We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham e-Theses
You are in:

The Synthesis and Transport Properties of Conjugated Molecular Wires

GULCUR, MURAT (2012) The Synthesis and Transport Properties of Conjugated Molecular Wires. Doctoral thesis, Durham University.

PDF - Accepted Version


Due to the rapid growth in the electronics industry for over the last century, the demand for more advanced materials has been raised. As a result of this, the number of the scientific studies to develop new type of electronic materials has increased and new fields of research such as molecular electronics and nanotechnology are now established. The trend in the advances in electronics follows the miniaturisation of the electrical components and therefore introducing single or a few molecules into electronic devices has become an important topic.
In this work, a summary of the new aspects/developments in the field of single-molecule electronics is presented. Symmetrical tolane compounds with thiol (SH), amino (NH2), pyridyl (Py) and cyano (CN) anchoring groups were synthesised and single-molecule conductances of those molecules were systematically compared. With the help of density functional theory (DFT) calculations, single-molecular junction formation mechanism is also identified.
Oligoyne molecular wires with different anchoring groups are also synthesised and their electron transport properties at the single-molecule level are studied. The stability of the functional diaryltetrayne compounds is discussed and X-ray molecular structures of the stable tetraynes are presented. The effects of the molecular length and the anchoring group are discussed in detail. Additionally, oligoynes with methyl shielding of the carbon backbone are synthesised and their stability is discussed.
Finally, length-persistent, conjugated OPE and tolane analogues with different molecular lengths and amine anchors were synthesised and their transport properties were investigated in quantum dot sensitised solar cells.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Keywords:molecular-electronics, single-molecule electronics, molecular wires, oligoynes, alkynes, OPE, STM, scanning tunnelling microscopy, mechanically controllable break-junction, MCBJ, quantum dots, nanocrystals, stable oligoynes, nanotechnology, future electronics
Faculty and Department:Faculty of Science > Chemistry, Department of
Thesis Date:2012
Copyright:Copyright of this thesis is held by the author
Deposited On:14 Jun 2012 12:55

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter