Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham e-Theses
You are in:

Interactions between Dark Matter Substructure and Galaxies

LOWING, BENJAMIN,JOSEPH (2011) Interactions between Dark Matter Substructure and Galaxies. Doctoral thesis, Durham University.

[img]
Preview
PDF - Accepted Version
9Mb

Abstract

In this thesis we study how subhaloes evolve and interact in the central regions of galactic dark matter haloes in a ΛCDM universe. We examine the effect that subhalo impacts have on disc galaxies and what visible signatures they leave behind. We use the Aquarius simulations, a set of high resolution simulations of Milky Way mass haloes, as the basis of the work in this thesis. We summarise the main properties of these haloes and show that they are typical haloes for most characteristics.

We develop a method to approximate the potential of host haloes that helps us understand how subhaloes evolve in the tidal field of their host. Using a basis function expansion method, we show that it is possible to create a time-evolving density/potential approximation of the late growth of simulated N-body dark matter haloes, and that particle and subhalo orbits can be integrated in this realistic, time-varying halo potential approximation at much lower computational cost than the original simulations.

Using samples of subhaloes extracted from the Aquarius haloes, we estimate the disc heating caused by substructure bombardment using the Benson et al. (2004) semi-analytical model. A critical evaluation of the model, however, finds that there are problems with the original implementation, including a numerical factor, that call into question its validity. We then approach the same problem using high resolution N-body simulations of subhalo interactions with discs. We find that only the most massive of subhaloes appreciably affect stellar discs, heating and thickening them, and that the majority of any heating occurs at early times and happens quickly. However, the substructure bombardment since redshift one is negligible in most of the haloes, and in the haloes that do show significant heating it is caused by a single massive subhalo.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Faculty and Department:Faculty of Science > Physics, Department of
Thesis Date:2011
Copyright:Copyright of this thesis is held by the author
Deposited On:20 Jan 2012 12:14

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter