Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham e-Theses
You are in:

Bright solitary waves and non-equilibrium dynamics in atomic Bose-Einstein condensates

BILLAM, THOMAS,PAUL (2012) Bright solitary waves and non-equilibrium dynamics in atomic Bose-Einstein condensates. Doctoral thesis, Durham University.

[img]
Preview
PDF - Accepted Version
8Mb

Abstract

In this thesis we investigate the static properties and non-equilibrium dynamics of bright solitary waves in atomic Bose-Einstein condensates in the zero-temperature limit, and we investigate the non-equilibrium dynamics of a driven atomic Bose-Einstein condensate at finite temperature.

Bright solitary waves in atomic Bose-Einstein condensates are non-dispersive and soliton-like matter-waves which could be used in future atom-interferometry experiments. Using the mean-field, Gross-Pitaevskii description, we propose an experimental scheme to generate pairs of bright solitary waves with controlled velocity and relative phase; this scheme could form an important part of a future atom interferometer, and we demonstrate that it can also be used to test the validity of the mean-field model of bright solitary waves. We also develop a method to quantitatively assess how soliton-like static, three-dimensional bright solitary waves are; this assessment is particularly relevant for the design of future experiments.

In reality, the non-zero temperatures and highly non-equilibrium dynamics occurring in a bright solitary wave interferometer are likely to necessitate a theoretical description which explicitly accounts for the non-condensate fraction. We show that a second-order, number-conserving description offers a minimal self-consistent treatment of the relevant condensate -- non-condensate interactions at low temperatures and for moderate non-condensate fractions. We develop a method to obtain a fully-dynamical numerical solution to the integro-differential equations of motion of this description, and solve these equations for a driven, quasi-one-dimensional test system. We show that rapid non-condensate growth predicted by lower-order descriptions, and associated with linear dynamical instabilities, can be damped by the self-consistent treatment of interactions included in the second-order description.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Faculty and Department:Faculty of Science > Physics, Department of
Thesis Date:2012
Copyright:Copyright of this thesis is held by the author
Deposited On:28 May 2012 11:41

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter