix 

in later chapters. Hence the need for this resummation method. 

We have shown that the modified Borel summation technique can produce rea

sonably accurate results f r o m perturbative expansions that are divergent. This is 

achieved w i t h a relatively modest number of terms. We have improved the accuracy 

of the procedure and investigated some of the major sources of error. Subtracting 

these leading order corrections also resulted in better approximations. 



Chapter 4 

Tuning the Boundary Condition 

I n this chapter we w i l l outline a method of constructing solutions to the Schrodinger 

equation for an anharmonic osciUator of the form 

l i m * = 0 (4.0.2) 

where x is real and units are defined such that Planck's constant and the mass 

are set to unity, h = 2m = 1. We do this ini t ia l ly by constructing a solution to 

the differential equation (4.0.1) in terms of one free parameter for a given p and 

g. We then vary this parameter un t i l we observe the correct large x behaviour 

determined by the boundary condition (4.0.2) using a contour integi'al method of 

resummation. We find the energy eigenvalues w i t h an arbitrary level of accuracy. 

The process is easily automated to produce very high levels of precision even w i t h 

modest computing power. 

In section 4.1 we w i l l outline the basic method for the ground state of the quartic 

oscillator, M = 2. In section 4.2 we w i l l extend the method to produce excited 

wavefunctions and energy eigenvalues. Finally in section 4.3 we w i l l show how this 

method can be extended to general anharmonic oscillators w i t h an x^^^ potential as 

in (4.0.1). Having set up the basic method we offer a more detailed investigation in 

section 4.4 as to why this technique works so well. 

29 
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4.1 Tuning for Large x 

I n this section we w i l l find the ground-state wavefunction and energy eigenvalues 

corresponding to the quartic anharmonic oscillator obtained f rom (4.0.1) by setting 

M = 2. Since the ground state has no nodes we w i l l construct the wavefunction in 

the form ^ = exp{W). We wih make an even-powered x expansion W — Onâ "̂ 

since both the potential term and boundary condition are even. The coefficients a„ 

are then determined in terms of the parameters p, g and E via (4.0.1). Having 

chosen two of these parameters, the th i rd must be determined by ensuring the 

correct boundary condition (4.0.2), which implies that W ~ —y/gx^/3 for large 

positive real x. Since our expansion for W in positive powers of x is only valid for 

small X we shall resum by analytically continuing x into the complex s = 1/x plane 

and using Cauchy's theorem to examine the large x behaviour. We define 

where C is a large circular contour about the origin in the complex s plane. The 

large x asymptotic behaviour implied by the differential equation requires W{s) to 

have a th i rd order pole at the origin. This contributes a term — y ^ / 1 8 to L(A) 

by Cauchy's theorem. When the boundary condition is satisfied we find that any 

remaining singularities of W{s) lie to the left of the imaginary axis. The contribution 

f rom these is exponentially suppressed in L(A) so that in the large A hmit only the 

singular contribution at the origin remains, limA^oo-^'(A) = —y/g/18. In reahty 

(4.1.1) is not calculated exactly but by truncating W at some order x"^^. Thus 

^ n=l n = l ^ ^ 

where in the evaluation of the contour integral we used the identity 

y" exp(As) = 27rzA"/r(n) (4.1.3) 

f o r n < 0 [25 . 

We proceed by finding our x expansion in W and looking for the correct be

haviour in Lj<^{X). We w i l l consider solutions wi th a fixed coupling g = I, without 
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loss of generahty, and look at the relationship between E and p. We do this w i th 
out loss of generality since our parameters are related by scaling properties of the 
Hamiltonian, as first noted by Symanzik and discussed in [20]. To help us we w i l l 
scale X —> cx (c G R) in the differential equation (4.0.1) in such a way that we are 
free to place a restriction on our expansion for W. We can choose k = a^/a^ at least 
up to a sign, say A; = ± 4 . Now substituting W into our scaled differential equation 
and comparing coefficients of x^" 

Ec^ = - 2 a i (4.1.4) 

pc^ = Aa\ + I2a2 (4.1.5) 

€•̂  = 160102 + 3003. (4.1.6) 

We eliminate c to find expressions for E and p i n terms of 02 and 03 

E = - ^ ' " ^ , (4.1.7) 
(16^0^ + 3003)3 
Ak'^al + 12o2 

(16A;a2 +3003)3 
(4.1.8) 

whilst for n > 3 we have 

/ n \ 
o„+i = - ^4m.{n-m+l)a„,an-m+i / (2(n + l ) ( 2 n + 1)) , (4.1.9) 

\ m = l / 

giving a„+i in terms of 02 and 03. 

Our goal is now to determine 03 for a given 02 in such a way that the boundary 

condition is satisfied. We do this by tuning 03 unt i l the correct large A behaviour 

is observed in L N { X ) . T O illustrate the process we shall choose positive k, k = A 

and 02 — —3/16. W i t h this sign choice and 02 we get a zero p term. This is a 

useful case to consider because i t is easily compared w i t h existing literature, but is 

also interesting because i t corresponds to the strong coupling problem via Symanzik 

scahng of the Hamiltonian. We choose a fair ly modest A'' init ially, guess a value of 

03 then plot LN{X) and L / v _ i ( A ) . LAT and L / v - i only provide a good approximation 

to L{X) for values of A up to the point where they appreciably diverge f rom each 

other. Therefore we restrict our consideration of A to wi th in this range. 

W i t h 03 too small we encounter a curve rapidly decreasing such as in figure 4.1a. 

W i t h 03 too large we encounter a curve rapidly increasing as in figure 4.1c. A n 
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Figure 4.1: LN{\) w i t h N = 19, 20 for as = - 3 / 1 6 

optimal value of as w i l l give a curve flattening as we increase A as in 4.1b. We 

tune 03 unt i l we achieve this. As 03 gets closer to its correct value the exponential 

behaviour in figures 4.1a and 4.1c becomes less pronounced wi th in our range of 

acceptable A and flatness becomes a less well defined concept. This determines our 

level of accuracy for determining 03. To improve our accuracy we must increase A'̂  

in order to consider larger A. As we consider these larger A we again encounter the 

exponentially increasing / decreasing behaviour, which enables us to further tune 

a3 to a greater accuracy. 
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We completed this procedure i n this zero-p case and determined 03 to 6 significant 
figures w i t h A'̂  = 20. W i t h = 100 we tune 03 to 30 significant figures and w i t h 
iV = 300 we get 

as = 0.01936043720245950419201997531721233596425589581549397570027615152, 

(4.1.10) 

to 65 significant figures and we find L(X) ^ —0.0934774, which is remarkably close 

to the predicted value of —0.0934723. This calculated figure of 03 is accurate to the 

stated number of digits, i.e. 65 significant figures and in agreement w i t h existing 

literature [12] [13] [14] [15] at least up to the 10-16 significant figures they quote. 

W i t h 03 determined we calculate the ground state energy via (4.1.7) 

Eo = 1.0603620904841828996470460166926635455152087285289779332162452417 

(4.1.11) 

again quoted accurately up to 65 significant figures. 

Calculating large numbers of terms is easy, even w i t h modest computing power, 

given the linear nature of the calculations. The tuning process is easily automated. 

We repeat this for various 02 and plot the results in figures 4.1 and 4.3. The 

two branches correspond to differing sign choices of k. W i t h k = +4 we found 

solutions corresponding to positive energy. The solutions have a positive p term 

for 02 < —3/16 and a negative term for —3/16 < 02 < 0. W i t h k = —4 and 

0 > (12 > —3/16 we found negative energy eigenvalues corresponding to p < 0. 

We also verify that non-zero p terms correspond to the hterature by for example 

calculating the p = —1, g = 1 energy eigenvalue. In doing so we must tune 02 w i t h 

A: = + 4 to obtain the correct p term. We found that 02 = 0.004048768355681543705 

approximated p = — 1 w i t h an error i n the order of 10"*^. This value of 02 is 

w i th in ± 5 " ^ ^ of the correct 02 required to evaluate p exactly. The energy eigenvalue 

produced f rom this approximate value of 02 gave us the same eigenvalue as stated in 

previous literature to wi th in the 16 significant figures available for comparison. This 

is an example of an eigenvalue where instanton effects would normally dominate and 

perturbative techniques in h or g would fai l . 
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Figure 4.2: p, E and 03 as functions of 02. 
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Figure 4.3: E as a funct ion of p 

We now explain why this method of tuning is so sensitive. W i t h M = 2 the 

differential equation (4.0.1) without the boundary condition (4.0.2) in general has 

an asymptotic large positive x solution of the fo rm 

X (4.1.12) 
3 7 V 3 

For A < 0, '^i has zeros along the real x axis; however, for A > 0, has zeros in 

the complex x plane off the real axis. Our boundary condition (4.0.2) requires us to 

take A^ 0, in which case' t ; has no zeros. We note that for A ^ 0. log '^i w i l l have 

a pole (possibly part of a cut) . Such a pole contribution in the right-half x plane 

would spoil our resummation of the large x behaviour. I n section 4.4 we numerically 

determine the location of zeros in our wavefunctions for varying and show that 

they numerically approximate the location of the zeros in our asymptotic large x 

solution for varying A. Thus varying corresponds to varying A in (4.1.12). The 

presence of these poles is responsible for the rapidly increasing /decreasing behaviour 

for values of 03 on either side of the correct one due to the exponential factor in 

(4.1.1). I t is this behaviour that allows us to select the correct value of 03 to any 

specified level of accuracy. 
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4.2 Excited States 

We now construct the excited states and energy eigenvalues of the quartic anhar

monic oscillator. Firstly we write the qth excited state as = Pq^'o, where the 

energy is E = Eg + EQ, and 'I'o is the ground state obtained in the previous section. 

For q odd Pg is odd and for q even Pg is even. We therefore expand P = Yl'^=o '^n-'^^ 

and sum only over even or odd values of n as appropriate. We set either CQ or Ci 

to unity as a choice of normalisation. The remaining c„ and Eg are then solved 

for using a recurrence relation in terms of either C2 or C3. This is easily obtained 

f rom our new differential equation, which comes f rom substituting into (4.0.1) 

to obtain 

This differential equation has two types of large x solution. Either 

/ E \ 
P ~ e x p - r — ^ or P ~ e x p ( 2 ^ x ^ ) . (4.2.2) 

For the correct boundary condition (4.0.2) we must choose the first type of solution. 

We therefore construct 

T ^ W ^ l f - / ^ ^ - E ^ = E ^ - W o (4.2.3) 

and look for a flat curve as we tune C2 or C3. We have introduced an additional 

parameter a by substituting s ^ s ° i n P{s) since we find that P{s) has a more 

l imited region of analyticity than W{s] when the boundary condition is satisfied. 

Here we only assume that P{s) is analytic in some wedge shaped region radiating 

f rom the origin and containing the real axis. Singularities outside of this region of 

analyticity are observed in TM{X) i n the fo rm of oscillations. They can, however, 

be rotated in the complex s plane so that they he to the left of the imaginary 

axis by reducing the parameter a < 1. Having done this the singularities become 

exponentially suppressed. 

We illustrate the process in the zero p case for the odd eigenfunctions. There w i l l 

be multiple values of r = —C3 that correspond to different levels of odd excitation. 

Let us label these r „ in such a way that r „ + i > r „ . W i t h r < r i we obtain a rapidly 

increasing curve; however, w i t h r i < r < T2 we get a rapidly decreasing curve (figure 



4.2. E x c i t e d States 37 

4.4). We follow our tuning procedure i n the same manner as for the ground state; 
however, this time we do not encounter a fiat curve but oscillations. These result 
f rom a pole or cut outside of our region of analyticity. We could, however, take a 
smaller a to recover a flat curve and proceed w i t h our tuning procedure. For r = T I 
we found a = 0.6 sufficient to achieve this. 

We can produce the f u l l spectrum of eigenvalues by continuing to vary r . We find 

that as r passes through a value T„ we switch f rom the rapidly growing to rapidly 

decreasing behaviour. W i t h TJ, > r > T-^ for example we switch back to the rapidly 

increasing curve. This alternating behaviour continues w i t h higher excitations, as 

illustrated in figure 4.4. Exactly the same procedure works for even excitations but 

we vary C2 instead of C3. Having found an eigenstate through this method we cannot 

immediately tell which energy level i t corresponds to. To do this we could plot the 

prefactor using a similar contour integral method of resummation. We then count 

the number of nodes. We did this for some of the lower excitations. We calculated 

excited states up to g = 39 wi th g ^ I and again found exact agreement to the 

quoted level of accuracy in previous literature [12] [13] [14] [15]. We give some of 

these eigenvalues in the appendix. 

Whilst we cannot attribute the rapidly increasing / decreasing behaviour of 

TAT (A) to zeros in Fg we believe that a similar effect is encountered this time due to 

the large x behaviour. There were two types of large x behaviour (4.2.2) that we 

were able to derive f rom the differential equation (4.2.1). We chose the first in order 

to satisfy our boundary condition (4.0.2). When C2 or C3 do not correspond to an 

energy eigenstate we believe that we are obtaining the second type of solution. We 

note that such large x behaviour would give an additional pole contribution to T (A) . 

Again our resummation is conveniently spoilt. In section 4.4 we numerically verify 

this result by plot t ing P for large real values of x for a range of C3 by exploiting 

Cauchy's theorem. 
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4.3 Other Potentials 

I n this section we consider other values of M in 4.0.1. The large positive x behaviour 

is now W ~ —y/gx'^^^^/{M + 1). We should therefore redefine our Lpf{X) for a 

general x^^^ potential 

„As ^ „ ^ \ ( 2 n - A ' / - l ) Q 
1 1 r f>^^ _ n \(2n-M-l)oi • M f w — 

27rz A(A'^+i)« ]c s _ 

where again we introduce the parameter a, since for M > 2 we find that W{s) 

is analytic wi th in a more hmited region. Our prescription of reducing a < 1 w i l l 

therefore be required to rotate these singularities to the left of the imaginary axis 

where they become exponentially suppressed. 

Our a „ are again determined via the differential equation i n the same manner as 

before. We apply the rescaling x cx so that we can fix 0 1 / 0 2 = ± 4 as before. We 

pick a value of 02 and use (4.1.9) to solve for all of the coefficients in terms of a„+i . 

This relation now holds for n > 2 but not n = M. I n its place we have 

M 

c^g = 2 ( M + 1 ) ( 2 M + l ) a M + i + J ] 4 n ( M - n + l ) a M a „ - A / + i (4.3.2) 
n = l 

which is then substituted into (4.1.4) and (4.1.5) to give E and p. 

Our procedure is now the same as for the M = 2 case. We do find, however, 

that for increasing M the region of analyticity becomes smaller and therefore an 

increasingly small a is required. We performed this procedure w i t h M ranging f rom 

2 to 50 for (/ = 1 and found results matching those in [13] for M = 2, 3, 4. Having 

determined the ground state we have applied the technique outhned in section 4.2 

to obtain some excited energy eigenvalues. Again these are in complete agreement 

w i t h [13 . 

4.4 Numerical Investigation and Explanation 

I n this section we numerically investigate the behaviour of solutions to the quartic 

anharmonic oscillator differential equation. We show how the location of zeros in 

^ vary depending on the choice of 03 and how the large-x behaviour of U in the 
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excited states is dependent on C2 or C3. Whi ls t our evidence is numerical and by no 
means rigorous this does offer a good explanation as to why this tuning technique 
works so well. 

4.4.1 The Ground State - Zeros, Poles and Cuts 

I f we solve the differential equation (3.0.1) for its large positive x behaviour without 

the boundary condition (3.0.2) we f ind two asymptotic solutions, W = ±y/gx^/3. 

The general large-x solution to (3.0.1) is therefore of the form 

qi^ = exp ( ^ - ^ a ; ^ J +Aexp ( ^ ^ ^ ' J • (4-4.1) 

The boundary condition (3.0.2), however, requires us to take A = 0. in general 

has zeros at specific points in the complex x plane depending on A. The only 

exception to this is when A = 0, at which point we only asymptotically approach 

zero as X 00 . For A < 0 these zeros he along the real axis whereas for A > 0 they 

he off the real axis, somewhere in the complex x plane. There w i l l also be contours 

in the complex x plane along which is purely real and negative. The zeros and 

negative regions in w i l l be manifested as cuts and poles in log 

I t is clear that any pole or cut in the right half complex x plane would result 

in an exponentially increasing or decreasing LN{X). Oscillations w i l l occur due to 

a pole lying off the real axis; however, we took modest to ensure we only see 

the beginning of the oscillation and hence the appearance of a rapidly increasing or 

decreasing curve. We hypothesised in [1] that i t is the pole contributions that are 

being observed in L]y{X). I n this section we present numerical evidence to support 

the hypothesis. We are essentially tuning the solution unt i l A = 0. For A ^ 0 

the resummation is conveniently spoilt in such a way that we are able to refine the 

solution. I n this section we wi l l employ Cauchy's theorem to determine the location 

of zeros in the solutions to the differential equation as constructed in the previous 

section. We w i l l then be able to observe the dependence of these zeros on (13. Whils t 

we have so far only presented an argument based on the large-x behaviour of "I* we 

w i l l f ind that the location of zeros in do indeed correspond approximately to the 

location of zeros in the f u l l solution. 
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We note that since the coefficients a„ in W (and a Taylor-expanded Wi) are all 
real, any cut or pole in the upper half s plane should necessarily be mirrored in the 
lower s plane. Let us momentarily assume that in the right-half s plane W{s) only 
contains poles located at Sp and s*. We then construct 

SW = ^ J c d s ' - ^ W { s ) (4.4.2) 

~ W{so) + ccos(As^ + i,)e^isf-so) (4.4.3) 

where c, u are real numbers and Sp is split into real and imaginary parts, + 

iSp. I f we had included a cut contribution instead of a pole then we would expect 

contributions f rom the whole cut w i th each port ion of the cut weighted by the 

exponential factor. I n '^i the zero lies on the right end of a region of negativity 

corresponding to a potential cut in Wi and therefore is the dominant singularity 

contribution i n our contour integral 'dW = Wi. So whilst W{s) does not necessarily 

have just one pole in the positive right quadrant we w i l l model the cuts by a pole 

representing a weighted average. Since the zero is the dominant contributor we 

w i l l find that S'(A) at least in the case of Wi allows us to reasonably approximate 

the location of our zero. We w i l l apply this model to our original ^ and predict 

zeros close to the zeros of As usual we use the truncated expansion of \V to 

approximate ^ ( A ) by SN{X). 

W i t h the above construction we are in a position to numerically determine the 

location of the conjugate poles. Ini t ia l ly we w i l l assume that Sp 7̂  0 and plot SN{X) 

for a given SQ. We expect to see oscillations i n the curve either growing (s^ > S Q ) , 

decaying (s^ < SQ) or fixed in amplitude. We tune SQ un t i l we achieve the latter, at 

which point we have = SQ. W i t h this SQ we can determine the frequency of the 

oscillations in S'/v(A), this gives us s^. 

I f we do not observe the oscillatory behaviour in 5/v(A) even w i t h A'̂ , P suffi

ciently large then i t may be that — 0. I f this is the case then we use SN[X) to 

approximate VF(so) for SQ > Sp. As SQ becomes closer to Sp, however, the effect of 

our pole becomes more significant since the exponential dampening factor becomes 

reduced. We must therefore take larger A, which in return requires larger TV. Alter

natively we can t ry increasing a > 1. This causes the final term in to be reduced 
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Figure 4.5: Location of zeros of 'I'(s) 

in comparison to tiie penultimate term due to tfie F function. Tl i is again allows 

a larger A and hence greater exponential dampening. Ultimately, though, we are 

unable to extract W{so) f rom S'iv(A) for SQ < Sp, and indeed the process becomes 

more diff icult as SQ approaches Sp. We can, however, determine Sp by approximating 

^ to a linear behaviour in this region. We jus t i fy this by solving the differential 

equation in a region where W and W" are more dominant than any potential term. 

Numerically this linear behaviour appears to work well, at least w i th in the region 

that we were realistically able to plot. 

For as too small we find that the zeros lie along the real s axis wi th zeros 

approaching s = 0 (i.e. x = oo) and indeed attaining this value as 03 becomes 

appropriate for the correct boundary condition to be satisfied. For 03 too large we 

find that the location of zeros lie off the real axis and into the complex plane. They 

appear to lie on some contour which approaches s = 0 as 03 approaches its correct 

value. We plot the location of some of these complex zeros of \ I ' in figure 4.5^ We 

have restricted this plot to one quadrant only; however, the plot would necessarily 

be mirrored into all four quadrants. The solid line represents the location of zeros 

of 5*/, (4.4.1), as constructed at the beginning of this section w i t h A considered a 

'We have actually scaled the complex plane so that s-' v'T6a^a^7+~3()a3S^/3 for simplicity of 

calculation in figure 4.5 
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variable parameter. 

We note that the two sets of zeros are not in exact agreement, although there 

does appear to be a correlation. We attribute the differences largely due to being 

a small-s approximation and we therefore expect the approximation to improve as 

s| —> 0 which appears to be happening in the plot. Unfortunately i t becomes 

increasing diff icult to numerically calculate zeros of as we get closer to the origin 

since the period of oscillation becomes very large. I n order to measure this period we 

need to be able to plot at least the first few oscillations. This requires an increasingly 

large A, which in t u r n increasingly requires a large number of terms. 

We also question how accurately our numerical technique can accurately deter

mine the location of zeros. As an example we calculate analytically the location of 

the zeros i n = exp(x"^)-|-exp(—x^). Applying the resummation process to log(\['t) 

expanded in positive powers of x we are able to numerically calculate the location 

of the zero. We f ind analytically that a zero exists at s = 0.745 + 0.43i, whereas 

numerically we find i t exists at 5 = 0.738 + 0.429z. Given the scale of the plot this 

error is relatively insignificant. 

4.4.2 Excited States - Large x behaviour 

We substitute = Pg^o into the differential equation (3.0.1) to produce a new 

differential equation satisfied by Pg, 

Taking W ~ —,/gx^/3, this differential equation exhibits two types of large x asymp

totic solution 

P - exp ( or P ~ exp (hl^\. (4.4.5) 
V 2 v ^ a ; ; V 3 y 

We necessarily choose the first of these to ensure the boundary condition (3.0.2) 

is satisfied. When the boundary condition is satisfied UN{X) produces a flat curve 

(having adjusted a appropriately), which would be expected if we have correctly 

chosen the large asymptotic behaviour. I f the second type of asymptotic behaviour 

is chosen then we would expect to observe a correction to TN{\) due to a singularity 
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at s = 0. We hypothesised in [1] that when C2 or C3 does not correspond to an energy 
eigenstate tlien we are observing the second type of asymptotic large x behaviour. 

Using the resummation technique already outlined, the prefactors corresponding 

to different levels of excitation may be plotted. The prefactors corresponding to the 

1st, 2nd and 3rd excited states are shown in figure 4.6 both on a large and small x 

scale. Since these functions are either odd or even we restrict the domain to x > 0. 

As would be expected, the prefactor corresponding to the first excited state has one 

zero located at the origin. The 2nd excited state has two zeros and the 3rd excited 

state has 3 zeros when considered along the whole of the real axis. The tuning 

procedure did not provide a method for determining which level of excitation we 

have, just that we had determined an energy eigenstate. Using our resummation 

method to plot the prefactor we are able to confirm which energy eigenstate has 

been found by counting the number of nodes. The technique in section 3.2 provides 

an alternative method. We could use resummation in a h expansion to approximate 

C2 or C3 and then use the tuning method to determine the value more accurately. 

We note that for large x these prefactors asymptotically approach some constant 

value, as predicted. For example the prefactor corresponding to some energies either 

side of the first excited state energy level are shown in figure 4.7. For r i < r < r2 we 

see that P quickly becomes very large. This is similarly true for r < t i ; however, this 

time P becomes large in the negative direction. This appears not to be the result 

of a pole or cut, otherwise for large x the resummation technique would exhibit 

singularity contributions. Instead we find that the prefactor is simply resumming to 

large values and these values are increasing in size rapidly. We test the hypothesis 

that we are observing prefactors w i t h large-a: behaviour determined by the second 

type of asymptotic behaviour in (4.4.5) by plot t ing 

Q = l o g | P | - ^ ^ x ^ (4.4.6) 

I f the hypothesis is correct then we expect Q to approach a constant for large x. We 

plot these graphs for those same values of ci as before and display them in figure 

4.8. As predicted, these plots do flatten out for large x, at least on the scale of 

exp(x^). This numerically supports our hypothesis. 
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b) P2 

0 5 10 15 20 30 
^ . . . . i p . . . . 1,5 . . . . Zp 

0,J 0.4 0.6 

c) P3 

10 ao 

02 0.4 0.6 D,e 1 1 2 

Figure 4.6: Prefactors corresponding to the first three excitations 
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, Pt2 0,4 0,6 , 0,8 . . .1 . . . 1,2 . . 1,4 • • 1,6 . . 1.B . 

a) ci = -0.15 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 

b) ci = -0 .14 

Figure 4.7: P for values of Ci either side of ey = -0.1458432840772 
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Figure 4.8: Q for values of ci either side of n ^ -0.1458432840772 
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4.5 Summary 

We have developed a method for calculating the relationship between the physical 

parameters of a general x"^^^ anharmonic oscillator. The equations we solve are linear 

and the process of refining our estimate is easily automated. We can calculate the 

physical quantities and wavefunctions for all levels of excitation to an arbitrary level 

of accuracy, w i th an error that can be reduced by increasing the number of terms in 

our expansion. Using modest computing power we have demonstrated that high de

grees of accuracy can be obtained very quickly. Our technique overcomes some of the 

deficiencies of tradit ional perturbative techniques which rely on coupling-constant 

expansions and so do not immediately reveal the effects of instantons, for example. 

We note that the analytic continuation of quantum mechanical systems into complex 

configuration space has recently been studied in VT symmetric quantum mechanics 

(see [31] and references therein). We believe that understanding the properties of 

Hermitian theories in the complex plane is s t i l l of great interest. 

Finally we note that i n the case of the quasi-exactly-solvable solutions studied 

in [17], the expansion of both W and P in powers of x becomes truncated. In this 

type of solution i t is more obvious that the correct boundary condition is satisfied 

by the large-a; behaviour. This is t r iv ia l ly reflected in our resummation technique. 

We have numerically verified that the results of [17] are correctly reproduced for 

some specific choices of an x^ polynomial potential. 

4.6 Appendix 

In table 4.1 we give some of the excited energy eigenvalues for the p = 0 quartic 

( M = 2) anharmonic oscillator. The results represent accurate eigenvalues rounded 

to 48 significant figures. 
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Eo + E„ 

1 

2 

3 

4 

5 

20 

38 

39 

3.79967302980139416878309418851256895776606546733 

7.455697937986738392156591347185767488137819536750 

11.6447455113781620208503732813709364365508721620 

16.2618260188502259378949544303846135342445865045 

21.2383729182359400241497111135886363767048320597 

122.604639000999455020762971417615181874976633223 

284.068590581400743150496281208125064777084713267 

293.948458266006085433669997483521626303445899275 

Table 4.1: Quartic excited energy eigenvalues w i t h p = 0 



Chapter 5 

Schrodinger Representation of 

Quantum Field Theory 

The Schrodinger representation of cjuantum field theory (SRQFT) is a natural exten

sion of ordinary quantum mechanics. In quantum mechanics we start w i th a Hamil-

tonian which is quantised by imposing canonical commutation relations between the 

coordinate operators and the conjugate momenta. In the coordinate representation 

we work wi th a basis in which the position operator is diagonal, x | x ) = x | x ) . We 

assume that such a basis satisfies orthonormality and completeness conditions. A 

general state | ^ ) may then be represented by a funct ion ' I ' (x) = ( x | ^ ) so that 

I * ) = J o !x* (x ) | x ) . (5.0.1) 

The coordinate operator x is then represented by its eigenvalues x and the conjugate 

momentum is represented by a differential operator in such a way that the canonical 

commutation relations are preserved. The Hamiltonian then also becomes a differ

ential operator and dynamics are recovered via the Schrodinger equation, which in 

this representation becomes a differential equation. 

In quantum field theory we also have a Hamiltonian which is quantised using 

canonical commutation relations. I n place of the position operator x and momentum 

operator t t we now have fields 0(x) and 7r(x). The coordinate SRQFT is produced 

in the same manner as the Schrodinger representation of quantum mechanics. We 

essentially just need to substitute the word function w i t h functional. The differential 

49 
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operator representing the canonical momentum operator in quantum mechanics be
comes a functional differential operator in field theory. Similarly the wavefunction 
of quantum mechanics becomes a wavefunctional and the differential Schrodinger 
equation becomes a functional differential equation. 

In principle the SRQFT may be considered a more fundamental approach than 

the usual path integral or Heisenberg formahsm. I t is more closely connected to 

the in i t ia l principle upon which quantum mechanics was founded and has a more 

intuit ive and conceptual connection to a physical interpretation. 

In reahty, however, the functional dilferential equations can be extremely diff icul t 

to solve. I n addition Lorentz covariance is not explicit in the SR and this may be the 

reason why historically i t has not been highly developed. Another problem wi th the 

SRQFT is the apparent difficulties in describing their renormalisation properties 

due to this apparent lack of Lorentz invariance. Indeed i t was only in 1981 that 

Symanzik [3] first addressed these problems. Only at this point was i t proved that 

the Schrodinger equation exists. 

Despite the problems that the SRQFT has, i t should not be completely ignored. 

Its fundamental formalism and similarity to quantum mechanics means that in pr in

ciple problems solved in quantum mechanics can also be solved in quantum field the

ory. Quantum mechanical problems are considered relatively easy when compared 

to field theory problems although the word relative may be considered key here. 

Certainly a wide range of techniques have been developed in quantum mechanics 

and this work can in principle be recycled by using the SRQFT. 

The aim of this chapter is to describe the basic principles of the SRQFT for scalar 

theories. Before doing so i t w i l l be necessary to describe some basic techniques in 

functional calculus. In particular the technique of computing functional Gaussian 

integrals w i l l be of great importance in the next chapter. We shall pay particular 

attention to the scalar 0^ theory as a toy model for i l lustrating some key concepts. 

I t was shown by Mansfield [21] that for fields that vary slowly on the scale of the 

lightest mass, the logarithm of the vacuum wavefunctional can be expanded as a 

sum of local quantities. We shall illustrate some techniques in constructing this local 

expansion and show how i t can be used to reconstruct the f u l l vacuum functional. 
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5.1 Functional Calculus 

The Schrodinger representation of quantum field theory is often known as the func

tional representation due to its dependence on functional calculus techniques. There

fore in developing and working w i t h the Schrodinger representation i t w i l l be useful 

to develop various techniques for solving functional differential equations and eval

uating functional integrals. We shall provide a brief summary of the key results 

and techniques of functional calculus; however first, we must define the concept of a 

functional. There are a number of texts that illustrate such techniques; however, [32 

was particularly helpful i n wr i t ing this section. 

Consider functions of the form t/? : —> C, a mapping of space time points to 

the complex plane. The function space T is defined to be the set of all such functions 

so that each point i n is a funct ion of the form We then define a functional to 

be a mapping f rom the function space to the complex plane, F : T C and use 

the notation to represent the mapping oi & T to F[(f\ e C. 

In analogy to the usual derivative of a function, the functional derivative is 

defined as 

5FM^i^^^FV±^lzZM (5.1.1) 

where the 8 in F[v? + eS\ is the Dirac delta function. We th ink of this as the rate 

of change of the functional F as a result of a change in ^{x) i n the direction of the 

5 function. Whils t we do not always exphcitly write the x dependence of tp (as is 

the case in (5.1.1)) we should note that we require the change in F as a result in 

the change of (f at the point x only. We could of course have defined our functional 

derivative i n the direction of an alternate function, say \{x) by 

= l i m — — (5.1.2) 

although such derivatives w i l l not be required in our formalism of the Schrodinger 

representation. 

The most basic functional derivative we might compute is 

i n - * - ) ' f"-̂ ) 
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which may be deduced directly f rom the definition (5.1.1). Many of the wefl known 
results f rom differentiation of functions, such as the product rule, continue to hold 
in the case of a functional derivative. 

5.1.1 Functional Differential Equations 

One technique used in solving functional differential equations is a form of separation 

of variables. For example, consider the foflowing differential equation 

dx~—-F[a] = -^F\ip\. (5.1.4) 
dip[x) 

We can th ink of P[v?] as an infinite-dimensional vector space w i t h one element for 

each point x in space. The left-hand side of the equation is an infinite sum of 

uncoupled differential operators acting on F[ip\. We therefore write F[i^] as an 

infinite product of solutions to the uncoupled differential equations. Each solution 

w i l l satisfy a differential equation of the form 

j-Hz) = - f H z ) (5.1.5) 

which has solution 

J^{z) = T]e-^'. (5.1.6) 

So the solution to (5.1.4) is of the fo rm 

F[a] = 77 J J e-^(^''^(^' = f j e x p ( - j dx f { x ) i p { x ) \ (5.1.7) 

w i t h f { x ) determined by substitution back into the original functional differential 

equation, so that 

^ = I d x f { x ) . (5.1.8) 

The normahsation constant fj is determined via in i t ia l or boundary value conditions 

placed on F. 

The technique we wi l l mostly be using is one of power counting, in which powers 

of ip on both sides of a functional differential equation are compared. For example 
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consider^ 

j d x j ^ ^ F \ i p \ = n j dxg{x)ip{x). (5.1.9) 

We note that the right-hand side involves one power of ip. For the left-hand side to 

also contain one power of ^ we need F[(^] to be cubic. The most general cubic that 

we can write is 

F[if\ = J dxdydz / ( x , y, z)ip{x)(f{y)^{z). (5.1.10) 

Applying the left-hand side of the functional differential equation, (5.1.9) to this we 

find 

lig{x) = 2 J dy{f{x,y,y) + f{y,x,y) + f{y,y,x)). (5.1.11) 

I t is not obvious how to proceed to find / ( x , y, z) in terms of ^ ( x ) ; however, we note 

that (5.1.10) is invariant upon interchanging a pair of x, y or z in / ( x , y, z). So we 

could take f{x,y, z) to be a symmetric function. Some additional information about 

the form of f{x,y,z) is useful in determining the correct solution. 

We should be careful about how we interpret equations of the form 

dxdy f{x,y)ip{x)ip{y) = j dxdyg{x,y)ip{x)ip{y). (5.1.12) 

I n general i t is not sufficient to state / ( x , y) = g{x, y) but we should deduce the cor

rect relationship by functionally differentiating both sides of the differential equation 

w i t h respect to, say, ip{x) and ip{y). Then 

y) + f { y , i ) = 9{x, y) + giy, x). (5.1.13) 

I f / ( x , y) is symmetric then 

f{x,y) = ^{g{x,y) + g{y,x)). (5.1.14) 

I n general an equation of the form 

I dXi... dXn / ( X i , . . . , Xn)<f{Xi) . . . (f{Xn) 

dxi. ..dxng{xu • • . , x „ ) v 3 ( x i ) . . . (p{Xn) (5.1.15) 

'The integrals should contain ±cx3 limits; however, we shall not exphcitly include these limits 

from now on. Where a definite integral is implied we shall assume that we are integrating over the 

whole space. 
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wi th / symmetric in all of its parameters is solved by functionally differentiating 
wi th respect to v? evaluated at n different points. Then 

/ ( x i , . . . , X n ) = Sgixu Xn) (5.1.16) 

where S instructs us to symmetrise g by summing all n\ distinct g{yi,... ,yn) w i t h 

Hi G {xi I Hi 7̂  Uj} and dividing by the symmetry factor n\. 

5.1.2 Functional Integration 

A functional integral is an integral of a functional over a function space. That is 

where the integration measure Vif represents integration over each point (f{x): 

V^ = Y [ d i p { x ) . (5.1.17) 

X 

There are few types of functional integrals that we are able to perform exactly. The 

easiest is probably 

J Vip5[ip - a]F[ip] = F[a] (5.1.18) 

where the delta functional is defined by 

S[ip -a] = Y [ - a{x)). (5.1.19) 

X 

This is easily seen by applying definitions (5.1.17) and (5.1.19) to the functional 

integral (5.1.18). We can think of ip{x) as an infinite dimensional vector w i t h each 

X labelling a different element of the vector. The functional integration measure Dtp 

essentially replaces each element of ip{x) w i t h the corresponding element a{x). 

The main type of functional integral that we w i l l be interested in is that of the 

Gaussian form. The simplest type of Gaussian functional integral is 

(5.1.20) 

X 

Due to the divergence of H x functional integrals are not well defined and usually 

only make sense when combined w i t h a normahsation factor. The factor rj is usually 

omitted by absorption into this normalisation factor. 
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This result is easily generahsed so that 

/ V V fi^) 
We may think of f { x ) as an infinite-dimensional diagonal matr ix that acts on the 

vector ^p{x). We think of f { x ) as being the diagonal elements of a matr ix wi th 

indices x and y, thus f{x,y) = f{x)5{x - y). Since the product of the eigenvalues 

is also the determinant of a matr ix the result (5.1.21) can then be expressed in a 

number of ways 

n.O:: = det-^(n = < ^ . (5.1.22) 

This representation makes i t more natural to generalise the result (when f{x,y) is 

not necessarily diagonal) to 

/ (V^)°° (5 1 23) 
s/detf 

The Gaussian functional integral can be generalised further by introducing a 

source term so that 

J Pv^e^l'^'^l (5.1.24) 
where 

F[if,J] = J dxdyifix)fix,y)ip{y) + J dxJ{x)^{x). (5.1.25) 

I n a usual (non-functional) Gaussian integral of this type we would complete the 

square so r dxe—^^"^ = r -dxe-<^-^S+^. = e t ^ . / ^ . (5.1.26) 
J - o o J - o o V ^ 

So we write 

J = ^ ^ = e x p J dxdyJ{x)f-\x,y)J{y)^ (5.1.27) 

where f~^{x,y) is the inverse of the symmetric matr ix f{x,y), 

J d z f - ' { x , z ) f i z , y ) = 6{x-y). (5.1.28) 

We are now in a position to derive a key result for functional integrals. That is 

J Vifif{xi)---i^{xn)exp J dxdyip{x)f{x,y)if{y) 

= ^ ^ fv^e-n-^'^ 
^nj J SJ{Xi) 6J{Xr, 

. (5.1.29) 
J = 0 
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For n odd the right hand side is zero. W i t h an even power of ip, 

j V^ip{xi) - ••ip{x2n)exY> J dxdy(p{x)f{x,y)ip{y) 

= S n r ' ( x * . - , „ x , „ . , ) (5.1.30) 

where S2n is the permutation group, the group of all permutations of 2n elements. 

5.2 Scalar Field Theory 

We w i l l introduce the Schrodinger representation of quantum field theory by con

sidering a bosonic scalar field theory in D + 1 dimensions. Whils t this section is not 

explicitly based on any one particular text there are a number of useful introduc

tions to the Schrodinger representation, in particular [32] [33] [34]. We start w i t h 

the Lagrangian of a general scalar field theory 

L = Jd^+^xC = J d'^^^x {d>'(t>df,(f)-V{(t))). (5.2.1) 

The conjugate field momentum to 4> is 

and the Hamiltonian is defined by 

H = Jd'^xn = jd^x ( T T ^ - r ) 

= I d^x Q 0 + l ( V < / . ) 2 + V(</,) 
(5.2.3) 

where we have introduced the usual notation 4> = dt4>. For bosonic fields we w i l l 

introduce the usual equal time canonical commutation relations^ 

(j){x,t),T:{y,t)\ = i6'^{x-y) 

[^{x,t),^iy,t)]=0 (5.2.4) 

[Tr{x,t),Tv{y,t)]=0. 

^We will adopt the x notation to refer to the D dimensional spatial vector but not including 

the time component. 
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W i t h the scalar field theory defined we introduce the coordinate Schrodinger 
representation of quantum field theory by considering the operator (f){x) as a funct ion 
of space only w i t h no time dependence. This is achieved by choosing a fixed time 
hypersurface, say t = 0. We work wi th a Fock space, {\ip{x))} in which (f){x) is 
diagonal. That is 

4>{x)HS)) ^ (5.2.5) 

where ip{x) is a scalar funct ion and the eigenstates \(p) satisfy the usual orthonor-

mahty and completeness relations 

{(f\if') = 5[ip - (5.2.6) 

J V^\^){^\ = i. (5.2.7) 

The canonical commutation relations (5.2.4) are satisfied by the functional dif

ferential representations of the field and conjugate momentum operators as defined 

by 

5 (5-2.8) 
TT ^ — Z-

5ip{x)' 

A general state |^ ' ) can be represented by a wavefunctional ' ^ [ ^ ] as seen by inserting 

(5.2.7) in front of the state so 

I * ) = J V^\<p){^\^) = J Vifl^pMip] (5.2.9) 

where 

*[(^] = (v?!*). (5.2.10) 

This leads to a functional integration definition of the inner product 

* i | * 2 ) = y " 2 ^ ¥ ' * t M * 2 M - (5.2.11) 

I n quantum mechanics we interpret |^ ' (x , i ) p as the probabihty of finding a particle 

at a time t at the point x. In quantum field theory we interpret as the 

probability that the field (f){x,t) takes the value if a,t t = 0. This is equivalent to 

finding x{t) diagonal in quantum mechanics or (p diagonal in quantum field theory. 
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The action of a general operator 0 ( 0 , TT) on a state I'P) is represented by 

O(0 ,7r ) |* ) ^ O (^(/:, - 2 ^ ^ (5.2.12) 

which allows us to recover the dynamical equation, the time-dependent functional 

Schrodinger equation 

H ( i f , - i ^ ) t] = i ^ M ^ , t]. (5.2.13) 
\ oip J at 

For our time-independent Hamiltonian we explicitly separate out the time depen

dence of the wavefunctional 

'^[^,t] = e-'^'^<^\ (5.2.14) 

so that satisfies the time-independent Schrodinger equation 

j rf^+^x ( - ^ ^ ; ^ + + n ^ ) ) * M = (5.2.15) 

In addition to this operator-type formalism as discussed so far we may also 

express the wavefunctionals in terms of the generating functional of certain Feynman 

diagrams on the half plane t < Q. To see this, consider the Schrodinger functional 

which is defined by the matr ix element 

((^|e-^^|(/?') = j P^e-^^I"^! (5.2.16) 

where SE is the Euclidean action for a D + 1 dimensional volume bounded by space

like surfaces at t ime t apart and 0(x, 0) = (yf ( f ) , 0(x, - T ) = ^'{x). A wavefunctional 

representation is recovered by inserting a complete set of eigenstates of the Hamil

tonian, { | n ) } , so that 

oo oo 

n=0 m=0 
oo 

= ^{ip\n)e-^^-{n\ip') (5.2.17) 
n=0 
oo 

n=0 

We can extract the vacuum wavefunctional by considering the l imi t T —> oo 

{ip\e~^"\if') ~ * o b ] * o b ' ] e - ^ ^ ° . (5.2.18) 
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I f we assume that vanishes as T ^ CXD and normahse the vacuum energy so that 
£^0 = 0 then we have 

= J D0e-^^ '^ ' (5.2.19) 

where (f){t — 0) — f . 

5.2.1 Massive Free Scalar Field Theory 

In a quantum mechanical system the ground state has no nodes and may therefore be 

wr i t ten as an exponential. In the same manner we w i l l find the vacuum functional of 

the massive free {V = \m?^p'^) scalar field theory by wr i t ing the vacuum functional 

as 

= r/e'^['^l. (5.2.20) 

and solving the functional Schrodinger equation. Substituting this form of the vac

uum functional into (5.2.15) we find the functional equation satisfied by W[LP 

By inspection, counting powers of 99 we see that i t is sufficient for W[~p\ to be 

quadratic in (/?, so we write 

W[^] = j d''xd^y^{x)T{x,y)ip{y) (5.2.22) 

where T{x,y) is a scalar function. Wi thou t loss of generality, T is taken to be 

symmetric in x and y. We substitute this into (5.2.21) and compare powers of Lp. 

To zeroth order we have 

Eo = - j d^xY{x,x) (5.2.23) 

and to quadratic order 

2 j d''xd''yd^z^{z)V{z,x)T{x,yMy) = ]^ j d"" x ^{x) {-V^ + m^) ip{x). 

(5.2.24) 

To exphcitly determine T we functionally differentiate both sides of (5.2.24) w i t h 

respect to two independent variables, then 

j rf^xr(i',f)r(f,^) = ^ ( - V ' + m 2 ) r 5 ^ ( i ' - ^ ) . (5.2.25) 
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This is much more naturally expressed when F is Fourier transformed into F via 

m y ) = J £^nP)^''-^'^'^ (5-2.26) 

when things become much simpler. In doing so we have assumed that r ( i ; , y) is a 

funct ion oi x — y. Our justif ication for doing this is based upon (5.2.26), in which 

the right hand side is a funct ion oi z — y only. Now 

m = -\V¥T^' ̂  (5.2.27) 

and inverting the Fourier transform 

r ( f , y) = l j -^^iP)^'''^'-'^ • (5-2.28) 

The ground-state eigenvalue is given by (5.2.23) as 

^^ = \ j d''pio{p)S''{0) (5.2.29) 

where the 5^(0) originates f rom the infinite volume J d'^x/{2TT)^. The vacuum 

wavefunctional is most elegantly expressed in terms of the Fourier-transformed field 

^'o[^] = r;exp ( ^ - ^ j -^^uj{p)(p{p)(p{-v)^ . (5.2.30) 

The normalisation constant 77 can be determined by recjuiring a unit normalisation 

('I'ol'^o) = 1. Using the Gaussian integral results of section 5.1.2 we find 

One interesting property of is that i t is an infinite product of ordinary 

harmonic oscillator ground state wavefunctions, one for each p. Given that the 

Hamiltonian is just a sum of massive free harmonic oscillator Hamiltonians this result 

is not very surprising. In fact the excited states could be constructed by replacing 

the ground state of one (or more) mode(s), say P for its excited wavefunction, and 

would have energy EQ + oj{P). For example 

* i M = ( 7 ^ ) ' ^ ( ^ ) ^ o [ ^ ] (5.2.32) 
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The momentum operator in quantum mechanics generates infinitesimal spacial 
displacements and in quantum field theory is represented by 

P, = -J d'^xm^^x). (5.2.33) 

In the Schrodinger representation this becomes the functional operator 

P,=tJ d ^ x ^ ( f ) a , ^ . (5.2.34) 

We can exphcitly verify that such an excited state has momentum P and that i t is 

indeed an eigenstate of H w i t h energy EQ + w(P ) . Thus we can interpret this as 

a one-particle state. This reproduces the particle interpretation of quantum field 

theory. 

A n alternative and more formal method of finding multiple particle states is to 

apply the usual creation and annihilation operators associated w i t h the harmonic 

oscihator. In the Schrodinger representation of quantum field theory these become 

a(P) = J d^x e^'-' (^uj(PMx) + ^ ) (5.2.35) 

a t (P) = I d^x^^-' {u^{P)m - ^ ) (5.2.36) 

The operator is then applied to ^'o[v'] multiple times to generate states w i t h 

additional particles (up to some normahsation). 

5.3 Renormalisability of the Schrodinger Equa

tion 

Renormalisation of a theory is essential to prove its existence and finiteness. This 

is usually carried out by power-counting methods in momentum space; however, in 

the case of the Schrodinger functional this is no longer possible, as translational 

invariance is lost in the time direction. Therefore we cannot rely on Lorentz invari-

ance to renormalise a theory and i t is no longer clear if a renormalisable quantum 

field theory remains renormahsable in the presence of a boundary. This problem was 

first studied by Symanzik for 3-f-l-dimensional theory [3]; however, his arguments 

extend to other models. We w i l l outline the key features based on [3] [4] [35 . 
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Symanzik showed that the Schrodinger functional of 0"* perturbation theory in 
3+1 dimensions is finite as any cut-off is removed provided that in addition to the 
usual mass, couphng and field renormalisation additional counter terms to renor-
malise new ultraviolet divergences are introduced. These counter terms occur be
cause of additional divergences resulting f rom the boundary conditions. Field opera
tors which are diagonalisable in the Schrodinger representation differ f rom the usual 
renormahsed field operators by (in the case of perturbation theory, logarithmically) 
divergent factors. That is, the relation (5.2.5) does not hold but instead we should 
have 

l i m a ( i ) 0 ( x , ^ ) = (^(f)^M (5.3.1) 

where a(^) is singular and given to first order by 

a{t) = 1 - ^ iH^^'i') + ln(47r) - r ' ( l ) + 2)+ 0{g^) (5.3.2) 

and j.L is the normahsation mass in the minimal subtraction scheme of dimensional 

regularisation. 

Consequently v?, the boundary value of the scalar field must be renormahsed 

0(f, 0) = Z(/?(f) (5.3.3) 

where Z is a new renormalisation constant required to cancel the extra ultraviolet 

divergences introduced by the boundary at i = 0. This was taken further in [36 . 

We shall mostly be working in theory. This w i l l be a convenient toy theory to 

develop our techniques; however, i t should be possible to generalise the principles to 

other theories. Surface counter terms have been calculated in perturbation theory 

for 0^ but since 3 - f l dimensional theory is not asymptotically free these are 

nor reliable. We w i l l therefore for simplicity be working in 1-1-1 dimensional 0'* 

theory since i t is super renormalisable w i t h no further divergences associated w i t h 

the boundary, in which case no extra field renormalisation is required. 

In a super renormalisahle theory the number of divergent diagrams is finite. 

I n the case of (p^ theory in 1 -|- 1 dimensions there is only one mass counterterm 

which is associated w i t h the divergent tadpole diagram arising f rom the Laplacian 

in the Schrodinger equation. This Laplacian has two functional derivatives acting 
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on the same point and must be regulated. We w i l l achieve this by introducing 
a momentum cut-off. The mass counterterm can be calculated in the framework 
of perturbation theory or equivalently by normal ordering. We w i l l employ Wick's 
theorem to expand powers of the field in terms of normal-ordered contributions. This 
separates the convergent terms (wi th no contractions) f rom the divergent ones (wi th 
at least one contraction). These divergent contributions are the required counter 
terms and are dependent on the Laplacian's momentum cut-off. 

We define the normal-ordered Hamiltonian for scalar (f)'^ theory w i t h finite M 

and vacuum energy density £ by 

H = j dx:{^- (%{xf + + M ^ i x f ) + l ^ ^ ) : . (5.3.4) 

A momentum cut-off is then introduced by defining 

H,^ j d x Q {nl + 0 f + M \ e ) ^ f ) + - S{e)^ (5.3.5) 

where the cut-off fields are 

^,{x) = j dyg,{x,y)4>{y), fi,{x) = J dy g,{x,y)7r{y) (5.3.6) 

and the kernel 

Qe{x,y)=l ^e^Pi^-y^ (5.3.7) 

implements the momentum cut-off. 

We relate to the normal ordered : 0^ : by 

=: 4>l •• (5.3.8) 

which is formally accomplished by considering the vacuum expection value of 0^, 

since the vacuum expectation value of : 0^ : is zero. This corresponds to the logarith

mically divergent tadpole diagram, the self contraction of the the field, corresponding 

to the Feynman diagram in which the ends of a propagator are contracted to the 

same point. Thus we have 

^ (O|0,(x)0,(x)|O) = I I ^ - 7 = f i — (5.3.9) 
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Applying Wick's theorem we relate (p'^ to the convergent : cp'^ : (the term w i t h no 
contractions) 

04 = . 04 . ^Qj.^ . ^2 . _^^rp2 (5.3.10) 

By rewrit ing the momentum cut-off Hamiltonian as 

H. = 4 ° + / dx Q {M'{e) - M') 4>l + § 0 ^ - ^ ( e ) ) (5.3.11) 

where 

^ 0 = Jdxl[n'^+4>? + M ^ l ) (5.3.12) 

we are able to calculate the divergent corrections to the normal ordered : :. To do 

this we note that the normal-ordered free part has an infinite zero-point correction 

given by 

=•• A° • +1 [ p-^ip)- (5.3.13) 

and apply (5.3.8), (5.3.9) and (5.3.10) 

H.=:H,:+I dx Q (^M^e) - A'P + | r , ) : 0^ : 

{ M \ e ) - M ' ) + l f ^ u ; , - 8 i e ) ] . (5.3.14) 

Now we define the cut-off dependent quantities M(e) and £{e) 

M ^ W . M ^ - ^ . « - . f ^ ^ ^ _ ^ J - ^ (5.3.15, 

i p2< i / e 27r \̂  

8 2 

2 

32 \^7p2<i / , 27r v'p2 + M2 ' 

so that when the cut-off is removed M, 6M and SS remain finite. I n these last 

equations we have exphcitly introduced the h dependence previously set to unity. 

This w i l l be of importance later in this and the next chapter. 
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5.4 Locality of the Wavefunctional 

In this section we w i l l show that the vacuum functional is in general non local. If , 

however, the field (y? varies slowly on the scale of 1/m then W{(p] = log '̂o[<y3] may 

be expanded as a sum of local terms [21]. We illustrate this in the case of the free 

scalar field theory and show how to extract the small distance behaviour f rom the 

large distance expansion of the vacuum functional and energy eigenvalue. This w i l l 

be based on the Cauchy inspired modified Borel resummation techniques of chapters 

3 and 4. 

I n section 5.2 we showed how to bui ld a functional integral-representation of 

the vacuum functional ^'o[v'] using Feynman's representation of the Schrodinger 

functional. We took ip to be the boundary value of the field at t = 0; however, 

i t w i l l become necessary for us to make the dependence more explicit. We shall 

therefore define a bra {D\ w i t h Dirichlet boundary conditions and the property of 

being annihilated by 4> 

{D\^ = 0. (5.4.1) 

Then defining 

{ip\ = (i:)|e'/''''^-^(^^*(^^) (5.4.2) 

we have 

^ {ip\ = i{<p\nix) (5.4.3) 
Sip{x) 

and using canonical commutation relations we recover {ip\(f){x) = tp{x){ip\. Now the 

Schrodinger functional is 

((^|e-^^|(/p') = (£)|e^/'i ' '-*(^.0M^)e-7^^e-'-^' ' ' '"*<^^'-^'^'(^^)|D). (5.4.4) 

Rotating into Euclidean space we write (5.4.4) as a functional integral 

y P 0 exp I - 5 s + j d'^x ^{x, 0)ip{x) - J d^'x 0(x, -T)ip'{x) | (5.4.5) 

where the variable cp is defined on the Euclidean semi-plane t < 0 and satisfies 

Diriclilet boundary conditions, 0(x, 0) = 0(x, —T) = 0. As before (section 5.2), we 

can insert a basis of Hamiltonian eigenstates and take the T oo limit. Assuming 
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that if' vanishes i n this l im i t we can obtain a functional integral representation of 
the vacuum functional on the Euclidean space time i < 0 

hence the non-local nature of the wavefunctional. This also shows that in a semi-

classical expansion W\ip\ = log'I'o[v'] is a sum of Euclidean connected Feynman 

diagrams in which is the source term for 0 on the boundary where 0 vanishes [23 

37] (see [22] for Yang-Mills). Due to the non-local nature of the wavefunctional we 

should make an expansion of the form 

W'M = / ^""^1 • • • ̂ ""^^ ^ " ^ ^ 1 ' • • • ' • • • ̂ ^^n) (5.4.7) 
n=l 

although as we shall show i t is possible to write a local expansion provided the field 

varies slowly on the scale of 1/m. 

5.4.1 Massive Free Scalar Field Theory 

We continue the discussion of the locality of the wavefunctional by considering the 

massive free scalar field theory. We show how W can be expanded as a local func

tional f rom which we can extract the vacuum energy density as an expansion in 

the momentum cut-off, e. Whis t this expression does not appear to produce the 

correct result when the cut-off is removed we show how to analytically continue the 

vacuum energy into the complex e plane and reproduce the correct behaviour when 

the cut-off is removed by applying a contour integral resummation technique along 

the lines of the one in chapter 3. In doing so we w i l l largely be following the work 

of [21 . 

The unregulated Laplacian A = / d'-'x 5'^/5(fi{x) in the Schrodinger equation 

(5.2.15) consists of two functional derivatives at the same space-time point, resulting 

in a divergent vacuum energy. This Laplacian can be regulated by introducing a 

momentum cut-off, 1/e, by defining 

A , = / d ^ x d ' ^ y [ . f l ^ .^.] = [ d ^ p i 2 n ) ^ - - , ^ — ^ . (5.4.8) 
J y p 2 < i (27r)o (5(̂ (3;)5</?(?/) 7p2< i 5<p{p)5ip{~p) 
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' - ^ ^ ' ^ - \ L ( 0 ^ ^ ^ - iD . !),o»y.. (5.4.9) 

where (p{'p) = J d^X(p{x) exp{—ip-x). The vacuum energy density 8 = E/V is then 

well defined and diverges as the cut-off is removed, 

where A; is the area of the unit sphere in D dimensions divided by 2(27r)^. 

I f (f varies slowly on the scale of 1/m then W [ f ] may be expanded as a sum of 

local expressions by expanding 

y r T O = ™ - ^ - ( - ^ . t ^ - 5 t ^ . . . . (5.4.:o) 
2m 8m'^ 16m^ 128m^ 

to give 

W,^ ^ J i-. ( - 1 + l^(V,f - a_^{VV)^ + . . . ) . (5.4,11) 

We naively apply our regulated Laplacian (5.4.8) to obtain the energy density 

- ^y^^^ioc - y^^^^ ^27r)^ ^ 2 Am IQm^ + " ' ' J " 
O-r. 

(5.4.12) 

where 
i t m ^ + i p d ) 

" r ( | - n ) r ( n + l ) ( D + 2n)- ^^"^-^^^ 

This expression for the vacuum energy (5.4.12) appears to have divergences of in

creasing order as e —* 0 unlike the solution in (5.4.9) which gives the correct be

haviour as the cut-off is removed. This is because the expansion of Wioc (5.4.11) 

is only valid for slowly varying fields, that is for ^[p) in which p^ < m? and hence 

em^ > 1. I t therefore does not makes sense to take the smaU e hmit in (5.4.12). 

To overcome this issue we define an analytic continuation of the regulated vaccum 

energy f rom real e > 0 into the complex s plane by 

The integrand is analytic through the whole complex s plane w i t h the exception of 

a cut generated by the square root, which we take to be along the negative real axis. 

For \s\vn?' > 1 i t has a large-s expansion. 

We define a contour C (figure 5.1) to be key-hole shaped, running just under the 

negative real axis f rom s — — oo up to s = —SQ, then round a circular contour centred 
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Figure 5.1: Key-hole shaped contour of integration 

on the origin, stopping just above the negative real axis near s = — SQ, and back 

towards s = —oo remaining just above the negative real axis. Then for SQ > l/m^ 

the integral 

may be evaluated using the large s expansion so that 

(5.4.15) 

X n+D/2 

(5.4.16) 
^ r (n - t -1 + D / 2 ) 

For large A the exponential factor suppresses the cut contribution, and i f ^^(0) were 

finite (5.4.16) would approximate ^^(0). I n an interacting theory we would only be 

able to calculate (5.4.16) up to a finite number of terms truncated at order A''. Since 

we have an alternating sign series the error in truncating (5.4.16) to order N is less 

than the absolute value of the A' -|- 1 term 

r{N + 2 + D / 2 ) m 2 ^ + 2 + D 
(5.4.17) 
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which for large A'' behaves as {e\/m?N)^'^^^^'^/'^'>/N. Since we want to take A 
large we set A = Ni^i^ where is an N independent parameter. The truncation 
error then goes to zero w i t h large A'̂  provided / . i is smaller than the mass m of the 
lightest particle. This shows that we can extract information about the high energy 
momentum cut-off by working to a finite order N despite the local expansion of the 
vacuum functional only being valid for slowly varying fields. 

5.5 Reconstructing the Full Vacuum Functional 

We have discovered that the vacuum functional is in general non-local; however, in 

the case of the free scale field theory we found a local expansion valid for fields which 

vary on the scale of the Ughtest mass. This local expansion can be used to extract 

the vacuum energy density. In this section we show that in 1-1-1 dimensional scalar 

field theories the fu l l vacuum functional can also be reconstructed. A scaled field 

is defined ip^{x) = ( / j (x/- /s) and we w i l l prove that VV[(/7^] extends to an analytic 

funct ion in the complex s plane w i t h singularities only on the negative real axis. For 

large s, ip^{x) varies slowly wi th x and so we may make a local expansion of W[ip^ . 

Whilst we have done this explicitly for the free scalar field theory i t should also be 

possible for a general interacting theory. Large s corresponds to small momenta and 

therefore we expect to be able to expand the F in our non-local expansion (5.4.7) 

in positive powers of the momenta. We shall show that this large-5 local expansion 

for may be used to extract the s = 1 value via a contour integral method. 

This reproduces the correct vacuum functional exp(H^ [</?]). We proceed again based 

on [21] but also w i t h the help of [38]. 

We start by showing that M'̂ [(/9*] extends to an analytic funct ion in the complex s 

plane w i t h singularities only on the negative s axis. In doing so we rotate coordinates 

in order to get a functional integral over the Euclidean space t ime .T > 0, — oo < 

t < oo 

where the prime indicates diff'erentiation w i t h respect to x and S^^ is the Euclidean 
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action for rotated space time. This is the time ordered expectation value 

T(0''|e-^'^*^'(°'*'^'(*'|0^) (5.5.2) 

where (0'" is the ground state of the rotated Hamiltonian H^. We expand the 

exponential in powers of (f^ and Fourier transform the sources 

X ^^{kn)... (^^(^"i)(on0'(O)e-(*"-*"-)^^0'(O) 

• • • e-(*3-t2)^^0'(O)e-(*2-*i)^'0'(O)|O' '). (5.5.3) 

We then calculate the time integrals, and after some algebra get 

gVV[^1 = ^ / dki---dk,ip{kr,)--.^{k,)6{J2k)x 
n=0 ' 

v^(on0-(Q) ^ ^ ^ J ^ ^ n - , ^ , m • • • ̂ ' (0)WT-T'^'^^^I^^^ (̂ -̂ -̂ ^ 

^/sH'' + VsH"^ + iki 

where we used ip^{k) = •v/i(^(i/sfc). The eigenvalues of the Hamiltonian are 

real so singularities only occur when s is negative and real. The same holds for the 

connected part of VF[(p^] as any additional singularities could not cancel between 

connected and disconnected pieces. 

Given the analytic properties of W [̂(/?*], we are able to reconstruct the the f u l l vac

uum functional f rom its local expansion only valid for slowly varying fields. Cauchy's 

theorem extracts the s = I value f rom the large s behaviour via 
Wlip] = l i m — / -^e^^'-^^W\ip'\ (5.5.5) 

A-oo 2m Jc s - \ ^ ' 

where C is a large circular contour in the complex s plane centred on the negative 

real axis, beginning just below the negative real axis and ending just above. Cauchy's 

theorem tells us that the integral in (5.5.5) has a contribution f r o m the s = 1 pole 

given by W[p)\ and a further contribution f rom the cut along the negative real axis. 

This cut is exponentially suppressed by A and therefore approaches zero as A —» oo. 

For large s, ip^{x) varies slowly w i t h x and we can make a local expansion of W. 

Therefore we apply our local expansion of W^[(/3*] to (5.5.5) and let |s| —* oo in the 

contour C. 
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We ihustrate this method for a massive free scalar field theory. The vacuum 
functional for the scaled field is 

^( [ (^^] = g -U ' i ^¥ 'v / -v^+sm-V (5.5.6) 

We can expand [(/?*] in inverse powers of s — 1 to get a local expansion 

Now we calculate the integral on the RHS of (5.5.5) 

m ^ (-l)'^A"-^/^ f f _ 
4 0 F ^ n ! ( n - 1 / 2 ) 7 ^ ^ ^ 1 , ^ m^J 

= [ d x ^ ( 1 e - ^ ( i - ^ ^ / - ^ ) t dX^e-'^'-^'l^'^ (1 
2V^J ^\y/X Jo y/X \ 

= — - [ dx + m^ip H — f dx(p [ 
2 J 4V7r J ^ J A 

(5.5.8) 

We note f rom the last line that we recover W[LP] when A co. The error in 

expressing W[(p] is given by the last integral, which is exponentially suppressed. 

Therefore we have successfully reconstructed the vacuum functional f rom its large 

distance local expansion. 

5.6 A Schrodinger Equation for the Local Expan

sion 

So far we have seen that the logari thm of the vacuum functional, W[ip] is in general 

a non-local quantity. I f , however, the field varies slowly on the scale of the hghtest 

mass then it may be expanded in terms of local functionals 

W = JdxJ^ B,„..,Mxrv'{xr • • • ^^''\xy-. (5.6.1) 

We have shown that this local expansion can be used to construct W[LP] for generic 

fields by relating the short-distance properties to the local large-distance behaviour. 

This local W does not satisfy the obvious form of the Schrodinger equation. The 
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Schrodiiiger equation depends on short-distance effects via a cut-off; however, the 
local expansion is only valid for fields characterised by large distance scales. 

The Schrodinger equation w i t h a momentum cut-off is lime^o F^[ip] = 0 where 

FM = + / d x ( i ( - ( ^ ) + + M\e)^^) + - £ ( e ) ) , 

(5.6.2) 

and the regulated Laplacian is given by 

A t = [dxdy [ (,ipi^-y) ^ — f dp 211 ^ (5 6 3) 

w i t h if){p) = J dxip{x)exp{—ipx). The e-dependence of M(e) and S{e) was made 

explicit in section 5.3 in terms of the divergent tadpole diagrams and the finite M , 

S, 5M and 68. I f we evaluate Ff[ip\ for slowly-varying fields then i t wi l l be a sum of 

local functionals 

FM = J d x J2fjo..,N{eMxy°^'{xr-..^^-\xy''. (5.6.4) 

However, this is not the same as A,, acting on the local W expansion, (5.6.1). The 

former, (5.6.4), includes differentiation w i t h respect to the Fourier modes of ip in the 

range < p^ < 1/e which are absent f rom the latter. We therefore cannot naively 

take the local expansion (5.6.1) and substitute i t into the Schrodinger equation 

(5.6.2) and take the l im i t in which the cut-off is removed, e ^ 0. In this section we 

aim to construct the Schrodinger -type equation satisfied by the local expansion of 

W. 

The solution to this problem is to scale the cut-off e —> es and the field (y9(x) —> 

ip^{x) = ip{x/y/s). Now (As£iy)[(^s], M^(se) and S{se) extend to analytic functions 

on the complex s plane wi th singularities lying only on the negative real axis. This 

statement is justified in the case of A4 and S by their cut-off dependent expressions 

(5.3.15) and (5.3.16). In the case of the Laplacian a similar approach to deriving 

the analytic properties of in section 5.5 is used in [21]. Consequently the 

coefficients /jo...j„ also extend to analytic functions in the complex plane wi th singu

larities only on the negative real axis. For large |s| the scaled field, ip^ varies slowly 

and the cut-off l / (se) < mo. So Aseiy[(/5s] can be calculated by acting w i t h As^ 

directly on the local W expansion. Since se now plays the role of the cut-off instead 
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of e alone we w i l l take e to be finite, say e = 1. The coefficients in (5.6.1) now satisfy 
their own equation 

/ -e^^F,[^1 = 0 (5.6.5) 

where in F^lv?*] we use the local fo rm of W, (5.6.1). 

In finding the coefficients of the local expansion (5.6.1) we should first note that 

integration by parts indicates that not all terms w i t h a given number of fields and 

derivatives are unique. For example 

J dxifif'^ip" = - \ j d^^"'- (5-6.6) 

We therefore define a set of independent local functionals. We w i l l assume parity 

invariance, (/? —(/?, since this is an unbroken symmetry of the Lagrangian. This 

restricts bo th the number of fields (jo -\ 1-Jn) and derivatives ( j i + 2^2 H 1- njn) 

in a given term to be even. To ensure that our set of functions are not dependent 

through integration by parts (that is to ensure a linearly independent basis) we w i l l 

restrict the power of the highest derivative to be at least two (i.e. j „ > 2). This 

requirement may be proved by induction [39]. So, for example j dxip{x){ip'{x)Y is 

not a basis vector since i t violates parity invariance. J dx ifip''^Lp" is not a basis vector 

either, since the field of highest derivative v?" does not have the required minimal 

power of two. This local functional is, however, linearly related to a basis element, 

/ dxi^'^ via (5.6.6). 

W i t h these restrictions i n place we proceed by substituting the local W, (5.6.1), 
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into its Schrodinger equation (5.6.5) 

TT V y 75 

y a/TT TT \ 3 5 ) 

y ^XsJ-K i/TT TT V 3 2 y 

\/7r x/TT 7r V ' ' 3 3 

2 ,2 (32^2^2 2 + 96So 2^4 1 2 ^ 4 2 V ^ 
V? -= + • + • • 

\̂  0r TT 
^ , ,2 /325250 ,0 .2 + 1652 2 v ^ / 5o,4A 5 i , o , 3 A , V 

' — 1 52,0,2 H 1 
\ 3V7r TT \ 9 3 ) 

(5.6.7) 

where 

and 

m - ^ . l -e'^E{s) (5.6.8) 

1 
M '•W = ^ J ^e'^MHs). (5.6.9) 

This equation can be solved in the usual semi-classical expansion [ 2 1 ] [23] by-

setting to zero the coefficients of the linearly-independent functionals. W i t h the 

inclusion of an addition VTTAS factor i n the contour integral the resummation process 

can be improved, since the contribution f rom the origin becomes order 1 / A instead 

of l/\/X. I t has been shown [23] that this approach correctly reproduces the short-

distance properties of W. 

For classically massless theories (e.g. Yang-Mills), the classical action does not 

have a local expansion. A semi-classical approach is therefore not viable, although 

the f u l l action is believed to be massive [40]. A n approximation scheme was proposed 

by Mansfield [ 2 1 ] in which the expansions in A and the coefficients associated w i t h 

the high orders where estimated. Whils t this would overcome the problem of finding 
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a local expansion in a classically massless theory i t is believed that the solutions may 
be sensitive to the levels of truncation. 

We wi l l use an alternate approach [24] to construct the wavefunctional in the next 

chapter. In this approach we shall solve the coefficients of the vacuum functionals 

expansion as a power series in s. The l imi t s —» 0 is then taken using the contour-

integral technique of resummation. [23 . 

5.7 Summary 

We have shown how to formulate 1+1 dimensional (p"^ theory in the Schrodinger 

representation of quantum field theory. The problems of renormalisation have been 

addressed and the concept of a local expansion for the vacuum functional intro

duced. We have shown how to reconstruct the f u l l vacuum functional f rom the large 

distance local expansion via the Cauchy-inspired resummation process developed in 

chapters 3 and 4. We have given l imited attention to the methods that may be 

used to construct the local expansion of the vacuum wavefunctional and reserve the 

continuation of this discussion for the next chapter. 

Finally, whilst we have restricted our attention to scalar (f)'^, theory we should be 

able to extend these techniques to other theories. Scalar field theories w i t h other 

potentials should not require much additional work but we also highlight [41] [42 

22], in which these techniques have been extended to study the vacuum functional 

of Yang-Mills theory. 



Chapter 6 

A Large Distance Expansion of 

the S Matrix 

The Schrodinger equation can be solved by a variety of methods not necessarily 

perturbative in the coupling or Planck's constant. In particular we shall follow [24], 

in which a local expansion for the logarithm of the vacuum wavefunctional is found 

without resorting to any truncation. The one-particle state in a zero-momentum 

frame has also been calculated using local expansion techniques. In this chapter we 

w i l l show how to extend this solution to an arbitrary momentum frame of reference. 

We wi l l also f ind a type of local expansion for a two-particle wavefunctional. 

Such local functionals are of interest because they do not resort to an expansion in 

terms of the coupling or Planck's constant. These expansions w i l l therefore continue 

to hold in classically massless theories such as Yang-Mills. 

We are particularly motivated by a possible new method of constructing the S 

matrix. In principle a wavefunctional contains all information about a particular 

state. We therefore develop a method for extracting the S matr ix f rom the wavefunc-

tionals. When applied to a two-particle local expansion this offers the possibility of 

finding an S matr ix that is not perturbative in either the coupling or Planck's con

stant. Our representation of the S matr ix w i l l not require any complicated integrals 

as is the case in the Feynman diagram expansion. The contour-integral techniques 

developed in chapters 3 and 4 can in principle be applied to this S matr ix to extract 

the correct behaviour as the momentum cut-off is removed. 

76 
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6.1 Finding a Semi-Classical Wavefunctional 

I t is possible to find a direct semi-classical expansion of the wavefunctional [23] [32 

without resorting to the local expansion. This expansion is useful to illustrate some 

interesting features of the wavefunctional and w i l l also be a good testing ground in 

recreating the usual Feynman diagram expansion of the S-matrix. We w i l l create 

the ground state in a similar manner to [23] and then extend the technique to create 

first a one-particle state and then a two-particle state. 

6.1.1 Ground State 

We w i l l introduce a momentum cut-off to regulate the divergence associated w i t h 

the canonical momentum, n = —ih5/5^p{x) acting twice at the same point in the 

kinetic term of the Hamiltonian. The Schrodinger equation for the vacuum state 

'^o[v^] = exp{W[ip]/h) is then given as lim/^oo Fi[(^], where 

2 J \ 2 \ J y 4! J 
(6.1.1) 

A i = f d x d y [ jge^p(^-^) = / dp2n—--^^-—- (6.1.2) 
J J\p\<i 27r dip{x)ip{y) d^{-p)d^{p) 

and ip{p) = / dx ip{x) ex]){~ipx). We have calculated the / dependence of the pa

rameters in section 5.3 

M\l) = M' + MM' - 4 / (6.1.3) 
4 7|p|</ 27r M 2 

M 2 ( / ) - ^ ^ 

2 7|p|</ 27r \̂  2^p ,2 + 

\J\v\<i 

dp 

27r ^pi + M 2 

where M , 8, 5M, 6£ remain finite as the cut-off is removed. S£ and 5M are resolved 

using renormahsation conditions. 

We now make an expansion 

W y ] = 5Z / dpi--- dp2n<piPl) . . . Ap2n)^2niPl, • • • ,P2n)'^(Pl + • • • + P2n) (6.1.5) 
n=l 
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where the F are unknown quantities, then Fi[ip] becomes 

- | ^ A F 2 „ - ^ 5 ] F 2 „ o F 2 ^ + / d x l^^'' + ^M\l)^' + ~ ^ ' - £ { l ) ] . (6.1.6) 
(1=1 n,m J \ " / 

For convenience we have defined AF2n by^ 

/ 2Tvdq dp3...dp2n2n{2n-l)<^{p3)...ip{p2n) 
J\q\<l J 

X r2„(g , -g,P3, • • • ,P2n)KPZ + Hp2n) (6.1.7) 

and F2„ o F2ru by 

SnmTT j dp2... dp2ndk2 . . . rffczm <^(P2) • • • 'fi{P2n)'f{k2) • • • 'fiihm) 

X r 2 „ ( - ( p 2 H ^P2n),P2, • • • , P2n)^2ni{-{^2 H + kim), k2, • • • , A:2m) 

X 5{p2 + • • • + P2n + ^2 + • • • + k2m)- (6.1.8) 

The F are solved by expanding in positive powers of h, r2n = '^fV^^2n-

first compare the hP and c,̂ '̂" (r > 0) coefficients of (6.1.6) for each r then repeat for 

h then h'^ etc. So for example we start w i t h coefficients of ip'^ and in (6.1.6) 

r r , . - p ) ^ - ^ . - t ^ , ( 6 , 1 . 9 , 

then if"^ and 

r4^''(Pi,• • • ,P4) = ,3 , , ,w , — ^ , (6.1.10) 
(27r)3(4!)(a;(pi) + - - -+a ; (p4)) 

and continue to find the F2° f rom each (f'^^, hP coefficient. Now we look at the (f"^, 

h} coefficient 

then the (^^, etc. In the last equation i t became natural to take 6M'^ — 0. 

However, any choice of SA4'^ could in principle be used in these calculations, although 

such terms would become increasingly complicated. 

' In the n = 1 case this should be interpreted as = 47r .̂ ^ dqT2{q, —q) (5(0). 
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The remaining (r > 1 or r = 1 w i t h A; > 1) are given by considering the ^p'^'' 
and coefficient in (6.1.6). Such terms are given by^ 

^ oo ^ r k 

n=l n=l i=0 

This gives the F^' in terms of P g ' w i t h r' < r, k' < k or r' = r + 1, k' = k - 1. 

Explicitly, 

^2?'' , S ( / dq{T + l ) ( 2 r + l)Ttl\{q. -q,Pu • • • ,P2r) 

r - l fc 

+ E E(2 - 6ri)n{r - n + l ) F ^ ' ; ( - ( p i + • • •+P2n-l),Pu • • • ,P2n-l) 
n=2 z-0 

fcfc — i 

X r2 ( r -n+l ) ( - (P2n . + • • •+P2r),P2n, • • • ,P2r) 

+ E 2(2 - Srl)rr^\-puPl)Tt~'{-{P2 + • . • +P2 r ) ,P2 , • • - , P2r)^ (6.1.13) 

where S instructs us to symmeterise over the momenta p i , . . . , P2r as defined in 

section 5.1.1. 

6.1.2 One-Particle State 

We now construct the one-particle state in the fo rm ^i[<^] = J7[v3]^o[<^] where U[ip 

has external momentum P and satisfies 

^AiU + h f d x / ^ / ^ + E,U = 0 (6.1.14) 
2 J Sifi{x)Sif{x) 

where £"0 + Ei is the one-particle energy and EQ is the vacuum energy. We expand 

^= E dpi...dpnA^^{pu...,Pn)h''f{Pl)--.'f{Pn)S{P-{pi + ---+Pn)) (6.1.15) 
n,i=0 

and 
00 

Ei = Y E ^ ' h \ (6.1.16) 
i=0 

2 We should regard AVC = 0 
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Similarly to before we define AAn by 

/ 2ndq / dps ... dpnn{n - l)^{pz)... 'p{pn 
J\Q\<I J \q\<l 

X An{~q,q,Pi,...,Pn)5{P - (P3 + • • • + ? « ) ) 

(6.1.17) 

and An o by 

j dpi... P2m+n-2 47rnm(^(pi) . . . (p{p2m+n^2) 

X Anipn + • • • + p2Tn + n-2,Pl, • • • ,Pn- l ) 

X ^2m{-{Pn H \-P2m+n-2),Pn, • • • , P2m+n-2) 

x5{P-{pi + ---+P2m+n-2)). (6.1-18) 

SO that the (p^, terms of (6.1.14) becomes 

IAAT::+ E E A - o r r : ; ; + E < ^ r = o . (6.1.19) 
n=0 1=0 i=0 r-n even 

W i t h A; = 0 in (6.1.19) we see that Ef = 0 or A f = 0 V r > 0, the latter clearly 

violating our ability to choose the normalisation of the wavefunctional. We therefore 

take the former, which would also be required for the correct classical l imi t . 

Now consider the k = 1 case. W i t h r = 0 we have Af = 0 and as r is incremented 

we see at each stage that Af = 0 for all r unless E^' = uj{P) = s/P'^ + M ^ . The 

latter is the correct classical l imi t and, as we have already stated, the former is 

undesirable. So we proceed w i t h E f ' determined. Since Ai is non zero in the 

classical l imi t we wiU use our choice of normalisation to set A i = 1. That is, 

A f = 1 and A f = 0 for A; > 1. Then w i t h r - 2 we find A f = 0. W i t h r = 3 we 

determine 

^ 4 ! a ; ( ^ . ^ j P , ) ^ - ( E i = i ^ ( P » ) ) ^ 

W i t h r = 4 we get Af — 0 and r = 5 gives 

At{p,^...^p^) = —^ . / r | 6 r f ( - ( p i + - - - + P 5 ) , P i , . . . , P 5 ) 

- f 1 2 S A f (P3 +P4 + P 5 , P l , P 2 ) r f ( - (pa +P4 +P5),P3,P4,P5) | (6.1.21) 
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etc. In fact w i th r even we w i l l inductively get Af = 0 and w i t h r odd we get an 
expression for A f . 

We continue the process of considering (6.1.19) for k > 2. W i t h r = 0 we find 

each AQ^ ^ = 0. W i t h r = 1 we get the coefficients in the energy expansion 

k-i 

E'' = -GTT / dqAf-\-q,q,P)-y2A7rrf-'-\-P,P). (6.1.22) 

For r > 1 we get the Af in terms of the A'^^ for r' < r, k' < k or r' = r + 2, 

k! — k — 2. Rearranging (6.1.19), 

Af~\pu...,Pr) = 

=f ——^— -SITT / dq{r + 2){r + l)Af~^{q,-q,pu...,Pr) 
E ^ = l ^ ^ f e ) - ^ ( E i = l P O I J\q\<l 

r-l k-\ 
+ ^ 2 7 r n ( r - n + 2)A^'(p„ + - - . + p ^ , P i , . . . , p „ _ i ) 

n=l 1=1 
r-n even 

X r^:;;U-bn + • • • +Pr) ,Pn, . . . ,Pr) 
fc-2 

+ ^ 4 7 r r A f ( p i , . . . , p , ) r ^ — 
2=0 

+ Y . E ^ ' A f - \ p , , . . . , p A . (6.1.23) 

i=2 J 
Note that this would recursively set all the = 0 wi th r even. Therefore U should 

be expanded in odd powers of for the one-particle state, as we would expect. 

6.1.3 Two-Particle State 

We w i l l construct the two-particle state w i t h momenta P and Q in the form 

v&2(P, Q) = {U{P)U{Q) + R{P, Q))e^/'^ (6.1.24) 

w i t h energy^ EQ + Ei{P) + E\{Q)- The R satisfies a Schrodinger -type equation 

o . o ^ ^ , f .J.28U[P)5U{Q) , JR{P,Q) m 
j d x ^ AiR{P,Q)+ dx + n-

+ {E,{P) + E,{Q))RiP,Q) = 0 (6.1.25) 

'Although as we see in the next section we will require an additional ±ie term in the energy. 
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To solve this we make an expansion 

^(-P- <3) = E dpi... dpnifiipi) . . . (p{pn) 
n,i=0-^ 

X WB^\p,,... , p „ ) 5 ( P + g - (pi + . . . + p„)) (6.1.26) 

where the i?„ are symmetric in pi,... , p„ . The collated ip''h'^ terms in (6.1.25) are 

r k-2 r 

2 
T l = l l=U Tl = l 1=0 

r—neven 

(6.1.27) 

w i t h the definitions of A B „ , A„ o and 5 „ o Wm hopefully clear f rom the previous 

sections. 

W i t h k = 1, seciuentiahy incrementing r we see that Bf = 0 for all r. The r = 0 

case reveals 
2n6{P + Q) 

= -u{P)+u{Q) ^'-'-^'^ 

and the remaining BQ'^ = 0. We continue the process of examining each coefficient, 

first incrementing each r for a given fc, then incrementing k. A recurrence relation 

for the remaining S^'' can be found f rom 
jftfc-i/ ^ 27r 

B r {pu...,Pr) = 

r+1 k-2 

E E'̂ ('̂  - " + 2 )A^ ' (P - (pi + • • • +Pn-l),Pu • • .,Pn-l) 
n=l 1=0 

tk-i-2 
X A^^l^iQ -{pn + -- •+Pr),Pn, • • • ,Pr) 

+ ±^Bf^-\p,,...,Pr)6{p,+P2) 

r k-2 

+ E E''(' '"' '+2)s^'(p„ + - - - + p . , P i , . . . , p „ _ i ) 
n=l 1=0 

r—n even 

X r^X+2(-(Pn + • • •+Pr),Pn, • • • ,Pr) 

r - l 
+ E n{r-n + 2)Br\pn + ---+Pr,Pu...,Pn-i) 

n=l 
1—n even 

X rf_^+2i-{Pn + ---+Pr),Pn,...,Pr) }• (6.1.29) 
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for A; > 2 and r > 1. Again, we have the 5̂ *" in terms of the B^!" , w i t h r ' < r , 
k' < k ov r' = r + 2, k' = k — 2. The recursion relation immediately teUs us that 
5^ = 0 for odd r . 

The solutions for the coefficients in the vacuum state (6.1.13) are defined for all 

Pi subject to being able to compute the integrals. Similarly the quantities in the 

one-particle state (6.1.23) are equally valid for any choice of momentum. Whils t 

having a denominator uj{Y^-Pi) — the integral (6.1.15) includes a delta 

funct ion that restricts YliPi = ^ - ^ '^^^^ momentum-frame i t is easy to see that 

this denominator is always non-zero; however, in the 2 particle case we are not so 

lucky. The denominator in (6.1.29), LO{P)+UJ{Q) — J2i ^{Pi) is potentially zero when 

r = 2. For example, one part of R{P, Q) w i l l be (wi th r = 2, k = 2) 

a ^ ~( \~( N^3(-^ ,Pl ,P2) +^3 ( - (5 ,Pl ,P2) , ^ X / r 1 Qn̂  
671 / dpidp2ip{pi)ip{p2) I I . 7^^ T^5{P + Q-Pi-P2). 6.1.30 

Such denominators w i l l also iteratively find their way into terms w i t h r > 2 via 

(6.1.29). The question now is how do we define integrals such as (6.1.30)? The 

answer to this question is related to the time-independent definition of the S Ma t r ix 

as developed by Lippmann and Schwinger [44], as outlined in the next section. 

6.2 Generating the S Matrix 

We shall work in the interaction picture of quantum mechanics, i n which wavefunc-

tions "^'{t) are replaced via a unitary transformation so that 

^ ' ( f ) = e x p - ^ ^ ° * / ' ^ * ( t ) (6.2.1) 

where 5o is the massive free Hamiltonian and Hi the interacting part, both time 

independent. The Schrodinger equation in this picture is 

i h ^ ^ = Him{t) (6.2.2) 

w i t h 

Hi{t) = e'^°*/'^5ie-'^°*/'^. (6.2.3) 
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We are interested in the evolution of an " in" state at i = — CXD into an "out" state 
at t = oo. This defines the S matrix^ 

^'(-oo) = 5*(oo) , ( 6 . 2 . 4 ) 

56a = ( * 6 ( - c x ) ) , 5 * „ ( o o ) ) . ( 6 . 2 . 5 ) 

We can eliminate the need for in and out states by defining the unitary operator 

that describes t ime evolution according to 

* ( i ) = C/+(i)*(-cx)), ( 6 . 2 . 6 ) 

^{t) = U-{t)<l'{oc) ( 6 . 2 . 7 ) 

U+ and f/_ satisfy the differential equations 

ih^^ = H.m^t), ( 6 . 2 . 8 ) 

i h ^ ^ = H,it)U4t), ( 6 . 2 . 9 ) 

as can be explicitly checked through use of their definitions and the Schrodinger 

equation. These differential equations have solutions (satisfying boundary conditions 

determined by ( 6 . 2 . 6 ) and ( 6 . 2 . 7 ) ) 

U+{t) = 1 - ^ / H,{t')U+{t')dt', ( 6 . 2 . 1 0 ) 

U_{t) = l + j_j^ Hi{t')U.{t')dt'. ( 6 . 2 . 1 1 ) 

Since S = U+{oo) = U-{-oo), 

7 
S = l - T Hi{t)U+{t)dt ( 6 . 2 . 1 2 ) 

= 1 + - / Hi{t)UJt)dt. ( 6 . 2 . 1 3 ) 

Using this form of the 5 mat r ix and the definit ion of H\{t), ( 6 . 2 . 3 ) we can wri te the 

T {= S — I ) matr ix as 

i 

Tba = T j ^ J dt ( * b , e*^»*/'^//ie-'"''*/'^[/±(i)']>„) ( 6 . 2 . 1 4 ) 

•̂ The notation (A,B) is used to indicate the inner product. In the case of the Schrodinger 

representation of quantum field theory this corresponds to functional integration (5.2.11). 
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Whist \I'a,b are supposed to represent non-interacting wavefunctions at fixed time 
± 0 0 , they are not exact eigenfunctions of HQ. T O overcome this we represent the 
cessation of interaction at t = ± 0 0 by introducing a factor exp{—e\t\/h) in front of 
Hi. W i t h e arbitrari ly small we reproduce the original Hamiltonian. We can now 
introduce eigenstates $ a and $ 5 of HQ w i th eigenvalues Ea, so that the T matr ix 
is given by 

j foo 
Tka = TT ( i t ($6,e^^^*/ '"^e-^l ' l / ' '5 ie-^^°*/ ' ' f /±(t)$„) . ( 6 . 2 . 1 5 ) 

hJ-00 

The form of the T matr ix is simplified by defining 

/

oo 
dt e^iE-Ho)t/h^-e\t\/njj^^^ ( 6 . 2 . 1 6 ) 

•00 

so that 

na = - ' - i ^ b , H i ^ : i E , ) ) ( 6 . 2 . 1 7 ) 

= - ' - { % { E , ) , H i ^ a ) ) . ( 6 . 2 . 1 8 ) 

Energy conservation in can be made exphcit w i t h some algebra. First sub

stitute expressions for U± as given by ( 6 . 2 . 1 0 ) and ( 6 . 2 . 1 1 ) into IP^. Then w i t h 

T ^ \ t - t ' \ , 

/

oo • poo 

^^^^iE-E.)t|H^^e\t\|H^^ ^ M rfxe^^^^-^^^^/'^e—/'^5i*^(5) 
oo Jo 

= 2nh6{E - Ea)^, + / rrHi^a^iE) 
hi ± i t — tiQ 

= 2TrM{E - E,)^^ 
( 6 . 2 . 1 9 ) 

where 

* a = * a + ^ . } ^ H i ^ l ( 6 . 2 . 2 0 ) 
£/a ± — 5o 

This leads to a useful definition of the T matrix as given by Lippmann and Schwinger 

[44], 

Tba = -27nS{Ea - Eb){^t, Hi^+) ( 6 . 2 . 2 1 ) 

= - 2 m 6 { E a - E , ) { ^ - , H i ^ a ) ( 6 . 2 . 2 2 ) 
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To see how this fits in w i t h the problem of regulating the integrals in the semi-
classical expansion of the two-particle states, compare (6.2.19) and (6.2.16). Using 
the integral representation of the delta funct ion 

27vh6{E -Ea) = j dte'^"^-^"^'/" (6.2.23) 

we have 

e-iHot/h^-e\t\/hjj^(^^^^^ = e - » £ ; a t / ^ ^ ± _ (6.2.24) 

W i t h t = 0 this relation is simply 

= [ /±(0)$„ . (6.2.25) 

Returning to the definition of the S matr ix (6.2.5) and U± (6.2.6),(6.2.7), we have 

S^{^a,U.[tyU+mh) (6.2.26) 

which at t = 0 gives 

S = ( * - , * n - (6.2.27) 

Also note that (6.2.20) implies that "if^ is an eigenstate of the f u l l Hamiltonian w i t h 

an addition ±ie energy term. 

The introduction of an additional ±ie to the energy helps define terms such as 

(6.1.30), and indeed all terms in the semi-classical solution of the two-particle state, 

(6.1.29). We also have a method of extracting the S matr ix via (6.2.26), which 

also gives a physical interpretation of the ± i e term. The ± i e term appears to tell 

us something about the history or future of the state. Wi thou t such an additional 

term i t is not clear how to correctly write the wavefunction. 

V i a the Schrodinger representation of quantum field theory we are now in a 

position to extract the S matr ix f rom the wavefunctional. I n particular this approach 

to the S matr ix is nice to have due to the time independence of the definit ion. 

Whils t (6.2.26) is a particularly elegant definition we w i l l find that (6.2.21), (6.2.22) 

considerably reduces the combinatoric complexity of the calculation. 

6.2.1 A Tree-Level Example 

The two-particle state w i t h momenta P i , P2 and the additional ie energy term may 

be calculated as a perturbative expansion in the coupling mult ipl ied by a Gaussian-
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type exponential. This is achieved by expanding the exponential terms where ap
propriate. We have 

V U[Pi} + LJ{P2) + It J 

X exp Q J dqidq2 (fi{qi)'^{q2)rf {qi, q2)S{qi + ga)^ (6.2.28) 

which is the solution to the free theory (wi th the extra ie) plus higher order correc

tions. The interacting part of the Hamiltonian is given by 

Hi = J d q , . . . dq, (^(gi) • • • ifiq^qx + • • • + 94)- (6.2.29) 

We shall take the free solution $ to have momenta P3 and P4. I t w i l l look like 

(6.2.28) w i t h e = 0 and the momenta P i , P2 exchanged for P3 and P4. 

We proceed to apply the definition (6.2.21) to calculate the tree-level part of the 

S matrix. This reduces the problem of finding the 5 matr ix to that of performing 

Gaussian functional integrals as developed in section 5.1.2. Schematically we require 

a term of the form 

y" y* dqi, ...,dq4 ^{Pi)^{P2)(p{-P3)^{-PA)(p{q\)' • • ̂ {qA)5{qi + • • • + 94) 

X exp ( \ [ dndr2 (p{n)^{r2)Tf {n, i ^ W i + r2)] . (6.2.30) 

The Gaussian functional integral is calculated using the result (5.1.30) where 

r\p,q) = -^,5{p + q)- (6.2.31) 

We are required to pair the field momenta i n all possible combinations. Each pairing 

of momenta then contributes a product of f~^{p,q) terms, where p and q are the 

paired momenta. We could pair the eight different fields in 105 different ways. We 

do, however, have a number of simplifications which result in a significant reduction 

in the combinatorics. The first is due to the symmetry between the interchange 

of g i , . . . ,94 in (6.2.30). This reduces the number of distinct pairings to 10. For 

simplicity we shall ignore disconnected diagrams and restrict ourselves purely to the 

connected terms. These terms wi l l have an overall momentum conservation delta 

funct ion ^(Pi + P2 — P3 — P4) but no factors such as 8{Px — P'i)^{P2 — P4) which 
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would result in a disconnected diagram. This further reduces the number of terms 
we require to one. That is the term in which each is paired with qi. So the only 
connected term in (6.2.30) is 

Jdq,... dq, r\Pi, qi)f-\P2, q2)f-\-P3, q^)r\-PA, QA) 

.Ju^,.lu^.Jn^.JI,^ (6-2.32) V d ^ 24 u{P,)uj{P^)uj{P,)u{P,) 

where the 4! term is due to the different ways that the Pi may be paired with the qi 

each generating an equivalent term. 

Terms other than (6.2.30) will not produce a connected Feynman diagram and 

therefore from (6.2.21) we have the tree-level term of the S matrix 

{2i^)H 5\P, + P,-P,-P,) 

^ ^ V ^ \^{P,MP2MP,MPA) ^ ^ ^ 
where the parameter -q comes from the normalisation of the wavefunctionals. With 

= lQuj{P,)uj{P^)uj{P,)u{P,)^^^ (6.2.34) 

we reproduce the correct Feynman diagram term 

-ig{2n)H\P^ + P2 _ P3 _ P4). (6.2.35) 

Having used the the tree-level Feynman diagram term to calculate rj we can remove 

it from higher order terms in the 5 matrix. 

We shall also apply the alternate definition of the S matrix (6.2.26) to fully 

understand the role of the e parameter. Again we shall expand the interacting 

portion of the ground-state exponential. The term of order g in the two-particle 

wavefunctional (6.1.24) has a number of contributions which we shall write excluding 

the free exponential for convenience. The first arrives from the order-^ portion of R 

(recall R was defined in (6.1.24)) 

J uj[qi) + uj[q2) - uj{Pi) - uj{P2) T 
(6.2.36) 

another from the product U{Pi)U{P2) 

J dqidq2dqs (p[qi)(p{q2)(p{qz)Af {qx,q2, qs) 

X mPi)S{P2 - <?i - 92 - 93) + <^(A)5(Fi - gi - 92 - 93)) (6.2.37) 
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and lastly from the order-g term in the ground-state wavefunctional 

J dqidq2 'p{qi)^iq2)^2 (QU Q2) + J dqi . . . dq^ (p{qi) •. . ̂ p{qi)Tf{qi,. . . , ^4) 

The zeroth order in the coupling is somewhat trivial so we will immediately go 

to the tree-level term. Again we will restrict our attention to the connected terms 

only and omit the infinite •v/7r°°/\/det7 term. The first term originates fi-om a 

Gaussian integral 

3{27rfh' As{-Ps,Pi,P2) + A3{-P4,PuP2) S{P, + - - P4) 
2 uj{Pi) + uj{P2) - ujiP^) - ujiP^) + le u{Pi)uj{P2) 

+ [{Pi^P2)^{P2.P3)] (6.2.39) 

the second is from a (f^ term generated using the (p^ portion of W 

and the last is also a (f^ Gaussian integral 

3 ^ ' ( 2 ^ ) ' ^ ? C T 7 # Y ^ § f ^ ' ^ ( ^ ^ + - P3 - P4). (6.2.41) 
Uj{Pi)Lj{P2)Uj{P3)Uj{P4) 

This last (p^ integral comes from the portion of W. 

We add these terms together and multiply by the normalisation factor ?? (6.2.34) 

to get 

Lo{P3) + ujPj) -2ie 
'u;(Pi) + io{P2) + uiPsMPi) (a;(Pi) + a;(P2) - ujiP^) - uj{P,)Y + 

+ 0{e). (6.2.42) 

47rr 

Using the well-known hmit 
ie 

we reproduce the tree-level 5 matrix term exactly, (6.2.35). 

For the tree-level terms in the S matrix, in the definition (6.2.21) the e parameter 

does not play a vital role and is essentially taken to be zero. In the second defini

tion, (6.2.26) the e parameter plays the role of producing the energy-momentum-

conserving delta function. Higher-order terms will become increasingly complicated. 
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The energy conserving delta function is part of the definition (6.2.21), whereas in 
(6.2.26) this delta function can only come from the e —> 0 hmit given the form of 
the ground state prefactor. Higher-order Feynman diagrams themselves, however, 
also require a limiting process to be implemented. For example the 1-loop Feynman 
diagram 

- ^ ^ ^ ( F i + P2-Ps- P4) / d ' k — ^ T - ^ (6-2.44) 

2 J [k^ - m^){Pi + P2 - k)^ - + le) 

will require the limit e ^ 0 to be taken. This process is also encoded in both 

definitions, (6.2.21) and (6.2.26). We should note, however, that the expressions we 

expect to get before taking the hmit may differ in that e = e is not necessarily correct. 

Having taken the limit, however, our definitions should reproduce the correct S 

matrix as given by the Feynman diagram expansion. 

6.3 The Local Field Expansion 

Instead of using the semi-classical expansion described in section 6.1 we will adopt a 

local field expansion in the Schrodinger representation as outlined in [24] and further 

developed here. This will have the advantage of avoiding the loop integrals obtained 

in the semi-classical expansion and wiU also provide an expansion in powers of the 

momentum cut-off instead of the coupling. We have a technique which allows us 

to numerically evaluate asymptotic expansions in the cut-off for the limit in which 

it is removed. Again this is as prescribed by [24] and the resummation technique 

examined further in chapter 3. Since we no longer expand in h we shall set it to 

unity for the remainder of this section. 

6.3.1 Ground State 

In this approach we multiplicatively renormalise the bare field, ifo in the Hamiltonian 

so that (po = y/Zif and again impose the momentum cutoff |p| < / via (6.1.2), 

A, = / d x d y [ ^e^P(^-y\ , . . (6.3.1) 
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The ground state, '^Q = , satisfies the Schrodinger equation, 

AiW + Jdx ( j ^ ^ y - ^V" - mlZ'ip^ - f^^V'^ + = 0 (6.3.2) 

in the limit / —> oc. Symanzik's Theorem [4] teUs us that if we make such a 

multiplicative renormahsation and tune the bare quantities rriQ and accordingly 

then W should be finite apart from a local term proportional to J dx^p^. 

We now make a local expansion in the form of (5.6.1). However we introduce 

new notation for the coefficients in such a way that it will become easier to code the 

process of solving the coefficients in Maple. Explicitly we write 

W = J dx {b2ip^ + 62,2/' + h2,A^"^ + 62,6,1 • • • 

+ b^^p'^ + 64,2V'V^ + 64,4,l/'V^ + 64,4,2'̂ "' + • • • 

+ + 66,2V5'V' + 66,4,1'/?V" + 66,4,2(̂ V"' + " " " 
+ 6 8 ^ + 68,2'̂ 'V' + 68,4.1V'V" + 68,4,2/^?'" + • • •) (6.3.3) 

where the labels on the coefficients, 6, represent firstly the number of fields, then 

the total number of derivatives and lastly a label to distinguish between terms with 

the same number of fields and derivatives^. As outhned in section 5.6, we restrict 

the local terms to a set of basis elements determined by requiring the power of the 

field with highest number of derivatives to be greater than one. Other local terms 

wil l be linearly related to these basis elements through integration by parts. 

The regulated Laplacian acts on the local expansion to generate another local 

expansion. For example, 

A, j dy ^ = Jdx ( ^ \ " + ^ ^ 2 ) . (6.3.4) 

We substitute (6.3.3) into the Schrodinger equation (6.3.2) and obtain an equation 

^Sometimes only one label is required to identify a coefficient, e.g. 62 as the (/?̂  coefficient. In 

this case we should regard 62 = 2̂,0,1 etc. where necessary. 
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of the form 

262/ + ^62,2^' ( u b j + % 2I' + 
3 y V 3 

+ ( 264,2/ + 64,4,1/' + ^64,4,2/' + ---]+^^ (sObel + % + 
6 I \ 3 ' 

( 5668/ + ^ / ' + • • • ) + ^V" ( 1266,2/ + 1666,4,2/' + 

+ [f^Abl + ip'^8b2b2,2 + ¥^^6264 + / (246266 + 166 )̂ 

+(/?V^(166264,2 + 4862,264+ ••• • 

- Z V " - m ^ Z V - f l ^ V ) + 2ZEo = 0. (6.3.5) 

Equating the coefficients of the basis functional we obtain an infinite set of algebraic 

equations relating the coefficients. The equations obtained from the coefficients of 

1, if^, ip'^ and ifi"^, 

^ / + ^ / ' + - - - + 2ZEo = 0 

^-^l + ^ l ^ + ...^b'-m'Z' = 0 
TV STT 

264,2. 46 
TV 

TT 

37r 

37r 

+ 86262,2 - Z ^ = 0 

^ ^ h i ^ ^ M ^ + . . . + i e t 2 b , - ^ z ^ = o 
12 

(6.3.6) 

(6.3.7) 

(6.3.8) 

(6.3.9) 

involve the bare quantities mo, ^o, EQ and the multiplicative renormahsation factor 

Z. The remaining basis functional coefficients relate the various bij^k coefficients. 

For example, 

5668 ^ 268,2,3 
TT 37r 

/ + =^l^ 4_... + 246266 + 166̂  = 0 

^ / + --- + 1662642 + 4 8 ^ = 0 
TT ' 04 

(6.3.10) 

(6.3.11) 

These equations need to be solved in conjunction with renormalisation conditions. 

Since Symanzik's theorem [3] states that aU of the 6j,j,fc coefficients remain finite as 

the cut-off is removed with the possible exception of 62, we will choose renormalisa-
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tion conditions 

h = - y (6.3.12) 

b22 = - ^ (6.3.13) 

where // is a finite mass scale and g plays the role of the renormalised coupling. 

We solve the bij^i^ with the exception of 62, 62,2 and 64 by making an expansion 

in positive powers of /, 

kj,k = J2K,,,r (6.3.14) 
r=0 

and equating coefficients in powers of / to zero in (6.3.10), (6.3.11) etc. It is possible 

to determine each .̂ in terms of 62, ^2,2 and 64. To explain this process we consider 

the coefficient of a basis functional with F fields and D derivatives in (6.3.5). In 

turn we consider the equation obtained from equating the coefficient of this term 

to zero. We note that such an equation has the form 

D+p-l 

D'=D 

D"=D,F'=F-4,p'=p 
-t- ^F,D,r "F',D",r'"F+2-F',D-D",r" ~ lO-J-J-^j 

D"=0,F'=4y=0,r'=r" 

where the A and C are known coefficients. This can be solved for t^pD ^ in terms 

of the coefficients b?,̂ ,̂̂ ,̂ where F' + 2D' + 2p' < F + 2D + 2p = Q and either 

F ' = F + 2, p' < p or F ' < F, p' < p, D' < D. 

We build a set of solutions by starting with p = 0 and solving the {fc^/ £,/} for 

F ' + 2D' < Q. For example the /° coefficient of (6.3.10) gives 

246,+ M ! = 0 = * 6 S = - | ^ (6.3.16) 

and (6.3.11) gives 

16Ml2 + f = 0 =^ bl = - ^ ^ (6.3.17) 

etc. Next we examine the p^ coefficients, substituting in our known solutions to 

obtain the {b\p,jj,} for F ' -t- 2D' + 2 < Q. We continue the process, incrementing 

p each time so that we find the {bj^, j^,} then {b^p, p,), and in general finding the 
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{bf, for F' + 2D' + 2p < Q where we have sequentially considered p ranging from 
0 to p'. 

All of the coefficients up to some truncated order are solved exactly in terms of 

unknown quantities mo, and 62 and known quantities /.i and g. We now return 

to (6.3.6)-(6.3.9) and substitute in the solutions. First we find Z via (6.3.8) then 

substitute this into (6.3.7) and (6.3.9) to obtain mo and go respectively, again as 

a power series in /. Now 62 is the only unknown quantity, with everything else 

expressed in terms of this and the quantities and g. 

6.3.2 One-Particle State 

We now outline how to generate a one-particle local wavefunctional. This was done 

in [24] for a particle of energy / . i , that is a particle in a zero momentum frame. We 

extend this solution by introducing a particle of arbitrary momentum P and energy 

EQ + El where Ei = u{P) = x/F^ + ^2 J q q J ^ f^,, Hamiltonian eigenstate 

of the form vCfj = [/^'o, as was the case in the semi-classical expansion. The local 

expansion of U consists of a sum of terms with an odd number of fields. That is, 

U[^p] = j dx e'̂ "̂  ((/? -t- c^ip^ + Ciif^ + • • • + C3,2W'^ + C3,4V7(/?"̂  + • • •) (6.3.18) 

where again the subscripts of the c coefficients represent first the number of fields, 

then the total number of derivatives and finally a label to distinguish between basis 

functionals with the same number of fields and derivatives (if appropriate). 

Again we restrict our attention to a basis of local terms which are linearly in

dependent upon integration by parts. These relations are different in a non-zero 

centre of momentum frame since contributions will come from differentiation of the 

exp(^Pa;) term in (6.3.18). For example 

j dx e^^^wV'" = j dx ê ^̂  {^-^^"'' + ^ ( ^ ' ^ - '-^{-^'^ ~ iPW)^ • (6.3.19) 

In the centre of momentum frame, P = 0 the total number of derivatives in each 

term (e.g. 0-1-1+3 in the LHS of (6.3.19)) is conserved. Now we also have terms 

where one or more derivatives may be substituted for factors of P. Basis elements 

should therefore be of the form 

^ro^ ^ ^ W ' . p r . + i (6.3.20) 
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with r„ > 1. For terms with r„ = 1 we use integration by parts to write them as a 

linear combination of basis elements. In each local quantity we should consider the 

total number of derivatives to be defined by D = r i -|- 2r2 + • • • H- nr„ so that T = 

D+r^-^^i is conserved upon integration by parts. It should be noted that riH hnrn 

must no longer be restricted to even numbers; however, T will necessarily be even. 

This can be seen by considering an expansion of the coefficients in the semi-classical 

expansion. We need not make this assumption; however, we would expect this to 

be reflected upon solving the Schrodinger equation. To include the need to consider 

powers of P in the basis elements we introduce another index to the c coefficients 

so that Cf^Di,m,D2 is the coefficient of a basis element comprising of F fields with 

D i = r i -H • • • -I- nr„ and and D2 = T n + i . The local expansion of U is therefore 

U [ i p ] = I dxe^^^^ + Y.P'Uo, 

+ C3,2,l,rfW'^ + C3,3,l,d</5'3 + • • • ) ) . (6.3.21) 

The P'^Lp coefficients, Ci,o,i,d are fixed by choosing a normalisation of the wavefunc

tional. In the above we have chosen Ci_o,i,d = ôd-

The difi^erential equation satisfied by U is 

' m 5U 
AiU + 2 + E^ZU = 0. 

6ip S p 

Substituting the local expansion (6.3.21) into this differential equation we get 

^ . r f \ f (2 4 \ 

+ pp'^ (6C5,2,lJ + (̂ 4c5,4,l,rf + 8C5,4,2,d + ^^Pc5,5,2,d^ + • • • ^ + 

(6.3.22) 

+ 2 

+ (^(264,2,1 + 12C3,o,l,d64,2,l) + (464,4,2 + • • • ) ^ ' + • • • ) 

+ 2EiZ (c3,o,i,dV'̂  + C3,2,i,dw'^ + ---)^ + 2 J dx e'^'^EiZ^ = 0. (6.3.23) 
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Again we collate coefficients of basis elements and equate them to zero. For example 
the coefficients of ip and P^(pip''^a.re 

6c3,o,i,d/ + f ^C3 ,2 , i ,d - 2zPc3,3,i,d + ^ 0 3 , 4 , 1 , ^ - 2 ^ ' ) / ' + ••• + 2£;iZ = 0 (6.3.24) 
V3 3 J 

( 4 \ ^ \ 
6C5,2,l,d/+ 4C5,4,i,d + 8C5,4,2,d + : j ^ f C 5 , 5 , 2 , d - l / + • • • + 2 ^ 1 Zc3,2,l,d = 0. 

(6.3.25) 

It can be see from (6.3.24) that EiZ itself must be a power series in P and /. 

Z is independent of P, as seen from calculating the ground state, and it is already 

known that E\ — uj{P) is / independent. On the other hand, the form of EiZ can 

be solved for via the Schrodinger equation. We shall achieve this by expanding 

oo oo 

E,Z = J2Y1 <P^^"'- (6.3.26) 
n = 0 m = 0 

The c coefficients themselves may also be solved as a power series in / 

oo 

CF,o,„ = X^c-^,„/- . (6.3.27) 

m = 0 

The equations (6.3.24) (6.3.25) etc. may now be solved by equating coefficient of 

In general we have an equation of the form 
D i = D + p - l , D 2 = r > i p d 

\ p o P , D i , r ' , D 2 r , - l + D - D 2 , V V r ^ ' 0 ^ " " ' 
/ . ^F,D,r '-F+2,Dur',d+D2-Di ^ 2-^ Z^'-F,D,n,d'"'d-d' 

Di=D,D2=0 p'=Od'=0 
F'=F+l,p'=p,Di=D,D2=d+D-Di 

, V r,p,D",F',p'yy'u>' j>-v' _ n 
^ ^F,D,r "^F',Di,r'^F+2-F',D2,r",d+D-Di-D2 ^ ^ 

F ' = 2 , p ' = 0 , r ' = r " , D i = 0 , D 2 = D - D i 

(6.3.28) 

where B and D are unknown coefficients. This is solved for (^pDn^ terms of 

^F',D',n'.d' '^ith F' + 2D' + 2c/' + 2p' < F + 2D + 2(i + 2p and either F ' = F + 2 with 

p' <p or F' < F and D' + d' < D + d. The F = 1 (6.3.24) case is, however, special. 

In this case we compare coefficients of P and look at the basis elements P''(p. Since 

the ci,o,i,d = Sod are known quantities we solve instead for a .̂ 

Al l of the 6, c and a coefficients are now determined in terms of / i , g and the un

known quantity 62. However, as we know the form of Ei = co{P) and Z as a power 

series in / we may invert (6.3.24) to determine 62. This can then be substituted 
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back into the other coefficients and quantities including Z. This does not, however, 
uniquely determine Z. For example Z should be the F° coefficient of EiZ/^ , the F^ 
coefficient of 2/.tFiZ and the F'' coefficient of —8/i^FiZ etc. In reality each of these 
quantities has a different power series expansion in I. This is because the energy 
eigenvalue uj{P) is determined by relativistic principles. In the Schrodinger repre
sentation of quantum field theory Lorentz covariance is not explicitly manifested. 
Only when the limit I oo is taken can we expect to recover this. So whilst Z 
and 62 can be found as a power series expansion in I in multiple ways each solution 
should be equivalent in the I 00 limit. 

As we intend to take the / 00 limit it should not matter which expansion we 

use. The approach we outlined solved Z and 62 by considering the F'̂  coefficient of 

EiZ. We chose this expansion because the coefficients are solved with F -|- 2D + 

2d + 2p < Q, where Q is some predefined level of truncation. This choice of solution 

allows us to extract a maximal numbers of terms in the / series expansion. 

6.3.3 Two-Particle State 

The two-particle state is generated in the form {U{P)U(Q) + R{P, Q))'i>o. R satisfies 

its own functional differential eciuation as determined by the Schrodinger equation 

Aii?(F, Q) + 2 j dx 
f6U{P)6U{Q) , SWSR{P,Q) 

5if 6(p 5ip Stf 

+ 2Z{Ei{P) + Ei{Q) + ze)F(F, Q) = 0. (6.3.29) 

In principle we could make a local expansion, with the number of fields in each term 

even: 

/

/ 00 00 

dx e'('^+«)- E P'^Q^' [<oxs.,s, + d2,o.i,..,..v:'' + • • • 
Vsi=0S2=0 

+ d2,2Xsus2<P'^ + dA:iXsus,w'^ + • • • • (6-3.30) 
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Instead we shall work in a centre of momentum frame in which Q = —P. This 
simphfies the complexity of calculation. The local expansion for R is therefore 

R{P, Q)= f d x ( Y , P ' (do^oxs + d2fl,W + • • • 

+ d2,2.hs^'^ + d4,3,i,sW'^ + • • • ) V (6.3.31) 

In this momentum frame there is no exp(iPx) term in the integrand. Therefore 

the linear dependencies due to integration by parts of local terms will be the same 

as we had for W. The basis elements will necessarily have an even number of 

derivatives and even powers of P. This is again seen from an expansion of the 

semi-classical solution. It may also be seen by noting that the contribution from U 

in the differential equation (6.3.29) is even in P. and therefore in the number of 

derivatives. The number of derivatives in the W contribution are even, as are the 

powers of P in the energy contribution. 

The next step is to solve the d coefficients as a power series expansion in /. Our 

approach so far has, however, been naive, since in making a local expansion we 

reproduce the problem of defining the two-particle state that we saw in the semi-

classical expansion. For example, comparing the terms in (6.3.29) to zeroth order 

in / and P: 

124o,i,o + 86°4o,i,o + i^a'o + 2ie)d%^i^, = 0. (6.3.32) 

Since 62,0,1 = ~m/2 and 0 ° = /.i this reduces to 

12c%,i_o + 2ze4o,i_o = 0. (6.3.33) 

This suggests, however, that cî  0,1,0 is undefined in the e ^ 0 hmit. This will also be 

true of some other coefficients. In the semi-classical expansion we discovered that 

the two-particle state makes little sense without the additional ±ie energy term 

corresponding to the selection of a past or future boundary condition. The local 

expansion, however, does not make sense in the e —̂  0 limit when made in inverse 

powers of the mass. For e > 0, however, the local expansion does make sense. We 

therefore propose two methods of writing the local expansion 
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• Equations such as (6.3.33) can naively be solved in terms of e. In general 
the d coefficients will be a power series in negative powers of e. The e —»• 0 
limit could be found by using a contour integral method of resummation. The 
semi-classical solution implies that when e is analytically continued into the 
complex plane it will have singularities along the imaginary axis. Singularities 
may therefore need rotating into the left-half complex plane by the usual trick 
of substituting e ^ e° and taking a < 1. 

• Instead of expanding EiZ in powers of / as calculated from (6.3.24) it may be 

more appropriate to evaluate Ei exactly and then use a separate power series 

for Z in the differential equation (6.3.29). Equations such as (6.3.33) will then 

have a solution 

4 . 0 , 1 = z , . (6.3.34) 

which is valid in the limit e ^ 0 provided P 7̂  0. 

6.4 Computing the S Matrix: Functional Integra

tion 

Here we explain how to compute the S-Matrix from the local functional expansion 

using the time-indeperident definition (6.2.21). Having computed the local expansion 

of ' I ' ^ we have already found the expansion of $, the latter just being when ^ = 0. 

So we need to calculate 

j Vif (C/(P)[/(-P))|,=o (C/(P)C/(-P) + +P(P, - P ) ) i/ie^+"^l«=°. (6.4.1) 

The H |̂c,=o term in the semi-classical solution is simply the term corresponding to 

r2 . In the local expansion this is the same as restricting W to the 62,D,n terms. 

We know how to compute Gaussian functional integrals from section 5.1.2; there

fore we write (6.4.1) in this format. This is achieved by expanding the vacuum 
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wavefunctional 

exp{W + W\g^o) 

exp ( [ d x {2b2ip'^ + 2b2,2f'^ + ••• + b^^^ + ••• + + • • • ) 

\J J 

l+( I dx (2b2,2f'^ + ••• + b^ip^ -!-••• + 6 5 / + • • • ) 
L \J ) 
I / r \ 2 
- l^J dx (262,2'^'^ + • • • + 6 4 / + ••• + 6 5 / + • • • ) ) + • • 2 J d x b2ip'^ 

(6.4.2) 

Now (6.4.1) is a sum of Gaussian integrals of the form 

2 e^^^>^° 

X exp 2 / d y b 2 f ^ . (6.4.3) 

The Fourier transform of the fields wiU be needed to reduce this to the Gaussian 

form as in (5.1.30). Al l possible pairings of fields outside the exponential will be 

required. A typical pairing of two fields will be of the form 

y Dy) dx, e^^'-^V'" • • • (v?^'')'''...(v?^^'y^ . . . {^^''^y 

X • • • ^ J dx2 e'^^^V'" • • • exp (2 J d y b 2 i p ' 

= irrm I ( / • • • ( ^ ' ' ) " " • • • ( ^ " ) " " • • • ̂ ^''y") 
x---(^J dx2 e'^="V'° • • • {^^"'^Y'"^ exp (2 J d y b 2 ^ ^ ^ (6.4.4) 

provided r j , r j > 1. Where fields with different arguments (e.g. (/'(xi) and ^ { x 2 ) ) 

are paired the two local expansions are combined. For example 

l v p ( I dx, e'̂ ^-' . . . U^^y .. . V • • f I dx2 e^^^^ .̂.. U^^Y' .. ) 
J \J I / \J I / 

/ r \ 
X exp 2 / d y b 2 i p 

\ J J 

-V2iTjT-J''^^-'['J'''^^l 

X • • • (̂ y" dxe'(^^+^^)>'-°+^''... [p^^^-'Y'^''-' ... {^^^^Y'^'^~' • • • 
(6.4.5) 
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provided i ^ j. 

This produces some combinatorial problems, since with 2n fields there would 

be (2n)!/n!/2" distinct ways of pairing them. Clearly this becomes very large very 

quickly. In reality the 2n fields will not be distinct and many of the individual terms 

will cancel. 

Whilst the exponential's prefactor is normally a product of local functionals, 

the case where only one such local term exists may be simplified. This is done by 

introducing an orthonormal basis { ^ ' ' " ' } , with 

= + C „ , „ _ i < ^ " - ^ + • • • + C n f i i f . (6.4.6) 

The inner product is defined by 

f ^ z " + - i f n + modd 

^ ( n ) ^ ( m ) ^ J + l 4 

0 if n + m even 
t. 

and the c„,,„ coefficients determined via a Gram-Schmidt orthonormalisation proce

dure. Now the problem is reduced to finding a sum of terms of the form 

j (^J e'̂ " exp (2 J dyh2p''^ . (6.4.8) 

This is evaluated by pairing the * terms in all possible combinations. Only the 

pairing of '̂̂ "^ with another '̂̂ ^^ term will give a non-zero contribution. This 

means that only if all of the r,; are even do we get a non zero contribution. 

By inserting the power series expansion of the 6, c and d coefficients obtained in 

section 6.3 we produce a power series expansion of the T matrix in the momentum 

cut-off /. The idea is then to remove the cut-off by using the contour integral 

techniques of chapters 3 and 4. 

6.5 The Computer Program 

Solving the coefficients for a local expansion of the wavefunctionals to a high order 

in the momentum cut-off is a considerable task when done manually. It therefore 

makes sense that, having developed the relevant mathematics, we should try to 

automate the procedure. 
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Computer code for generating the local expansion of the various wavefunctionals 
is given in appendix A, where a schematic explanation is provided of how these pro
grams work. The computer package used to do this is MAPLE. This is a high-level 
programming language ideal for the purpose of developing mathematical procedures 
and techniques. We note, however, that a final implementation of a procedure is 
hkely to be more suitable in a lower-level programming language. We develop the 
relevant procedures using modest computing facilities; however, in general an imple
mentation involving parallel-processing technology would considerably increase the 
speed and achievable order of truncation that we may realistically work with. 

One of the most demanding parts of our procedure from a computer resources 

point of view is the initial setup of required structures needed before solving the 

Schrodinger equation. These structures are needed to describe the basis functionals 

and the linear dependencies of non basis functionals. The effect of the Laplacian 

and other functional differential operators must first be determined. These struc

tures, whilst simple to calculate, do require many levels of recursion. We have been 

successful in generating and executing the procedures relevant to the vacuum, one 

and two-particle states up to a truncation with F -|- 2D + 2p < 38. 

We have been slightly less successful in producing the S matrix to such a high 

order due to the considerable combinatorial problems involved. We have generated 

the S matrix up to 8 orders in the momentum cut-off /, however, this is insuffi

cient to be successfully apply the modified Borel resummation technique. A more 

appropriate programming language may be the answer, or a more efficient way of 

constructing the S matrix from the wavefunctional may be found. 

6.6 Summary 

We have developed both a semi-classical and local expansion of the one-particle and 

two-particle state wavefunctionals in the Schrodinger representation. A method of 

extracting the S Matrix from a wavefunctional has been introduced and apphed to 

the local expansion. The procedure has been automated in MAPLE. We have been 

unable to extract the S matrix to high orders. In the case of producing the wave-
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functional we believe that this is mostly attributable to the choice of programming 
language. Further research into methods of reducing the combinatorial difficulty 
would greatly benefit the calculation of the S matrix. 

We note, however, that there are some advantages of our technique. The most 

demanding parts of our procedure are in solving the linear dependencies and con

structing the effect of functional differential operators such as the Laplacian on local 

functionals. We note, however, that these portions of the code are not dependent 

on the potential of any particular theory. Therefore, having completed the process 

once, the results may be used to calculate a two-particle state for any scalar field 

theory, either with a different potential term or different physical parameters. Addi-

tionaUy our procedures do not contain any difficult mathematics such as in the loop 

integrals in a Feynman diagram approach. In fact all our calculations are based on 

linear equations. 



Chapter 7 

Conclusions and Further Research 

There are s t i l l many technical difficulties outstanding in computing physical quan

tities in quantum mechanics. These may largely be at t r ibuted to the inabil i ty of 

perturbation theory to describe some phenomena and the divergence of these per-

turbative expansions. For example, in double-well anharmonic oscillators instanton 

effect become dominant in some domain of the physical parameters of the potential. 

Our arsenal of non-perturbative techniques to deal w i t h these problems is l imited. 

Resummation techniques are not usually exact and often do not even provide an 

error estimate. W i t h the introduction of the modified Borel summation technique 

discussed in chapter 2 we now have another technique at our disposal. We have 

refined the technique and produced a method of f inding some of the dominant sources 

of error which in t u r n may be subtracted f rom the original estimate to produce 

a better approximation. W i t h confidence in the accuracy and behaviour of this 

technique we are in a better position to apply i t to theories which are less well 

understood in the hope of extracting useful information. 

We also showed how the analytic structure of an asymptotic series can be used 

to extract very accurate results. In chapter 4 we showed how to produce energy 

eigenvalues by resumming the large x behaviour of the wavefunction and tuning 

the solution un t i l the correct boundary condition is observed. I n this approach the 

exact value of the resummed large-x behaviour was irrelevant. I t is the analytic 

properties of the solution that we look at. As the analytic structure of the solution 

to the differential equation exhibits discontinuous behaviour i t was easy to identify 
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the solution corresponding to the correct boundary condition. 

The analytic structure of quantum mechanical wavefunctions has been of in

creasing interest lately i n PT-symmetr ic quantum mechanics. I n these theories i t is 

necessary to analytically continue x into the complex plane so that the differential 

equation is defined along some contour. For example 

, ^ +x^<^ -gx*^ = E-^ (7.0.1) 
dx'^ 

w i t h g > 0 is at first sight a Hermitian theory defined along the real x axis and 

therefore has real energy eigenvalues. This is actually incorrect, as the boundary 

condition l im|^l^oo * does not make sense for real x. Instead the boundary con

di t ion is defined so that ^' ^ 0 when |x| ^ oo wi th in the complex plain w i t h 

— T T / 3 < arg(x) < 0 and T T < arg(x) < 47r/3. In a Hermitian theory, the n t h excited 

wavefunction has n nodes along the real axis. I t is proposed that this is also true 

for a 'PT-symmetric theory, but the nodes now lie on a contour between the turning 

points of the potential [43]. The exact analytic structure of nodes in the complex 

plane for bo th Hermitian and "PT-symmetric theories is clearly of interest and in 

need of further study. Indeed we hope that our technique of tuning for the correct 

boundary condition might be adapted to work w i t h these types of theories. 

Whils t quantum field theory has been incredibly successful as a mathematical 

language for the description of physics at its most fundamental level we st i l l have 

few tools for extracting meaningful observables f rom its rich mathematical structure. 

The Schrodinger representation of quantum field theory offers the abil i ty to use 

the lessons learnt i n quantum mechanics. W i t h an additional technique in non-

perturbative and divergent quantum mechanical expansions we are slightly closer to 

understanding these quantum field theory problems. 

Whils t we do not claim credit for the semi-classical expansion of the vacuum 0'* 

field theory wavefunctional, we have managed to extend the technique to produce 

a one-particle and two-particle wavefunctional. The definition of the two-particle 

wavefunctional is not clear without the introduction of an additional ±ie term to the 

energy. This is also linked to the time-independent definition of the S matr ix. We 

have explicitly shown that this time-independent definition of the S matr ix correctly 

reproduces the Feynman diagram expansion at low orders. 



C h a p t e r 7. Conclusions and F u r t h e r R e s e a r c h 106 

Mansfield [24] originally found a method of producing a local expansion of the 
logarithm of the vacuum functional for fields that varied slowly on the scale of the 
hghtest mass. Use of a modified Borel summation technique allows the f u l l wave-
functional to be reconstructed f rom the local expansion. Mansfield also produced 
a type of local expansion for the one-particle wavefunctional in a centre of momen
t u m frame. We have extended this technique to produce a one-particle state in an 
arbitrary momentum frame. We have also shown how to produce a type of local 
expansion for a two-particle state. 

We have produced M A P L E code to automate the solution of the two-particle 

wavefunctional. We have also coded the functional integration required to produce 

the S matrix. I t is not clear how best to wri te the local two-particle wavefunctional. 

There are a number of suggested ways of doing this; however, a numerical study 

needs to be undertaken to determine the best approach. 

Before numerical results may be extracted f rom the large distance expansion of 

the S matr ix we first need to be able to complete the procedure up to a higher order 

of truncation. This may be achieved in a number of ways 

• Use of a lower level programming language 

• Parallelising the procedure 

• Use of a less demanding combinatorial approach to the S matr ix 

We remain confident that study of a local expansion of the S matr ix is wor th 

continued study. Should we be able to achieve sufficient orders in the expansion we 

should be able to find a good approximation to the exact S matrix. Our approach 

has the advantage of only requiring the solution of linear equations, as opposed to 

the tr icky loop integrals in the Feynman diagram approach. Also, having setup the 

required linear dependencies between basis elements etc. we w i l l have completed 

most of the work needed to produce the S matr ix for different theories. We see no 

reason why this technique cannot be extended to non scalar theories such as Yang 

Mil ls . 



Appendix A 

Computer Programs: Large 

Distance Expansions 

I n what follows we describe the basic principles behind coding the solution of the 

Schrodinger equation and computing the S matrix. We also include the relevant 

M A P L E code for completing each task. 

A . l Generating the Basis Elements 

We have seen how basis elements can be represented by three numbers F , D and 

n where F represents the tota l number of fields, D the total number of derivatives 

and n an index to differentiate between different elements w i t h the same number 

of fields and derivatives. Where an external momentum is required (such as in the 

one-particle state) then an additional parameter w i l l be required to represent powers 

of P. We temporarily ignore this, however, as these powers of P are easily reinstated 

later. 

In solving the Schrodinger equation i t w i l l be necessary to know the exact struc

ture of each element. This is done by generating an array in M A P L E , be [ F , D , n , r ] 

which for each r represents the power of the field w i t h r derivatives. For example, 

the basis element represented by [F, D, n] = [4,10,4] is 

J dxe'^'^^if'^if^^^f (A.1.1) 
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and be [ 4 , 1 0 , 4 ,r] w i l l be 1,0,1,0,2 for r = 0 ,1 ,2 ,3 ,4 respectively. The high
est possible value of r for a given functional is represented by the matr ix element 
be [F,D,n, - 1 ] , so in the above example be [ 4 , 1 0 , 4 , - 1 ] =4. I t wi l l also be necessary 
to know the range that n may take for a given F and D. A n array track[F,D] 
represents the highest possible value of n. Whils t F and D may take on any non 
negative integer we must realistically truncate the expansion and therefore specify 
an upper l imi t on F and D by G and H. 

Another piece of information that w i l l be helpful later is a representation of 

the local functionals by a number unique to that particular element. The above 

functional for example would be represented as 20101 in base G + 2 but stored as a 

base 10 number in be [F,D,n,-2] . In general 

6e[F,D,6,-l] 

be[F,D,n,-2]= ^ be[F, D,n,r]{G + 2Y. ( A . l . 2 ) 

r=0 

The basis elements are assigned the identifier n in such a way that they are ordered 

by the base G + 2 representation. That is be [F,D , n l ,-2] <be [F,D,n2,-2] provided 

nl<n2. 

Upon functionally differentiating basis elements we may get a non basis local 

functional. These reduce to a sum of basis elements using linear dependencies de

termined through differentiation by parts. We should therefore generate a list of all 

possible local functionals and w i l l need to find the linear relations. The above struc

tures are therefore produced for all local functionals not necessarily restricted to 

basis elements. These arrays are labelled ntrack[F,D] and nbe[F,D,n,r] whereas 

the previous arrays str ict ly contain the basis elements. They w i l l contain the rele

vant information to describe all local functionals w i t h a given number of fields and 

derivatives. Some of these functionals w i l l be basis elements; however, some w i l l 

not. Note that the index n in nbe[F,D,n,r] w i l l not necessarily correspond w i t h 

the same index in be [F, D, n, r ] . Also, in reality i t is the nbe and ntrack arrays 

that are calculated first. The basis elements are then found by selecting only those 

local functionals w i th nbe [F, D, n, r ] > 1 when r=nbe [F, D, n, - 1 ] . 

The procedure that produces the structures outlined so far is called via the 

command basis[G,H]. The relevant M A P L E code is given below. Credit for this 
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procedure belongs to Paul Mansfield. 

basis:=proc(fields,dimension) 

global be,track; 

for G from 0 by 1 to f i e l d s do 

for H from 0 by 1 to dimension do 

track[0,H]:=0:track[1,H]:=0: 

b a s i s l ( G , H , f i e l d s ) : 

number:=0: 

for n from 1 by 1 to numb do 

i f nbe[G,H,n,nbe[G,H,n,-l]]>l then 

number:=number+l: 

for nn from -2 by 1 to nbe[G,H,n,-l] do 

be [G,H,number,nn]:=nbe[G,H,n,nn] : od: 

track[G,H]:=number: 

fi:od: 

od:od: 

be[0,0,1,-2]:=0: track[0,0]:=1:track[1,0]:=1: 

end: 

basisl:=proc(G,H,fields) 

global numb,nbe,ntrack; 

numb:=0: 

j:=array(0..24): 

n25:=G: 

for n24 from n25 by -1 to n25-iquo(H,24) do 

j [24]:=n25-n24: dim24:=j[24]*24: 

for n23 from n24 by -1 to n24-iquo(H-dim24,23) do 

j [23]:=n24-n23: dim23:=dim24+j[23]*23: 

for n22 from n23 by -1 to n23-iquo(H-dim23,22) do 

j [22]:=n23-n22: dim22:=dim23+j[22]*22: 

for n21 from n22 by -1 to n22-iquo(H-dim22,21) do 
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j [21]:=n22-n21: dim21:=dim22+j[21]*21: 
for n20 from n21 by -1 to n21-iquo(H-dim21,20) do 

j[20]:=n21-n20: dim20:=dim21+j[20]*20: 

for nl9 from n20 by -1 to n20-iquo(H-dim20,19) do 

j [19]:=n20-nl9: diml9:=dim20+j[19]*19: 

for nl8 from nl9 by -1 to nl9-iquo(H-diml9,18) do 

j [18]:=nl9-nl8: diml8:=diml9+j[18]*18: 

for nl7 from nl8 by -1 to nl8-iquo(H-diml8,17) do 

j[17 ] :=nl8-nl7: diml7:=diml8+j[17]*17: 

for nl6 from nl7 by -1 to nl7-iquo(H-diml7,16) do 

j [16]:=nl7-nl6: diml6:=diml7+j[16]*16: 

for nl5 from nl6 by -1 to nl6-iquo(H-diml6,15) do 

j [15]:=nl6-nl5: diml5:=diml6+j[15]*15: 

for nl4 from nl5 by -1 to nl5-iquo(H-diml5,14) do 

j [14]:=nl5-nl4: diml4:=diml5+j[14]*14: 

for nl3 from nl4 by -1 to nl4-iquo(H-diml4,13) do 

j [13]:=nl4-nl3: diml3:=diml4+j[13]*13: 

for nl2 from nl3 by -1 to nl3-iquo(H-diml3,12) do 

j [12]:=nl3-nl2: diml2:=diml3+j[12]*12: 

for n i l from nl2 by -1 to nl2-iquo(H-diml2,11) do 

j [11]:=nl2-nll: dimll:=diml2+j[11]*11: 

for nlO from n i l by -1 to nll-iquo(H-dimll,10) do 

j [10]:=nll-nlO: dimlO:=dimll+j[10]*10: 

for n9 from nlO by -1 to nlO-iquo(H-dimlO,9) do 

j [9]:=nl0-n9: dim9:=dimlO+j[9]*9: 

for n8 from n9 by -1 to n9-iquo(H-dim9,8) do 

j[8]:=n9-n8: dimS: =dim9+j [8] *8: 

for n7 from n8 by -1 to n8-iquo(H-dim8,7) do 

j[7]:=n8-n7: dim7: =dim8+j [7] *7: \ 

for n6 from n7 by -1 to n7-iquo(H-dim7,6) do 

j[6]:=n7-n6: dim6:=dim7+j[6]*6: 
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for n5 from n6 by -1 to n6-iquo(H-dim6,5) do 

j[5]:=n6-n5: dim5: =dim6+j [5] *5: 

for n4 from n5 by -1 to n5-iquo(H-dim5,4) do 

j[4]:=n5-n4: dim4:=dim5+j[4]*4: 

for n3 from n4 by -1 to n4-iquo(H-dim4,3) do 

j[3]:=n4-n3: dim3:=dim4+j[3]*3: 

for n2 from n3 by -1 to n3-iquo(H-dim3,2) do 

j[2]:=n3-n2: dim2:=dim3+j[2]*2: 

nl:=n2+dim2-H: 

i f nl>-l then 

j[1]:=n2-nl: 

j [ 0 ] : = n l : 

hi:=24: 

i f j[24]=0 then hi:=23: f i : 

for s from 1 by 1 to 23 do 

i f sum (j[ss],ss=24-s..24)=0 then hi:=23-s: f i : 

od: 

numb:=numb+l: 

nbe[G,H,numb,-1]:=hi: 

anc : = s u m ( j [ i ] * ( f i e l d s + 2 ) " i , i = 0 . . h i ) : 

nbe[G,H,numb,-2]:=anc: 

for nn from 0 by 1 to h i do 

nbe[G,H,numb,nn]:=j[nn]:od: 

f i:od:od:od:od:od:od:od: 

od:od:od:od:od:od:od:od:od:od:od:od:od:od:od:od: 

ntrack[G,H]:=numb: 

end: 
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A.2 Setting up the Problem 

Before solving for the relevant coefficients in the local expansions of the wavefunc-

tionals i t is necessary to set up certain structures. I t w i l l be important to know 

the linear dependencies of local functionals on a set of basis elements. Also, we 

w i l l need to know the effect of the various functional differential operators such as 

the Laplacian. This w i l l be necessary in order to compare the coefficients of basis 

functionals in the Schrodinger equation. From the point of view of automating the 

procedure i n M A P L E this w i l l be the most challenging task, bo th in terms of the 

code required and the processor time needed to complete the computations. The 

procedure that does this is called via the command pSetupsimp(p) where p sets 

the level of truncation by considering basis elements w i t h F + 2D < 2p + 2. The 

procedure itself is reproduced at the end of this section. 

The M A P L E code was originally wr i t t en by Paul Mansfield for the purpose of 

setting up structures needed to solve the vacuum and one-particle wavefunctionals 

in a centre of momentum frame. Since then, the procedure has been significantly 

modified and extended. The structures required for the one-particle state have 

been altered to include an external momentum. This required modifying the linear 

dependencies between the local functionals. The procedure has also been altered to 

include provision for the two-particle state. 

I n what follows the procedure is broken down to explain briefly how each task is 

automated. The M A P L E variables used and output are described. 

Solving the L i n e a r Dependencies 

We need to solve the linear dependencies between local functionals. I n M A P L E the 

basis elements are represented by ER[F,D,n] and non-basis functionals i n a centre 

of momentum frame by EE [F, D, n ] . The EE are therefore expressed as a linear 

combination of the ER. Consider the example (5.6.6) 

J dx v j / V " = - ^ J d x ip'\ (A.2.1) 
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I n M A P L E , this relationship is expressed EE [ 4 , 4 , 2 ] =-ER [ 4 , 4 , 1 ] / 3 . I f an external 
momentum is introduced the relation changes to 

J dxe'^'^ip^p'^^" = - l J dxe''''-^"' - IP J dxe'P'<f<f'\ (A.2.2) 

The additional term is stored by the variable EP [ 4 , 4 , 2 ] as -I*P*ER [ 4 , 3 , 1 ] / 3 . 

The momentum dependence is stored separately and may be included depending on 

whether i t is required. 

To reduce a non-basis functional to a sum of basis elements we apply functional 

differentiation. In a centre of momentum frame of reference 

J dxifi^-^iip'Y'... ( ( ^ ( — i ) ) ' " ' " - ^ ( ^ f - ) = 

-J dx^^'^-'^d, (^^^°{^'r • • • {^^"^-'^Y""') • (A.2.3) 

Upon completing the differentiation, the right hand side is a sum of local functionals. 

The unique identifier nbe [F,D,n,-2] for each term on the right hand side w i l l be 

less than or equal to that corresponding to the original functional. This is because 

the decrease in the identifier for each term w i l l be 

(G + 2)^" -{G + 2 ) " ' - i + {G + 2)P-^ -{G + 2Y 

= {G + 1)(G + 2) '"-^ - (G - M ) ( G + 2 f - ' > 0 (A.2.4) 

for p = 0 . . . m . The basis elements are ordered to ensure that when n l < n2, 

be[F,D,nl , - 2]<be[F,D,nl , - 2 ] . The linear dependencies may therefore be calcu

lated by expressing EE[F,D ,n2] linearly in terms of the EE[F,D , n l ] w i t h n l < n2 

and coefficients determined by the r j . 

In a non zero centre of momentum frame we require an additional EP[F,D,n] 

to represent the contribution due to the spatial derivative acting on the exp( iPx) 

factor as given by 

-iP J dx e'^'^^li'pT • • • ( ( ^ ( ' " - i ) ) ' - ' ^ ' . (A.2.5) 

This contribution is —iP times a local functional w i t h D — 1 derivatives. Therefore 

EP[F,D,n] may be recursively wr i t ten in terms of the EE[F,D,p]+EP[F,D-l,p]. 
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T h e Laplac ians: AiW, AiU and A/ i? 

The Laplacian of a general local functional is given by 

The terms on the right hand side are not necessarily basis functionals; however, 

the linear dependencies already calculated can be used to reduce these terms to 

a sum of basis elements. I n the case of AiW and A/i? we work in a centre of 

momentum frame. The linear dependencies are therefore given by EE. For AiU 

an external momentum contribution should be included, so the dependencies are 

given by EE+EP. The exponential term in (A.2.6) is not relevant f rom the point of 

view of calculating the Laplacians other than to remind us to use the correct linear 

dependencies. The overall T T factor is ignored when calculating the structure of the 

Laplacian as this is easily reinstated later. 

The M A P L E variables lapW, lapU, lapR represent a sum of the Laplacian act

ing upon all basis elements which have either an odd or even number of fields as 

appropriate. Each term would is represented by a coefficient mult ipl ied by a basis 

element and a power of /, e.g. B [F,D1 , n l ] *ER[F-2,D2,n2] * l " p . We shall use the 

array variables B, C and D to represent the coefficients in the W, U and R function

als. The arrays lapmW[F,D,n] , l apmU[F ,D,n ] , lapmR[F,D,n] represent coefficient 

of basis elements in lapW etc. when collated. 

P r o d u c t s of Funct ional Derivat ives 

Here we explain how to calculate the following products of functional derivatives 

[ dx f — X [ d x — ^ ^ ^ /•^^,(5?7(P) 6U{-P) f JW6R 
J \SipJ ' J 5ip 5ip ' J 5ip Sep ' J Sip Sip' 

(A.2.7) 
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For a general functional 

i 

We start in a centre of momentum frame of reference in which case all i derivatives 

are acting directly on a local functional and not on the ex.p{iPx). Suppose this 

functional is represented by the numbers [F,D,n] where n refers to an index in 

nbe[F,D ,n,r] (not necessarily a basis element). The i t h derivative w i l l be a hnear 

combination of basis elements w i t h F fields and D + i derivatives. I n M A P L E 

dp [ i ,F,D+i , n l ,F,D , n ] is the coefficient of the local functional described by the nl 

index. For example 

^ ( ^ V ) = 2cp i ^ f + ^V" . (A.2.9) 

The functional differentiated is represented by [3,1,1] and the functionals on the 

right hand side are represented by [3, 2, 2] and [3, 2,1]. The result of this differentia

t ion is specified in M A P L E by dp[1,3,2,1,3,1,1] =1 and dp[1,3,2,2,3,1,1] =2. 

Using this information we can generate an array ddp [F, D, n] to represent con

tributions f rom the functional derivative of W which result in a term proportional 

to a [F,D,n] local functional. This wi l l be a linear combination of the coefficients 

B[F + l,D , n l ] . Similarly the array ddpR[F,D,n] collates terms relevant to the func

tional derivative of R. 

For the functional derivative of U i t is necessary to include the contribution due 

to some of the i spatial derivatives acting on the exp [iPx) factor. The structure dp 

can again be used and the relevant number of iP factors inserted. These additional 

contributions are stored in the array ddpPU [F, D, n] w i t h ddpU [F, D, n] representing 

the zero-momentum contribution. 

To calculate the products of these functional derivatives as i n (A.2.7) we simply 

mul t ip ly the ddp, ddpU and ddpR terms and apply the relevant linear dependencies 

to the functionals. Ini t ia l ly the products are calculated as a sum of all relevant terms 

and stored in the M A P L E variables class, prodUW, prodUU and prodWR. Terms are 

then collated w i t h coefficients of basis elements stored in the arrays classin[F,D , n ] , 

prodUWm[F,D,n], prodUUm[F,D,n] and prodWRm[F,D,n]. 
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T h e Procedure 
pSetupsimp:=proc(ph) 

global be,track,nbe,ntrack,classm,lapm,B,C,lapUm,prodUWm,lapRm, 

prodRWm,prodUUm,P,EE,EP,ddpU,ddp,dpU,ddpPU,lapU,prodUW; 

FF:=2*ph+2:Fields:=FF:Dimension:=ph: 

b a s i s ( F i e l d s , p h ) : 

This part solves the linear dependencies between the local expansion functionals. 

for F from 1 by 1 to F i e l d s do 

EE[F,1,1]:=0:EP[F,1,1]:=-I*P*ER[F,0,1]/F: 

od: 

for DD from 1 by 1 to ph-1/2+1 do 

EE[1,DD,1]:=0:EP[1,DD,1]:=-I*P*(EE[1,DD-1,1]+EP[1,DD-1,1]): 

od: 

for F from 2 by 1 to F i e l d s do 

for DD from 2 by 1 to ph-F/2+1 do 

for n from 1 by 1 to ntrack[F,DD] do 

hi:=nbe[F,DD,n,-l]: 

i f nbe[F,DD,n,hi]=l then 

EE[F,DD,n]:=0: 

EP[F,DD,n]:=0: 

for p from 0 by 1 to hi-2 do 

i f nbe[F,DD,n,p]>0 then 

nn:=0: m:=l: 

while nn=0 do 

i f nbe [F,DD ,m, -2] =nbe [F,DD,n, -2] + (FF+2) ~ (hi-1) - (FF+2) "hi 

+(FF+2)~(p+l)-(FF+2)"p then nn:=m: f i : 

m:=m+l: 

od: 

EE[F,DD,n]:=EE[F,DD,n]-EE[F,DD,nn]*nbe[F,DD,n,p] 

/(nbe[F,DD,n,hi-l]+l): 
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EP[F,DD,n] :=EP[F,DD,n]-EP[F,DD,nn]*nbe[F,DD,n,p] 
/(nbe[F,DD,n,hi-l]+l): 

f i : 
od: 

nn:=0: m:=l: 

while nn=0 do 

i f nbe[F,DD-l,m,-2]=nbe[F,DD,n,-2]+(FF+2)~(hi-l)-(FF+2)-hi then 

nn:=m: 

f i : 

m:=m+1: 

od: 

EP [F,DD,n]:=EP[F,DD,n]-1*P*(EE[F,DD-1,nn]+EP[F,DD-1,nn]) 

/(nbe[F,DD,n,hi-l]+l): 

else 

nn:=0: m:=l: 

while nn=0 do 

i f be[F,DD,m,-2]=nbe[F,DD,n,-2] then nn:=m: f i : 

m:=m+l: 

od: 

EE[F,DD,n]:=ER[F,DD,nn] : 

EP[F,DD,n]:=0: 

f i : 

od: 

od: 

od: 

for F from 0 by 1 to F i e l d s do EE[F,0,1]:=ER[F,0,1]:EP[F,0,1]:=0:od: 

This part calculates the Laplacian applied to W and R. 

lap:=0: 

lapR:=0: 

for F from 2 by 2 to F i e l d s do 

for DD from 0 by 2 to ph-F/2+1 do 



A . 2 . Sett ing up the P r o b l e m 118 

for n from 1 by 1 to track[F,DD] do 
hi:=be[F,DD,n,-l]: 
for p from 0 by 1 to h i do 
i f be[F,DD,n,p]>l then 
nn:=0: m:=l: 
while nn=0 do 

i f nbe[F-2,DD-2*p,m,-2]=be[F.DD,n,-2]-2*(FF+2)'p then 

nn:=m: 

f i : 

m:=m+l: 

od: 

lapR:=lapR+D[F,DD,n]*be[F,DD,n,p]*(be[F,DD,n,p]-1) 

*EE[F-2,DD-2*p,nn]*l~(2*p+l)/((2*p+l)): 

lap:=lap+B[F,DD,n]*be[F,DD,n,p]*(be[F,DD,n,p]-1) 

*EE[F-2,DD-2*p,nn]*l-(2*p+l)/((2*p+l)): 

f i : 

i f p>0 then 

for q from 0 by 1 to p-1 do 

i f be[F,DD,n,p]*be[F,DD,n,q]>0 then 

i f 2*iquo(p+q,2)=p+q then 

nn:=0: m:=l: 

while nn=0 do 

i f nbe[F-2,DD-p-q,m,-2]=be[F,DD,n,-2]-(FF+2)"p-(FF+2)-q then 

nn:=m: 

f i : 

m:=m+l: 

od: 

lap:=lap+2*(-1)"((p-q)/2)*B[F,DD,n]*be[F,DD,n,p]*be[F,DD,n,q] 

*EE[F-2,DD-p-q,nn]*1"(p+q+1)/((p+q+1)): 

lapR:=lapR+2*(-1)'((p-q)/2)*D[F,DD,n]*be[F,DD,n,p] 

*be[F,DD,n,q]*EE[F-2,DD-p-q,nn]*1"(p+q+1)/((p+q+1)): 
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f i : 
f i : 

od: 
f i : 

od: 
od: 

od: 
od: 

This part calculates the Laplacian applied to U. 

lapU:=0: 

for F from 3 by 2 to F i e l d s do 

for DD from 0 by 1 to ph-F/2+1 do 

i f DDol then 

for n from 1 by 1 to track[F,DD] do 

hi:=be[F,DD,n,-l]: 

for p from 0 by 1 to h i do 

i f be[F,DD,n,p]>l then 

nn:=0: m:=l: 

while nn=0 do 

i f nbe[F-2,DD-2*p,m,-2]=be[F,DD,n,-2]-2*(FF+2)"p then 

nn:=m: 

f i : 

m:=m+l: 

od: 

lapU:=lapU+C[F,DD,n]*be[F,DD,n,p]*(be[F,DD,n,p]-1) 

*(EE[F-2,DD-2*p,nn]+EP[F-2,DD-2*p,nn])*1~(2*p+l)/((2*p+l)): 

f i : 

i f p>0 then 

for q from 0 by 1 to p-1 do 

i f be[F,DD,n,p]*be[F,DD,n,q]>0 then 

i f 2*iquo(p+q,2)=p+q then 
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nn:=0: in:=l: 
while nn=0 do 

i f nbe[F-2,DD-p-q,m,-2]=be[F,DD,n,-2]-(FF+2)"p-(FF+2)"q 
then nn:=m: f i : 

m: =m+l: 
od: 
lapU:=lapU+2*(-!)-((p-q)/2)*C[F,DD,n]*be[F,DD,n,p] 

*be[F,DD,n,q]*(EE[F-2,DD-p-q,nn]+EP[F-2,DD-p-q,nn]) 
*l- ( p + q + l ) / ( ( p + q + l ) ) : 

f i : 
f i : 

od: 
f i : 

od: 
od: 

f i : 
od: 

od: 

This part calculates the functional derivative of W and R. 

check:=array(0..Fields-1,0..Dimension,0..ntrack[Fields,Dimension] 
,0..Dimension,0..ntrack[Fields.Dimension].sparse); 
dp:=array(0..Dimension.0..Fields-1,0..Dimension 
,0..ntrack[Fields,Dimension],0..Fields-1,0..Dimension 
,0..ntrack[Fields-l,Dimension],sparse): 
ddp:=array(0..Fields-1,0..Dimension 
.0..ntrack[Fields,Dimension],sparse); 
ddpR:=array(0..Fields-1,0..Dimension 
,0..ntrack[Fields,Dimension],sparse); 
ddp[1.0.1] :=2*B[2.0.1] : 
ddpR[l,0,l]:=2*D[2,0,1]: 
f o r F from 1 by 2 to Fields-1 do 
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f o r DD from 0 by 1 to ph-F/2+1 do 
fo r n from 1 by 1 to ntrack[F,DD] do 
hi:=nbe[F,DD,n,-l]: 
dp[0,F,DD,n,F,DD,n] : = 1: 

i f nbe[F,DD,n,hi]>l and 2*iquo(DD,2)=DD then 
nn:=0: m:=l: 
while nn=0 do 

i f be[F+l,DD,m,-2]=nbe[F,DD,n,-2]+l then nn:=m: f i : 
m: =m+1: 
od: 
ddpR[F,DD,n]:=ddpR[F,DD,n]+be[F+1,DD,nn,0]*D[F+1,DD,nn]: 
ddp[F,DD,n]:=ddp[F,DD,n]+be[F+1,DD,nn,0]*B[F+1,DD,nn]: 

f i : 
NM:=1: count[F,DD,n,0,1]:=n: 
f o r l i e from 1 by 1 to min(hi,Dimension-DD) do 
N:=0: 
fo r r from 1 by 1 to NM do 
mm:=count[F,DD,n,lie-l,r]: 
f o r p from 0 by 1 to nbe[F,DD+lie-l,mm,-1] do 

i f nbe[F,DD+lie-l,mm,p] >0 then 
nn:=0: m:=l: 
while nn=0 do 

i f nbe[F,DD+lie,m,-2]=nbe[F,DD+lie-l,mm,-2]+(FF+2)"(p+1) 
-(FF+2)"p then nn:=m: f i : 

m:=m+l: 
od: 
i f check[F,DD,n,lie,nn]=0 then 
N:=N+1: 
count[F,DD,n,lie,N]:=nn: 
check[F,DD,n,lie,nn]:=1: 

f i : 
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dp[lie,F,DD+lie,nn,F,DD,n]:=dp[lie,F,DD+lie,nn,F,DD,n] 
+nbe[F,DD+lie-l,mm,p]*dp[lie-l,F,DD+lie-l,min,F,DD,n] : 

tot:=lie+DD: 

i f (2*iquo(tot,2)=tot) and (nbe[F,DD,n,hi]>1 or 
(nbe[F,DD,n,hi]=l and l i e = h i ) ) then 

nuu:=0: muu:=l: 
while nuu=0 do 

i f be[F+l,DD+lie,muu,-2]=nbe[F,DD,n,-2]+(FF+2)"lie then 
nuu:=muu: 

f i : 
muu:=muu+l: 
od: 
ddp [F,DD+1i e,nn]:=ddp[F,DD+lie,nn] + (- l ) " l i e 

*nbe [F,DD+lie-l,nun,p]*(nbe[F,DD,n,lie]+l) 
*dp[lie-l,F,DD+lie-l,inm,F,DD,n] *B[F+1,DD+lie,nuu] : 

ddpR[F,DD+1i e,nn]:=ddpR[F,DD+lie,nn] + (- l ) ~ l i e 
*nbe[F,DD+lie-l,mm,p]*(nbe[F,DD,n,lie]+l) 
*dp[lie-l,F,DD+lie-l,mm,F,DD,n]*D[F+1,DD+lie,nuu]: 

f i : 
NM:=N: 

f i : 
od: 

od: 
od: 

od: 
od: 

od: 

This part calculates the functional derivative of U. 

check:=array(0..Fields-1,0..Dimension,©..ntrack[Fields,Dimension] 
,0..Dimension,0..ntrack[Fields,Dimension],sparse); 
dpU:=array(0..Dimension,0..Fields-1,0..Dimension 
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,0..ntrack[Fields,Dimension],0..Fields-1,0..Dimension 
,0..ntrack[Fields-1.Dimension].sparse): 

ddpU:=array(0..Fields-1,0..Dimension,0..ntrack[Fields,Dimension] 
,sparse); 
ddpU[0.0,l] :=C[1,0,1] : 
f o r F from 2 by 2 to Fields-2 do 
fo r DD from 0 by 1 to ph-F/2+1 do 
fo r n from 1 by 1 to ntrack[F,DD] do 
hi:=nbe[F,DD,n,-l] : 
dpU[0,F,DD,n,F,DD,n]:=1: 
i f nbe[F,DD,n,hi]>l and 2*iquo(DD,2)=DD then 
nn:=0: m:=l: 
while nn=0 do 

i f be[F+l,DD,m,-2]=nbe[F,DD,n,-2]+l then nn:=m: f i : 
m: =m+l: 

od: 
ddpU[F,DD,n]:=ddpU[F,DD,n]+be[F+1,DD,nn,0]*C[F+1,DD,nn]: f i : 
NM:=1: count[F,DD,n,0,1]:=n: 
f o r l i e from 1 by 1 to min(hi,Dimension-DD) do 
N:=0: 
fo r r from 1 by 1 to NM do 
mm:=count[F,DD,n,lie-l,r]: 
f o r p from 0 by 1 to nbe[F,DD+lie-l,mm,-1] do 

i f nbe[F,DD+lie-l,mm,p] >0 then 
nn:=0: m:=l: 
while nn=0 do 

i f nbe[F,DD+lie,m,-2]=nbe[F,DD+lie-l,mm,-2]+(FF+2)"(p+1) 
-(FF+2)"p then nn:=m: f i : 

m: =m+l: 
od: 
i f check[F,DD,n,lie,nn]=0 then 



A.2. Setting up the Problem 124 

N:=N+1: 
count[F.DD,n,lie.N]:=nn: 
check[F.DD.n,lie.nn] :=1: 

f i : 
dpU[lie.F.DD+lie.nn,F,DD,n]:=dpU[lie.F.DD+lie.nn.F.DD.n] 

+nbe[F.DD+lie-1,mm,p]*dpU[lie-l,F,DD+lie-l,mm,F.DD.n]: 
tot:=lie+DD: 
i f (nbe[F,DD,n,hi]>l or (nbe[F,DD,n,hi]=1 and l i e = h i ) ) then 
nuu:=0: muu:=l: 
while nuu=0 do 
i f be[F+l,DD+lie,muu,-2]=nbe[F,DD,n.-2]+(FF+2)~lie then 
nuu:=muu: 

f i : 
muu:=muu+1: 
od: 
ddpU[F.DD+1i e,nn]:=ddpU[F,DD+1i e,nn]+(-1)"1i e 

*nbe[F.DD+lie-1.mm.p]*(nbe[F.DD.n.lie]+1) 
*dpU[lie-l.F.DD+lie-l,mm,F.DD.n]*C[F+l.DD+lie,nuu]: 

f i : 
NM:=N: 

f i : 
od: 

od: 
od: 

od: 
od: 

od: 
ddpPU:=array(0..Fields-1,0..Dimension 
,0..ntrack[Fields,Dimension],sparse); 
f o r F from 2 by 2 to Fields-2 do 
f o r DD from 0 by 1 to ph-F/2+1 do 
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f o r n from 1 to ntrack[F,DD] do 
hi:=nbe[F,DD,n,-l]: 

f o r l i e from 1 to min(hi,Dimension-DD) do 
for nnP from 1 to l i e do 
for nnf from 1 to ntrack[F,DD+lie-nnP] do 

tot:=lie+DD: 
i f nbe[F,DD,n,hi]>l or (nbe[F,DD,n,hi]=1 and l i e = h i ) then 
nuu:=0: muu:=1: 
while nuu=0 do 

i f be[F+l,DD+lie,muu,-2]=nbe[F,DD,n,-2]+(FF+2)"lie then 
nuu:=muu: 

f i : 
muu:=muu+l: 

od: 
ddpPU[F,DD+1ie-nnP,nnf]:=ddpPU[F,DD+1i e-nnP,nnf]+(-1)"1i e 

*C[F+1,DD+lie,nuu]*(I*P)-nnP*lie!/nnP!/(lie-nnP)! 
*dpU[lie-nnP,F,DD+lie-nnP,nnf,F,DD,n]*(nbe[F,DD,n,lie]+1): 

f i : 
od: 

od: 
od: 

od: 
od: 

od: 

This part calculates the product of the functional derivatives of W and R. 

class:=0: 
prodRW:=0: 
f o r F from 2 by 2 to Fields do 
f o r DD from 0 by 2 to ph-F/2+1 do 
f o r FI from 1 by 2 to F do 
fo r Dl from 0 by 2 to DD do 
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f o r n l from 1 by 1 t o ntrack[Fl,D1] do 
for n2 from 1 by 1 to ntrack[F-Fl,DD-D1] do 
h:=0: n:=0: 
while h=0 do 
n:=n+l:hk:=0: 

f o r p from 0 by 1 to max( nbe[F,DD,n,-1],nbe[FI,D1,nl,-1] 
,nbe[F-Fl,DD-Dl,n2,-l]) do 

i f p<nbe[Fl,Dl,nl,-l]+l then 
sul:=nbe[Fl,Dl,nl,p]: 

else 
sul:=0: 

f i : 
i f p<nbe[F-Fl,DD-Dl,n2,-l]+l then 
su2:=nbe[F-Fl,DD-Dl,n2,p]: 

else 
su2:=0: 

f i : 
i f nbe[F,DD,n,p]=sul+su2 then hk:=hk+l:fi: 

od: 
i f hk=l+max( nbe[F,DD,n,-1],nbe[FI,D1,nl,-1] 

,nbe[F-Fl,DD-Dl,n2,-l]) then h:=l: f i : 
od: 
class:=class+EE[F,DD,n]*ddp[FI,Dl,nl]*ddp[F-Fl,DD-Dl,n2]: 
prodRW:=prodRW+EE[F,DD,n]*ddpR[FI,D1,nl]*ddp[F-Fl,DD-D1,n2]: 
od: 

od: 
od: 

od: 
od: 

od: 

This part calculates the product of the functional derivatives of U and of W. 
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prodUW:=0: 
f o r F from 1 by 2 to Fields do 
fo r DD from 0 by 1 to ph-F/2+1 do 
f o r FI from 0 by 2 to F do 

i f is(DD,odd) then s t D l : = l ; else stDl:=0: f i : 
f o r Dl from stDl by 2 to DD do 
fo r n l from 1 by 1 to ntrack[FI,D1] do 
fo r n2 from 1 by 1 to ntrack[F-Fl,DD-D1] do 
h:=0: n:=0: 
while h=0 do 
n:=n+l:hk:=0: 
f o r p from 0 by 1 to max( nbe[F,DD,n,-1] 

,nbe[Fl,Dl,nl,-l],nbe[F-Fl,DD-Dl,n2,-l]) do 
i f p<nbe[Fl,Dl,nl,-l]+l then 
sul:=nbe[Fl,Dl,nl,p]: 

else 
sul:=0: 

f i : 
i f p<nbe[F-Fl,DD-Dl,n2,-l]+l then 
su2:=nbe[F-Fl,DD-Dl,n2,p]: 

else 
su2:=0: 

f i : 
i f nbe[F,DD,n,p]=sul+su2 then hk:=hk+l:fi: 

od: 
i f hk=l+max( nbe[F,DD,n,-1],nbe[FI,D1,nl,-1] 

,nbe[F-Fl,DD-Dl,n2,-l]) then h:=l: f i : 
od: 
prodUW:=prodUW+(EE[F,DD,n]+EP[F,DD,n])*(ddpU[FI,Dl,nl] 

+ddpPU[FI,Dl,nl])*ddp[F-Fl,DD-Dl,n2] : 
od: 
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od: 
od: 

od: 
od: 

od: 

This part calculates the square of the functional derivative of U. 

prodUU:=0: 
f o r F from 0 by 2 to Fields-1 do 
f o r DD from 0 by 1 to ph-F/2 do 
fo r FI from 0 by 2 to F do 
for Dl from 0 by 1 to DD do 
for n l from 1 by 1 to ntrack[Fl.Dl] do 
for n2 from 1 by 1 to ntrack[F-Fl,DD-D1] do 
h:=0: n:=0: 
while h=0 do 
n:=n+l:hk:=0: 

f o r p from 0 by 1 to max( nbe[F.DD.n,-l],nbe[Fl.Dl.nl.-1] 
.nbe[F-Fl.DD-Dl,n2,-l]) do 

i f p<nbe[Fl,Dl,nl.-l]+l then 
sul:=nbe[Fl.Dl.nl.p]: 

else 
sul:=0: 

f i : 
i f p<nbe[F-Fl,DD-Dl.n2,-l]+l then 
su2:=nbe[F-Fl.DD-Dl.n2,p]: 

else 
su2:=0: 

f i : 
i f nbe[F,DD,n,p]=sul+su2 then hk:=hk+l:fi: 

od: 
i f hk=l+max( nbe[F,DD,n.-1].nbe[FI.Dl.nl,-1] 
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,nbe[F-Fl,DD-Dl,n2,-l]) then h:=l: f i : 
od: 

prodUU:=prodUU+(EE[F,DD,n]+0*EP[F,DD,n])*ddpU[FI,D1,nl] 
*subs(P=-P,ddpU[F-Fl,DD-Dl,n2]): 

od: 
od: 

od: 
od: 

od: 
od: 

This converts above results into tabular format (coefficients of ER). 

f o r F from 1 by 2 to Fields do 
fo r DD from 0 by 1 to ph-F/2+1 do 

i f DDol then 
f o r n from 1 by 1 to track[F,DD] do 
prodUWm[F,DD,n]:=coeff(collect(prodUW,ER[F,DD,n]),ER[F,DD,n]): 
lapUm[F,DD,n]:=coeff(collect(lapU,ER[F,DD,n]),ER[F,DD,n]): 

od: 

f i ; 
od: 

od: 
f o r F from 0 by 2 to Fields do 
f o r DD from 0 by 1 to ph-F/2 do 

i f DDol and not(F=2 and is(DD,odd)) then 
f o r n from 1 by 1 to track[F,DD] do 
prodUUm[F,DD,n]:=coeff(collect(prodUU,ER[F,DD,n]),ER[F,DD,n]): 

od: 
f i : 

od: 
od: 
f o r F from 0 by 2 to Fields do 
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f o r DD from 0 by 2 to ph-F/2+1 do 
fo r n from 1 by 1 to track[F,DD] do 
classm[F,DD ,n]:=coeff(collect(class,ER[F,DD,n]),ER[F,DD,n]): 
prodRWm[F,DD,n]:=coeff(collect(prodRW,ER[F,DD,n]),ER[F,DD,n]): 
lapm[F,DD,n]:=(coeff(collect(lap,ER[F,DD ,n]),ER[F,DD,n])): 
lapRm[F,DD,n]:=(coeff(collect(lapR,ER[F,DD,n]),ER[F,DD,n])): 

od: 
od: 

od: 
end: 

A.3 Solving the Schrodinger Equation 

Having set up the structures in sections A . l and A.2, solving the Schrodinger equa

tion becomes relatively easy. In this section we will briefly outline the procedures 

required to find the vacuum, one-particle and two-particle states. 

A.3.1 Ground State 

The ground-state wavefunction is solved by expanding the B[F,D,n] coefficients in 

powers of / 

B[F,D,n] •.= Y^BL[F,D,n,j]*P. (A.3.1) 
j 

A list containing the expanded form of the B[F,D,n] is stored using the variable 

Bexp. The coefficient B[2,0,l] is set equal to k in this list alongside the chosen 

renormalisation conditions in which the physical mass / i is more simply represented 

m. The coefficient of the basis functional represented by [F, D,n] in the Schrodinger 

equation is now simply 

lapm[F,D,n]I/Pi+classm[F,D,n]=0 

for all but the initial values of F and D. Solving the Schrodinger equation is there

fore reduced to cycling through F, D, n in the correct sequence and at each stage 
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substituting in Bexp, the power series expansion in /, and comparing the coefficients 
of powers of /. 

The variable solo is a list of solutions for the BL[F,D,n, j ] . As we cycle through 

the F, D, n and j solving the coefficients, we add to the list solo and substitute these 

solutions into Bexp. The coding below for solving the vacuum state was produced 

by Paul Mansfield. The procedure is called via the command i t e r ( p ) and solves 

coeflScients with F + 2D + 2j < 2p + 2. 

iter:=proc(p)global sol,solo,newv,m,g,rho,Bexp: 
Bexp:={}: 
f o r F from 2 by 2 to 2*p+2 do 
fo r DD from 0 by 2 to p-F/2+1 do 
for n from 1 by 1 to track[F,DD] do 

i f (F>4 or DD>2) or (F=4 and DD=2) or (F=6) then 
Bexp:=Bexp union {B[F,DD,n]=smn(BL[F,DD,n,j]*1"j 

,j=0..p-DD-F/2+2)}: 
f i : 

od: 
od: 

od: 
solo:={B[2,0,l]=k,B[2,2,l]=-l/(4*m),B[4,0,l]=-g*m/(8)}: 
f o r JJ from 0 by 1 to p do 
fo r F from 2 by 2 to 2*p+2 do 
fo r DD from 0 by 2 to p-F/2+1 do i f JJ+DD+F/2<p+3 then 
a u x i l : = { } : auxi2:={}: 
f o r n from 1 by 1 to track[F,DD] do 

i f (F>4 or DD>2) or (F=4 and DD=2) or (F=6) then 
Bexp:=subs(solo,Bexp): 
lapmu[F,DD,n] :=suin(coeff (lapm[F,DD,n] , 1 , n i ) * 1 " ( n i ) 

,ni=l..p+l-DD-F/2): 
auxil:=auxil union {coeff(subs(solo union 

Bexp,lapmu[F,DD,n]/Pi+classm[F,DD,n]),1,JJ)=0}: 
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auxi2:=auxi2 union {BL[F,DD.n,JJ]}: 
f i : 

od: 

solo:=solo union s o l v e ( a u x i l , a u x i 2 ) : f i : 
od: 

od: 
od: 
end: 

A.3.2 One-Particle State 

The one-particle state is solved in the same manner to that used in the ground state. 

This time the coefficients are expanded in powers of the momenta P as well as the 

momentum cut-off I. Similarly the variable E^Z which in MAPLE is represented 

with the single variable E is also expanded in powers of I and P. The expansions 

are stored as a list in Cexp and individual solutions to the CLP and ELP are stored 

in solospec. The coefficients of a [F, D, n] functional in the Schrodinger equation 

for the one-particle state is 

lapUm[F,DDD,n]/2/Pi+prodUWm[F,DDD,n]+E*C[F,DDD,n]=0 

Substituting in Cexp we then further select the exact basis functional we require by 

comparing powers of P. The coefficient of this basis functional is then determined 

by simultaneously comparing powers of 1. The procedure is called via the command 

iterspectrum(p). 

iterspectrum:=proc(p) 
global sol,solo.newv,m.g,rho,Bexp.Cexp.solospec,P: 
Cexp:={E=sum(sum(ELP[j,PP]*1'j*P"PP,PP=0.-p-j),j=0-
fo r F from 3 by 2 to 2*p+2 do 
fo r DD from 0 by 1 to p-F/2+2 do 

i f DDol then 
f o r n from 1 by 1 to track[F.DD] do 
Cexp:=Cexp union {C[F.DD.n]=sum(sum(CLP[F.DD.n,j.k]*l'j*P"k 
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,j=0..p-DD-k-F/2+1),k=0..(p+l-F/2-DD))}: 
od: 

f i : 
od: 

od: 

solospec:={C[l,0,l]=l}: 
f o r JJ from 0 by 1 to p do 
fo r F from 1 by 2 to 2*p+2 do 
fo r DD from 0 by 1 to p-F/2+1 do 

i f JJ+DD+F/2<p+2 then 
a u x i l : = { } : auxi2:={}: 
f o r DDD from 0 to DD do 

i f DDDol then 
f o r n from 1 by 1 to track[F,DDD] do 
Cexp:=subs(solospec,Cexp): 
auxil:=auxil union {coeff(coeff(subs(solo union Bexp union 

solospec union Cexp,lapUm[F,DDD,n]/2/Pi+prodUWm[F,DDD,n] 
+E*C[F,DDD,n]),P,DD-DDD),1,JJ)=0}: 

i f F=l then 
auxi2:={ELP[JJ,DD-DDD]>: 

else 
auxi2:=auxi2 union {seq(CLP[F,DDDD,n,JJ,DD-DDDD] 

,DDDD=0..DD)}: 
f i : 

od: 
f i : 

od: 
solospec:=solospec union solve(auxil,auxi2): 

f i : 
od: 

od: 
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od: 
end: 

A.3.3 Z and 62 

To find hi (B[2,0,l] or /c in the MAPLE code) and Z there are a sequence of three 

programs to be run in the following order: z i t e r ( p ) , k i t e r ( p ) then zeval(p). 
These procedures are reproduced below. 

ziter 

The first procedure, z i t e r (p) produces a power series expansion of Z in / that is also 

dependent on k. The variable Zexp is the power series expansion with coefficients of 

V- denoted ZL [ i ] . The value of Z is found using the (/j'̂  coefficient in the Schrodinger 

equation: 

lapm[2,2,1]/Pi+classm[2,2,1]-Zexp"2=0 

As each Z L [ i ] is found, the solutions are stored as a list in Zsolo. 

ziter:=proc(p) 
global Zsolo: 
Zexp:=sum(ZL[j]*l~j,j=0..p-2): 
Zsolo:={ZL[0]=sqrt(-2*k/m)}: 
f o r JJ from 1 by 1 to p-2 doZexp:=subs(Zsolo,Zexp): 
a u x i l : = { } : auxi2:={}: 
auxil:=auxil union {coeff(subs(solo union Bexp,lapm[2,2,1]/Pie 

+classm[2,2,1]-Zexp"2),1,JJ)=0}: 
auxi2:=auxi2 union {ZL[JJ]}: 
Zsolo:=Zsolo union solve(auxi1,auxi2): 

od: 
end: 
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kiter 

This procedure finds 1/k as a power series expansion in /. The variable kexp rep

resents this power series expansion with coefficients of P represented by k l [ i ] . As 

each k l [ i ] is solved, the solutions are stored in the list ksol. 
The scheme used to find l/k is to examine the P° coefficient of the MAPLE 

variable E. This should be mZ. We compare this expression of Z to that obtained 

from z i t e r ( p ) and invert the series to find \/k. 

kiter:=proc(L) 
global ksol,LHS,RHS; 
kexp:=sum(kl[i]*l~i,i=0..L-2); 
LHS:=expand(coeff(subs(Cexp,E/k),P,0)); 
RHS:=expand(subs(Zsolo,sum(ZL[i]*sqrt(-2*k/m)*l~i/k,i=0..L-2)*m)); 
f o r EEL from 1 to 2*L do 
exp:=convert(series(sum(kl[i]*l*i,i=0..L-2)"EEL,1,L-1),polynom); 
LHS:=subs(l/k"EEL=exp,expand(LHS)); 
RHS:=subs(l/k"EEL=exp,expand(RHS)); 

od; 
RHS:=convert(series(RHS/sqrt(-2/kexp/m),1,L-1),polynom); 
ksol:={}; 
f o r LL from 0 to L-2 do 
ksol:=ksol union {kl[LL]=solve(coeff(LHS-RHS,1,LL)=0,kl[LL])); 
LHS:=subs(ksol,LHS); 
RHS:=subs(ksol,RHS); 

od; 
end: 

evalz 

With k determined we can evaluate Z by simply substituting the power series ex

pansion of back into the solution for Z as determined by z i t e r . 

evalz:=proc(L) 
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global zout; 

kexp:=subs(ksol,suin(kl [ i ] * l " i , i=0. .L-2)); 
RHS:=subs(Zsolo,sumCZL[i]*sqrt(-2*k/m)*l"i,i=0..L-2)); 
for ZZL from 1 to 2+L-3 do 
exp:=convert(series(sum(kl[i]*l"i,i=0..L-2)"ZZL,1,L-1),polynom); 
RHS:=series(subs(ksol,subs(l/k"ZZL=exp,expand(RHS))),1,L-1); 

od; 
zout:=RHS/sqrt(-2/kexp/m); 
zout:=convert(series(zout,1,L-1),polynom); 
zout:=series(subs(k=l/kexp,zout),1,L-1); 
end: 

A.3.4 Two-Particle State 

This procedure finds the coefficients of the two-particle local expansion in terms 

of the energy EiZ + ieZ, which is represented in M A P L E by EZ. This is done by 

expanding the coefficients D[F,DD,n] in powers of / and P w i t h the coefficients 

given by DLP. The variable Dexp is a hst of these expansions w i t h Dspec the list of 

solutions for the individual DLP. 

Dseries:=proc(p) 
global solo,m,g,Bexp,Cexp,solospec,Dexp,Dspec: 
Dexp:={>: 
fo r F from 0 by 2 to 2*p+2 do 
for DD from 0 by 2 to p-F/2+1 do 
fo r n from 1 by 1 to track[F,DD] do 
Dexp:=Dexp union {D[F,DD,n]=sum(sum(DLP[F,DD,n,j,2*PP]*l"j 

*P~(2*PP),j=0..p+l-F/2-DD-2*PP),PP=0..(p+l-F/2-DD)/2)}: 
od: 

od: 
od: 
Dspec:={}: 
f o r JJ from 0 by 1 to p do 
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f o r F from 0 by 2 to 2*p+2 do 
f o r DD from 0 by 2 to p-F/2+1 do 

i f JJ+DD+F/2<p+2 then 
auxi!:={}: auxi2:={}: 
f o r DDD from 0 by 2 to DD do 

i f DDDol then 
f o r n from 1 by 1 to track[F,DDD] do 
Dexp:=subs(Dspec,Dexp): 

Dspec union Dexp,lapRm[F,DDD,n]/2/Pi+prodUUm[F,DDD,n] 
+prodRWm[F,DDD,n]+2*ZE*D[F,DDD,n])),1,JJ+1),polynom),1,JJ)); 

auxil:=auxil union {coeff(coeff(convert(series(subs(k=l/kinv 
,subs(solo union solospec union Bexp union Cexp union Dspec union 
Dexp,lapRm[F,DDD,n]/2/Pi+prodUUm[F,DDD,n]+prodRWm[F,DDD,n] 
+2*ZE*D[F,DDD,n])),1,JJ+1),polynom),P,DD-DDD),1,JJ)=0}; 

auxi2:=auxi2 union {DLP[F,DDD,n,JJ,DD-DDD]}: 
od: 

f i : 
od: 
Dspec:=Dspec union solve(auxi1,auxi2): 

f i : 
od: 

od: 
od: 
end: 

A.4 Findind the S Mat r ix 

Finding tlie S matr ix is split into two key parts, the procedure itself which gener

ates the various terms to be calculated and the dependent procedures required to 

complete the functional integration of each term. Throughout this section we w i l l 

assume the existence of a global variable Psetup which should assume the value 
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of p used in pSetupsimp(p). Ti i is w i l l be necessary as i t tells us which base the 
information in be[F,D,n,-2] is encoded. 

A.4.1 Functional Integration 

Completing the functional integration of a particular Gaussian type integral is split 

into multiple tasks which we shall address individually as follows. Local functionals 

represented by [F, D, n] in all of the procedures relating to functional integration are 

not necessarily basis functionals. Thus n should be in the range 0. .ntrack[F,D]. 

Orthonormal Basis 

A n orthonormal basis is generated via a Gram-Schmidt orthonormalisation proce

dure. We represent the orthonormal as EN[n] and the (p̂ "' as EP[n]. We then 

expand 

EN[n]=suin(EN[i]*N[n,i] ,i=0. .n-l)*N[n,-l]+EP[n]*N[n,-l] 

The individual N[n,i] coefficients are determined by calculating the inner product 

of EN[n] w i t h EP[i]. The overall normahsation N[n,-1] is then found using the 

inner product of EN[n] w i t h itself. The variable orthbasis is a hst of the solutions 

for the N coefficients and is generated using the procedure orth(p). 

orth:=proc(p) 
global orthbasis; 
orthbasis:={N[0,-1]=l/sqrt(1)}; 
orthexp:={EN[0]=N[0,-1]*EP[0]}; 
f o r cur from 1 t o p do 
orthexp:=orthexp union {EN[cur]=subs(orthexp,sum(EN[i]*N[cur,i] 

,i=0..cur-1)*N[cur,-1])+EP[cur]*N[cur,-1]}; 
f o r coef from 0 to cur-1 do 
orthbasis:=orthbasis union {N[cur,coef]=-subs(orthbasis,sum( 

coeff(subs(orthexp,EN[coef]),EP[i],round(evalf(sin(i)"2+cos(i)"2))) 
* l ~ ( c u r + i + l ) / ( c u r + i + l ) * l " ( c u r + i ) * ( l + ( - l ) ~ ( c u r + i ) ) / 2 , i = 0 . . c o e f ) ) } ; 
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od; 
orthbasis:=orthbasis union {N[cur,-1]=l/sqrt(-subs(orthbasis,sum( 

N[cur,coeff2]"2,coeff2=0..cur-1))+1"(2*cur)*1"(2*cur+l)/(2*cur+l))}; 

od; 

end: 

Having found the orthonormal basis i t is useful to know the EP in terms of the 

EN. This is accomphshed via the procedure invorth(p). The solutions for EP as a 

linear combination of the EN are stored in the list invsol. 

invorth:=proc(p) 

global inv s o l ; 

invsol:={}; 

f o r cur from 0 to p do 

invsol:=invsol union {EP[cur]=subs(orthbasis,EN[cur]/N[cur,-1] 

-suin(EN[n]*N[cur,n] ,n=0. .cur-1))}; 

od; 

end: 

Funct ional Integrat ion - T h e Eas ies t C a s e 

In general the functional integral we are t ry ing to compute w i l l be a product of 

local terms mult ipl ied by exp(J i f ^ ) . The most simple example of this is when the 

exponential only has one local term in the prefactor. This prefactor is represented 

by [F,D,n], not necessarily a basis element. The input variable term w i l l be of 

the form t e r m [ l , l ] = [F,D,n]. The reason for specifying term as a two-dimensional 

array becomes apparent in the more general case w i t h multiple local expansions 

in the functional integral. The output of f i n t 2 is the result of this functional 

integration. This procedure uses the orthonormal basis in achieving this by wr i t ing 

the [F, D , n ] functional in terms of the ^ ' ( " ^ Only local terms in which aU of the 

have an even power are selected. Other terms wiU automatically be zero. 

fint2:=proc(term) 

t o t : = l ; 
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fo r n from 0 to nbe[op(term [ l,1]),-1] do 
tot:=tot*EP [ n ]"nbe[op(term[1,1]) , n ] ; 

od; 
tot : = s u b s ( i n v s o l , t o t ) ; 
f o r n from 0 to nbe [op(term[l,1]),-1] do 
tot:=(tot+subs(EN [ n ]=-EN [ n ],tot))/2; 

od; 
tot:=expand(tot); 
f o r n from 0 to nbe[op(term[l,1]),-1] do 
f o r m from 2 by 2 to nbe[op(term[l,1]),-1] - n do 
tot:=subs(EN[n]'m=m!/((m/2)!)/(m"(m/2))*EN[n]"m,tot) 

od; 
tot:=subs(EN [ n ]=sqrt(1/8/Pi/k),tot); 

od; 
to t : = t o t * 2 * P i ; 
t o t ; 
end: 

Differentiating Local Functionals 

When computing a more general functional integral i t w i l l be necessary to f ind 

the derivative of some local functionals. The procedure d i f f setup(p) produces an 

array diff n[F,D , n , n n ] which represents the coefficient of a [F,D+l,nn] term in 

the derivative of a [F,D,n] local functional. 

diffsetup:=proc(p) 
global d i f f n ; 
f o r F from 1 to 2*p+2 do 
f o r D from 0 to p do 
f o r n from 1 to ntrack[F,D] do 
f o r nnn from 1 to ntrack[F,D+1] do 
diffn[F,D , n , n n n ]:=0; 

od; 
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f o r DD from 0 to nbe[F,D,n,-1] do 
for nn from 1 to ntrack[F,D+l] do 

i f nbe[F,D+1,nn,-2]=nbe[F,D,n,-2]-(2*Psetup+4)~DD 
+(2*Psetup+4)~(DD+l) then 

diffn[F,D,n,nn]:=diffn[F,D,n,nn]+nbe[F,D,n,DD] ; 

f i ; 
od; 

od; 
od; 

od; 
od; 
end: 

In general we w i l l want to differentiate f u n c t i o n a l multiple times as specified 

by the integer derivs. The procedure d i f f r differentiates a linear combination 

of functionals w i t h F fields, D derivatives and the coefficients given by fun[n] 

where n=l. .ntrack [F,D]. The output of the differentiation is given by an array 

funout[nn] where nn=l..ntrack[F,D+derivs]. 

diffr:=proc(F,D,fun,derivs) 
DD:=D; 
funout:=fun; 
f o r k from 1 to derivs do 
newfun:=[seq(0,i=l..ntrack[F,DD+1])]; 
f o r n from 1 to ntrack[F,DD] do 
fo r nn from 1 to ntrack[F,DD+1] do 
newfun[nn]:=newfun[nn]+diffn[F,DD,n,nn]*funout[n]; 

od; 
od; 
funout:=newfun; 
DD:=DD+1; 

od; 
funout; 
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end: 

Funct ional Integrat ion - T h e M a i n Procedure 

A general term in the S matr ix w i l l be generated by a product of nterm different 

local functionals mult ipl ied by exp(J tp'^). The format of each term w i l l be specified 

by an array t e r m [ i , j ] where i = l . .nterm. Each t e r m [ i , l ] w i l l be of the form 

[F,D,n]. The overall multiplicative factor of each term is specified by term[i,2] 

and the external momenta in each case is given by t e r m [ i , 3 ] . 

The procedure works by pairing a field in the first local expansion w i t h a field 

in another local expansion labelled by sec. We always take the field in the first 

expansion w i t h lowest number of derivatives which is determined and labled f irD. 

This field is paired in all possible ways w i t h other fields. When two fields f rom two 

different local expansions are combined we require the use of the d i f f r procedure 

to integrate by parts. The number of local functionals in the exponential prefactor 

is now reduced by one. The procedure is then recursively called unt i l there is only 

one local expansion. This is then evaluated using f int2. 

f int:=proc(nterm,term) 

global be; 

tot:=0; 

f o r sec from 2 to nterm do 

f o r f i r O from 0 to nbe[op(term[l,1]),-1] 

while nbe[op(term[l,1]),firD]=0 do od; 

fo r secD from 0 to nbe[op(term[sec,1]),-1] do 

i f firD+secDoO then 

fun: = [seq(0,i=l..ntrack [ t e r m [ l , 1 ] [ 1 ] - 1 , t e r m [ l , 1 ] [ 2 ] - f i r D ] ) ] ; 

f o r n from 1 t o n t r a c k [ t e r m [ l , 1] [ 1 ] - 1 .termCl, 1] [ 2 ] - f irD] do 

i f nbe[op(term[l,l]),-2]-(2*Psetup+4)"firD=nbe[term[l,l] [ 1 ] - 1 

, t e r m [ l , l ] [ 2 ] - f i r D , n , - 2 ] then 

fun[n] : = 1; 

f i ; 
od; 
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i f term[l,3]<>0 then 
f o r deriv from 0 to firD+secD do 

i f derivOO then 

o u t : = d i f f r ( t e r m [ 1 , 1 ] [ 1 ] - 1 , t e r m [ l , 1 ] [ 2 ] - f i r D , f u n , d e r i v ) ; 
else 
out:=fun; 

f i ; 
f o r nxt from 1 to nops(out) do 
f o r nn from 1 to n t r a c k [ t e r m [ l , 1] [1]+term[sec, 1] [1]-2 

,term[l,l][2]+term[sec,l][2]-firD-secD+deriv] do 
i f n b e [ t e r m [ l , l ] [ 1 ] - 1 , t e r m [ l , 1] [ 2 ] - f irD+deriv,nxt,-2] 

+nbe[op(term[sec,1]),-2]-(2*Psetup+4)"secD= 
nb e [ t e r m [ l , l ] [1]+term [sec, 1] [1]-2, term [1,1] [2]+term [sec, 1] [ 2 ] - f i r D 
-secD+deriv,nn,-2] then 

newterm[l,l] : = [term [1,1] [l]+term[sec, 1] [ 1 ] - 2 , t e r m [ l , 1] [2] 
+term[sec,l][2]-firD-secD+deriv,nn] ; 

newterm[1,2]:-term[1,2]*term[sec,2]*out[nxt]*(I*term[1,3]) 
"(firD+secD-deriv)*nbe[op(term[sec,1]),secD]/4/k; 

newterm[1,3]:=term[l,3]+term[sec,3]; 
b:=0; 
f o r redo from 2 to nterm do 

i f redo=sec then 
b:=l; 

else 
newterm[redo-b,1]:=term[redo,1] 
newterm[redo-b,2]:=term[redo,2] 
newterm[redo-b,3]:=term[redo,3] 

f i ; 
od; 
i f nterm=2 and newterm[1,3]=P1+P2+P3+P4 then 
t o t : = t o t + f int2(newterm)*newterm[1,2]; 
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else 
i f newterm[l,l]<>[0,0,1] then 
t o t : = t o t + f int(nterm-1,newterm); 

f i ; 
f i ; 

f i ; 
od; 

od; 
od; 

else 
o u t : = d i f f r ( t e r m [ l , l ] [ 1 ] - 1 , t e r m [ 1 , 1 ] [ 2 ] - f i r D , f u n , f i r D + s e c D ) ; 
f o r nxt from 1 to nops(out) do 
fo r nn from 1 to ntrack[term[1,1][1]+term[sec,1][1]-2 

,term[l, 1] [2]+term[sec, 1] [2]] do 
i f n b e [ t e r m [ l , l ] [ 1 ] - 1 , t e r m [ l , 1] [2]+secD,nxt,-2] 

+nbe[op(term[sec,1]),-2]-(2*Psetup+4)*secD=nbe[term[1,1][1] 
+term[sec,l][1]-2,term[l,1][2]+term[sec,1][2],nn,-2] then 

newterm[1,1] : = [term[1,1] [l]+term[sec, 1] [ 1 ] - 2 , t e r m [ l , 1] [2] 
+term[sec,l][2] ,nn]; 

newterm[1,2]:=term[1,2]*term[sec,2]*out[nxt] 
*nbe[op(term[sec,1]),secD]/4/k; 

newterm[1,3]:=term[l,3]+term[sec,3]; 
b:=0; 
f o r redo from 2 to nterm do 

i f redo=sec then 
b:=l; 

else 
newterm[redo-b,1] 
newterm[redo-b,2] 
newterm[redo-b,3] 

f i ; 

=term[redo,1] 
=term[redo,2] 
=term[redo,3] 
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od; 
i f nterm=2 and newterm[l,3]=P1+P2+P3+P4 then 
tot:=tot+fint2(newterm)*newterm[1,2]; 

else 
i f newterm[l,l]<>[0,0,1] then 
tot:=tot+fint(nterm-1,newterm); 

f i ; 
f i ; 

f i ; 
od; 

od; 

f i ; 
else 
f o r nn from 1 to ntrack[term[1,1][1]+term[sec,1][1]-2 

,term[1,1][2]+term[sec,1] [2]] do 
i f nbe[op(term[1,1]),-2]+nbe[op(term[sec,1]),-2]-2 

=nbe [term [1,1] [1] +term [sec, 1] [1] -2, term [1,1] [2] 
+term[sec,1][2],nn,-2] then 

n e w t e r m [ l , l ] : = [ t e r m [ l , l ] [ 1 ] + t e r m [ s e c , 1 ] [ 1 ] - 2 , t e r m [ l , 1 ] [ 2 ] 
+term[sec,1][2],nn]; 

newterm[l,2]:=term[l,2]*term[sec,2]*nbe[op(term[sec,1]),0]/4/k; 
newterm[l,3]:=term[l,3]+term[sec,3]; 
b:=0; 
f o r redo from 2 to nterm do 

i f redo=sec then 
b:=l; 

else 
newterm[redo-b,1] 
newterm[redo-b,2] 
newterm[redo-b,3] 

f i ; 

=term[redo,1] 
=term[redo,2] 
=term[redo,3] 
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od; 
i f nterm=2 and newterm[l,3]=P1+P2+P3+P4 then 
tot:=tot+fint2(newterm)*newterm[1,2]; 

else 
i f newterm[1,1]<>[0,0,1] then 
tot:=tot+fint(nterm-1,newterm); 

f i ; 
f i ; 

f i ; 
od; 

f i ; 
od; 

od; 
i f term [1,1] [1]>2 then 
f o r d l from 0 to nbe[op(term[l,1]),-1] 
while nbe[op(term[l,1]),dl]=0 do od; 
fo r d2 from d l to nbe[op(term[l,1]),-1] do 

i f ((dl=d2 and nb e [ o p ( t e r m [ l , 1 ] ) , d l ] > l ) or dl<>d2) and 
type(dl+d2,even) and nbe[op(term[l,1]),d2]<>0 then 

f o r nnew from 1 to ntrack[term[1,1][1]-2,term[1,1][2]-dl-d2] 
while nbe[term[l,l][1]-2,term[l,1][2]-dl-d2,nnew,-2] 

<>nbe[op(term[l,l]) ,-2]-(2*Psetup+4)'"dl-(2*Psetup+4)"d2 do od; 
i f dl=d2 then 
newterm[l,2]:=term[l,2]*I"(dl+d2)*1~(dl+d2+l)/(dl+d2+l)/8/Pi/k 

*(nbe [op(term[1,1]),d2]-1); 
else 
newterm[1,2]:=term[l,2]*I'(dl+d2)*l-(dl+d2+l)/(dl+d2+l)/8/Pi/k 

*nbe[op(term[l, 1]) ,d2] ; 
f i ; 
newterm[1,3]:=term[l,3]; 
newterm[1,1]: = [term[1,1][1]-2,term[l,1][2]-dl-d2,nnew] ; 
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f o r n from 2 to nterm do 
newterm[n,1]:=term[n,1] 

newterm[n,2]:=term[n,2] 

newterm[n,3]:=term[n,3] 

od; 

t o t : = t o t + f int(nterm,newterm); 

f i ; 
od; 

f i ; 
t o t ; 

end: 

A.4.2 The S IMatrix 

There are many different contributions to the S matr ix. These arise f rom the ex

pansions of exp(VK), R and U{P)U{—P). This procedure finds all of the different 

terms that w i l l required functionally integi'ating. The procedure f i n t is then used 

to complete this integration. The momenta in exp(zP) and $ are labelled PI, 

P2, P3 and P4. Whils t we w i l l be working in a centre of momentum frame we 

keep track of these momenta in the exponentials. Only terms that w i l l result in a 

5{Pl -H P2 P3 + P4) overall factor are kept. The output of Tmatrix(p) w i l l be 

the T matr ix but w i t h the delta funct ion assumed. The output w i l l be i n terms of 

the B, C and D coefficients, the momentum cut-off / and other parameters such as k, 

g and m. 

with(combinat): 

Tmatrix:=proc(p) 

global Tout,be; 

be[l,0,l,-2]:=nbe[l,0,1,-2] ; 

Tout:=0; 

f o r FI from 2 by 2 to 2*p-2 do 

f o r FW from 0 by 2 to 2*p-2-Fl do 

i f FW <0 then 
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The part i t ion function finds the different terms in the expansion of exp(VV^). 

part:=partition(FW/2)*2; 
else 

part: = [0] ; 

f i ; 
f o r NP from 1 to nops(part) do 

i f p a r t [ l ] < > 0 then 
numbl:=Fl+5; 
cur:=part[NP]; 

We now set up the combinatorics. dec[n] counts the number of contributions f rom 

Wn in each term of e^. combs [n] is the coefficient of this term. 

f o r NNNP from 2 by 2 to FW do 
dec[NNNP]:=0; 

od; 
for NNP from 1 to nops(cur) do 
dec [cur[NNP]]:=dec[cur[NNP]]+1; 

od; 
comb[NP]:=1; 
fo r NNP from 2 by 2 to FW do 
comb[NP]:=comb[NP]/dec[NNP]!; 

od; 

ddcomb is a list of numbers representing the possible number of derivatives for each 

W contribution 

f o r deriv from 0 to (floor((p-Fl/2-FW/2-l+l)/2))"(nops(cur))-1 do 
i f deriv = 0 then 
ddcomb:=[0]; 

else 

ddcomb:=2*convert(deriv,base,floor((p-Fl/2-FW/2-l+l)/2)); 

f i ; 
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i f nops(ddcomb)<nops(cur) then 
dcomb:=[op(ddcomb),seq(0,i=nops(ddcomb)+l..nops(cur))]; 

else 
dcomb:=ddcomb; 

f i ; 
i f FW-2*nops(cur)+sum(dcomb[i],i=l..nops(dcomb))<2*p-l-Fl then 
skip:=0; 

else 
skip : = l ; 

f i ; 
f o r n from 1 to nops(dcomb) do 

i f dcomb[n]=0 eind cur[n]=2 then skip:=l f i ; 
od; 
i f skip=0 then 

tcomb is the number of possible basis elements w i t h fields given by comb and deriva

tives by dcomb 

ttcomb:=[seq(track[cur[i],dcomb[i]],i=l..nops(cur))]; 
f o r t r from 1 to (max(op(ttcomb))+l)"(nops(cur))-1 do 
tttcomb:=convert(tr,base,max(op(ttcomb))+1); 
i f nops(tttcomb)<nops(cur) then 
tcomb:=[op(tttcomb),seq(0,i=nops(tttcomb)+1..nops(cur))]; 

else 
tcomb:=tttcomb; 

f i ; 
i f max(op(tcomb-ttcomb))<=0 and min(op(tcomb))>0 then 

Now we generate the possible Tmat r ix elements for Dexp{W). 

t e r m [ l , l ] 
term[1,2] 
term[1,3] 
term[2,1] 

= [1,0,1]; 

=1; 
=P1; 
= [1,0,1]; 
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term[2,2]:=1; 
term[2,3]:=P2; 
term[3,l] : = [4,0,1] ; 
term[3,2]:=g/12; 
term[3,3]:=0; 
f o r Wi from 1 to nops(cur) do 
term[3+Wi,1]:=[cur[Wi],dcomb[Wi],tcomb[Wi]]; 
i f cur[Wi]=2 then 
term[3+Wi,2]:=2*comb[NP]*subs(g=0,subs(Bexp union Bsolo 

,B[cur[Wi],dcomb[Wi],tcomb[Wi]])); 
else 
term[3+Wi,2]:=comb[NP]*B[cur[Wi],dcomb[Wi],tcomb[Wi]]; 

f i ; 
term[3+Wi,3] :=0; 

od; 
f o r Fderiv from 0 by 2 to p-Fl/2-l-FW/2+nops(cur)-sum(dcomb[i] 

,i=l..nops(dcomb)) do 
f o r FT from 1 to track[FI,Fderiv] do 

:=[F1,Fderiv,FT]; 
:=D[F1,Fderiv,FT]; 
:=P3+P4; 

term[4+nops(cur),1]:^ 
term[4+nops(cur),2]:^ 
term [4+nops (cur) ,3] :̂  
Tout:=Tout+f int(nops(cur)+4,term); 

od; 
f o r F2 from 1 by 2 to FI do 
f o r Fderiv2 from 0 by 2 to Fderiv do 
f o r FT from 1 to track[F2,Fderiv2] do 
f o r n from 1 to ntrack[F2,Fderiv2] do 

i f nbe[F2,Fderiv2,n,-2]=be[F2,Fderiv2,FT,-2] then 
term[4+nops(cur),1]:=[F2,Fderiv2,n]; 

f i ; 
od; 
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term[4+nops(cur),2]:=C[F2,Fderiv2,FT]; 
term[4+nops(cur),3]:=P3; 
f o r FT2 from 1 to track[F2,Fderiv2] do 
f o r n from 1 to ntrack[F1-F2,Fderiv-Fderiv2] do 

i f nbe[Fl-F2,Fderiv-Fderiv2,n,-2] 
=be[F1-F2,Fderiv-Fderiv2,FT2,-2] then 

term[5+nops(cur),1]:=[Fl-F2,Fderiv-Fderiv2,n]; 
f i ; 

od; 
term[5+nops(cur),2]:=C[F1-F2,Fderiv-Fderiv2,FT2]; 
term[5+nops(cur),3]:=P4; 
Tout:=Tout+f int(nops(cur)+5,term); 

od; 
od; 

od; 
od; 

od; 

f i ; 
od; 

f i ; 
od; 

else 

The no W contribution part goes here. 

t e r m [ l , l ] 
term[1,2] 
term[1,3] 
term[2,1] 
term[2,2] 
term[2,3] 
term [3,1] 
term[3,2] 

= [1,0,1]; 

=1; 
=P1; 
= [1,0,1] ; 

=1; 
=P2; 
= [4,0,1] ; 
=g/12; 
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term[3,3]:=0; 
f o r Fderiv from 0 by 2 to p-l-Fl/2 do 
f o r FT from 1 to track[Fl,Fderiv] do 
term[4,l] : = [F1 .Fderiv,FT] ; 
term[4.2]:=D[F1,Fderiv,FT] ; 
term[4,3]:=P3+P4; 
Tout:=Tout+fint(4,term); 

od; 
f o r F2 from 1 by 2 to Fl do 
fo r Fderiv2 from 0 by 2 to Fderiv do 
f o r FT from 1 to track[F2,Fderiv2] do 
f o r n from 1 to ntrack[F2,Fderiv2] do 

i f nbe[F2,Fderiv2,n,-2]=be[F2,Fderiv2,FT,-2] then 
term[4,1]:=[F2,Fderiv2,n]; 

f i ; 
od; 
term[4,2]:=C[F2,Fderiv2,FT] ; 
term[4,3]:=P3; 
f o r FT2 from 1 to track[Fl-F2,Fderiv-Fderiv2] do 
f o r n from 1 to ntrack[Fl-F2,Fderiv-Fderiv2] do 

i f nbe[Fl-F2,Fderiv-Fderiv2,n,-2] 
=be[F1-F2,Fderiv-Fderiv2,FT2,-2] then 

term[5,1]:=[F1-F2,Fderiv-Fderiv2,n]; 
f i ; 

od; 
term[5,2]:=C[Fl-F2,Fderiv-Fderiv2,FT2] ; 
term[5,3]:=P4; 
Tout:=Tout+f int(5,term); 

od; 
od; 

od; 
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od; 
od; 

f i ; 
od; 

od; 
od; 
Tout; 
end: 
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