Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham e-Theses
You are in:

Meson distribution amplitudes: applications to weak radiative B decays and в transition form factors

Jones, Gareth W. (2007) Meson distribution amplitudes: applications to weak radiative B decays and в transition form factors. Doctoral thesis, Durham University.

[img]
Preview
PDF
5Mb

Abstract

This thesis examines the applications and determinations of meson light-cone distribution amplitudes, which enter the theoretical description of exclusive processes at large moment urn transfer. The investigation of such processes, in the context of в physics, provides one with a rich and extensive way of determining the Standard Model parameters of the CKM matrix, which are essential in describing CP violation, and searching for tell-tale signs of new physics beyond the Standard Model. We investigate the twist-2 and twist-3 distribution amplitudes of vector mesons and fully examine SU(3)(_F)-breaking effects and include leading G-parity violating terms. We use the conformal expansion allowing the distribution amplitudes to be described by a set of non-perturbative hadronic parameters which is reduced by invoking the QCD equation of motion to find various interrelations between the distribution amplitudes. Numerical values of the leading non-perturbative hadronie parameters are determined from QCD sum rules. The new distribution amplitude results find direct application in the radiative B decays to light vector mesons B → Vγ. We examine the phenomenologically most important observables in this decay mode using the formalism of QCD factorisation in which the distribution amplitudes play a vital role. We also include long-distance photon emission and soft quark loop effects, which formally lie outside the QCD factorisation formalism. The analysis encompasses all the relevant modes, that is B(_u),(_d)→(_p),(_w),K* and B(_s) → φ,K*.We also calculate the B → n(^1) transition form factor using QCD sum rules on the light- cone. The method relies on the collinear factorisation of the QCD dynamics into a pertur- batively calculable hard-scattering kernel and the non-perturbative universal distribution amplitudes. We include the singlet contribution originating from the U(1)a anomaly and bring the calculation consistently within the n-n(^1) mixing framework.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Thesis Date:2007
Copyright:Copyright of this thesis is held by the author
Deposited On:09 Sep 2011 09:57

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter