Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham e-Theses
You are in:

Subsidence Mechanisms of Sedimentary Basins Developed over Accretionary Crust

HOLT, PETER,JONATHAN (2012) Subsidence Mechanisms of Sedimentary Basins Developed over Accretionary Crust. Doctoral thesis, Durham University.

[img]
Preview
PDF (Final version of the PhD thesis of Peter Holt) - Accepted Version
8Mb

Abstract

This thesis uses forward modelling to investigate the formation of intercratonic basins upon accretionary crust. It began from the hypothesis that accretionary crust forms with a near normal thickness crust, but a thin lithosphere inherited from the terranes that compose it. After the accretion process has ceased the lithosphere stabilises and begins to cool, causing it to grow thicker and this in turn drives subsidence of the accretionary crust. A 1-D finite difference computer code was developed to model conductive heat flow through a column of cooling lithosphere and asthenosphere. To test the hypothesis, the subsidence produced by the modelling of this process was compared to the observed subsidence from backstripping numerous basins situated on accretionary crust
The model produced a good fit to the subsidence in a detailed case study of two of the Palaeozoic basins in North Africa. The study was then extended to test the applicability of to accretionary crust globally. It found that while using measured values of the crust and lithospheric thickness for each region the model produced subsidence curves that matched the observed subsidence in each basin. It makes a more coherent argument for the formation of these basins that is able to explain a wider variety of features than other proposed subsidence mechanisms such as slow stretching or dynamic topography. These results suggest that such subsidence is an inherent property of accretionary crust which could influence the evolution of the continental crust over long time periods.
The model was used to investigate the subsidence of the West Siberian Basin and found the subsidence patterns to be consistent with the decay of a plume head which thinned the lithosphere. This subsidence patterns indicate the plume material thinned the lithosphere over an area of 2.5 million km2 resulting in uplift before it cooled and subsided.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Keywords:Subsidence, Basin, Lithosphere thickness, North Africa, Cape Karoo, Al Kufrah, Ghadames, Eastern Australia, Turan Platform, Parana Basin, West Siberian Basin, Plume head, Thermal Subsidence, Evolution Continental Crust
Faculty and Department:Faculty of Science > Earth Sciences, Department of
Thesis Date:2012
Copyright:Copyright of this thesis is held by the author
Deposited On:31 May 2012 10:30

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter