Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham e-Theses
You are in:

Bogomol’nyi equations on constant curvature spaces

Hickin, D. G. (2004) Bogomol’nyi equations on constant curvature spaces. Doctoral thesis, Durham University.

[img]
Preview
PDF
4Mb

Abstract

This thesis is concerned with the anti-self-dual Yang-Mills equations and their reductions to Bogomol’nyi equations on constant curvature spaces. Chapters 1 and 2 contain introductory material. Chapter 1 discusses the origin of the equations in particle physics and their role in integrable systems. Chapter 2 describes the equations and the reduction process and outlines the construction of solutions via the twistor transform. In Chapter 3 we consider Bogomol’nyi equations on (2 + 1)-dimensional manifolds and show that for constant curvature space-times the equations are integrable and consider solutions in the negative scalar curvature case. In Chapter 4 we cover the negative scalar curvature case in more detail, constructing a number of soliton solutions including non-trivial scattering and consider the zero-curvature limit. In Chapter 5 we consider Bogomornyi equations in 3- diniensional hyperbolic space, derive an ansatz for solutions of the equation and use it to construct a number of new solutions. Chapter 6 contains concluding remarks.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Thesis Date:2004
Copyright:Copyright of this thesis is held by the author
Deposited On:09 Sep 2011 10:00

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter