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Abstract 

This thesis examines the applications and determinations of meson light-cone distribution 

amplitudes, which enter the theoretical description of exclusive processes at large momen­

tum transfer. The investigation of such processes, in the context of B physics, provides 

one with a rich and extensive way of determining the Standard Model parameters of the 

CKM matrix, which are essential in describing CP violation, and searching for tell-tale 

signs of new physics beyond the Standard Model. 

We investigate the twist-2 and twist-3 distribution amplitudes of vector mesons and fully 

examine SU(3)F-breaking effects and include leading G-parity violating terms. We use 

the conformal expansion allowing the distribution amplitudes to be described by a set of 

non-perturbative hadronic parameters which is reduced by invoking the QCD equation 

of motion to find various interrelations between the distribution amplitudes. Numerical 

values of the leading non-perturbative hadronic parameters are determined from QCD 

sum rules. 

The new distribution amplitude results find direct application in the radiative B decays 

to light vector mesons B ---t Vy. We examine the phenomenologically most important 

observables in this decay mode using the formalism of QCD factorisation in which the 

distribution amplitudes play a vital role. We also include long-distance photon emission 

and soft quark loop effects, which formally lie outside the QCD factorisation formalism. 

The analysis encompasses all the relevant modes, that is Bu,d ---t p,w, K* and Bs ---t ¢, K*. 

We also calculate the B ---t r/') transition form factor using QCD sum rules on the light­

cone. The method relies on the collinear factorisation of the QCD dynamics into a pertur­

batively calculable hard-scattering kernel and the non-perturbative universal distribution 

amplitudes. We include the singlet contribution originating from the U(l)A anomaly and 

bring the calculation consistently within the TJ-r/ mixing framework. 



Acknowledgements 

First and foremost, I would like to thank my supervisor Patricia Ball for all her help and 

guidance over the last three years. It has been a great opportunity to work with her, 

and a fantastic learning experience. I must also thank Roman Zwicky for always finding 

the time to quell my confusions, and with whom it was a pleasure to collaborate. Also, 

I thank Angelique Talbot for all her friendly discussions, and I wish Aoife Bharucha all 

the best with her future projects. 

I also thank my office mates Ciaran Williams, Karina Williams, Kemal Ozeren, Martyn 

Gigg and Stefan Hoeche, and the many other friends who have made my time in Durham 

and the IPPP so enjoyable. 

To those whose support cannot be appreciated enough; I must thank my parents. I thank 

my brother too for all the discussions and debates we had over coffee, and finally, I must 

also thank my grandparents. 

This work was supported by a PPARC studentship which is gratefully acknowledged. 

11 



Declaration 

I declare that no material presented in this thesis has previously been submitted for a 

degree at this or any other university. The research described in this thesis has been 

carried out in collaboration with Prof. Patricia Ball and Dr. Roman Zwicky and has been 

published as follows: 

• "B ----+ V 'Y beyond QCD factorisation," 

P. Ball, G. W. Jones and R. Zwicky, Phys. Rev. D 75 (2007) 054004, 

[arXiv:hep-ph/0612081]. 

• "Twist-3 distribution amplitudes of K* and ¢ mesons," 

P. Ball and G. W. Jones, JHEP 03 (2007) 069, 

[arXiv:hep-ph/0702100]. 

• "B ----+ TJ(') Form Factors in QCD," 

P. Ball and G. W. Jones, JHEP 08 (2007) 025, 

arXiv:0706.3628 [hep-ph]. 

The copyright of this thesis rests with the author. No quotation from it should be pub­

lished without their prior written consent and information derived from it should be 

acknowledged. 

garethwarrenjones@gmail.com 

lll 



Contents 

Introduction 

1 Fundamentals Of B Physics 

1.1 The Standard Model . . . 

1.2 CP Violation In B Decays 

1.3 Effective Field Theories Of Weak Decays 

2 Vector Meson Light-Cone Distribution Amplitudes 

2.1 Introduction . . . . . . . . 

2.2 The Conformal Expansion 

2.2.1 Conformal Group . 

2.2.2 States of Definite Spin 

2.3 Two-Particle Twist-2 Distribution Amplitudes 

2.4 Two-Particle Twist-3 Distribution Amplitudes 

2.5 Three-Particle Twist-3 Distribution Amplitudes 

2.6 Relations Between Distribution Amplitudes 

2.7 Evolution Equations 

vii 

1 

1 

6 

8 

12 

13 

16 

16 

18 

21 

22 

23 

24 

27 

3 QCD Sum Rules 31 

3.1 SVZ Sum Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 

IV 



3.1.1 

3.1.2 

3.1.3 

3.1.4 

3.1.5 

3.1.6 

3.1.7 

3.1.8 

Correlator ..... . 

Short-Distance OPE 

Condensates . . . . . 

Dispersion Relation . 

Unitarity Relation . 

Quark-Hadron Duality 

Borel Transformation And The Sum Rule 

Non-local Formalism . . . . . 

3.2 QCD Sum Rules On The Light-Cone 

3.3 Example Calculation- The Gluon Condensate 

33 

34 

34 

35 

37 

38 

38 

40 

41 

43 

4 The Determination Of Vector Meson Twist-2 And Twist-3 Parameters 48 

4.1 Twist-2 . . . . . . 

4.1.1 Calculation 

4.1.2 Evaluation of The Sum Rules 

4.2 Twist-3 . . . . . . 

4.2.1 Calculation 

4.2.2 Evaluation of The Sum Rules 

5 B -----+ r,C') Form Factors in QCD 

5.1 The T}-rl' System . 

5.2 State Mixing .. 

5.3 Pseudoscalar Meson Distribution Amplitudes . 

5.4 Calculation 

5.5 Discussion . 

v 

49 

50 

52 

55 

56 

63 

67 

68 

70 

74 

79 

83 



6 QCD Factorisation 87 

6.1 Introduction . . . 88 

6.2 General Structure . 89 

6.3 Light-Cone Distribution Amplitudes . 91 

6.4 Radiative B decays to Vector Mesons 92 

7 B --t V 1 Beyond QCD Factorisation 96 

7.1 Introduction .... 97 

7.2 Wilson Coefficients 98 

7.3 Leading and Power Suppressed Contributions 99 

7.3.1 Leading Contributions 100 

7.3.2 Weak Annihilation .. 100 

7.3.3 Long-Distance Photon Emission 103 

7.3.4 Soft Quark Loops . 105 

7.4 Phenomenological Results 106 

7.4.1 Branching Ratios . 107 

7.4.2 Isospin Asymmetries 112 

7.4.3 CP Asymmetries .. 114 

7.5 Extraction Of CKM Parameters 117 

8 Summary and Conclusions 123 

A Light-cone Co-ordinates 127 

B Useful formulas for sum rule determinations 129 

B.1 Loop Integrals . . 129 

B.2 Borel Subtraction 130 

B.3 Input Parameters 130 

Bibliography 131 

Vl 



List of Figures 

1.1 The Unitary Triangle. 5 

1.2 Constraints on the angles and sides of the Unitarity Triangle. . 5 

3.1 The spectral density function in the complex plane. 36 

3.2 A generic diagram for a non-local sum rule. 40 

3.3 Interactions of the background field A~ with the quantum field a~. . 45 

3.4 Diagrams contributing to the gluon condensate at O(o:8 ). • • • • • • 46 

4.1 Diagram contributing to the quark condensate (ss) at leading-order. . 50 

4.2 Diagrams contributing to the quark condensate (ss) at O(o:8 ). • 

4.3 The hadronic parameters J!'..L and a~'..L(¢) as a function of M 2 
•. 

4.4 Diagrams contributing to perturbation theory. . .... 

4.5 Diagrams contributing to the gluon condensate ( c; G2
). 

51 

54 

57 

59 

4.6 Diagrams contributing to the mixed condensates (ijag8 Gq) and (sag8 Gs). 59 

4.7 Diagrams contributing to the quark condensates (iJq) and (ss). 60 

4.8 Diagrams contributing to the quark condensate (iJq) (ss). . . . 60 

4.9 Diagrams contributing to the quark condensates (ijq) 2 and (ss) 2
. 61 

4.10 Hadronic parameters of ~~;K• as functions of M 2
• . . . . . . • 65 

4.11 The distribution amplitudes ¢~;V and 1/J~;V as a function of u. . 66 

4.12 The distribution amplitudes ¢tv and 1/Jtv as a function of u. 66 

Vll 



5.1 Examples of an OZI-rule suppressed and allowed strong decays. 69 

5.2 B- r/') via the U(1)A anomaly. . . . . . . . . . . . . . . . . . . 70 

5.3 Scale dependence of the twist-2 distribution amplitude parameters. 77 

5.4 The quark contributions to f2<'l (q2) to O(as)· . . . . . . . . . . . . 80 

5.5 The leading diagrams for the flavour-singlet contribution to f(l (q2). 81 

5.6 J2(0) and Jj (0) as a function of the Borel parameter M 2
. 83 

5.7 Jj (0)/ J2(0) as a function of the Borel parameter M 2
. . . . 85 

5.8 B(B- r/ev)/B(B- rJev) as a function of the singlet-parameter B~. 86 

6.1 The leading contribution to B- Vf'. . . . . . . . . . . . . . . . . . 93 

6.2 Contributions to the hard-scattering kernel T/ for B - VI' decays. 94 

6.3 Contributions to the hard-scattering kernel ~II for B - VI' decays. 94 

6.4 Weak annihilation contributions to B - VI'· . . . . . . . . . . . . . 95 

7.1 Diagrams for weak annihilation and soft-gluon emission from a quark loop. 101 

7.2 Example radiative corrections to weak annihilation. . . . . . . . . . 103 

7.3 CP-averaged branching ratios of B- (p,w)!' as function of angle I'· 112 

7.4 AI(P) as function of the angle I' and A1(K*) as function of r = a6 ja~M. 114 

7.5 lvtd/vtsl 2 as function of Rpjw and !:l.R as function of lvtd/vtsl· . 

7.6 The UT angle I' as function of Rpjw· 

7. 7 Central values of Rpjw and Rp as functions of I vtd/vts I . 

Vlll 

120 

120 

120 



List of Tables 

4.1 Results for the leading twist-2 distribution amplitude parameters. 55 

4.2 Results for the leading twist-3 distribution amplitude parameters. 64 

7.1 Experimental branching ratios of exclusive b --+ ( d, s )'y transitions. 98 

7.2 Numerical values of the next-to-leading-order Wilson coefficients. 99 

7.3 Parametric size of the weak annihilation contributions. • 0 • 0 •• 102 

7.4 Soft-gluon contributions from c-quark and u-quark loops in units KeV. 107 

7.5 Contributions to CP-averaged branching ratios. 111 

7.6 Isospin asymmetry A1(p) for different values of "f· 113 

7.7 B lifetimes from HFAG. .... 122 

7.8 Summary of input parameters .. 122 

B.1 Summary of input parameters for Chapter 4 .................. 131 

lX 



Introduction 

One only has to ask the question "why?" a handful of times before one reaches the answer 

"I don't know", regardless of the topic considered and regardless of the person asked. It 

is safe to say, however, almost all questions of the structure of matter at the smallest of 

distances leads one directly to, or at least through, the field of modern particle physics. 

The beginnings of our understanding of the physical world harks back to the dawn of 

scientific reasoning in the ancient world; logic and reasoning were applied with the aim 

of describing the behaviour of physical systems in terms of simple universal axioms, a 

philosophy which still holds strong today. Through experimentation and the language 

of mathematics the scientific method has driven back the edge of ignorance to frontiers 

unimaginable to those physicists of 100 years ago, let alone the natural philosophers of 

millennia ago. The present "coal face" is known as the Standard Model [1, 2] which 

describes three of the four known forces of nature - electromagnetism, and the weak and 

strong nuclear forces - in one unifying framework. 

Frustratingly, the Standard Model does not explain many of the things which it encom­

passes; it does not provide an origin for CP violation but only gives a parameterisation, 

nor does it explain why there are three generations of quarks and leptons, or their hier­

archy of masses. All attempts to bring gravity into the fold have so far failed, however, 

whatever theory lies beyond must yield the Standard Model as some limiting case. 

The Standard Model has been scrutinised relentlessly since its inception. Remarkably, 

nearly without fail it has held its ground over the entire breadth of its theoretical reach 

and so the task of finding new ways to probe its structure requires ever more the creativity 

and ingenuity of both theorists and experimentalists alike. Novel experimental signatures, 

against which to pit theory, must be used to maximum potential. From a theoretical 

standpoint there are still many challenges to be met, especially in preparation for the 

next generation of collider experiments now just round the corner. Particularly, the 

control and reduction of the theoretical uncertainty of Standard Model predictions is of 
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paramount importance as only then can one hope to be in a position to discern signs of 

new physics from that of the Standard Model background. 

Some of its most challenging tests of the Standard Model fall in the field of heavy-flavour 

physics, within which B physics has proven itself to be rich and fertile. Today it is an 

area of high activity with many success stories, including the recent measurement of the 

B~-B~ mass difference tlms at the Tevatron [3]. Moreover, two dedicated "B-factories", 

Belle at KEK [4] and BABAR at SLAC [5], have measured a range of observables, such as 

branching fractions and CP asymmetries, of a vast number of B decay modes. Looking 

to the future, the B physics community eagerly await the forthcoming LHCb experiment, 

and beyond that so-called "superflavour factories" [6] have been championed with the 

aim of probing rare B decays to extract CP violation parameters to much higher levels 

of accuracy. It is imperative to find tests of the Standard Model which may be observed 

in these up-and-coming experiments [7] and promising modes include the rare decays 

B ---> V 1 and B ---> K J-L+ J-L-. 

The strict pattern of CP violation of the Standard Model finds its origin in the Cabbibo­

Kobayashi-Maskawa (CKM) matrix [8, 9]. CP violation was discovered in B physics via 

the decay mode B~ ---> Jj'ljJK~ and found to be large, in contrast to K decays where the 

violation is tiny. The possible largeness of CP violation in B decays offers promising ways 

to detect new physics indirectly via CP violating observables testing the CKM paradigm. 

Theoretically, central to the description of B decays is the disentanglement of the weak 

decay process from strong interaction effects leading to a low-energy effective Hamilto­

nian in which the physics at a scale 0( Mw) is well under control. Achieving this goal for 

the wide range of B decays of interest has only been possible through huge calculational 

effort; the availability in the literature of Wilson coefficients at next-to-leading-order, and 

in some cases next-to-next-to-leading-order, is testament to this. Furthermore, the theo­

retical description of the matrix elements of effective B decay operators has been hugely 

improved through QCD factorisation methods. We discuss and make use of one such 

framework, namely that introduced by Beneke, Buchalla, Neubert and Sachrajda [10-12]. 

The so-called BBNS approach showed, to leading-order in a 1/mb expansion, that the 

a 8 corrections beyond naive-factorisation of a large class of non-leptonic B decay matrix 

elements are calculable in terms of B transition form factors and meson light-cone distri­

bution amplitudes. Armed with the corresponding amplitudes the phenomenologist may 

construct observables, such as branching ratios, CP asymmetries and isospin symmetries, 

which may then be compared to experiment. The predictive power of the QCD factori-
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sation framework is jeopardised by a poor understanding of both these non-perturbative 

QCD quantities and the impact of the generally unknown power-suppressed contributions 

0(1/mb); this in part motivates the work of this thesis. 

In this thesis we investigate SU(3)F-breaking effects in vector meson distribution ampli­

tudes which are crucial in differentiating between the particles p, K* and ¢. The leading 

non-perturbative DA parameters are determined via the method of QCD sum rules intro­

duced by Shifman, Vainshtein and Zakharov [13-15]. The method provides a prescription 

for the systematic calculation of non-perturbative QCD parameters, albeit with an irre­

ducible error ,......, 20- 30%, and constitutes an extremely useful theoretical tool. 

The sum rule results have a direct application in the QCD factorisation description of B 

decays top, K* and ¢ mesons. In particular, radiative B decays to vector mesons B --t V 'Y, 

are an excellent example of a process potentially sensitive to new physics contributions, as 

at leading order the decays are mediated at loop level in the Standard Model. We perform 

a phenomenological analysis of these decays using the QCD factorisation framework of 

Bosch and Buchalla [16, 17] including leading power-suppressed corrections for which the 

updated non-perturbative distribution amplitude parameters find use. The impact of the 

power-suppressed corrections on the key decay observables is discussed and leads to a 

better understanding of the theoretical uncertainty of the QCD factorisation predictions. 

Also, we calculate important contributions to the B --t r/1
) transition form factors via a 

variant sum rule approach, known as light-cone sum rules, for which distribution ampli­

tudes play a crucial role. The result of the analysis elucidates a major source of theoretical 

uncertainty of the B --t 'T/(1
) form factor. The result impacts B --t K*'fl(1

), for example, 

where the experimental data and QCD factorisation predictions of the branching ratios 

are inconsistent. 

The thesis is structured as follows: 

• Chapter 1 introduces some of the fundamentals of the Standard Model and its 

application to B physics. We define the QCD Lagrangian and the CKM matrix, 

introduce CP violation in Standard Model B decays, and briefly discuss the structure 

of the f:l.B = 1 weak effective Hamiltonian. 

• Chapter 2 covers the definitions of the light-cone distribution amplitudes of the light 

vector mesons p, K* and ¢. We determine their structure up to twist-3 accuracy and 

using the conformal expansion and QCD equations of motion express the distribu­

tion amplitudes in terms of a finite set of non-perturbative parameters. We extend 
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previous determinations in order to fully differentiate between the three particles 

by including all G-parity violating contributions and SU(3)F-breaking effects. 

• Chapter 3 discusses the QCD sum rule method and its extension light-cone sum 

rules. The methods allow, amongst other things, the determination of the non­

perturbative distribution amplitude parameters and transition form factors respec­

tively, and are very widely applicable in and beyond B physics. 

• In Chapter 4 we apply QCD sum rules to determine the leading non-perturbative 

distribution parameters defined in Chapter 2. Consistency requires the inclusion of 

all G-parity violating contributions and SU(3)F-breaking effects to the sum rules, 

and we extend previous determinations by including higher-order strange quark mass 

effects and O(as) contributions to the quark condensates. We analyse the resulting 

sum rules and provide updated numerical results for all parameters. The results 

of this section find immediate application in QCD factorisation and light-cone sum 

rule descriptions of processes involving these vector mesons. 

• In Chapter 5 we calculate the gluonic flavour-singlet contribution to the semilep­

tonic B -t 'TJ(') transition form factor in the framework of light-cone sum rules. In 

doing so we discuss pseudoscalar meson and two-gluon distribution amplitudes. The 

new contribution is combined with the previous determination of the quark contri­

bution, to complete the theoretical treatment of these form factors. The fJ(') system 

is complicated due to large mixing effects via the U(l)A anomaly. We introduce 

the phenomenological framework of TJ-TJ' mixing and connect it to the form factor 

calculation in a consistent manner. The results of this chapter find immediate appli­

cation in the QCD factorisation description of B -t fJ(') transitions, which in turn, in 

principle, allow a determination of the CKM matrix element IVubi from B -t r/'l[v. 

• Chapter 6 introduces the framework of QCD factorisation, which is an important 

application of meson distribution amplitudes and transition form factors. We briefly 

discuss the BBNS approach and then go on to discuss the leading contributions to 

QCD factorisation in the context of B -t V '"'/ decays. 

• In Chapter 7 we investigate the impact of the relevant, power-suppressed contribu­

tions to B -t V '"'/ beyond the QCD factorisation formula. We include long-distance 

photon emission from weak annihilation diagrams and soft gluon emission from 

quark loops. The non-perturbative distribution amplitude parameters determined 

in Chapter 4 find use in a light-cone sum rule estimation of the latter. The key 
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observables are the branching ratios, isospin asymmetries and the indirect time­

dependent CP asymmetry S(V!) which, as has been know for some time, forms 

the basis of a "null test" of the Standard Model. Assuming no new physics contri­

butions, we extract the ratio of CKM matrix parameters lvtd/Vidl to a competitive 

degree of accuracy. 

• We summarise and conclude in Chapter 8. 

The material of Chapters 2 and 4 follows Ref. [40] and the material of Chapters 5 and 7 

follows Refs. [65] and [70], respectively. Some of the more bulky equations, and material 

not necessary in the general flow of reading the thesis, are given in two appendices. 
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Chapter 1 

Fundamentals Of B Physics 

In this chapter we begin with the basics of the Standard Model and then go on to discuss 

two concepts which are central to the investigations of B physics, and those of this thesis: 

• CP violation in the flavour sector, which follows a strict pattern in the Standard 

Model and can readily be sensitive to new physics; 

• the tlB = 1 effective weak Hamiltonian, which we briefly discuss as it is the starting 

point of many phenomenological studies in B physics. 

1.1 The Standard Model 

The Standard Model (SM) [1,2] is a model of great scope and predictive power. Despite 

its successes, however, we know it to be incomplete; for example, the recent discovery of 

neutrino oscillation and the lack of conclusive evidence for the Higgs particle providing 

two areas of intense theoretical and experimental effort. The SM describes three of the 

four known fundamental forces of nature; the strong force, the weak force and electromag­

netism. Quantum Chromodynamics (QCD) is a Yang-Mills gauge theory based on the 

gauge group SU(3) and describes the fundamental interactions of the strong interaction 

as interactions between quarks and gluons [18-21]. The basic QCD Lagrangian is 

(1.1) 



with 

(1.2) 

where the sum is over all quark flavours q, i, j = {1, 2, 3} are colour indices, the td are the 

3 X 3 colour matrices with d = {1, ... ) 8} and rbc are the structure constants. G~v is the 

gluonic field strength tensor, and A~ is the gluon field. We will make use of the notation 

(GJ.tv)ij = G~v(ta)ij and the relation g; = 47ra8 (and e2 = 4naQED)· The Lagrangian can 

alternatively be defined with the replacement 9s ---+ -g8 and the sign convention matters 

for the applications in Chapters 4 and 7. 

The non-Abelian nature of QCD leads to the possibility of gluon self-interaction and the 

celebrated asymptotic freedom property of QCD [20-23]. The coupling tends to zero, 

giving a theory of free quarks, at asymptotically high energy. On the other hand, at low 

energy, or large distances, the coupling increases. At energies for which a 8 ,2: 1 pertur­

bation theory is not applicable, and one has to resort to non-perturbative methods to 

determine the effects of QCD. Despite the simplicity of the QCD Lagrangian (1.1) an 

accurate determination of non-perturbative QCD from first principles, and hence con­

finement, poses a major challenge. One such method, based on ideas of Wilson [24], is 

that of Lattice QCD, which aims to calculate the QCD action computationally on a grid 

of discretised spacetime points. An altogether different, and less rigourous, method is 

that of QCD sum rules, which encodes non-perturbative effects in terms of non-vanishing 

vacuum expectation values of operators with the quantum numbers of the vacuum. This 

method is central to the work in this thesis, and shall be discussed in Chapter 3. 

The electroweak force is the unification of the weak nuclear force and electromagnetism 

given by the Glashow-Salam- Weinberg model. The model is based on the gauge group 

SU(2)L ® U(1)y, which is broken by spontaneous symmetry breaking to yield U(1)Q- the 

gauge group corresponding to Quantum Elecrodynamics (QED). The weak interaction is 

mediated by three massive gauge bosons w± and Z 0 and occurs between quarks and 

leptons. The quarks and leptons are arranged, within the three generations, into left­

handed doublets and right-handed singlets under SU(2)L 

(1.3) 

where the weak eigenstates U = {u,c,t}, D = {d,s,b} and z- = {e-,JL-,T-} are the 

up-type quarks, down-type quarks and charged leptons respectively. The subscript L (R) 

represents the left (right)-handed projectors qL(R) = ~(1 =F 'Ys)q which reflect the chiral 
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nature of the weak interaction. The neutrinos are massless in the SM, and the right 

handed neutrino does not exist. The electroweak interactions of the quarks are described 

by the following Lagrangian, which consists of a charged current ( CC) and a neutral 

current ( N C) 

Lew Lee+ LNG, 

_f!_ [J+w+IL + J-w-IL] -12 IL IL 

+ e [Jem AIL] + g [(13 - sin2 OwJem) ZIL] 
IL cos Ow IL IL 

(1.4) 

The neutral current part of the Lagrangian is made up of the electromagnetic current 1;m 
and neutral weak current J!: 

(1.5) 

where Qu(D) = 2/3 ( -1/3) is the electric charge of the U (D) quarks, Ow is the weak 

mixing angle and g is the electroweak coupling related to the electromagnetic coupling 

by e = g sin Ow. Rotating to the basis of mass eigenstates modifies the charged current 

in the quark sector to 

(1.6) 

where VcKM is the Cabbibo-Kobayashi-Maskawa matrix [8,9] and the superscript m denotes 

mass eigenstates. The CKM matrix is 3 x 3 (for three quark generations), unitary, and 

its off-diagonal entries allow for transitions between the quark generations. There are no 

flavour-changing neutral-currents (FCNC) at tree-level in the SM as the neutral currents 

1;m and J! are invariant under the transformation to the mass eigenbasis, which is known 

as the Glashow-Iliopoulos-Maiani (GIM} mechanism [25]. The entries of the CKM matrix 

are written as 

( 

Vud Vus Vub ) 
VcKM = Vcd Vcs V cb 

V'td V'ts V'tb 

(1. 7) 

and are fundamental parameters of the SM that have to be determined from experiment. 

Evidently, the matrix has n2 = 9 parameters n(n- 1)/2 = 3 of which are rotation angles 

due to its unitarity. The six quark fields in Eq. (1.3) can be re-phased, up to an overall 

phase, leaving the Lagrangian invariant and therefore 9- 5-3 = 1 phase remains giving 

rise to complex entries - complex coupling constants. This is the origin of CP violation in 

3 



the quark sector of the weak interaction. The leptonic sector is described by an analogous 

mixing matrix which, in the absence of neutrino masses, is given by the unit matrix 

because all phases can be rotated away. 

The CKM matrix (1. 7) is often parameterised to incorporate the constraints of unitarity. 1 

A very useful and convenient parameterisation is the Wolfenstein parameterisation [26] 

which, along with unitarity, incorporates the experimental observations IVusl « 1, I"Vc:bl "' 
1Vusl 2 and IVubl « I"Vc:bl· It is an expansion in A = IVusl ~ 0.22, and as such is only 

approximately unitary at a given order in A: 

(1.8) 

The matrix is given in terms of the four parameters (A, A, p, TJ); A and p2 + 'T]2 are order 

unity and the hierarchy of sizes of elements can be infered from the powers of A. The 

smallness of Vcb and Vub are responsible for the relatively long lifetime of B mesons (and 

baryons), which facilitates their experimental detection. The unitarity of the CKM matrix 

gives six equations that equal zero and can be represented as triangles in the complex 

plane. The most widely used of these relations in B physics is 

(1.9) 

which is invariant under phase transformations and is an observable. The above relation 

is divided by Vcd V::'b to give a triangle in the complex plane with a base of unit length and 

upper apex at the point (p, fj) 2 known as The Unitary Triangle (UT), see Figs. 1.1 and 

1.2. The sides of the UT are given by 

(1.10) 

(1.11) 

1The "standard" parameterisation of the CKM matrix is in terms of the three mixing angles (}ij 

(i, j = 1, 2, 3) and the CP violating phase b [27]. 
2 The following rescaling proves convenient to the definition of the UT: p --+ p = p (1 - .\2 /2) and 

TJ--+ fj = TJ (1 - .\2 /2). 
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The angles are given by 

The (over) determination of the sides and angles of the UT is a major quest in understand­

ing the SM. To achieve this goal one must construct decay observables, which can then be 

matched to experimental results in order to extract values for the desired CKM (or equiv­

alently UT) parameters. Such observables include branching ratios, which may appear 

simply proportional to a CKM matrix element, and CP asymmetries, which encode the 

effects of the SM predictions of CP violation, and can also be measured experimentally. 

(p,i)) 

{3 

0 

Figure 1.1: The Unitary Triangle. The determination of the sides Rb and Rt and the angles 
a, (3 and 'Y lead to stringent tests of the Standard Model. 

0.5 

II=' o 

-0.5 

-1 

-1.5 L...LL...L...L...LL...LL...LL...LL...LL...LLL.LL.LL.~....._.._._.LLJ 
-1 -0.5 0 0.5 1.5 2 

p 

Figure 1.2: Constraints on the angles a, (3, and 'Y and sides Rb and Rt of the Unitarity Triangle 
as imposed from numerous experimental sources. Complied by the CKM fitter gToup [31]. 
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1.2 CP Violation In B Decays 

Does the CKM matrix (1.7) account for the CP violation observed in nature? Examining 

CP violation in B decays allows one to probe the structure of the CKM matrix and is 

a very promising way to detect the effects of new physics, which many not be expressed 

through other decay observables. Consequently, the CP properties of FCNC processes, 

which are characterised by their potential sensitivity to new physics effects, have been 

under intense theoretical and experimental investigation for many years. Prime examples 

of such processes include B 0-B0 mixing (see for example Ref. [28]) and radiative B decays, 

see Chapter 7. 

The idea that the weak interaction may violate parity was first suggested many years ago 

by Lee and Yang [29], and quickly confirmed in the (3 decay of 6°Co by Wu et al. [30]. The 

violation of the combined CP symmetry was first observed in the context of K decays in 

1964 [32] and it was not until 2001 that it was first observed outside the K system in 

B~ ----> Jj'lj; Kg decays [33, 34]; in both cases the CKM paradigm was upheld. Recently 

discoveries in B physics include the measurement by CDF of the mass difference !:1m8 [3]. 

Some of the most important sources of information about the UT from B physics include: 

the determination of sin 2(3 from the "gold-plated" decay B ----> J /'1/J Ks; the extraction of 

a from non-leptonic B decays such as B ----> 1m; the extraction of lvtdi/IVtsl from B mixing 

and radiative B decays, such as B ----> V ')'; and the determination of IVubl from B ----> 1rlv. 

The Bg-Bg systems, where q = { d, s }, exhibit the phenomenon of particle-antiparticle 

mixing, which, in the SM is mediated by so-called box diagrams whose amplitudes are 

"' G} and therefore very small. We do not go into any detail about the theory of neutral 

state mixing and we restrict ourselves to only the formulas required in this thesis; for more 

information see Refs. [35, 36]. State mixing causes, for example, an initially pure beam 

of B 0 mesons to evolve into a time-dependent linear combination of B 0 and B0 mesons. 

There are four main quantities that describe the Bg-i3g system and its decays: the width 

difference !:1fq, the mass difference !:1mq, the CP violating mixing phase c/Jq and >..1 (not 

to be confused with the Wolfenstein CKM parameter >.. ~ 0.22). One begins by writing 

the heavy (H) or light (L) eigenstates of evolution in terms of the flavour states: 

(1.13) 

6 



with IPI 2 + lql 2 = 1. The ratio qfp is given in terms of the B~-B~ mixing matrix Mi_2 , by 

(1.14) 

under the condition ~r q « ~mq. Experimentally, there is no evidence for mixing-indiced 

CP violation in the B~-B~ systems, i.e. lq/pld,s ~ 1 [37]. The CP violating mixing phase 

is given by f/Yq = arg [ Mi_2] which in the SM and the Wolfenstein parametrisation of the 

CKM matrix can be written in terms of the UT angles as 

(1.15) 

Besides mixing-induced CP violation there also exists direct and indirect CP violation for 

B and B decays to a common CP eigenstate f. The corresponding time-dependent CP 

asymmetry is given by 

Acp(t) 
r(B~(t) ~f)- r(B~(t) ~ ]) 

f(B~(t) ~f)+ r(B~(t) ~f) 

S(f) sin(~mq t) - C(f) cos(~mq t), ..__.,. ..__...., 
indirect direct 

(1.16) 

where we have neglected the width difference ~rq = 2Re [Mi_2q;] /1Mf2 1. The oscillation 

frequency is set by the mass difference between the heavy and light states 

and the current world averages are [37]: 

~md = 0.507 ± 0.004 ps-1 
, 

Finally, if we define the observable quantity 

stat. sys. 
~ ~ -1 

~m8 = 17.77 ± 0.10 ± 0.07 ps . 

(1.17) 

(1.18) 

(1.19) 

where A denotes the decay amplitude, then the two CP asymmetries can be written as 

(1.20) 
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1.3 Effective Field Theories Of Weak Decays 

A very widely used tool in the theoretical description of B decay processes is the framework 

of effective field theories [35,38]. The framework simplifies the dynamics of the weak decay 

by relying on an operator product expansion (OPE) [39] of the weak vertices to separate 

the short and long distance physics. The OPE yields a concise effective Hamiltonian 

1-{eff built from a set of local effective operators Qi multiplied by renormalisation-scale 

dependent perturbatively calculable Wilson coefficient functions Ci (J-L): 

(1.21) 

where k is the momentum flowing through the W boson propagator. The separation of 

energy scales stems naturally from the fact that the weak decay of the B meson is governed 

by physics originating at well separated scales: Tnt, Mw » mb,c » Aqco » mu,d,s· It is 

the interplay of weak and strong effects that complicates the treatment of these decays, 

and must be dealt with appropriately. By taking into account radiative corrections to tree­

level and penguin diagrams, ultimately one obtains the effective Hamiltonian in terms of 

the set of all relevant local operators, which is closed under renormalisation. The full 

~B = 1 effective Hamiltonian is, for a final state containing aD quark 

(1.22) 

where make use of the standard short-hand notation for the product of CKM matrix 

elements _xlf) = V[iD Vub· The form of Eq. (1.22) is chosen by assuming the unitarity of 

the CKM matrix (1.9) to explicitly remove the dependence of the top quark CKM matrix 
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elements which originate from penguin loops. The effective operators are 

Current - Current3 : 

u - -
Q2 = (DU)v-A(Ub)v-A, 

QCD Penguin : 

(Db)v-A L)qq)v-A, 
q q 

Q6 = (Dibj)V-A I:(qjqi)V+A, 
q q 

Electroweak Penguin : 

- ~3 
Q9 = (Db)v-A ~ 2eq(qq)v-A, 

q 

Electromagnetic Dipole: 

Q71 = 
8

:
2 

ffib j)(J'ttv (1 + /5)Fttv b + 
8

:
2 

ffiD j)(J'ttv (1 - /5)Fttv b, 

Chromomagnetic Dipole : 

Qs9 = ::2 mb D(J'~'v(l + I5)Gttv b + ::2 mD D(J'~'v(l- /5)Gttv b, (1.23) 

where eq is the electric charge of the quark q in units of lei and Fttv is the photonic 

field strength tensor. The Wilson coefficients entering the effective Hamiltonian are es­

sentially effective coupling constants of the local effective operators. One can view the 

renormalisation of the matrix elements as an equivalent renormalisation of their Wilson 

coefficients. One makes use of renormalisation-group techniques to sum the potentially 

large logarithms f'ooJ ln Ma, / f-L2 that appear naturally in the evolution from weak scales 

O(Mw) to hadronic scales, such as 1-L f'ooJ mb. The operators (1.23) mix with each other 

under evolution and from the renormalisation-scale invariance of 1{eff one finds 

(1.24) 

where i' is the anomalous dimension matrix, which can be given as an expansion in the 

strong coupling via the renormalisation constant Z 

( ) 
_ 1 dZki 

/ji 1-L = zik d ln 1-L ' (1.25) 
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Solving Eq. (1.24) yields the evolution of the Wilson coefficients via the evolution matrix 

(; (J-t' J-to) 

~ lg(J.t) I ~?(g') 
U(J-t, J-to) = exp dg -(3( ') , 

g(J.to) g 
(1.26) 

where (J(g) is the QCD (3-function. To leading order one has 

(1.27) 

where V is the matrix that diagonalises ..y(o)T and -;y(o) is a vector of the eigenvalues of 

the leading order anomalous dimension matrix ..y(o) = V..Y~)TV- 1 . At NLO we have 

(1.28) 

and the evolution is a bit more complicated: 

(1.29) 

with 

j = vsv-1 

' 
(1.30) 

To NLO the required (3-function coefficients are (31 = 3
3
4 N; - 1

3° NcNJ - 2CFNJ and 

f3o = 1
3
1 Nc- ~Nf with Nf is the number of active flavours, Cp = (N;- 1)/(2Nc) and Nc 

the number of colours. Care must be taken in evolving through "thresholds" where the 

number of active flavours N1 changes; the evolution must then be taken in stages, as a 

change in N f changes the (3- function coefficients and the anomalous dimension matrices. 

If there is a flavour threshold f-tth between J-to and J-t, which changes the number of active 

flavours from N f to N 1 + 1, then one has to make the replacement 

(1.31) 

The effective Hamiltonian, combined with the renormalisation-group improvement of the 

perturbative series forms an exceptionally powerful framework. The matrix elements of 
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the local operators (Qi) are the subject of QCD factorisation theorems, such as that 

discussed in Chapter 6, which allow the calculation of B decay amplitudes. From these 

amplitudes one can construct observables such as branching fractions, CP asymmetries, 

and isospin asymmetries which can be investigated phenomenologically. 
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Chapter 2 

Vector Meson Light-Cone 

Distribution Amplitudes 

In this chapter we discuss light vector meson light-cone distribution amplitudes and via 

the (approximate) conformal symmetry of QCD present expressions for the distribution 

amplitudes up to twist-3. The method introduces a set of non-perturbative parameters 

which is reduced in size by invoking the QCD equations of motion to relate the two­

particle twist-3 distribution amplitudes to the three-particle twist-3 and two-particle twist-

2 distribution amplitudes. In our analysis we include all SU(3)F-breaking effects and 

G-parity violating terms thus allowing one to fully differentiate between p, K* and cp 
mesons. Moreover, a non-zero quark mass induces a mixing between twist-2 and twist-3 

parameters under a change of renormalisation scale f-L· To simplify notation we explicitly 

consider the K* meson, with quark composition sij where q = { u, d}. 1 

There are two main applications of meson distribution amplitudes that motivate their 

study: 

• they are directly applicable to the theoretical description of exclusive decay processes 

via QCD factorisation theorems, which require the distribution amplitudes as a non­

perturbative input, see Chapter 6. 

1 The notation in this thesis, K* being a (sij) bound state, is in contrast to the standard labelling, 
according to which K*0 = (ds) and K*0 = (sd). This is the standard notation used for light-cone 
distribution amplitudes where K* always contains an s quark, and K* an 8 quark. This distinction 
is relevant because of a sign change of G-odd matrix elements under (sij) +-> (qs). This notation also 
applies to calculations of form factors and other matrix elements which involve light-cone distribution 
amplitudes. 
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• they are also applicable to the determination of transition form factors from the 

light-cone sum rule approach and as such are indirectly applicable to the same 

QCD factorisation theorems for which the transition form factors are also required, 

see Chapters 3 and 5. 

In Chapter 4 we calculate, from QCD sum rules, numerical values for the leading twist-2 

and twist-3 distribution amplitude parameters defined here. Standard notations used, 

such as the light-cone coordinates, are given in Appendix A. The material covered in this 

chapter partially follows that of Ref. [40]. 

2.1 Introduction 

Hadronic light-cone distribution amplitudes (DAs) of light mesons were first discussed in 

the ground-breaking papers of Brodsky, Lepage, and others, see Refs. [41-48] and play an 

essential role in the QCD description of hard exclusive processes [49, 50]. The amplitudes 

that describe such processes factorise in the asymptotic limit Q2 
rv 1/x2 

-t oo -where 

Q2 is the momentum transfer and x the transverse separation of the partons - and are 

dominated by contributions from near the light-cone. The factorisation is given by the 

convolution of a hard-scattering kernel, calculable in perturbation theory, and process­

independent, universal, non-perturbative DAs. 

The study of hadronic DAs has a long history. The simplest and first to be investigated 

were the twist-2 DA of the 1r [43,44,46,47]. Higher twist DAs of the 1r, alongside those 

of the other pseudoscalar mesons followed [51]. For vector mesons, the leading-twist DAs 

of the p were first investigated by Chernyak and Zhitnitsky in Ref. [52] and later in 

Refs. [53,54]. The formalism of higher twist-3 and twist-4 contributions, including meson 

mass corrections, was investigated by Ball et al. in Refs. [55-58]. 

The DAs of the K* (K) differ to those of the p (1r) due to the non-zero strange quark 

mass which yields SU(3)p-breaking and G-parity violating corrections from a number of 

different sources.2 The study of the various contributions span many publications: 

• explicit quark mass corrections to DAs and evolution equations are generated by 

the QCD equations of motion (EOM) and only affect higher twist DAs. The con­

tributions for vector mesons were calculated in Ref. [55] up to twist-3, and those to 

2 Perfect SU(3)F symmetry is realised for equal u, d, and s quark masses. 
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the evolution equations for vector mesons in Ref. [40] and flavour-octet pseudoscalar 

mesons Ref. [57]. 

• G-parity violating contributions, which are proportional to ms - mq and hence 

vanish for equal quark masses, i.e. for p and</>, were investigated for twist-2 DAs in 

Refs. [52,55,59-62] and for twist-3 DAs in Ref. [40]. 

• SU(3)F-breaking of non-perturbative hadronic parameters entering the DAs. The 

effects for the twist-2 parameters are known from Refs. [52, 55, 59], twist-3 from 

Ref. [40] and twist-4 from Ref. [58]. The twist-3 vector meson parameters are 

discussed in Chapter 4 where we include all these effects in a determination of 

numerical values using QCD sum rules. 

The objects which define the DAs are vacuum-to-meson matrix elements of non-local 

operators at strictly light-like separations z2 = 0 [52]. Two examples we shall encounter 

are 

(Oiq(z)r[z, -z]s( -z)IK*(p, -\)), (Oiq(z)[z, vz]gsG1w(vz)r[vz, -z]s( -z)IK*(p, -\)), 

(2.1) 

where r is a general Dirac matrix, ,\ = {II, ..L} is the polarisation of the K* meson and the 

quark fields are taken at symmetric separation for simplicity.3 The first (second) matrix 

element above corresponds to a two- (three-) particle Fock state. To render the matrix 

element gauge invariant the path-ordered gauge factor is included 

(2.2) 

For convenience we work in the fixed-point gauge4 

(2.3) 

and by choosing x 0 = 0 we have [x, -x] = 1. The gauge factor will be implied unless 

otherwise stated. The DAs are dimensionless functions of the collinear momentum frac­

tions of a fixed number of constituents within a meson, at zero transverse separation. For 

3The Dirac matrices r = {aIL", i')'5, 1} give rise to so-called chiral-odd distributions because they are 
chirality-violating. Likewise, distributions generated from r = {TIL, fJLfd are chiral-even. 

4 also known as the Fock-Schwinger gauge. 
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two-particle DAs the constituent strange quark and antiquark ( q) share u and u = 1 - u 

of the meson momentum p respectively. For three-particle DAs we have Q = (a1 , a 2 , a 3 ) 

corresponding to the momentum fractions carried by the strange quark, antiquark ( q) and 

gluon, respectively. For a minimum number of constituents, the DAs are related to the 

Bethe-Salpeter wavefunction ¢88 by integration over the transverse momenta 

(2.4) 

where p, is the renormalisation scale. The price to pay for integrating out k1.. below 

p, is a renormalisation-scale dependence of the DAs governed by renormalisation-group 

equations. The DAs have to be evaluated at the scale p,2 "" x- 2 i.e. of the order of the 

deviation from the light-cone [63]. 

Non-local operators that appear at finite Q2 or mass scales are expanded near the light­

cone x2 =/:- 0 as an OPE in terms of the renormalised non-local operators on the light-cone 

- the light-cone expansion [63]. 5 After taking matrix elements the resulting Lorentz­

invariant amplitudes are matched to the definitions of the DAs with the coefficient func­

tions of the expansion taken at tree-level, to leading logarithmic accuracy. 

The structure of vector meson DAs follows the same pattern as the nucleon structure 

functions and can be classified in the same way [64]. They are described by separate DAs 

for each polarisation and thus there are more vector meson DAs than pseudoscalar DAs. 

Lastly, we briefly mention some other DAs. Flavour-singlet pseudoscalar meson DAs are 

complicated by the U(1)A anomaly of QCD and are discussed in Chapter 5 in the context 

of the B ----> r/') transition form factor [65]. Much work has been done concerning the 

DAs of heavy mesons, such as the B meson [66, 67]; indeed, the DAs of B mesons enter 

the QCD factorisation framework of radiative and non-leptonic B decays, as discussed 

in Chapter 6, and a variant light-cone sum rule method devised in Ref. [68]. There also 

exist DAs of the photon which describe its "soft" hadronic components, along with the 

usual "hard" electromagnetic components [69]. The photonic DAs can be important in, 

for example, B ----> VI' decays [70] as investigated in Chapter 7, and B ----> f'eV [71, 72]. 

Finally, the field of baryon DAs is also active and many of the tools and concepts we cover 

in this thesis find application there, see for example Ref. [73] for a review. 

5The expansion is facilitated by using light-cone coordinates which are given in Appendix A. 
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2.2 The Conformal Expansion 

The standard determination of meson DAs proceeds by making use of the conformal 

symmetry of massless QCD at tree-level. The conformal expansion is analogous to the 

partial wave expansion of wave functions in quantum mechanics in spherical harmonics 

'1/J(r, (), 4>) ----> R(r) Lm,l Y~((), c/>). The expansion uncovers a simple multiplicative renor­

malisation at leading-order, and as such different partial waves, with different conformal 

spin, do not mix under a change of renormalisation scale. At next-to-leading-order this 

is not the case, because strictly speaking the conformal symmetry of a quantum theory 

requires its f3 function to vanish. Proximity to the conformal limit in QCD is therefore 

governed by the value of the strong coupling constant, becoming true as a 8 ----> 0 and we 

pass to the free theory.6 Using the QCD equations of motion we can elucidate this mixing 

order-by-order in the conformal expansion. 

The application of conformal symmetry to exclusive processes has recieved a lot of atten­

tion in the literature, see Refs. [7 4-78]. The main benefit of the conformal expansion is the 

systematic separation of the longitudinal and transverse degrees of freedom in meson DAs. 

The former correspond to the longitudinal momentum fractions and is given by irreducible 

representations of the relevant symmetry group, SL(2,IR). The latter are integrated out to 

yield a renormalisation-scale dependence of the DAs, described by renormalisation-group 

equations. Here we focus on the most important points, see Ref. [79] for a detailed review. 

2.2.1 Conformal Group 

The conformal group is defined as all transformations that change only the scale of the 

metric and as such preserve angles and leave the light-cone invariant g~v(x') = w(x)gJ.tv(x); 

the spacetime interval ds2 = 9~-tv(x) dxJ.tdxv is conserved up to scaling. These transfor­

mations form a generalisation of the Poincare group. The full conformal algebra in 4 

dimensions includes fifteen generators 

PJ.t ----> 4 Translations, 

MJ.tV ----> 6 Lorentz rotations, 

D ----> 1 Dilatation, 

KJ.t ----> 4 Special conformal translations. (2.5) 
6 It must be noted that mass terms break the conformal expansion immediately at the classical level. 

This does not upset the conformal expansion, however. See Ref. [79] for details. 
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Our hadronic picture is of partons moving collinearly in, say the P11- direction, existing 

near the light-cone. We therefore restrict the fundamental fields of the conformal group 

to the light-cone cll(x) ---+ cll(az), where a is a real number, and we assume fields to be 

eigenstates of the spin operator 

(2.6) 

so as to have a fixed Lorentz-spin projections in the zJJ- ("plus") direction :E+_cll(az) = 
s cll(az). For leading-twist operators this is automatically satisfied and for higher-twist 

operators projections are used to separate different spin states, as we shall discuss shortly. 

The full conformal symmetry (2.5) is now modified and it turns out that the resulting 

group of transformations form the special linear group SL(2,IR), or so-called collinear 

conformal group, given by just four generators. They are written in standard form by 

constructing the following linear combinations 

which leads to the familiar relations 

L_ = L1- iL2 = ~K-, 
~ 

E = "2(D- M+-). 

The operators act on the fundamental fields as 

[L+, cll(az)] 

[L_, cll(az)] 

[L0 , cll(az)] 

[E, cll(az)] 

-8acll(an), 

(a28a + 2ja)cll(an), 

(a8a + j)cll(an), 
1 

2(l- s)cll(an), 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

where t = l - s is the twist,7 l is the canonical mass dimension,8 s the Lorentz-spin 

projection, and j = H l + s) the conformal spin of the field ell. The conformal spin 

specifies the representation of the collinear conformal group. The operator E commutes 

with all Li and therefore twist is a good quantum number for each conformal field. The 

7 strictly it is the collinear twist which is defined as "dimension minus spin projection on the positive 
direction". There also exists geometric twist which is defined as "dimension minus spin". 

8 For example, l = 3/2 for quarks and l = 2 for gluons. 
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Casimir operator commutes with all Li and is given by 

L [Li, [Li, <I>(az)]] = j(j- 1)<I>(az) = L2<I>(az). (2.13) 
i=0,1,2 

At the origin of the light-cone a= 0 and the field <I>(O) is killed by the lowering operator 

L_ and as such has the minimum spin projection Jmin of states of conformal spin j. One 

can define a conformal operator On = <I>(O) by requiring that it transforms just as the 

fundamental field, Eqs. (2.10 - 2.12), and is killed by the lowering operator L_. The 

raising operator L+ can be repeatedly applied to <I>(O) to give 

(2.14) 

k 

where On,n = On and the subscript n defines the conformal tower of states, of conformal 

spin Jmin < Jmin + k < oo, generated by the collinear conformal algebra. This is an infinite 0 

dimensional representation of the collinear conformal group. 

2.2.2 States of Definite Spin 

Now the main language of the collinear conformal group is defined, if one can relate the 

fundamental fields <I> to the operators of hard processes in QCD one can export all the 

machinery above and immediately reap the benefits. To this end, consider the non-local 

two-particle operator at light-like separation (2.1) and expand at small distances 

1 +--> 

q(z)rs( -z) = L k! q(O)(D ·z)krs(O), 
k 

(2.15) 

__, 
where DJL=DJL Dw The question is, how does one express these local operators in 

terms of conformal operators and thus separate all the different twist contributions? To 

proceed one decomposes the quark fields into definite Lorentz-spin components using the 

projection operators 

rr+ + rr_ = 1. (2.16) 
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which project onto the "plus" and "minus" components of the spinor respectively. Using 

the generator of the spin rotations of a spinor field (2.6) one can show 

'1/J+=II+'lj;, ..._____.._. 
s = +1/2 
j=1 

'1/J_=IT_'lj;. ..._____.._. 
s = -1/2 
j = 1/2 

(2.17) 

The composite operators (2.15) have conformal spin projection j = jq + j 8 + k where the 

subscripts correspond to the separate quark fields. The composite operators are ordered 

by increasing twist 

t=3 

q_fs_ . ,___., 
t=4 

It can be shown that the corresponding local conformal operators are 

Q~=2(x) 

Q;=3(x) 

Q~=4(x) 

(io+t [ q(x)'y+c~/2 (.D+ /8+) s(x) J , 

(io+)n [q(xh+/'_l 'Y-p~I,o) (.D+ /8+) s(x)] 

(io+)n [q(x)'y_c~l2 (.D+ fo+) s(x)] , 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

where a+ =D+ + D+, c:(x) are Gegenbauer polynomials and p~r,s)(x) are Jacobi polyno­

mials. There is another twist-3 operator corresponding to Eq. (2.20) with the replacement 

p~l,o)(x) ---t P~0 ' 1 )(x). One can now connect firmly to QCD with the specific example of 

the leading-twist operator; consider again Eq. (2.1) and specify the twist-2 Dirac matrix 

r ---t 'YJJ. (projected onto zJJ.) and define the DA as 

(2.22) 

Then, using Eq. (2.15) and comparing the result to Eq. (2.19), one finds 

(2.23) 

where we introduce the shorthand ~ = u - il = 2u - 1, and ( (Q~=2)) are the reduced 

matrix elements of the operator Q~=2 . The Gegenbauer polynomials form a complete set 

of orthogonal functions over the weight function 6u(1 - u) in the interval 0 < u < 1 

1l d - C3f2(C) c3f2(t) = b (n + 1)(n + 2) 
0 U UU n ~ m ~ mn 4(2n + 3) ' (2.24) 
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and so one can invert (2.23) to find 

(2.25) 

where the Gegenbauer coefficients a~(f.l) are related to the reduced matrix elements, 

Eq. (2.23), as 
II - 2(2n + 3) t=2 

an(f.l) - 3(n + 1)(n + 2) ( (Qn ) ) ' a~= 1. (2.26) 

The result is that the conformal symmetry has separated the longitudinal degrees of 

freedom - as contained in the orthogonal Gegenbauer polynomials which are function of 

the momentum fraction u for the twist-2 distribution - from the transverse degrees of 

freedom, which now show up as the renormalisation-scale dependence of the Gegenbauer 

coefficients at The Gegenbauer coefficients contain the non-perturbative information of 

the DA and, for the leading-twist DA, are of conformal spin n + 2. The higher-twist 

two-particle DAs are expanded analogously in P~1 '0) and P~o,l) for twist-3 and C~12 for 

twist-4, see Eqs. (2.20) and (2.21) respectively. The explicit expression for the DA of an 

m-particle state with the lowest possible conformal spin j = j 1 + · · · + Jm, the so-called 

asymptotic distribution amplitude, is given by 

(2.27) 

where 2.:;=1 O:k = 1 [77]. For the twist-2 two-particle DA considered j = 1 and we recover 

the weight function 6u(1- u). Analogously, for a multi-particle DA, states higher in con­

formal spin are multiplied by polynomials orthogonal over the weight function Eq. (2.27). 

The matrix element Eq. (2.22) with the chiral-odd Dirac matrix r -t CJzp starts at twist-2 

also, and gives rise to the second two-particle twist-2 DA 

(2.28) 

The expansion of DAs in terms of an infinite sum of partial waves, as in Eq. (2.28), is 

very general, and is valid at the level of operators. In practice the concept of G-parity 

allows one to classify which Gegenbauer coefficients contribute for specific matrix elements 

of those operators. The G-parity operator g is defined as g = Ce-i1rT2 where T2 is the 

isospin generator of the 2 axis and C is the charge conjugation operator. G-parity is the 

generalisation of charge conjugation to particle multiplets, for example, Qln±,o) = -ln±,o) 
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and is conserved in QCD. It effectively swaps quarks for anti-quarks and therefore for equal 

mass quarks u ~ u and consequently, for 1r, p, wand¢, the odd Gegenbauer coefficients 

a2n+l vanish. 

2.3 Two-Particle Twist-2 Distribution Amplitudes 

As mentioned in the last section, there are two two-particle matrix elements that begin 

at twist-2 [55]: 9 

(2.29) 

(2.30) 

All other DAs in the above relations are of twist-3 or -4 and all terms in the light­

cone expansion of twist-5 and higher are neglected. The twist-4 DAs are shown for 

completeness. The normalisation of all DAs is given by 

11 

ducp(u) = 1. (2.31) 

The conformal expansions of the leading-twist DAs 1>~;K* and 1>tK· are given by Eqs. (2.25) 

and (2.28) respectively. In the local limit xJ.L ---+ 0 the matrix elements (2.29) and (2.30) 

9The vacuum-vector meson matrix elements vanish for r = i-y5 because it is impossible to construct a 
pseudoscalar quantity from the three available 4-vectors pi-', zi-L and e~>.). 
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reduce to the longitudinal J!. and transverse Jf<. decay constants; 

(Ojq(O)'YILs(O)jK*(P, -\)) 

(Ojq(O)o-ILvs(O)jK*(P, -X)) 

(2.32) 

(2.33) 

Note that f R• (J-L) is scale-dependent because the tensor current is not conserved. N umer­

ical values of the decay constants are discussed in Chapter 4. The above DAs are related 

to those defined in Refs. [55, 56] by 

,.~,11(-l) - ,.!, 
'f'2;K* - 'f'll(-l) ' 

,.~,11(-l) - "' 
'f'4;K* - 1-l'l.(T) ' 

,.~,II - h(t) 
'f'3;K* - II ' 

,.j,_l - (v) 
'f'3·K* - 9_t ' 

' 

.,,II - g 
'f'4·K* - 3' 

' 

(2.34) 

2.4 Two-Particle Twist-3 Distribution Amplitudes 

The two-particle twist-3 DAs c~Ji:f. have already been defined in Eqs. (2.29) and (2.30). 

There are two more two-particle, DAs, 1/Jt~., defined as: 10 

' 

1 jll va(3 (>..) td i{p·z.J,_l_ ( ) (2 35) 2 K•mK•tiL ev PaZ(3 lo ue 'f'3;K• u ' . 

(Ojq(z)s( -z) jK*(P, -\)) - ij_k. ( e(>..) · z )m~.1
1 

du eiep-z1/J~;K* ( u) . (2.36) 

The normalisation is given by 

1 fll(_i) 

1 d .,,ll(.l) ( ) = 1 _ ~ m 8 + mq 
U 'f'3·K• U .l(ll) ' 

0 , fK• mK• 
(2.37) 

which differs from Ref. [55], where all DAs were normalised to 1; here we keep the full 

dependence on the quark masses. 

10In the notations of Ref. [55], '1/Jf;K. = {1- (ff<./f~.)(m. + mq)/mK•}gc;_), '1/J~;K• = {1-

(!~. / Jf<.)(ms + mq)/mK• }h~(). 
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2.5 Three-Particle Twist-3 Distribution Amplitudes 

There are also three three-particle DAs of twist-3: 

(Oiq(z)g/;{3z( vzhz/'58( -z) IK*(P, A)) 

(Oiq(z)gsG{3z(vz)i')'zs( -z)IK*(P, A)) 

(Oiq(z)gsGz{3( vz)O" zf1S( -z) IK*(P, A)) 

II ( )2 (-\)-II ( ) ( ) f K•ffiK• p · Z e j_{1<l>3;K V, p · Z + ... , 2.38 

! II ( )2 (-\) II ( ) K•mK· p · z ej_13 <I>3;K v,p · z + ... , 
JJ<.m'i.(e(-\) · z)(p · z)<I>~K·(v,p · z) + ... , 

where the dots denote terms of higher twist and we use the short-hand notation 

(2.39) 

with .F(g_) being a three-particle DA and the integration measure Vg_ is defined as 

(2.40) 

The twist-3 three-particle DAs correspond to the light-cone projection 'YzGzj_ and O" j_zG j_z, 

respectively, which picks up the s = ~ component of the quark fields and the s = 1 com­

ponent of the gluonic field strength tensor. According to Eq. (2.27), the (normalised) 

asymptotic DA is then given by 360 o: 1 o:2 o:~. To NLO in the conformal expansion, each 

three-particle twist-3 DA involves three hadronic parameters, which we label in the fol­

lowing way: (,"" are LO and w, A NLO parameters. ( and w are G-parity conserving, 

whereas"" and A violate G-parity and hence vanish for mesons with quarks of equal mass, 

i.e. p, w and rp. We then have 

The parameters defined above are related to those of Ref. [55] by: 

;-A _ ;-II 
'>3 - '>3l 

([ = wf/14, 
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({' = w~/14, 

;-II WA -;:;;II 
'>3 1,0- 3. (2.42) 



G-parity breaking terms were not considered in Ref. [55]. For equal mass quarks, ~Pt~. 
are antisymmetric under o:1 t--t o:2 , whereas ~~;K• is symmetric. All these parameters can 

be defined in terms of matrix elements of local twist-3 operators. For chiral-odd operators, 

for instance, one has 

(OiiJaz,gsGz,siK*(P, .\)) 
3 

(OiiJazdiDz, gsGzels- 7 iaziJaz,gsGz,siK*(P, .A)) 

(OiiJiDzaz,gsGz,s- iJaz,gsGz,iDzsiK*(P, .\)) 

f l. 2 ( (.\) ) ( ) _l K•mK• e . Z p. Z K,3K* ' 

f l. 2 ( (.\) ) ( )2 3 \ _l 
K•mK• e . Z p. Z 28 /\3K*' 

1 
j-}(.m~.(e(.\) · z)(p · z)2 

14 
wtK•; 

the formulas for chiral-even operators are analogous. In Chapter 4 we calculate numerical 

values for all the parameters in Eq. (2.41) from QCD sum rules. 

2.6 Relations Between Distribution Amplitudes 

The QCD EOM are a crucial ingredient in simplifying the kinematic contributions of 

different operators, a task which is facilitated by the fact that they are preserved to 

all orders in the conformal expansion. The EOM relate via integral equations the two­

particle twist-3 DAs, defined in Sections 2.3 and 2.4, to the two-particle twist-2 DAs, 

Eqs. (2.25) and (2.28), and three-particle twist-3 DAs, defined in Section 2.5. We do 

not quote the EOM themselves for which we refer the reader to the literature. The 

framework for the procedure was developed in Ref. [77] based on deriving the EOM for 

non-local light-ray operators [63]. The operator relations are then sandwiched between 

the vacuum and meson states and the definitions of the DAs used to convert them into 

integral equations, making use of partial integration to remove explicit dependence on 

co-ordinates and momentum 4-vectors. The resulting expressions are then solved order­

by-order in the conformal expansion, see Ref. [79] for an overview. The EOM contain 

mass dependent contributions ex ms ± mq that were calculated in Ref. [55]. In the present 

analysis, G-parity breaking terms of the three-particle twist-3 DAs are included, which 

then, via the EOM, impact on the two-particle DAs [40]. The resulting integral equations 

24 

0 



are: 

1u 1 11 1 
ii dv --:: Y ( v) + u dv - Y ( v) , 

0 v u v 

-
2

1 ~ [ r dv ~ Y(v) -11 

dv ~ Y(v)] + ff~· ms + mq ¢{K.(u) 
Jo v u v K• mK· 

(2.43) 

with 

and 

1u 1 11 1 
ii dv--::O(v)+u dv-O(v), 

0 v u v 

1 [1u 1 ( ) 11 
1 ( )] f R• ms + mq .l ( ) -

4 
dv --:: f1 V + dv - f1 V + -

1
-
1 

</>2;K• U 
0 V u V fK· mK• 

d 1u 1u 1 II + -d da1 da2- <I>3;K• (g) 
u 0 0 0'.3 

1u 111 

1 ( d d ) - 11 + da1 da2 - -d + -d <I>3;K• (g) 
0 0 0'.3 0'.1 0'.2 

(2.45) 

with 

O(u) 

(2.46) 

Using Eq. (2.41), and the corresponding relations for twist-2 DAs, one obtains expressions 

for the twist-3 two-particle DAs, which are valid to NLO in the conformal expansion. As 

discussed in Ref. [55], the structure of this expansion is complicated by the fact that 

these DAs do not correspond to a fixed Lorentz-spin projection s of the quark fields. The 
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resulting expansion is in c~12 (~) for 'lj;t~. and c;/\~) for 4>t~.: 

(,i>~;K•(u) = 3e + ~ ~(3e- 1)af + ~ e(5e- 3)at 

( 
15 j_ 3 j_ ) 2 5 j_ ( 2 4) + 2 r.3K* - 4 ).3K* ~(5~ - 3) + S W3K• 3- 30~ + 35~ 

+ ~ ms + mq fl. {1 + 8Ca11 + 3(7- 30uu)a 11 + Clnu(1 + 3a11 + 6a 11 ) 
2 m f j_ "' 1 2 "' 1 2 

K• K• 

-~ ln u(1 - 3a~ + 6a~)} 

3m - m J 11 { 
- -2 ~ q ~~· ~ 2 + 9~a~ + 2(11- 30uu)a~ + ln u(1 + 3a~ + 6a~) 

K• K• 

+ ln u(1 - 3a~ + 6a~)} , (2.47) 

11 { ( af 5 ..L ) 3/2 (at 5 ..L ) 3/2 1 ..L 3/2 } 'lj;3;K•(u) 6uu 1 + J + 3"'3K* 01 (~) + 6 + 18 w3K* C2 (~)-
20

>.3K*C3 (~) 

m + m f'1
• { + 3 s q ~~ uu(1 + 2~a~ + 3(7- 5uu)a~) + u ln u(1 + 3a~ + 6a~) 

ffiK• K• 

+u ln u(1- 3a~ + 6a~)} 

-3 ms- mq fl. {uu(9a11 +we all)+ u ln u(1 + 3a11 + 6a 11 ) 
m f j_ 1 "' 2 1 2 

K• K• 

-u ln u(1 - 3a~ + 6a~)} , (2.48) 

"''..L ( ) 6uu { 1 + (~all + 20 r.ll ) C3/2(C) 'f'3;K• U 3 1 9 3K* 1 '> 

(
1 11 10 11 5 11 5 ~11 ) 3/2 (1~11 1 11 ) 3/2 } 

+ (3a2 + g(3K• + 12 W3K• - 24 W3K• C2 (~) + 4).3K* - B).3K• C3 (~) 

+ 6 ms + mq f~· { uu(2 + 3~af + 2(11 - 10uu)at) + u ln u(1 + 3af + 6at) 
ffiK• fK• 

+u ln u(1 - 3af + 6at)} 

-6 ms- mq f~. { uu(9af + 10~at) + uln u(1 + 3af + 6at) 
ffiK• fK• 

-u ln u(1- 3af + 6at)}, (2.49) 
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~ (1 + t2) + ~ t3all + {~all + srll } (3t2 - 1) + {s/'1:11 - 1
5 ,\11 4 '> 2 '> 1 7 2 '>3K• '> 3K• 16 3K* 

15 -II } 2 { 9 II 15 II 15 -11 } 4 2 +S AaK• ~(5~ - 3) + 
112 

a2 + 
32 

WaK•-
64 

WaK• (35~ - 30~ + 3) 

+ ~ ms + mq f~· {2 + 9~af + 2(11- 30uu)at 
2 mK• fK· 

+ ( 1 - 3af + 6at) ln u + ( 1 + 3af + 6at) ln u} 
3 ms - mq Jf<. { ( .l .l - 2 - 1-1 2~ + 9 1- 2uu)a1 + 2~(11- 20uu)a2 

mK• fK• 

+(1 + 3af + 6at) ln u- (1- 3af + 6at) ln u} . (2.50) 

These expressions supersede those given in Ref. [55] where G-parity violating terms in 

1'1:3 and ,\3 were not included. The DAs given above now contain a minimum number 

of parameters which can be determined from one's favourite method, such as QCD sum 

rules or Lattice QCD. We briefly mention that the matrix elements of QCD operator 

identities can also be used to relate twist-2 and twist-4 DA parameters to each other; such 

investigations were performed for the G-partiy violating twist-2 K* parameters a~'.L(K*) 
in Refs. [60, 62]. 

2. 7 Evolution Equations 

The scale dependence of the leading-twist DAs of Eqs. (2.25) and (2.28) can be investigated 

using perturbation theory. The resulting renormalisation-group equation is the Efremov­

Radyushkin-Brodsky-Lepage (ER-BL} evolution equation [43-45,47] 

(2.51) 

which completely specifies ¢( u, J-l) given 1>( u, J-lo). The kernel is given by an expansion in 

V( 0 ( )) - as(l-l)v(o)( ) (as(J-l))2v(l)( ) u, V, 0:8 J-l -
4

71" u, V + 
4

71" u, V + .... (2.52) 

The evolution equation (2.51) can be solved readily at leading-order using the conformal 

expansion [74, 76, 78, 80]. This amounts to finding its eigenfunctions, which we already 

know to be Gegenbauer polynomials, and using this fact it can be shown that the leading-
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order kernel can be written as 

V(o)(u v) = -6uu ~ 4(2n + 3) "'(o)C312(2u- 1)C312 (2v- 1) 
' ~ (n + 1)(n + 2) 'n n ~ ' 

(2.53) 

giving the 10 anomalous dimensions of the Gegenbauer coefficients In· The renormalisa­

tion is hence multiplicative at leading-order 

(2.54) 

where L = a 5 (J-t2 )/as(J-t6). The one-loop anomalous dimensions of the twist-2 Gegenbauer 

coefficients are [23, 81] 

"'II(O) 
'(n) 

.l(O) 
l(n) 

(
n+

1 
1 3 1 ) 

8°F f; k- 4 - 2(n + 1)(n + 2) 

8CF L--- . (

n+
1 1 3) 

k=1 k 4 

At next-to-leading-order the scale dependence is more complicated [82, 83] 

n-2 

a~LO(J.t2) = an(J.t5)E~LO + :; L ak(J-t5)L'Yko) /(2f3o)d~12' 
k=O 

where 

ENLO = L 'Yko) /(2{30 ) 1 + In f3o - In fJ1 ( ( 2) _ ( 2)] 
{ 

(1) (0) } 

n 8nf3J as f1 as J.lo . 

(2.55) 

(2.56) 

(2.57) 

(2.58) 

1~1 ) are the diagonal two-loop anomalous dimensions which are available for the vector 

current [84], and the tensor current [85]. The mixing coefficients d~12 are given in closed 

form in Refs. [82,83] where the formulas are valid for arbitrary currents by substitution of 

the corresponding one-loop anomalous dimension. For the lowest moments n = {0, 1, 2} 

one has 

"'11(1) =OO 
10 ' 

11(1) _ 23110 _ 512 N 
11 - 243 81 f' 

11(1) _ 34072 _ 830 N 
12 - 243 81 f' 

(2.59) 

.1(1) _ 724 _ 104 N 
'Yo - 9 27 1 ' 

.l(1) _ 38044 _ 904 N (2.60) 
12 - 243 81 f' 
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and 

dll(l) = 35 20 - 3,6o (1 - L50/(9f3o)-1) 
20 9 50 - 9,60 ' 

d.l(l) = 28 16- 3,6o (1 _ L40/(9f3o)-1) . ( 2.61 ) 
20 9 40- 9,60 

It is evident from Eqs. (2.55) and (2.56) that the anomalous dimensions of the Gegenbauer 

coefficients increase logarithmically with conformal spin. This implies that as 11 -----+ oo the 

coefficients higher in conformal spin are damped and the DA approaches its asymptotic 

form (2.27) 

lim ¢2;K• ( u, 112
) -----+ 6uu. (2.62) 

J.L-+00 

This limit offers a great simplification in that if it can be verified, experimentally of other­

wise, that a given process is well described by the asymptotic form of the DA at hadronic 

scales, there are no non-perturbative parameters to be determined. The convergence of 

the conformal expansion in general has to be verified case by case and there is no a priori 

reason why it should do so. In practice one has to truncate the expansion at some order in 

conformal spin, usually n = 2, and as this constitutes an approximation it thus introduces 

a model dependent assumption. In Ref. [86] for example, these issues are discussed and 

an alternative method suggested. 

The scale dependence of the three-particle twist-3 DAs can in principle be deduced from 

evolution equations for the non-local operators in (2.39) using the techniques of Ref. [63]. 

The evolution of the parameters in (2.41) could then be found by projecting out the 

desired conformal spin, as for the leading-twist DA. Another approach is to consult the 

literature of results for the corresponding nucleon structure functions [87]. The three­

particle twist-3 parameters (~K·, fi:i-~1., wfK· and >.fK· renormalise multiplicatively in the 

chirallimit, and the others mix with each other. For non-zero strange quark mass, there is 

additional mixing with twist-2 parameters with the mass corrections featuring as ms ± mq 

depending on the G-parity of the parameter. Here, we write down explicitly only the 

renormalisation-group improved relations for the above 5 parameters. The relations can 

be written in compact form as 

3 

Pi(/12) = £('YP)i/f3o ~(115) + L cij (£bQ)ij/fJo- L('Yp);/f3o) Qij(/15)' 
j=l 
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where the parameters are given by: 

p 

"(p 

{! II ;-II fll II fl_ l_ fl_ 1_ fl_ ,1_ } 
K• '33K*' K• K3K•' K• K3K•' K• W3K•' K• "'3K* ' 

fR• {ms±mq, (ms~mq)af, (ms±mq)af}, 
mK· 

! II 
K• { ( ) II ( ) II} -- ms - mq, ms + mq al' ms - mq a2 ' 

mK· 

! II 
K• { ( ) II ( ) II} -- ms + mq' ms - mq al' ms + mq a2 ' 

mK· 

{ 
77 77 55 73 104 } 
9'9'9'9'9 ' 

{ 
16 88 } { 68 86 } 3' 8, 9 ' (!Qh,4,5 = 4, 9' 9 ' 

2 6 
- 0 
29 25 
2 6 

29 25 
0 

c 4 12 
0 -

19 65 
14 42 12 
- --
37 25 13 
1 1 4 

--
85 5 15 

(2.64) 

(2.65) 

We refrain from delving into a full discussion here of the mixing including the remaining 

parameters .At w~, and guide the reader to Appendix A of Ref. [40] for details. 
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Chapter 3 

QCD Sum Rules 

The original QCD sum rule approach was introduced by the revolutionary work of Shif­

man, Vainshtein and Zakharov in Refs. [13-15], and has proven itself to be one of the most 

effective tools for determining non-perturbative parameters of low-lying hadronic states. 

It does so in terms of a finite number of universal non-perturbative input parameters, 

and as such has great predictive power. The approach has been massively successful in 

ascertaining a wide range of phenomena of non-perturbative origin. QCD sum rules are 

particularly advantageous for B physics because the presence of an intrinsic heavy-quark 

mass scale mb provides the necessary conditions required for the application of the short­

distance OPE or light-cone expansion of relevant correlation functions, from which the 

relevant quantities can be extracted. The heavy-quark limit mb ~ oo is not necessary 

and sum rules can be derived in full QCD for finite mb. Despite its successes, the method 

is limited by an inherent irreducible systematic uncertainty of 20 - 30%. However, such 

is the relative ease of the QCD sum rule method, as compared to, for example, Lattice 

QCD, that its place in the tool-box of the QCD practitioner is ensured. 

Firstly we discuss step-by-step the methodology of the original QCD sum rule approach. 

Secondly we discuss its modification to accommodate non-local correlation functions which 

aides the extraction of DA parameters of beyond leading-order in conformal spin. Thirdly, 

we outline an extension of the original approach; light-cone sum rules. All three methods 

find application in this thesis: 

• in Chapter 4 we make use of the non-local formalism to extract numerical values 

for the leading twist-2 and twist-3 DA parameters defined in the Chapter 2. 
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• In Chapter 5 we calculate important contributions to the semileptonic B -+ r/') 

transition form factors in light-cone sum rules. 

• An example of the original method is presented in the last section of this chapter, 

section 3.3, where we calculate the as corrections to the gluon condensate contribu­

tion from a local correlation function. 

We focus solely on the points required for future chapters. For more information on sum 

rules, see for example Refs. [88-91]. 

3.1 SVZ Sum Rules 

The original sum rule method, which we refer to as SVZ sum rules, parameterises un­

known non-perturbative QCD vacuum effects in terms of the so-called universal vacuum 

condensates. These quantities are vacuum expectation values of local operators Oi that 

vanish in perturbation theory by definition and are ordered by their dimension D. 

The calculation of a QCD sum rule starts from the calculation in QCD of a suitable corre­

lation function in which the mesons are represented by interpolating currents possessing 

the correct quantum numbers. The method proceeds by equating two different represen­

tations of the correlation function. The first is obtained by performing a short-distance 

OPE, the result of which is matched to a second representation, in terms of a dispersion 

relation over physical hadronic states, leading to a sum rule from which various properties 

of the hadronic states can be extracted. 

The SVZ sum rules find an important application in determining the universal hadronic 

parameters that appear in meson DAs. Indeed, some of the first SVZ sum rule calculations 

were performed to extract decay constants f n ,p [ 15], and Gegenbauer coefficients an [ 94-96] 

of light meson DAs. The method can only be applied to parameters of the lowest few 

orders in conformal spin; parameters higher in conformal spin must be determined from 

other methods because the sum rules become unreliable. One such method is that of 

non-local condensates, see for example Ref. [97]. 
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3.1.1 Correlator 

The following two-point correlation function describes the propagation of a quark-antiquark 

pair 

(3.1) 

where q is the incoming momentum and possible Lorentz indices are omitted for simplicity. 

The local currents Ji are chosen to have the correct quantum numbers and particle content 

corresponding to the particular hadronic parameters under investigation. The physical 

picture of a hadron is of quarks, antiquarks and gluons confined within a typical hadronic 

size R which is large when compared to the scale associated with perturbative effects. 

If one can show, however, that the correlation function is dominated by small spacial 

distances and time intervals 

(3.2) 

for a certain momentum configuration, then one has ensured the small size of the strong 

coupling a 8 and hence the use of perturbation theory in our calculation. One begins by 

noting that after contracting any Lorentz indices which may appear in the currents Ji 

in Eq. (3.1), the correlation function can only depend on the interval x2 = x6- J!l. By 

taking the Fourier transform, completing the square, and shifting the variable x one finds 

(3.3) 

The integral is dominated by the region where the arguments of the exponential vary 

slowly. This condition requires K ,....., 1/x2 and K ,....., Q2 which are both fulfilled for x 2 ,....., 

1/Q2 ; for large momentum transfer the quarks propagate near the light-cone. 1 To find 

the true short-distance dominance one needs to dig a little further and by choosing the 

Lorentz frame q0 = 0 one finds J!2 ,....., 1/Q2 as required (3.2). In the case of light quarks 

one needs the momentum transfer to the quarks to be large, Q2 = -q2 » A~co· In 

the case of heavy quarks a large energy scale is introduced through the quark mass, 

for example mb, which then serves to set the characteristic distances for the correlation 

function lxl ,....., x0 ,....., 1/(2mb); one is thus automatically in the perturbative regime. 

1 An expansion round x 2 ----> 0 is the basis of QCD sum rules on the light-cone - see Section 3.2. 
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3.1.2 Short-Distance OPE 

The first of the two representations of the correlation function is obtained by performing 

the QCD calculation, valid for Q2 = -q2 » A~c0 , using the short-distance OPE 

(3.4) 

where the non-perturbative long distance effects of QCD are encoded in the condensates 

(Oi) and the short-distance effects are included in the Wilson coefficient functions Ci which 

are calculable in perturbation theory. Both the condensates and their coefficients are in 

general renormalisation scale dependent. Perturbative corrections to the condensates are 

calculated when necessary. The perturbation theory contribution to Eq. (3.4) has D = 0 

and corresponds to the unit operator (OPT) = 1. The condensates play the role of power­

corrections and are suppressed by inverse powers of the hard scale as ( Q2 t D 12 . In the 

asymptotic limit Q2 ~ oo only the unit operator survives, corresponding to asymptotic 

freedom. 

3.1.3 Condensates 

The condensates represent the effects of non-perturbative QCD and they cannot be de­

termined from first principles due to the unknown nature of the QCD vacuum. The 

determination of the condensates is an industry in itself. The light quark condensate 

(OiiJqiO) has been known for a long time [98] and it drives the breakdown of the chiral 

symmetry of the light quarks q = { u, d} and its value can be extracted from experiment: 

(3.5) 

where we use the notation (Oi) = (OIOiiO). To define other condensates, one notes that 

the only vacuum expectation values of operators that can survive are those which are 

Lorentz invariant, spin zero, colour and flavour-singlets i.e. possess the quantum numbers 

of the vacuum. The complete set of condensates (Oi) that contribute with D ~ 6 are 

(1) ' ...__, 
D=O 

mq (qq) ' ..._,_.., 
D=4 
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where q = { u, d, s} is a light quark spinor and all indices are contracted. 2 We assume 

isospin symmetry for q = { u, d} and one must differentiate q = s when SU(3)F-breaking 

effects are taken into account. Higher dimensional condensates D > 6 are not very 

well determined and generally unknown. If required, however, they can be estimated 

by employing the vacuum saturation hypothesis whereby the operator fields are simply 

split to form products of known condensates; for example, the quark-antiquark D = 6 

operator can be simplified to the product of two ijq operators [14, 99]. In practice, the 

OPE is truncated to a given order, and is usually justified by the stability of the resulting 

sum rule. The series, Eq. (3.4), is then given in terms of a limited number of condensates 

allowing sum rules to be written in terms of a small set of parameters incorporating the 

general features of non-perturbative QCD, while retaining its predictive power. 

The procedure works in reverse, of course, where the values of condensates are deduced 

from sum rules for which the hadronic parameters are known from other methods; two­

point correlation functions featuring lryl-£b or C"fJ.£C currents correspond to theY and Jj\II 

resonances respectively, of which the decay constants and masses are known. Values for the 

condensates are given, along with other input parameters, in Appendix B. Uncertainties in 

the values of the condensates and other input parameters constitute part of the reducible 

theoretical uncertainty of the sum rule approach. 

3.1.4 Dispersion Relation 

To proceed we need to relate the result of the OPE to a second representation of the 

correlation function which is obtained in terms of the spectrum of hadronic states in the 

physical region q2 > 0. This is done via a dispersion relation, which is derived from the 

analytic properties of the correlation function as follows. The function II(q2
) is analytic 

in all q2 except on the real axis starting at a pole corresponding to the ground state 

particle. At higher energy higher mass excited states and a continuum of many-particle 

states also feature. The higher mass resonances give poles above the ground state, the 

details of which depend on the physical spectrum of particles which possess the correct 

quantum numbers to couple to II. The continuum of many-particle states, correspond to 

a continuous cut, see Fig. 3.1. 

2 The heavy quarks c, b and t do not form condensates because they are too massive to interact 
non-perturbatively with the QCD vacuum. 
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Figure 3.1: The general features of a spectral density function ~ad(s) in the complex plane. 
The blob represents the pole due to the ground-state, the cross possible poles due to higher mass 
resonances, and the thick line the cut due to the continuum of multi-particle states. The dotted 
line is the integration contour. 

Using Cauchy's formula we can write 

( 2) _ 1 f d II(z) 1 1R d II(z + iE) - II(z- iE) II q - - z -- + - z ---'---'---__;_----'--
27ri z - q2 27ri 0 z - q2 ' 

(3.6) 

lzi=R 

where the region of integration is split into the parts just above and below the positive 

real axis and the circle of radius R. Provided that the correlation function vanishes at 

least as quickly as q-2 as lq2 l "' R ----> oo then the integral over the circle at radius R 

goes to zero.3 The remaining integral can be simplified using the fact that below the first 

pole at q2 = Smin, II(q2) is real and above this point, according to the Schwarz reflection 

principle, II(z + iE) - II(z- iE) = 2i Im II(z + iE). Hence 

II(q2) = 1= ds p(s) . ' 
. S- q2 - ~E 

Smm 

(3.7) 

where the function p(s) = ~Im II(s) is the spectral density and describes the physical 

particle spectrum as a function of energy s. 

3If II does not vanish quickly enough we subtract the first few terms in its Taylor expansion as required. 
We shall see that this does not matter in the end, due to the Borel transformation. 
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3.1.5 Unitarity Relation 

As we have seen, for large negative q2 our correlation function is dominated by short­

distance physics. As q2 becomes more positive the separation of the quarks increases. For 

large enough positive values of q2 long-distance QCD interactions become more important 

and the correlation function then describes the creation of hadrons, which is the basis of 

its second representation. As discussed in the last section, II uncovers a very complicated 

spectrum of states for q2 > 0. We describe this situation by using the unitarity relation, 

which allows in insertion of a complete set of states into the correlation function 

1 = L J dOn ln(p))(n(p)l, 
n 

(3.8) 

where dOn includes all phase-space factors and momentum conservation and the sum runs 

over all possible particles and polarisations, starting from the ground state M of mass 

mM. Inserting (3.8) between the currents of our original correlation function (3.1) yields 

an expression which we can relate to the hadronic spectral density 

where the dots denote higher mass states which contribute to the continuum. We are 

usually interested in the ground state, and can insert the expressions for the matrix 

elements on the right hand side. The local matrix elements considered here can be used 

to extract vacuum-meson decay constants, for example. Using the unitarity relation (3.9) 

one can single out the ground state M by comparing it to (3. 7) and writing the hadronic 

spectral density as: 

(3.10) 

where fM is directly related to the matrix elements of the currents 11 and 12 in Eq. (3.9). 

For example, one could choose l1 = JJ = filzS to extract (fk.)2 c.f. Eq. (2.32). The exact 

form of the spectral density beyond the ground state is mostly unknown and the higher 

mass states and continuum contributions are usually lumped together in one function 

pcont ( s). If the next highest particle above the ground state occurs at an energy not very 

much higher than mM then it is possible to explicitly include this particle as another delta­

function term, analogously to the ground state. This procedure was used, for example, 

while investigating the leading-twist K* and p DA parameters for which the relevant 

correlators couple to the K 1 and b1 resonances respectively [54, 61]. 
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3.1.6 Quark-Hadron Duality 

It is possible to write the result of the OPE as a dispersion relation, with spectral density 

p0PE(s). As pcont(s) is mostly unknown we replace it by pOPE(s) above a certain energy 

so 

(3.11) 

This assumption relies on the validity of the hadronic representation being approximated 

by the partonic representation at higher energies. Inserting Eqs. (3.10) and (3.11) into 

Eq. (3. 7) one finds 

(3.12) 

Now the assumption is not so strict because we only require a duality between the inte­

grated spectral densities, not the spectral densities themselves. This is called semi-global 

quark-hadron duality. The parameter s0 is called the continuum threshold and its value is 

specific for each particle spectrum being roughly equal to the energy of the next highest 

resonance above the ground state: s0 rv (mM + ~)2 where ~ rv O(AQco). Ultimately 

it must be determined from the sum rule itself by requiring the numerical value of the 

determined quantity to be largely insensitive to its variation and this introduces the first 

source of systematic uncertainty to the sum rule method. We are now in a position to 

equate both representations 

(3.13) 

to derive our sought after sum rule, however, before we do so, there is one last procedure 

to discuss, which greatly improves the behaviour of the sum rule. 

3.1. 7 Borel Transformation And The Sum Rule 

The sum rule can be improved by suppressing the continuum contribution, which we have 

assumed to be well described by p0PE(s > s0 ) and the possible detrimental impact of this 

assumption is thus reduced. We do this by performing a Borel transformation to both 

sides of the sum rule. The transformation is obtained by applying the operator 

-q2,n--+oo 
-q2fn=M2 

n! (
l}_)n+l 
dq2 

(3.14) B = lim 
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which takes a function of q2 and produces a new function of the Borel parameter M 2 . 

One frequently encountered example is 

A 1 1 e-m2/M2 

B (m2 _ q2)k = (k _ 1)! (M2)k ' (3.15) 

providing an exponential suppression of the unknown continuum contributions, and a 

suppression of the power-corrections by factorials thus reducing the impact of neglected 

higher dimensional condensates. Also, as B(q2)k = 0, any subtraction terms introduced 

to Eq. (3.7), which can only appear as polynomials in q2 , are killed off. The Borel 

transformation improves the stability and accuracy of the sum rule. 

The Borel parameter M 2 is the second and last sum rule specific parameter to be intro­

duced; along with s0 it is required to impact very little, when varied, on the numerical 

value of the quantity being determined. The variation of M 2 changes the relative impact 

of the power-corrections and perturbation theory contributions. In evaluating sum rules 

one looks for a Borel window which is usually in the range 1 GeV2 ~ M2 ~ 2 GeV2 for 

a typical mesonic DA parameter. The sum rule should be reliable if a weak dependence 

(a plateau) is found, the contribution from the continuum is small, and there are no 

unnatural numerical cancellations. 

We now equate Eqs. (3.7) and (3.4) to reach the sum rule 

(3.16) 

where the hadronic quantity JM is given as a function of the universal non-perturbative 

condensates, the perturbative short-distance coefficients as calculated from QCD, and 

the sum rule parameters s0 and M 2
. The sum rule is saturated by the ground state and 

higher mass states are suppressed. As the correlation function (3.1) does not depend 

on the renormalisation scale, the J.L dependence of the condensates, when multiplied by 

their coefficient functions, must cancel in the sum of (3.4). The sum is always truncated, 

however, and the residual J.L dependence will be a source of theoretical uncertainty. 
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3.1.8 Non-local Formalism 

One way to gain access to parameters higher in conformal spin is to calculate sum rules 

involving operators which are related to moments of DAs 

(3.17) 

For the K* for example the first few moments of both the leading-twist DAs are (~0 ) = 1, 

(e) = ~a1(K*), (e) = }5 (7 + 12a2(K*)) and (e) = 165 (27ai(K*) + 20a3(K*)). A 

more elegant method, enabling the DA parameters to be extracted individually, relies on 

calculating a correlator of two currents, one of which is non-local, with fields at light-like 

separations (z2 = 0) [59]. Consider the following 

(3.18) 

where J(x) is local, and the non-local current yields the leading-twist DA (2.25). The 

sum rule (3.16) then reads 

(3.19) 

The integration over u on the right hand side naturally arises via the Feynman parame­

terisation used in the calculation. At this point one can exploit the orthogonality of the 

Gegenbauer polynomials by replacing the exponential weight function e-ieq·Z ~ c~/2 (~) 
on both sides to project out a~(K*) via Eqs. (2.23) and (2.26). In Fig. 3.2 we show the 

Figure 3.2: A generic non-local diagram. The dotted line denotes the path ordered gauge 
factor [z, -z] between the two quark fields. The momentum q is injected at pointy- the vertex 
on the right hand side. 

leading diagram of the non-local correlation function (3.18). The dotted line denotes the 

path ordered gauge factor [z, -z] between the two quark fields. The non-local formalism 

allows, in principle, an extraction of parameters of arbitrary order n. In practice, however, 
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only the parameters of the lowest few orders n are accessible due to instability of the re­

sulting sum rules. One finds that the power-corrections in pOPE grow with positive powers 

of n compared to the perturbative contribution. For high enough n this behaviour upsets 

the hierarchy of contributions to the OPE, where non-perturbative terms are expected to 

be moderately sized corrections to the leading term. Hence the method is justified for 

low-order coefficients n ::; 2 where the non-perturbative coefficients describe the general 

features of the DA. It breaks down for higher-order coefficients n > 3 because the local 

vacuum condensates appear with &-functions which cannot accommodate the information 

needed to describe the more detailed shape of the DA, see Refs. [59, 102]. 

3.2 QCD Sum Rules On The Light-Cone 

A modification of the QCD sum rule method known as QCD sum rules on the light­

cone, or light-cone sum rules (LCSRs) [103-105], was developed to overcome difficulties 

encountered when calculating transition and electromagnetic form factors in the SVZ 

method.4 The problems are related to the asymptotic scaling behaviour of the form 

factors in the heavy-quark limit mb ---+ oo. LCSRs rely on the use of DAs as their 

universal non-perturbative hadronic input and lead to the correct asymptotic behaviour 

in the heavy-quark limit. The DAs represent a partial re-summation of the operators 

appearing in the condensates and appear ordered in contributions of increasing twist [102]. 

We can view LCSRs as a marriage of the SVZ technique and the theory of hard exclusive 

processes [41,43,44,46]. In the case of the "heavy-to-light" B---+ M transition form factors, 

LCSRs have been applied successfully to pseudoscalar transition form factors [107-110] 

and vector transition form factors [111, 112]. 

For LCSRs to become competitive with the SVZ sum rules, a good knowledge of higher­

twist DAs is required. This motivates the determination of the non-perturbative DA 

parameters via SVZ sum rules and via LCSR, the DAs themselves to determine other 

non-perturbative parameters, such as transition form factors. As with SVZ sum rules, 

the starting point of LCSRs is with a suitable correlation function. For the extraction of 

B ---+ M transition form factors we require a two-point correlator, this time sandwiched 

between the vacuum and the meson state M, which is the example considered in this 

section. One employs much of the same methodology as in the last section, although now 

one requires the correlation function to be expanded in an OPE on the light-cone. In 

4 The term "light-cone sum rules" first appears in Ref. [106]. 
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doing so one finds that the correlation function factorises and can be written in terms of 

a convolution of hard scattering kernels and the universal non-perturbative DAs of the 

light-meson. To that end, consider a correlation function of two quark currents taken 

between the vacuum and an on-shell meson M 

(3.20) 

where JB = mb ijif5b is the interpolating current of the B meson which defines the B 

meson decay constant 

(3.21) 

The current 11 (x) is chosen to project out the form factor of interest. The momentum 

q is injected into the weak vertex, PB is the momentum of the B meson and p is the 

momentum of M with q + p = PB· The correlation function is dominated by light-like 

distances for virtualities 

(3.22) 

which ensures the slow variation of the exponential in Eq. (3.20) and its suitability for 

an expansion around the light-cone. The light-cone expansion results in the transverse 

and "minus" degrees of freedom being integrated out, leaving the longitudinal momenta 

of the partons as the relevant degrees of freedom. As a result a cutoff 1-L is introduced 

below which the transverse momenta are included in the resulting light-mesons DAs. The 

contributions from momenta above this cutoff are calculable in perturbation theory. The 

procedure yields the collinear factorisation of the correlation function 

(3.23) 

where u (1-u) denotes the momentum fraction of the outgoing quark (antiquark) and the 

sum is over all twist and possible polarisation contributions. The scale dependence of the 

hard scattering kernels T(n) must cancel that of the DAs </>n;M. The factorisation formula 

has to be verified by direct calculation and a proof to all orders in a 8 does not exist. 

The verification relies on the cancelation of divergences, of which there are two types: 

the IR and UV singluarities arising from loop calculations and so-called soft singularities 

which appear when the convolution over u does not converge at the end-point regions 

( u rv 0 or 1) i.e. when one of the quarks is soft. In terms of kinematics there are two 
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main contributing processes: the hard-scattering mechanism and the soft contribution or 

Feynman mechanism. Both mechanisms are included in the LCSR approach for which 

there are no soft divergences and the IR/UV divergences can be treated in dimensional 

regularisation. 

One can write the result of the light-cone expansion (3.23) as a dispersion relation in p~ 

(3.24) 

Taking the imaginary part, to obtain p1c, is straight forward after integration over the 

momentum fraction u is performed. The correlation function has a cut in p~ starting at m~ 

over the physical region. One now matches this calculation to the hadronic representation 

of the correlation function, which can also be written as a dispersion relation 

(3.25) 

where the physical spectral density is given by the ground state B meson plus higher mass 

states forming a continuum as 

(3.26) 

The quantity FM will contain the form factor we require. We perform the Borel transfor­

mation to arrive at the LCSR 

(3.27) 

To extract the form factor we need to find a sets of parameters M2 and s0 such that 

the form factor is largely insensitive to their variation. As with SVZ sum rules, there 

is no rigourous way to do this and so the procedure introduces the irreducible source of 

uncertainty to the method. 

3.3 Example Calculation- The Gluon Condensate 

Here we present an example calculation within the SVZ sum rule framework. The result 

of the calculation is used in the sum rule for the G-even K meson three-particle twist-3 
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DA parameter !JK, see Ref. [57]. We calculate the a 8 correction to the gluon condensate 

( ~G2 ) which proceeds from the following local correlation function 

(3.28) 

for which the leading-order contribution vanishes. A convienient way of extracting the 

gluon condensate is to make use of the back-ground field technique in which the fixed­

point gauge allows the Taylor expansion of quark and gluon fields to be written in a 

gauge-covariant form, see Ref. [113] for details. The gluon field in the QCD Lagrangian 

(1.1) is split into "quantum" and "classical" (background) fields 

(3.29) 

where the background field A~ is taken in the fixed-point gauge at x0 = 0. The quantum 

field a~ is taken to be in the Feynman gauge, thus requiring the gauge fixing term (~ = 1) 

(3.30) 

to be added to the QCD Lagrangian. The quantum field propagates perturbatively and 

we may use the standard expression 

(3.31) 

The background field does not propagate perturbatively, and is the field that goes to 

form the condensate; it represents the low-energy, long distance modes of the gluon field 

that probe the non-perturbative structure of the QCD vacuum. The fixed-point gauge 

condition allows A~ ( x) to be expressed in terms of the gluonic field strength tensor as 

and translating to momentum space one finds 

(3.33) 
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where we only require the first term; higher order terms give rise to higher dimensional 

condensates which we do not consider. As we have to introduce two condensate gluons 

to construct (G2
) we introduce two auxiliary vacuum momenta k and k' for which the 

fixed-point x0 = 0 is a sink. After integration over coordinates these momenta appear 

in the quark and gluon propagators. The two corresponding derivatives are then taken, 

and the vacuum momenta set to zero. The following expression proves very useful in 

managing derivatives of quark propagators 

(3.34) 

for arbitrary quark flavour q. The gluon condensate is finally extracted using 

(3.35) 

where D is the spacetime dimension. Due to Eq. (3.29) the expansion of .Cqco yields 

"interaction" terms in which background fields are radiated from the propagating gluons 

at single or double vertices, both of which contribute to the O(as) correction to the gluon 

condensate. These vertices are shown in Fig. 3.3 and the corresponding terms are 

_cAaa 
int 

_cAAaa 
int 

+ 

-~gsrbc [(ott Aav- av Aatt) a~a~ 
(8ttaav- av aatt)(A~a~ + a~A~) + 2(8ttaatt)Abv a~] , 

1 --g2fabcfade [Ab Adttaeacv + Ab adtt Aeacv + Ab aCtt Adaev] 
2 s It v It v It v (3.36) 

where terms which vanish eventually via Eq. (3.35) due to rbcobc = 0 are omitted. 

Contributions also stem directly from the gluonic field strength tensors in Eq. (3.28) which 

Figure 3.3: The interactions of the background field A~ (denoted by a cross) with the quantum 
field a~ corresponding to .C~~a and .c~aa respectively. 

give rise to gluon emission of either one or two fields from the vertices at co-ordinates 0 

and y. Due to the gauge condition there is no "left-right" symmetry and all diagrams 

with two gluons, of which at least one is a condensate gluon, emerging from the vertex at 
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x = 0 vanish due to Att(O) = 0. Diagrams with two condensate gluons at point y, which 

originate from the non-linear part of the gluonic field strength tensor, also give zero due 

to rbc8bc = 0. There is an "up-down" symmetry where diagrams related by a reflection 

in the central horizontal axis are equal. Overall we find there to be 10 distinct non-zero 

diagrams to be calculated which are shown in Fig. 3.4. 

Figure 3.4: The diagrams contributing to the gluon condensate at O(o:8 ) for the SVZ sum rule 
of the K twist-3 DA parameter hK - see Ref. [57]. For each diagram the fixed-point Xo = 0 is 
at the left most vertex and the right most is at y. 

Some of the diagrams are divergent, however, all divergences cancel in the sum of all 

diagrams. 5 For an explicit example consider the last diagram in the second line of Fig. 3.4. 

It is evident that we require £.~~a to be contracted in all possible ways with quantum fields 

5 We use dimensional regularisation and the MS renormalisation scheme throughout this thesis. 
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originating from the linear part of the gluonic field strength tensors at points 0 and y. 

This, multiplied by the condensate field originating from the quark loop yields the gluonic 

part of the calculation 

which is eventually given in momentum space by (omitting Lorentz indices) 

a a J ( z, k') ( 2) 
rv ak ak' l2(l- k')2 G ' 

(3.37) 

(3.38) 

where the condensate gluon within .C~~a( w) is expressed by Eq. (3.33) with momentum 

k' and f(l, k') is a function of the loop momentum land the vacuum momentum k'. The 

quark loop yields a usual trace 

(3.39) 

and after multiplying together Eqs. (3.38) and (3.39), performing the derivatives ink and 

k' and integrating over the momenta p and l we find 

(3.40) 

In this way we can include all the other diagrams shown in Fig. 3.4 to obtain the contri­

bution to the sum rule 

(3.41) 

which differs from the result obtained in Ref. [96]; the logarithmic term is not reproduced: 

(3.42) 
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Chapter 4 

The Determination Of Vector Meson 

Twist-2 And Twist-3 Parameters 

In this chapter we determine the leading twist-2 and twist-3 two- and three-particle vector 

meson DA parameters using the non-local modification of SVZ sum rules. The parameters 

are defined in Chapter 2 and the sum rule method is outlined in Chapter 3. We express the 

relevant correlation functions, via the OPE, in terms of the perturbative and condensate 

contributions. Key to the analysis is the inclusion of all G-parity and SU(3)F-breaking 

effects which, as discussed in Chapter 2, come from a variety of sources, and allow a 

consistent determination of the parameters for the p, K*, and ¢. Motivation for the 

present analysis comes from various sources, including: 

• values for the decay constants and leading-twist DA Gegenbauer moments are 

required as input for QCD factorisation frameworks which provide a systematic 

method for the calculation of B decay matrix elements. We discuss one such frame­

work in Chapter 6. 

• Twist-2 and twist-3 DAs provide the leading non-perturbative input within the 

method of LCSR, as discussed in Chapter 3, and as such are applied to many 

problems in heavy-flavour physics, such as the calculation of B transition form 

factors and the estimation of B decay matrix elements including power-suppressed 

contributions to QCD factorisation frameworks, see Chapter 7. 

• A full determination of the twist-3 DA parameters, including SU(3)F-breaking and 

G-parity violating effects, and the inclusion of O(o:s) and O(m;) corrections to the 
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quark condensate contributions to the twist-2 DA parameter sum rules are new to 

the present analysis, allowing a~,..L ( ¢>) to be determined, for the first time, to the 

same accuracy as a~'..L(p, K*). 

All input parameters for the sum rules, and useful formulas, such as those required to 

take the imaginary parts of intermediate results, and various relevant integrals, are given 

in Appendix B. In performing the calculations we find Refs. [99, 100] very useful. The 

material covered in this chapter partially follows that of Ref. [40]. 

4.1 Twist-2 

In this section we focus on the determination of the twist-2 DA Gegenbauer coefficients 

a~,..L defined by Eqs. (2.25) and (2.28). The sum rules for f~;-, including SU(3)F-breaking 

corrections, were calculated in Refs. [61,62, 114]. Those for the G-parity violating a~'..L(K*) 
in Refs. [61, 62] and those for a~'..L(K*) in [59] apart from perturbative terms in m; and 

the O(as) and O(m;) corrections to the quark condensate, which are new to the present 

analysis. Motivation for including these corrections is found by examining the individual 

contributions to the sum rules for a~'..L(K*) given in Ref. [59]. They are found to be 

dominated by (ss) as we can see from the following explicit break down of contributions: 

a~(K*) 

af(K*) 

PT ( ~G2 ) (sg.aGs) (qq) 2 (ss) (ss) 2 (qq)(ss) 
~~ ~~~~~ 
0.05 + 0.08 + 0.11 + 0.04- 0.16 + 0.02- 0.05 

0.06 + 0.10 + 0.25 + 0.03- 0.27 + 0.02 - 0' ( 4.1) 

for the reference point s0 = 1. 2 Ge V2
, M 2 = 1 Ge V2 and 1-l = 1 Ge V. Moreover, for the ¢> 

the impact of a finite strange quark mass may be even more pronounced with respect to 

perturbation theory and the gluon condensate. 

Firstly, we give an overview of the calculation of the O(a8 ) and O(m;) corrections to 

the quark condensate (ss); the calculations for (qq) are analogous. We only need extract 

terms proportional to ms as the contributions proportional to mq are identical; we can 

find the contributions for ¢> by simply replacing (qq) --+ (ss) and doubling the terms 

in ms (ss), ms (qq) and ms (sg8 Gs). Contributions for p are found by setting m 8 --t 0. 

Secondly, we go on to analyse the sum rules for a~'..L(¢). We end this section by presenting 

the results. 
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4.1.1 Calculation 

For both polarisations we begin from the diagonal correlation function 

II2;K•(q · z) = i j d4 ye-iq·y(OITq(y)fs(y)s(O)f[O, z]q(z)IO) (4.2) 

where rll = '"Yz and rj_ = (]' /1-Z' For the longitudinal parameters the sum rule is exactly 

that given by Eq. (3.19) with !J-----+ f~. and for the transverse parameters the sum rule 

is analogous. Both polarisations have the same projections onto the DA parameters 

UK• )2 e-mk./M2 [1] 

UK·) 2 e-mk./M
2 [~al(K*)] 

UK• )2 
e-mk./M

2 
[ 
1
: a2(K*)] 

(4.3) 

where lms denotes taking the imaginary part with respect to s. The fact that we are 

dealing with non-local correlation functions means that we do not integrate over the co­

ordinate z. The resulting residual exponential function remains throughout the calculation 

and can contribute to the momentum integrals yielding powers of ic( q · z), where c is a 

constant. Ultimately the exponential functions can be cast into the "canonical form" set 

by the exponential appearing in front of the leading-twist DA i.e. e-iuq·z- see Eq. (3.19). 

Quark Condensate 

Figure 4.1: The leading-order diagram contributing to the quark condensate (ss). 

The tree-level diagram is shown in Fig. 4.1. To extract the quark condensates to O(m;) 
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we use the following expansion of the quark fields (for general quark flavour q) 

(OI:if~(xl)%(x2):IO) = c5ij(i~) {c5/3a (1- ~;m~) 

mq~(!>.)f3afl>. (1- 2 (2~D)m~)} (4.4) 

where fl 11 = ( x2 - xi) 11 and i, j are colour and a, {3 spinor indices. One can deal with the 

co-ordinate fl 11 by trading it, via partial integration (PI), for a derivative of the trace that 

arises from the quark loop. A convenient way to do so is via an auxiliary momentum Q 

A PI . -it:..·Q 8 I 
uK ~ te !=lQ . 

U K Q---+0 
(4.5) 

Diagrams for the O(as) corrections to the strange quark condensate are shown in Fig. 4.2. 

[1)-- b)-- [[)-- ~--

B ;;)--
-- --

. 

Figure 4.2: Diagrams contributing to the quark condensate (ss) at O(a8 ). The crossed circle 0 
depicts the emission of a gluon from the non-local gauge factor- see Eq. (4.6). The corresponding 
diagrams for (ijq) are identical but reflected top to bottom. 

Importantly there are contributions from the gauge-factor which need to be included 

Calculating O(as) corrections leads to divergent diagrams and the dependence of the 

condensate on the spacetime dimension D leads to 0( t:) contributions at tree level, that 

then cause finite counter-terms upon renormalisation. Also, the derivative with respect 

to QK in Eq. ( 4.5) yields JK in the trace via Eq. (3.34) which can also give a finite counter­

term. This happens for the vertex correction diagrams. 
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4.1.2 Evaluation of The Sum Rules 

The new quark condensate contributions are added to the results presented in the litera­

ture, see Refs. [40, 61]. For Jf;- the sum rules read 

(! II )2 -m~./M2 = _1_ !sod -s/M2 (s- m;)2(s +2m;) as M2 
( 1 _ -so/M2) 

K• e 4 2 s e 3 + 4 2 e 
1r s 1['1[' 

m; 

(4.7) 

{ 2m; (7 E' ( s0 
) l J-L

2 
M

2 

( M
2

) so/M2)} x 1 - - - - "'E + 1 -- - n - + - 1 - - e-
M2 6 M 2 M 2 so so 

m8 (ss) { m; as ( 22 2 [ M
2 

M
2 

8 /M2 . ( so )] ) } + 1 + -- + - -- + - 1 - "'E + ln - + - e- 0 + E1 --
M 2 3M2 1r 9 3 J-L2 s0 M 2 

1 _ 321ras ( _ 2 _ 2) 
- 3M4 ms(s(J'gGs)- 81M4 (qq) + (ss) ' (4.8) 
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and for a~'j_(K*) 

so 
7 4 J d -sjM2 (s- m;)

2
(2m;- s) 7 O:s M2(1 -so/M2) 7 ( O:s c2) -m se +--- -e +-- -

47r2 8 s5 727r2 1r 36M2 1r 
m; 

+ ~ m 8 (ss) { 1 + 0:
8 

[- 184 + 25 ( 1 _ 1E + ln M
2 
+ M

2 
e-so/M2 + Ei (-~))]} 

3 M 2 1r 27 18 J.L2 s0 M 2 

49 0: 8 m 8 (ijq) 35 ms(sagGs) 2241fas ((- )2 (- )2) 1121fas (- ) (- ) ( ) 
+ 27 --; M 2 - 18 M4 + 81M4 qq + ss - 27 M4 qq ss ' 4·9 

so 2 2 2 
7 4 J d -s/M2 (s- m 8 ) (2m8 - s) 7 0:8 M 2(1 -so/M2) 7 -m se +--- -e +--

47r2 8 s5 907r2 1r 54M2 
m; 

7 m 8 (ss) { 0:8 [ 206 16 ( M
2 

M
2 

8 /M2 . ( s0 ))] } +- 1 +- --+- 1 -IE+ ln - +- e- 0 + E1 --
3 M 2 1r 27 9 J.L2 s0 M 2 

_ 49 m 8 (8agGs) 1121fas ((- )2 (- )2) 
18 M 4 + 81M4 qq + ss . (4.10) 

To obtain the sum rules for J!'_L and a~'j_(¢), one has to substitute (ijq) ---+ (ss) and 

to double the terms in ms(ss), m 8 (ijq) and m 8 (sagGs), and replace the perturbative 

contribution by 

_1_180 d -s/M2 (s + 2m;)J1- 4m;/s 
2 

se , 
41f 4m2 S 

8 

_ _!__ 180 
d -s/M2m!J1- 4m;/s 

2 2 se 2 . 
1f 4m; S 

(4.11) 

We have derived sum rules for the decay constants f~'j_, however, numerical values can be 

extracted from experiment for the longitudinal decay constants. The perpendicular decay 

constants, on the other hand, must be determined from non-perturbative methods; results 

are available from Lattice QCD calculations and previous QCD sum rule determinations. 

A detailed discussion of the latest numerical values of the decay constants can be found 
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in Ref. [70] from which we just quote the following 

J! = (215±5)MeV, Jj = (186±9)MeV, (4.12) 

where J! is an experimental result, and Jf is from Lattice QCD [115]. We can compare 

these results to the sum rules of Eqs. ( 4. 7) and ( 4.8) which are plotted in the upper row 

of Fig. 4.3. The sum rule determinations of a~'_l_ ( ¢) are plotted in the lower row. 

0 . 2 3 ,------r~c--r----.--r-r-,-,---.---.----,---,-~----.--.----.---,-, 

0.225 
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f¢ 0. 215 ~---=---=--=--=--=---==---=-3 
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Figure 4.3: The decay constants J! (upper left) and Jf (upper right) and the Gegenbauer 

coefficients a~ ( <P) (lower left) and a.[ ( <P) (lower right) plotted as a function of M 2 . The continuum 

thresholds are s~ = 1.85 ± 0.05 GeV2 and s~ = 1.40 ± 0.05 GeV2 -see text. Solid line: central 
input parameters of Tab. B.l. Dashed lines: variation due to the uncertainties of m 8 and the 
gluon condensate. All quantities are evaluated at p, = 1 Ge V. 

In all the plots the dashed line and shaded region represent the central value and uncer­

tainty of the parameter in question. To evaluate the sum rules we use the input parameters 

of Tab. B.1. For the continuum threshold we note that for the sum rule determination 

off~. in Ref. [61] it is taken to be s~(K*) = 1.7GeV2
, and we expect for¢ it to be 

slightly larger. Indeed, by takings~(¢) = 1.85 ± 0.05 GeV2 we find a stable plateau and 
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excellent agreement with the experimental result for f~ (upper left plot). Likewise, guided 

by sr}(K*) = 1.3 GeV2 [61] we find sf}(¢) = 1.40 ± 0.05 GeV2 yields a result consistent 

with that from Lattice QCD (upper right plot). We use these thresholds in evaluating the 

sum rules for a~'_l_ ( ¢) and also replace the decay constants by their sum rules, which helps 

reduce dependence on the Borel parameters. The results are plotted for a~ ( ¢) (lower left 

plot) and af ( ¢) (lower right plot). It is found that the longitudinal parameters exhibit 

a stronger continuum threshold dependence, which is reflected in the larger uncertainty 

of the determined value of a~ ( ¢). The sum rule determinations of the other particle D A 

parameters follow analogously and all the numerical results are given in Tab. 4.1. 

p K* 4> 

f.1=1GeV f.1 = 2 GeV f.1 = 1 GeV f.1 = 2 GeV 11 = 1 GeV 11 = 2GeV 

all 
1 0 0 0.03(2) 0.02(2) 0 0 

a_l_ 
1 0 0 0.04(3) 0.03(3) 0 0 

all 
2 0.15(7) 0.10(5) 0.11(9) 0.08(6) 0.18(8) 0.13(6) 

af 0.14(6) 0.11(5) 0.10(8) 0.08(6) 0.14(7) 0.11(5) 

Table 4.1: Results for the twist-2 hadronic DA parameters at the scale JL = 1 GeV and scaled 

up to 1-l = 2 GeV using the evolution equations (2.57). Note that a~'_l_(K*) refers to a (sij) bound 
state; for a (qs) state it changes sign. 

4.2 Twist-3 

In this section we determine the twist-3 three-particle parameters of the DAs <I>tK·, <I>~;K• 
and ;J;~·K· as defined by Eq. (2.41). Previous determinations of these parameters are rather 

' 
few and far between, thus motivating the present analysis. The chiral-even p parameters 

dP' w~P' and w~P were obtained in Ref. [96], and wip was obtained in Ref. [55]. We make 

a comparison with these results in Section 4.2.2. 

Firstly, we outline the calculation of the three functions 1r3;K• which all proceed in a 

similar manner, and secondly we explicitly discuss the sum rules for ;J;~;K• and present 

the results. In the diagrams that follow, q is the upper line and s is the lower line. 
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4.2.1 Calculation 

Each DA is accessed via a correlation function featuring its defining current. The chiral­

even twist-3 parameters dK•, W~K•, ~~K· can be determined from 

fi~;K•(v, q · z) = (q. z;;(; _D) j d4ye-iq·y(OJTq(z)gaC~az(vz)/z'Yss(O)s(y)!~-'q(y)JO), 
(4.13) 

where the definition of g;v is given in Appendix A. 1 The parameters K~K·, w~K· and >.~K· 
can be obtained from the correlation function II~·K· obtained from fi~·K· by making the 

' ' 
replacement 

(4.14) 

Lastly for the chiral-odd operator 

(4.15) 

All three correlation functions II can be written as 

(4.16) 

where the exponential function is due to the fact that we keep the correlation functions 

non-local. The calculation proceeds for each correlation function analogously. Considering 

Eq. ( 4.13) for instance, firstly we express it in terms of hadronic contributions 

( 4.17) 

where the dots denote contributions from higher-mass states. To derive the sum rule we 

tread down a well worn path; express Eq. (4.16) as a dispersion relation and equate to 

Eq. ( 4.17), subtract the continuum contribution for s > s0 , perform the Borel transforma­

tion and project out the desired DA parameter by substitution of the relevant polynomial. 

1We also make use of the relation /j.io/5 = ~t1,>,..,,/>.l"l" defined in D dimensions. 
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The three hadronic parameters dK·' w~K·' ::\~K· are projected out like so: 

(f!. r m~.e-m~./M2 [ dK•] 

(f!.r m~.e-m~./M2 [114 ::\~K·] 

(f!.r m~.e-m~./M2 [238 W~K·] 

The formulas for the other parameters are analogous. In calculating the functions ?T3;K• 

we keep explicit mass corrections O(m;, m~, msmq) and all operators up to D = 6 except 

the triple gluon condensate (g;JG3 ) which is expected to yield a negligible contribution. 

By retaining all mass terms the resulting formulas for rr3;K• can be used to derive sum 

rules for all the DA parameters for K*, p and ¢ by setting mq = 0, mq = m 8 = 0 and 

mq = m 8 respectively. For p and ¢ expressions for the three-particle twist-3 DAs are 

analogous to Eq. (2.41), except that the G-parity violating parameters K and>. vanish. 

Perturbation Theory 

The perturbation theory calculation is given by the two diagrams shown in Fig. 4.4. As an 

EJ-- b)--
Figure 4.4: Diagrams contributing to perturbation theory. 

example, consider the first diagram, which up to an overall factor can be written generally 

as 

g; j (::rD J (::)zD Tr[rls<s)(Jb + rJ)r2s<q)(Jbhf3 s<q)(Jb + 01 

· [l~-tDv.B(l) -lvDtt.B(l)] eiz·(lV+p). (4.19) 

where the Dirac matrices r 1,2 depend on the correlation function. In performing the 

two successive integrations over l and p, Feynman parameterisation leads to shifting the 

variables l - l - px and p - p- qfj respectively. Each time the exponential in ( 4.19) 

is also shifted. In expanding the part of the exponential that contributes to the integral, 
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for example, for l we have eil·zv = 1 + i(l · z)v + ... , only the first two terms contribute; 

higher order terms are killed off either via z2 = 0 or because integrals with odd numbers 

of open indices, for example [11 1 [112 [113 , in the numerator vanish due to symmetry. After 

the integrations any terms (T) including factors ofi(q·z)v are dealt with by trading them 

for derivatives of T by using partial integration of the final exponential 

1 a . -c1 __ ) '( )- _ -tq·zy -XV 
~ q · z v- --e 

y ax 
PI i a 

(q · z)v T---> --T 
y ax ' ( 4.20) 

where surface terms do not contribute as they vanish for x = {1, 0}. The exponential can 

be matched to the "canonical form" by writing 

11 

dx 11 
dye-iq·zy( 1-xv) = 11 

dx 11 
dy J 'DQ8(a1-y)8(a2-xy)8(a3 -xy) e-iq·z(a1 -va3 ). 

(4.21) 

Performing the x and y integration of the whole expression gives the desired result 

( 4.22) 

The second diagram follows analogously. Both diagrams are divergent and need to be 

renormalised separately. We find finite counter terms which are proportional to the quark 

masses. 

Gluon Condensate 

The leading order contribution to the gluon condensate ( ~G2 ) is found using the back­

ground field method as outlined in Section 3.3. There are only two diagrams contributing 

as depicted in Fig. 4.5. One vacuum momentum k, from the gluon attached to the quark 

line, is introduced and hence one derivative is taken. As the gluon emerging from the 

non-local vertex G(vz) carries no momentum these diagrams are proportional to 8(a3 ) 

and the remaining momentum fractions are related by 1 - a 1 = a 2 ; the identification of 

the momentum fractions with the Feynman parameters is therefore straightforward. The 

calculation requires the integration over one momentum p and the result can simply be 

written unexpanded in the quark masses. 

58 



Figure 4.5: Diagrams contributing to the gluon condensate ( ~G2 ). 

Mixed Condensate 

The mixed condensates (qa-g8 Gq) and (sa-g8 Gs) originate from the diagrams shown in 

Fig. 4.6. To extract the mixed condensates one uses the first non-local term in the 

Figure 4.6: Diagrams contributing to the mixed condensates (qa-g8 Gq) and (sa-g8 Gs). 

expansion (D = 4) [99] 

(OI:~(xi)gs(GJLv)ij(y)q~(x2):iO) = (4.23) 

&ij [ (fJgsa-Gq) { mq [~ ~ '(~ ,\ ) ] } 144 (JJLV+2 JLlV- VlJL-~ lA(JJLV 

+g; (6) { 2~8 (x~a-JLvl~- xh~a-JLv)- 2 ~6 (YJLiv- Yv!JL)} ]/3a 

The first a-JLV does not contribute, but the term rv mq does. The ~JLs can be expressed 

as derivatives of the trace via partial integration which is dealt with simply by using 

Eq. (3.34). Along with the condensate gluon, the quark condensate lines carry no mo­

mentum. There is therefore no loop integration to perform and the results are proportional 

to &(a3)&(a1,2). 

Quark Condensates 

The diagrams of Fig. 4.7 generate the condensates mq,s (qq) and mq,s (ss). We do not 

consider O(m~) corrections, which are however of dimension six, as they are very well 

suppressed with respect to the other contributions. To extract all O(mq,s) mass corrections 

the first non-local term in the expansion of the quark fields, given by Eq. ( 4.4), is needed. 
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~-- B-- fJ-- N--
Figure 4.7: Diagrams contributing to the quark condensates (qq) and (ss). 

There is one loop momentum to integrate over and one finds contributions from the 

exponential which can be dealt with via partial integration in the same way as with the 

perturbation theory calculation, see Eq. (4.20). The results are proportional to 8(a1,2 ). 

The diagrams in Fig. 4.8 generate the condensate (qq) (ss) which is already of dimension 

six, so we do not require mass corrections. The two diagrams are of equal magnitude 

B-- ~--
Figure 4.8: Diagrams contributing to the quark condensate (qq) (ss). 

and cancel, however only for 1r~·K· they add. There is no loop integral to perform and , 

the result is proportional to 8(al)o(a2 ). The four quark condensate is simplified via the 

vacuum saturation hypothesis (VSH) [14, 99] 

The diagrams in Fig. 4.9 generate the condensates (qq) 2 and (ss)2. They stem from 

the operator (6) appearing in the expansion of the mixed condensate, Eq. ( 4.24), which 

simplifies as 

(6) = (iJ'YKtaq L ij"(Ktaq) ~ -~ (qq)2 ; 
u,d,s 

( 4.25) 

thus at higher order the mixed condensate also contributes to the quark condensates. The 

light-like co-ordinate of the gluonic field strength tensor vzl-l simplifies the resulting trace 

via z2 = 0 from Eq. (4.24) and the other co-ordinates are dealt with as before. 
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Figure 4.9: Diagrams contributing to the quark condensates (iJ.q) 2 and (ss) 2 from the expansion 
of the mixed condensate- see Eq. (4.24). 

Results 

For the functions 7r3;J<•, given by Eq. (4.19), we find (dropping all terms that vanish upon 

taking the imaginary part): 
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-II ( ) 1r3·K• Q 
' 

- ln - q et1 et2et3 -=- - -=-Ct8 -q
2 

[ 2 ( 1 1 ) 
47r3 f.J,2 Ct2 Ctl 

+ msmq _a! {a2 (ln a:a3 + ~ ln -;
2

) - { et1 ~ et2}} 
Ctlet2 Ctl 2 f.1, 

+ m -a2a 3 -=- - -=- - -_- ln -_ - + - ln - - m et1 <-t et2 2 { ( 1 1 ) Ct2Ct~ ( Ctl Ct3 1 -q
2

) } 2 { } l 
8 Ct2 Ctl Ct~ Ct2 2 f.J,2 q 

+ ~(Cts G2) et1et2 (al - et2) 6(a3) 
24 1r a2m; + et1 m~ - et1 a2q2 

1 Cts 0:3 + 
3

q2--:; { 2 (1 + et3) (mq(ijq)t5(a2)- m 8 (ss)t5 (a1)) 

+ et3 [ 1 + et3 (1n (a3a3) + ln ~;
2

)] (ms(iiq)t5(a2)- mq(ss)t5 (ai))} 

1 + 
12

q4 6(a3) {mq(ij_(}"gsGq)t5(a2)- m 8 (s(J"g8 Gs)t5(a1)} 

8 + 
27

q4 Cts7rb(a3) ( (qq)2<5(a2)- (ss) 2<5(ai)), (4.27) 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 
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4.2.2 Evaluation of The Sum Rules 

In the following we consider if~;K•; the sum rules for the other DA parameters and particles 

p and <P follow similarly. The values of the input parameters and the continuum thresholds 

used for all sum rules are given in Appendix B. 

One subtlety must be noted: upon integration over ai and subsequent expansion in powers 

of the quark masses, the gluon condensate contribution yields terms in m~,s ln( m~,s/ ( -q2
)), 

which are long-distance effects and must not appear in the short-distance OPE of the 

correlation functions of Eqs (4.13) and (4.15). The appearance of these logarithmic terms 

is due to the fact that the expressions of Eqs. ( 4.26-4.28) are obtained using Wick's 

theorem which implies that the condensates are normal-ordered: (0) = (OI: 0: IO) [116]. 

Rewriting the OPE in terms of non-normal-ordered operators, all infrared sensitive terms 

can be absorbed into the corresponding condensates. Indeed, using, 

( 4.29) 

and the corresponding formula for q quarks, all terms in ln m~,s can be absorbed into the 

mixed quark-quark-gluon condensate and the resulting short-distance coefficients can be 

expanded in powers of m~,s· 

In Fig. 4.10 we plot the sum rules for >:~K*' w~K· and dK., given by Eqs. (4.19), which 

are evaluated for the central input parameters of Tab. B.l and at a scale J-L = 1 GeV. The 

parameters unfortunately exhibit very strong M 2 dependence, which leads to increased 

uncertainty of their values; we do not find a stable plateau in the region 1 GeV2 ~ M 2 ~ 

2.5 GeV2
. On the other hand, there is only a very small s0 dependence ~ 1% over the 

range s~(K*) = (1.3 ± 0.3) GeV2
. The curves flatten at high M 2 which is expected, 

as the power corrections become negligible compared to the perturbative contribution. 2 

The sum rules for the other parameters and particles show the same general behaviour 

which is fairly typical of non-diagonal correlation functions. If one were to use diagonal 

correlation functions then it is possible that the sum rules would be better behaved and 

thus the uncertainties would be reduced somewhat. The calculation of diagonal correlation 

functions of three-particle operators, as we saw with the gluon condensate in Chapter 3, 

is rather more involved, especially when calculating radiative corrections, which may very 

well be necessary in this case. 

2 The quark condensates survive as M 2 ---> oo as B [q- 2] = -1 but perturbation theory "' M 4 - see 
Appendix B. 
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All the numerical results, including the uncertainties from the variation of M2 , s0 , and 

input parameters, are given in Tab. 4.2. The results are presented at the scale f.1, = 1 GeV 

and scaled up to f.1, = 2 GeV, using the evolution equations, Eq. (2.57). The only previous 

determination for comparison is for the chiral-even p parameters, dp(1 GeV) = 0.033 ± 
0.003, w~P(1 GeV) = 0.2, and w~P(1 GeV) = -0.1 [96] and wip(l GeV) = 0.3 ± 0.3 [55]. 

These results agree with ours, although we consider the uncertainty of dP to be optimistic. 

p K* ¢ 

J.1, = 1 GeV J.1, = 2GeV J.1, = 1GeV J.1, = 2GeV J.1, = 1 GeV J.1, = 2GeV 

(II 3V 0.030(10) 0.020(9) 0.023(8) 0.015(6) 0.024(8) 0.017(6) 
-n 
A3V 0 0 0.035(15) 0.017(8) 0 0 
-II 
W3v -0.09(3) -0.04(2) -0.07(3) -0.03(2) -0.045(15) -0.022(8) 

1\:11 
3V 0 0 0.000(1) -0.001(2) 0 0 

wll 
3V 0.15(5) 0.09(3) 0.10(4) 0.06(3) 0.09(3) 0.06(2) 

All 
3V 0 0 -0.008(4) -0.004(2) 0 0 
.l 

K3V 0 0 0.003(3) -0.001(2) 0 0 
.l 

W3v 0.55(25) 0.37(19) 0.3(1) 0.2(1) 0.20(8) 0.15(7) 

A tv 0 0 -0.025(20) -0.015(10) 0 0 

Table 4.2: Results for the leading three-particle twist-3 hadronic parameters of the DAs of 
Eq. (2.41). The results are presented at the scale 1-" = 1 GeV and scaled up to 1-" = 2 GeV using 
the evolution equations (2.57). The sign of the parameters corresponds to the sign convention 
for the strong coupling defined by the covariant derivative D~-' = 81-'- ig8A~ta; they change sign 
if 9s is fixed by D~-' = 8~-' + ig8 A~ta. 

In Fig. 4.12 we plot the two-particle twist-3 DAs as defined by Eqs. (2.47- 2.50). G-parity 

violating effects cause the small asymmetry of the K* curves. The effects of SU(3)F­

breaking are larger and cause the pronounced difference between ¢~ and ¢t for the p 

and ¢. We notice in particular the end-point behaviour of the DAs is greatly modified. 

The fact that both ¢~~ and ¢~~. diverge as u --+ 1 and ¢~~ for u --+ 0 is in itself not a 

problem. It is only the leading-twist DA that can be considered a probability distribution 

and likewise there is no cause for concern that ¢L takes negative values. Moreover, 

in practical calculations we are only interested in convolutions of the DAs with hard 

scattering kernels, which are generally finite. If not, this signals a problem with the hard 

scattering kernel, rather than the DA, as happens with end-point divergences within the 

QCD factorisation framework for non-leptonic B decays, see Chapter 6. 
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Figure 4.11: Left: ¢~ as a function of u for the central values of hadronic parameters, for 

J..L = 1 GeV. Red line: <PL, green: <P~;K•• blue: ¢~;¢ · Right: same for 7jl~ . 
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Figure 4.12: Left: <Pt as a function of u for the central values of hadronic parameters, for 

J..L = 1 Ge V. Red line: <PtP' green: <PtK•, blue: <Pt.p· Right: same for 7jlt. 
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Chapter 5 

B -----+ TJ(t) Form Factors in QCD 

In this chapter we discuss the semileptonic B ---+ f/(1
) form factors J!-+ry(ll in the LCSR 

approach. The previous LCSR determination of the B ---+ f/(
1
) form factors presented 

in Ref. [110] is completed by calculating the gluonic contribution, the mechanism for 

which involves the annihilation of the B meson to two gluons. The f/(
1

) particles undergo 

pronounced mixing with each other due to the U(1)A anomaly of QCD and the rJ-rJ1 system, 

after many years of investigation, has succumbed to the phenomenologically motivated 

mixing scheme proposed by Feldmann, Kroll and Stech [117, 118]. The consideration of 

this mixing scheme is central to the correct description of the B ---+ f/(
1
) form factors. 

Motivation to complete the calculation of J!-+ry<'l comes from a variety of sources, with 

probably the most prominent being: 

• the flavour-singlet contributions to the QCD factorisation framework to be discussed 

in Chapter 6 were added by Beneke and Neubert in Ref. [120]. It is found that the 

branching ratios of B ---+ rJ1(V, P) are very sensitive to J!-+ry<IJ as the leading-order 

annihilation diagrams can be interpreted as a gluon contribution to the B ---+ f/(
1
) 

form factors [121]. Therefore a consistent estimation of the annihilation diagrams 

necessitates the inclusion of the gluonic contributions to the form factor. 

• There exists a "tension~' jnctheo,determinations,of IVublfrominclusive semileptonic 

decays B ---+ Xulv and their exclusive counterparts, namely from B ---+ n1v. The 

former have led to larger values than the latter, and the reason for the discrepancy 

is unclear. B ---+ f/( 1
) transitions are at leading order a b ---+ u transition and so 

sensitive to IVubl which can, in principle, be extracted from B ---+ fJ( 1l[v. An improved 

calculation of J!-+rJ(IJ would reduce the theoretical uncertainty of the result. 
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• Finally, the observation that exclusive B ~ r/ K and inclusive B ~ r/ X decays 

have shown unexpectedly large branching ratios with respect to B ~ 7f transitions, 

for example, is an unresolved issue which an improved calculation of J!--+r/'> may 

help clarify. 

We begin by introducing the TJ(') system and define two closely related TJ-TJ' mixing schemes. 

We then discuss the calculation of the flavour-singlet contribution to the form factor before 

lastly we discuss the results of the LCSR analysis, the framework for which was covered 

in Chapter 3. The material presented in this chapter follows that of Ref. [65]. 

5.1 The rJ-r/ System 

The approximate chiral symmetry of light quarks u, d and sin QCD seems to be broken 

by Nature to reveal the pseudoscalar mesons ( 1r0 , 7r+, 7f-, K+, K-, K 0 , K0 , TJ) as the cor­

responding octet of Goldstone bosons (all massless in the chiral limit mu,d,s ~ 0) of the 

broken SU(3) 0 SU(3) symmetry. There is another symmetry of the QCD Lagrangian 

(1.1); a global U(1)A symmetry which exists at the classical level in the chirallimit. Due 

to non-vanishing quark masses, the broken U(1)A symmetry creates a Goldstone boson, 

but such a light particle does not appear in the physical spectrum and this embodies 

the U(1)A problem. At the quantum level, however, the U(1)A symmetry in the massless 

limit is broken due to the QCD anomaly and so was not present in the first place; thus a 

ninth state, the TJ1
, exists as a singlet and only becomes massless in the chiral limit and as 

Nc ~ oo, causing the effects of anomaly to vanish. The situation is complicated by instan­

ton effects, but was ultimately resolved by 't Hooft with the same conclusion [122, 123]. 

It has been known for a while that the U(1)A anomaly plays a decisive role in the TJ(') 

system with the TJ 1 consisting of a large gluonic component [124, 125]. The large mass of 

the TJ 1 is mostly generated by the anomaly and SU(3)F-breaking effects. 1 

The TJ-TJ' system has been of considerable interest for a number of years [126-128]. Vast 

simplifications can be made in studying the low-energy particle spectrum of QCD by 

employing Chiral Perturbation Theory ( ChPT) which is an effective theory in which the 

heavy quarks are integrated out and the dynamically relevant light quarks remain at a 

scale J-L "' AQco after an expansion in powers of energies, momenta and quark masses. 

1The particles ryUl have masses m 71 = 547.51 ± 0.18 MeV and m'l' = 957.78 ± 0.14 MeV and quantum 
numbers JPC = o-+ [27]. 
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Alongside the 1/ Nc expansion, ChPT is the method of choice for analysing the light 

pseudoscalar mesons. 2 We do not discuss ChPT in any detail although we do quote a few 

of its constraints; for more details see for example [130-132] 

Concerning rJ-r/ mixing, ChPT requires a description in terms of two mixing angles beyond 

leading-order [133, 134]. How this is implemented in practice has caused some confusion 

in the past but a consistent picture has emerged [117, 118]. Key to the phenomenological 

picture of the rJ-rJ' system is the understanding that the main contributions to the mixing 

are due to the U(1)A anomaly of QCD, and so-called OZI-rule violating processes. Named 

after Okubo, Zweig and lizuka the OZI-rule states that strong interaction processes that 

must proceed via the annihilation of all initial state quarks to gluons are suppressed 

[135-137]. In Fig. 5.1 we show the unsuppressed process <P -+ K+ K- (left) alongside 

the suppressed process <P-+ 1r+1r-1r0 (right) for which the rule was originally formulated. 

Such processes are shown to be 0(1/ Nc) in a 1/ Nc expansion and phenomenologically they 

are found to be small ~ 10%; they can be safely neglected, leaving the U(1)A anomaly 

as the only mixing mechanism. For the mixing schemes we discuss in the next section, 

this assumption has been confronted with experimental data and holds to the expected 

accuracy. 

Figure 5.1: Examples of strong interaction decays. Left: <P ~ K+ K-, right: <P ~ 1r+1r-1r0 . 

The former occurs preferentially over the latter due to the fact that the annihilation of the ¢ 
requires all gluons to be hard, yielding a suppression via a small a 8 which need not be the case 
for the first decay. This forms the basis of the OZI-rule. 

A schematic picture of the U(1)A anomaly at work for B -+ r/') is shown in Fig. 5.2., 

where the flavour-singlet contribution is defined as the amplitude for producing either a 

quark-antiquark pair in a singlet state which does not contain the B's spectator quark, 

or two gluons, which then hadronise into an 'r/('). 

What about mixing between other pseudoscalar mesons? In 'r/ - r/ - 1r0 mixing the gluonic 

component present in the 1r0 is found to be at the level of a few percent and so can be 

2 Another interesting approach to understanding the r/') system was given in Ref. [129]. 
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I 
I 

• [:J) 
Figure 5.2: B -t r/') via the U(l)A anomaly. The b-tu transition allows for an annihilation 
of the B meson's quarks to two gluons, thus probing the gluonic content of ry('). 

neglected [118, 138, 139]. There also exists a cc component to 17(') ( 17c) which is considered 

in Ref. [117] and found to be small with the conclusion that it is not the solution to the 

abnormally large B ---+ K 17' branching ratio. Sometimes other particles are included as 

possible glueball candidates produced via OZI-rule suppressed processes in J /'1/J decay, see 

for example Refs. [125, 140]. Although it is unclear whether pseudoscalar mesons contain 

pure glueball properties, Ref. [141] concludes that it is unlikely. Thus the 17-17' system 

stands out on its own. 

Phenomenologically, the semileptonic decay B ---+ 17(') lv1 can be used to determine the size 

of the CKM matrix element IVubl from the spectrum 

(5.1) 

where P = {17,17'} and Ap(x) = (m~ + m~- x) 2
- 4m~m~. Alternatively, as we shall 

see, the ratio of branching ratios B( B ---+ 17' ev) / B( B ---+ 17£v) can be used to constrain the 

gluonic Gegenbauer moment B~. 

5.2 State Mixing 

The first step in describing 17-17' mixing is to decompose the two physical states 117(')) into 

other, more convenient orthogonal states. As proposed in Refs. [117, 118] one can proceed 

in two ways; either by employing the singlet-octet scheme (SO) or the quark-flavour 

scheme (QF). The SO axial-vector currents are respectively 
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and their couplings are given by 

(i=0,8), (5.3) 

where J~5 denotes the SU(3)F-octet and J25 the SU(3)F-singlet axial-vector current. The 

four quantities are related to the decay constants of a pure singlet or octet state l17i) by 

two mixing angles (}i 

( ~j, ~i ) ~ ( :~: :: -:: ~: ) ( ; ~0 ) . 
(5.4) 

Evidently SU(3)F-breaking effects cause (}i =f. 0 and Is =f. l1r, and as such the SO scheme 

is very natural. In fact, at leading-order in ChPT an expansion in quark masses and 1/ Nc 

gives [133] 
. 2v'2Uk - 1;) 

sm(eo- es) = 4lk- r; + ... ' (5.5) 

where the dots denote neglected higher-order terms which are required to match phe­

nomenology [142]. The impact of the U(1)A anomaly is plainly localised in lo via the 

divergence of the singlet current J25 which can be written 

(5.6) 

where a= {0, 1, ... , 8}, Tr[tatb] = ~b'ab, t0 = 1/v'3 and the mass matrix m = diag[mu, md, m 8 ]. 

The SO scheme diagonalises the renormalisation-scale dependence of parameters; Is and 

(}i are scale-independent, whereas lo renormalises multiplicatively 

(5.7) 

In the QF mixing scheme, on the other hand, the basic axial-vector currents are 

(5.8) 

and the corresponding couplings are 

(5.9) 
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The mixing is analogous to (5.4) with 

( ~i ;,~, ) -( :::: -:::: ) ( ~· ;, ) . (5.10) 

Both quark flavour states l77q,s) have vanishing vacuum-particle matrix elements with the 

opposite currents 

(5.11) 

which is an assumption that has been tested. It is in part motivated by the observation 

of near ideal mixing in vector and tensor mesons. It implies that the mixing of states is 

the same as that of the decay constants and moreover leads to the diagonalisation of the 

mass matrix, which we come back to shortly. This hypothesis does not hold for the SO 

basis. It is found by Refs. [134, 138] that the difference between the two mixing angles of 

the QF scheme f/Jq- ¢s is generated by OZI-rule suppressed processes and is not caused 

by SU(3)F-breaking effects, as for the SO scheme (5.5). While the numerical values of 

ei differ largely, with typical values 08 ~ -20° and 00 ~ -5°, one finds ¢s - f/Jq ;S 5o, 

with f/Jq ~ ¢s ~ 40° [117, 118, 134]. This observation led the authors of Refs. [117, 118] to 

suggest the QF scheme as an approximation to describe 77-r/ mixing, based on neglecting 

the difference f/Jq- ¢s (and all other OZI-breaking effects): 

(5.12) 

The state mixing is then given by 

( 
177) ) = ( cos¢ -sin¢ ) ( l77q) ) 
177') sin¢ cos¢ l77s) 

(5.13) 

The renormalisation-scale dependence of fo given by Eq. ( 5. 7) is not reproduced as it 

is induced precisely by neglected OZI-breaking terms [138]. Numerically, this is not a 

problem as the scale-dependence of fo is a two-loop effect. In the case of non-local 

matrix elements, the DAs, this lack of scale dependence of the QF scheme is somewhat 

problematic. We come back to this point in the next section. 

Returning to the diagonalisation of the mass matrix; from Eq. (5.3) one finds the quadratic 

diagonal mass matrix, for example 

(5.14) 
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which, via Eq. (5.6), gives the mass matrix in QF basis 

(5.15) 

with the short-hand notation 

(5.16) 

From Eq. (5.15) the crucial impact of the anomaly, as the only term in the off-diagonal 

elements, is evident. To first order in SU(3)F-breaking, the decay constants and quantities 

m;q,ss are fixed giving the theoretical estimate 

is = V2ik- i;' 
m;s = 2Mk - M?r , (5.17) 

which also leads to a fixed value of ¢; there is no free parameter left and thus the QF 

scheme is totally determined [117]. We do not work in this limit, however, and take 

numerical values of the decay constants and mixing angle from phenomenology. Given 

enough data to fix all independent parameters, there is no reason to prefer the QF over 

the SO scheme. The QF scheme is beneficial when considering DAs as the SO scheme 

leads to a proliferation of unknown parameters. For this reason we decide to use the QF 

scheme for the analysis. Its basic parameters have been determined as [117, 118] 

iq = (1.07 ± 0.02)i7f, is = (1.34 ± 0.06)i1f, ¢ = 39.3° ± 1.0° . (5.18) 

This can be translated into values for the SO parameters as 

is ~ ii + ~n = (1.26 ± o.o4)i7f, 

io ~iJ+~J;=(1.17±0.03)i7f, 
Bs ¢- arctan[v'2is/ iq] = ( -21.2 ± 1.6t, 

¢- arctan[v'2iq/ is] = ( -9.2 ± 1.7t, (5.19) 

Note that in the QF scheme iq,s are scale-independent parameters, and so is io as obtained 

from the above relations. The SO decay constants are related to those of the QF scheme 
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by a change of basis 

( 
J~ f~ ) _ ( cos¢> - sin¢> ) ( fq 0 ) ( [f ~ ) 
J1~, f~, - sin¢> cos¢> 0 !s -~ [f . (5.20) 

The last matrix originates from the ideal mixing angle Oideal = arctan J2 which rotates 

from the QF basis to the SO basis. 

5.3 Pseudoscalar Meson Distribution Amplitudes 

As discussed in Chapter 3, the method of LCSRs relies on the non-perturbative universal 

light-cone DAs; specifically here we require pseudoscalar meson DAs including the two­

gluon DA. At leading-twist both these DAs contribute and indeed mix with each other un­

der renormalisation. The quark-antiquark DAs are extensions of the matrix elements given 

by Eqs. (5.3) and (5.9) to those of non-local operators on the light-cone. Pseudoscalar 

mesons' quark-antiquark DAs have been investigated previously in Refs. [51, 57, 77]. The 

two-gluon DAs of leading and higher twist have been investigated in Ref. [143]. In this 

analysis we only include the effects of the leading-twist two-gluon DA, which is justified 

as its effects turn out to be fairly small and higher-twist DAs are estimated to have even 

smaller impact. Following Ref. [144], the twist-2 two-quark DAs off/(') are defined as 

(5.21) 

¢>~;P(u) is the twist-2 DA of the meson P with respect to the current whose flavour 

content is given by Ci, with \ll = ( u, d, s) the triplet of light-quark fields in flavour space. 

For the SO currents, one has C0 = 1/ J3 and C8 = J2 t 8 , while for the QF currents 

cq = ( J2C0 + C8)/J3 and cs = (C0 - J2C8)/J3. Due to the positive G-parity of, and 

f/1
, the two-quark DAs are symmetric under u ~ 1 - u, and hence all odd Gegenbauer 

moments vanish: 

(5.22) 
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and the DAs are expanded in terms of Gegenbauer polynomials in exactly the same way 

as for the vector mesons 

(5.23) 

where a~,i are the quark Gegenbauer moments. The gluonic twist-2 DA is defined as3 

(5.24) 

In order to perform the calculation of the correlation function defined in the next section, 

we also need the matrix element of the meson P over two gluon fields. Dropping the 

gauge factor [z, -z] one has 

(OIAa( )Ab (- )IP( )) = ~ zPpu Cp lo t5ab 11 d iep·z '1/J~;P(u) 
a z {3 z p 4 Eaf3pu P. z y'3 P 8 o u e u(1- u) . (5.25) 

The two-gluon asymptotic DAis u2J-1(1- u)2J-l with j = 3/2 the lowest conformal spin 

of the operator G 1u and the expansion goes in terms of Gegenbauer polynomials C~12 , see 

Eq. (1.21). One can show that '1/J~;P is antisymmetric: 

(5.26) 

and in particular J0
1 du'l/J~;P(u) = 0 and the local twist-2 matrix element (OIGJLzGJLziP) 

vanishes. The non-vanishing coupling (OIGaf3Gaf31P) induced by the U(1)A anomaly is a 

twist-4 effect. The corresponding matrix elements are discussed in Refs. [117, 118] and 

are given, in the QF scheme, by: 

Is( m~ - m~,) sin¢> cos¢>, 

lq(m~- m~,)/J2sin¢cos¢. (5.27) 

In taking the ratios of both sides of the above relations one can see that SU(3)p-breaking 

in the decay constants lq/ Is is driven by the anomaly. There are no twist-3 two-gluon DAs 

and the remaining twist-4 DAs also have vanishing normalisation [143]. The conformal 

3 This definition refers to the "a-rescaled" DA ¢~ in Ref. [144] with <1 = -/3/CF. It agrees with that 
used in Refs. [143, 149], which means that we can use their results for the two-gluon Gegenbauer moment 
B~ without rescaling. 
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expansion of the twist-2 two-gluon DA reads 

1/J~;P(u,J-L) = u2(1- u) 2 L Bt;·9 (J-L)c~el(0, (5.28) 
n=2,4, ... 

with the gluonic Gegenbauer moments B[;·g. In this analysis, we truncate both ¢~;P and 

1/J~;P at n = 2. An estimate of the effect of higher Gegenbauer moments in ¢2;rr on the 

B ---t 1r form factor f~ has been given in Ref. [86], based on a certain class of models 

for the full DA beyond conformal expansion. The effect of neglecting a~2:4 was found to 

be very small ;::::j 2% hence we expect the truncation error from neglecing B;2:4 to be of 

similar size. 

¢g;P and 1/J~;P mix upon a change of scale J1 and as discussed in Refs. [144, 145] this 

amounts to a mixing of af'0 and Bf'9 , resulting in the renormalisation-group equation to 

LO accuracy 

( 

100 
d 0 -

11
_ a2 __ ct 8 9 
dfl ( Bg ) - 41r - 36 

10 ) -81 ( ag ) , 
22 B~ 

(5.29) 

where for simplicity we have dropped the superscript P. The solution for ag reads 

[(! _ 49 ) £"'tt/(2f3o) + (! + 49 ) £'Y2/(2f3o)] ao(J12) 
2 2v2761 2 2v2761 2 o 

+ 5 [£'Y2 /(2f3o) - £'Yt/(2f3o)] Bg(/12) (5.30) 
9Jml 2 rO 

with the anomalous dimensions 'Yi = (149 ± Jml)/9. The octet Gegenbauer moment 

does not have another DA with which it can mix and so its evolution is simpler 

(5.31) 

The mixing amongst the DAs complicates matters; as the scale dependence of the decay 

constants is lost in the QF scheme, one expects to have to lose scale dependence in the 

DAs too, and we must be careful to be consistent. The verification of the anomalous 

dimensions in Eq. (5.29) from the singlet and octet parts of the form factor calculations is 

a crucial test of the LCSR analysis. For this reason, we discuss the implications of mixing 

on the twist-2 DA parameters, and only briefly cover higher-twist quark DAs which are 

included in the octet part; for a detailed discussion one is referred to Ref. [65]. Following 

Ref. [144], for the DAs introduced by Eq. (5.23) we have, in terms of the quark valence 
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Fock states lqq) and iss) 

(5.32) 

where qq is shorthand for ( ufi + dd) / v'2 and 

,~,ozr _ v'2 ("'o _ ,~,s) 
'+'2 - 3 '+'2 '+'2 • (5.33) 

In the QF scheme, the "wrong-flavour" DA </J~zr, which is generated by OZI-violating 

interactions, is set to 0. Once this is done at a certain scale, however, the different 

evolution of a~ and a~ will generate a non-zero </J~zr already to LO accuracy. A consistent 

implementation of the QF scheme hence requires one to either set a~,s = 0 and also 

B~ = 0, or to set a~ = a~ and neglect the different scale-dependence of these parameters. 

The induced non-zero DA </J~zr is numerically very small for the scales relevant for our 

calculation, 11 = 1 GeV and 2.4 GeV.4 The left panel of Fig. 5.3 shows a plot of D. = 

100 i(ag(J-L)- a~(J-L))jag(J-L)i as a function of scale J-L, according to Eqs. (5.30) and (5.31), 

for a~(l GeV) = ag(l GeV) and Bg = 0. We see that D. is less than 0.25% over the range 

1 GeV < 11 < 2.4GeV. Choosing a~(l GeV) = 0.25 ± 0.15, guided by our knowledge of 

twist-2 DAs of the 1r; we have a~(2.4 GeV) = 0.171 from Eq. (5.31), and ag(2.4 GeV) = 

0.171 for Bg = 0, from Eq. (5.30). Evidently, the impact of the different anomalous 

dimensions of ag and a~ is negligible. Also, the evolution of ag is not hugely different to 

0.22 
0.2 

0.2 

0.15 0.18 

0.1 0.16 

0.14 

0.05 
0.12 

1.2 1.4 1.6 1.8 2. 2.2 -20. -10. 0. 10. 20. 

Figure 5.3: Left: ~ = 100 l(ag(J.L) - a~(J.L))jag(J.L)i as a function of scale J.l, according to 
Eqs. (5.30) and (5.31) with Bg = 0. Right: dependence of ag(2.4GeV) on Bg(l GeV) for 
ag(l GeV) = 0.25 according to Eq. (5.30) 

4 2.4 GeV is a typical scale in the calculation of form factors from LCSRs: J1- = Jm1- m~ is chosen 
as an intermediate scale between mb and the typical hadronic scale 1 GeV. 
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that of a~, for a wide range of values of s;. The right panel of Fig. 5.3 shows the evolution 

of the singlet Gegenbauer moment ag from fJ, = 1 GeV- 2.4 GeV, from Eq. (5.30), for the 

range of gluon Gegenbauer moments IB~(l GeV)I < 20, which is a very conservative 

estimated range, as discussed below. The mixing of B~ into ag is up to 20% forB~ = 20 

and 40% forB~= -20. 

From the conclusions of the above discussion we are justified in implementing the QF 

scheme for DAs as follows: we set ¢>g = ¢>~ at the scale fJ, = 1 GeV, which, by virtue 

of Eq. (5.33), implies ¢>~ _ ¢>~ at the same scale. We then evolve a2 according to the 

scaling-law for the octet Gegenbauer moment (5.31 ). 5 We also set 'lj;~; 11 = 'lj;~;TJ'; again any 

SU(3)F-breaking of this relation is expected to have only very small impact on J!j!_, 17(t>. 

The twist-2 parameters used in our calculation are then reduced to two: a2 and B~. 

Concerning numerical values, we assume that the bulk of SU(3)F-breaking effects is de­

scribed by the decay constants via fq f. J1r, and that SU(3)F-breaking in Gegenbauer 

moments is sub-leading [57]. Sum rules for a2 and a~ would essentially be the same, 

with !11: f. Jq driving the SU(3)F-breaking and any small differences in s0 and M2 being 

negligible. This motivates setting a~ = a2, with a2(1 GeV) = 0.25 ± 0.15 as an average 

over a large number of calculations and fits to experimental data [57]. 

ForB~, however, no direct calculation is available. Results from fits to data have been 

obtained from the r(y transition form factor, yielding B~(l GeV) = 9 ± 12 [144], and 

the combined analysis of this form factor and the inclusive decay Y(1S) --+ TJ1 X yielding 

BH1.4 GeV) = 4.6 ± 2.5 [143]. Caution must be taken when considering these results as 

they are highly correlated with the simultaneous determination of ag and a~ from the same 

data, yielding ag(l GeV) = -0.08 ± 0.04, a~ (I GeV) = -0.04 ± 0.04 and ag(1.4 GeV) = 
a~(1.4 GeV) = -0.054 ± 0.029, respectively. The same analysis, applied to the 1f/ form 

factor, returns a2(1 GeV) = -0.06 ± 0.03 [147]. These results are not really compatible 

with those from the direct calculation of a2 from Lattice QCD and QCD sum rules; in 

particular the sign of a2 is unambiguously fixed as being positive. A possible reason 

for this discrepancy is the neglection of higher-order terms in the light-cone expansion 

and that, in addition, as one of the photons in the process is nearly real with virtuality 

q2 ;::;; 0, one also has to take into account long-distance photon interactions, of order 

1.jq2, as discussed in Ref. [146]. For this reason, we assume the very conservative range 

B~(2.4 GeV) = 0 ± 20 in the analysis. 

5This is equivalent to imposing the QF-scheme relation a~ =a~ as the scale 11 = 2.4 GeV and defining 
B~ as B~(2.4 GeV). 
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As far as higher-twist quark DAs are concerned, we only need those involving currents 

with flavour content qq = ( uu + dd) / v'2. In line with the implementation of the QF 

scheme for twist-2 DAs, we include SU(3)F-breaking only via the decay constants. The 

precise definitions of all twist-3 and 4 DAs, as well as up-to-date numerical values of the 

1r's hadronic parameters can be found in Ref. [57]. A discussion of the correct treatment 

of these DAs within LCSR, as modified to describe 'r/(1), can be found in Ref. [65]. 

5.4 Calculation 

We define the B -----+ P form factors analogously to those of other pseudoscalar mesons 

as [110] 

- { m1- m~ } tr(q2
) m1- m~ J{(q2

) 
(P(p)iu111biB(p + q)) = (2p + q)11 - q2 q11 y'2 + q2 q11 y'2 · 

(5.34) 

where the factor of 1/v'2 on the right-hand side is to ensure that in the SU(3)F symmetry 

limit, without rJ-rJ' mixing, f2 = f:[_. For semileptonic decays B-----+ 'rJ('ltv1 the form factor 

f[ appears proportional to q2 ~ m[ which is negligible for light leptons l = { e, 1-L} for 

which only Jr is required. Using the LCSR method outlined in Chapter 3 we extract the 

semileptonic form factor Jr from the following correlation function 

rr:(p, q) i j d4x eiq·x(P(p)IT[u!11b](x)jb(O)IO) 

II~(q2,p1)(2p + q)JL + ... ' 

(5.35) 

where JB = mbuiJ5b is the interpolating current for the B meson and P1 = (p + q) 2 its 

virtuality. In calculating the correlation function, we use Eq. (5.13) which relates the 

physical states l'r/(')) and the QF basis states l'rJq,s) so that 

(5.36) 

The interpolating current il')'11b only probes the uu quark component of the 'r/(') so II~ 

vanishes to leading order in a 8 and at O(as) is due only to gluonic Fock states of the 

meson. II~, on the other hand, receives contributions from both quark and gluon states. 
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The final LCSR for J!:~ then reads 

(5.37) 

with the usual sum rule specific parameters M 2
, the Borel parameter, and s0 , the contin­

uum threshold. 

Quark Contribution 

The quark contributions follow from the studies already undertaken for the n, for more 

details see Ref. [110]. We briefly cover the general features of the calculation to put the 

singlet contribution in context. The leading quark contributions to II~ originate from the 

diagrams of Fig. 5.4, where first order O(as) corrections are shown. The external quarks 

have momentum fractions up and (1- u)p and are on-shell; p2 = m~. The two-particle 

I \ I \ I \ I \ 

I \ I \ I \ 

Figure 5.4: The quark-antiquark contributions to the semileptonic B ----) ry(') form factors 

Ji') (q2) from light-cone sum rules. The top left diagram is the leading one, the others are 
O(a8 ). The double line corresponds to the b quark and the dashed lines the injection of the 
weak vertex momentum q, and the momentum of the B meson PB· 

DAs are projected out by using the general spinor decomposition of quark fields 
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The vacuum-meson matrix elements of each term above either vanish or yield a DA 

depending on the quantum numbers of the meson in question. For pseudoscalar mesons 

the leading-twist contribution comes from 'YJ.L"/5 , whereas i"(5 and iaJ.Lv'Y5 give two-particle 

twist-3 contributions, and although the two-particle twist-3 contributions appear in the 

sum rules as formally 1/mb, they are chirally enhanced by numerically large factors [51] 

and so are included in typical LCSR analyses [110]. Three-particle twist-3 and two- and 

three-particle twist-4 DAs are also included; all twist-2 and -3 contributions include O(a8 ) 

corrections twist-4 contributions are to tree level accuracy. The corresponding expressions 

yield II~, with the replacement J1r --7 fq· 

Gluonic Contribution 

In order to obtain the gluonic contribution to II~, one needs to calculate the diagrams 

shown in Fig. 5.5. The last diagram is divergent and the other two are finite. The gluon 

I \ I \ I \ 

Figure 5.5: The leading diagrams for the flavour-singlet contribution to the semileptonic 
B --> r/') form factors from light-cone sum rules. The double line corresponds to the b quark. 
The dashed lines the injection of weak vertex momentum q, and momentum of the B meson 
interpolating current PB· 

fields are introduced in the standard way 

with the usual interaction Lagrangian £~i ( x) = igs [qna A~taqi]( x) with qi = { u, b} and 

the statistical factor S takes values 1 if q1 f=. q2 and 1/2 if q1 = q2 . The integral is over 

each co-ordinate separately. To extract the gluon contribution we need the projection 

onto the twist-2 two-gluon DA, which can be read off Eq. (5.25), which amounts to the 
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following replacement of the gluon fields (up to the numerical factor) 

Aa ( )Ab ( ) tw1st-2 J:ab ~ d 'f'2;P ip·(uw+uy) 
. -p u 11 "''g (u) 

a w {3 y ~ u taf3pu - u - e ' 
p·z 0 uu 

(5.39) 

where the separation z is light-like i.e. z2 = ( w - y )2 = 0. Via partial integration we can 

simplify the resulting expression for II P+ 1
1 

; the co-ordinate z is traded for a derivative 
g uon 

of the hard scattering kernel with respect to the momentum of one of the emitted gluons; 

and the dot product 1/(p · z) can be traded for an integral with respect to the DA 

momentum fraction. As the boundary terms vanish due to the leading-twist gluon DA 

being antisymmetric, the calculation takes a rather simple form: 

PI 11 [oTt( up)] 1u ~~-p(v) I 
II+ gluon = du P dv , - ' 

0 8(up) 0 vv P -+! q -+O 
I' 2' I' 

(5.40) 

where Tt( up) is the hard scattering kernel. Both the gluonic and quark contributions are 

renormalisation scale dependent. The relevant term concerning the quark Gegenbauer 

moment a2 is 

q ( O:s 50 P,
2 

) ( 2 2) II+ rv 18fqa2 1 +-- ln - 2 F Ps,q , 
47r 9 mb 

(5.41) 

where F(p~, q2
) is a function of p~ and q2 . The logarithmic terms in the convolution of 

the gluonic diagrams of Fig. 5.5 with ~~;P are 

(5.42) 

By expressing Jq via Eq. (5.20) in terms off~ and f~,, respectively, and inserting Eq. (5.41) 

into Eq. (5.36), one verifies that the renormalisation-group equation, Eq. (5.29), is fulfilled. 

The twist-2 two-gluon contribution to the correlation functions II~, Eq. (5.36), is given 

in terms of a spectral density as 

IIPI = 100 ds P~uon(s) 
+ gluon 2 8 _ p2 

mb B 
(5.43) 
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with the result being 

g P 5 mb
2 

- s { 6 6 4 2 2 3 
B 2 asf0 mb 

0 
( 2 )

5 
59mb+ 21q - 63q s- 19q s + 2s 

36v3 s- q 

+ m~s(164q2 + 13s)- ml(82q2 + 95s)} 

5 (m2 q2 )(s m2 ) 
+ B 9a rPm -- b- - b {5m4 + q4 + 3q2s + s2 - 5m2 (q2 + s)} 

2 s J 0 b 6 v'3 ( s - q2) 5 b b 

{ 
s- m~ f-L

2 
} x 2ln 

2 
- ln -

2 
. 

mb mb 
(5.44) 

5.5 Discussion 

For the evaluation of the LCSR, Eq. (5.37), as with any sum rule, optimum values of 

M 2 and s0 need to be found. The standard procedure [110] is to replace f 8 by its sum 

rule, derived via SVZ sum rules, thus reducing the dependence of the LCSR on mb for 

which we use the one-loop pole mass mb = 4.80 ± 0.05 GeV [88]. From the f 8 sum rule 

the optimum threshold parameter s0 = 34.2 ± 0.7GeV2 is found, and this value is taken 

over to the LCSR. As mentioned before f-L = 2.4 Ge V is chosen as an intermediate scale 

between mb and 1 GeV. The Borel parameter is taken to be M 2 > 6 GeV2 and is varied 

in the range 6 GeV2 < M 2 < 14 GeV2 to reflect the corresponding uncertainty. In Fig. 5.6 

we plot J!-"TJ(O) and J!-"TJ' (0) respectively as functions of M 2 , making explicit the result 

of varying s0 by ±0.7GeV2
, a2 by ±0.15 and Bg by ±10. As expected, f2(0) is not very 
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Figure 5.6: J2(0) (left) and Jt (0) (right) as a function of the Borel parameter M 2 and 
various choices of input parameters. Solid curves: central values of input parameters and s0 = 
34.2 Ge V2

. Long-dashed curves: s0 varied by ±0. 7 Ge V2
. Short-dashed curves: a2 (1 Ge V) varied 

by ±0.15. Dash-dotted curves: Bg varied by ±10. 
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sensitive to the gluonic twist-2 DA parameter B~ (dashed-dotted curves), but is quite 

sensitive to the Gegenbauer moment a2 (short-dashed curves). For f2' (0), on the other 

hand, the dependence on B~ is more pronounced than that of a 2 . Varying all relevant 

parameters within their respective ranges, i.e. ~mb = ±0.05 GeV, ~a2 (1 GeV) = ±0.15 

and ~B~ = ±20, as well as all twist-3 and twist-4 parameters within the ranges given in 

Ref. [57], we find 

(5.45) 
param. syst. 

f2'(o) 

0.188±~±~±~. (5.46) 
B~ param. syst. 

The entry labelled "T4" also contains an estimate of the possible impact of the local 

twist-4 two-gluon matrix elements (5.27). For this estimate, we exploit the fact that 

the asymptotic DA of the non-local generalisation of Eq. (5.27) is the same as for the 

twist-2 two-quark DA: 6u(1 - u).6 We then assume that the corresponding correlation 

function is the same as that for the leading conformal wave in the two-quark twist-2 

contribution, i.e. the coefficient in the Gegenbauer moment a0 = 1, and replace ao by 

(OiasGG/(47r)I'TJq,s)/(fq,sm~). The factor 1/m~ comes from the fact that this is a twist-4 

effect and hence suppressed by two powers of mb with respect to the twist-2 contribution. 

This is only a rough estimate, of course, as the true spectral density will be different. The 

results (5.46) show that for small B~ ~ 2 both twist-2 and -4 two-gluon effects can indeed 

be of similar size. In this case, however, the total flavour-singlet contribution to JJ' will 

also be small, rv 0.008. In the third lines, we have added all uncertainties from the input 

parameters (param.) in quadrature and the sum-rule specific uncertainties from M2 and 

s0 (syst.) linearly. For JJ' (0), we have displayed the dependence on B~ separately. The 

new result for f2 (0) is, within errors, in agreement with the previous one from LCSR, 

!2(0) = 0.275±0.036, obtained in Ref. [110]. That for JJ' (0) is new to the present analysis. 

The results agree well with those obtained in Ref. [149], from pQCD, J2(0) = 0.208 and 

JJ'(O) = 0.171, including a rescaling by a factor v'2 to bring their definition of the form 

factors into agreement with Eq. (5.34). We confirm the finding of Ref. [149] that the 

6This follows from Eq. (2.27). For G_u_, one has l = 2 and s = 0. 
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range of the singlet contribution to the form factor estimated in Ref. [120] is likely to be 

too large, unless Bg assumes extreme values ""'40. 

,..-.... 
: .. ' 0 

'"-' 1. 
-=-+ ""+-.:, 0.95 --,..-.... 0.9 0 ----- --------
'"-' 
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4. 6. 8. 10. 12. 14. 
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Figure 5. 7: Ji (0)/ J2(0) as a function of the Borel parameter M 2 and various choices of input 

parameters. Solid line: central values of input parameters, which corresponds to Ji (0)/ J2(0) = 
tan¢ = 0.814. Dot-dashed curves: Bg varied by ±10. Dotted curves: ai'17' (1 GeV) varied 
independently: ai = 0.1, ai' = 0.4 and at = 0.4, ai = 0.1. 

In Fig. 5.7 we plot the ratio Jt (0)/ n(o) as a function of the Borel parameter. In the 

ratio, many uncertainties cancel, in particular that on fB· As we have chosen Bg = 0 

as central value, n' (0)/ JJ(O) = tan 4> = 0.814 exactly, see Eq. (5.36). The figure also 

illustrates the change of the result upon inclusion of a non-zero Bg (dot-dashed curves). 

The ratio is actually rather sensitive to that parameter. While the dependence on a2 

largely cancels when ai and ai' are set equal, there is a considerable residual dependence 

on ai - at =f 0 (dotted curves). While lai - at I = 0.3 as illustrated by these curves 

is rather unlikely, and would signal very large OZI-breaking contributions (recall that 

ai =f ai' or, equivalently, a~ =f a~ signals the presence of "wrong-flavour" contributions 

to the 'r/q,s DAs and is set to 0 in the QF mixing scheme), one should nonetheless keep 

in mind that moderate corrections of this type are not excluded and compete with the 

OZI-allowed corrections in Bg. 

Finally, in Fig. 5.8 we show the dependence of the ratio of branching ratios R,m' = B(B ----> 

rJ1 ev) / B( B ----> rJeV) on Bg. The advantage of this observable is that all hadronic effects 

are encoded in the form factors and that IVubl cancels. The solid curve corresponds 

to the branching ratios obtained from the central values of input parameters; the long­

dashed curves illustrate the dependence on parameters originating from the model used 

to extrapolate the q2 dependence of the form factor from beyond the limit of the LCSR 
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Figure 5.8: The ratio of branching ratios R'IJ'IJ' = B(B ----> 7]
1ev)/B(B ----> 77ev) as a function 

of the singlet-parameter B~. Solid curve: central values of input parameters; Long-dashed 
curves: including variation of extrapolation model parameters, See Ref. [65]. Short-dashed 

curves: theoretical uncertainty of Rry'IJ' for B~ = 0, for a~·'IJ' (1 GeV) varied independently, as in 
Fig. 5.7. 

approach, in this case q2 = 16GeV2
, to the maximum possible value q!ax = (m8 -m'IJ(')) 2

. 

It may be noted that the dependence on these parameters is very small. We do not go 

into detail about the extrapolation procedure and refer the reader to Ref. [65]. On the 

other hand, R,1'1J' also depends on a~ =/:- at. This dependence is shown by the short-dashed 

curves. The conclusion is that large values of B~, IB~I > 5, can be distinguished from 

the OZI-breaking parameter I a~ - at I, once an accurate experimental value of R.m' is 

available, but that for smallish B~ and unknown Ia~ - at I only mutual constraints on 

these parameters can be extracted from the data. In this case also twist-4 gluonic DAs 

can become important. 
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Chapter 6 

QCD Factorisation 

In this chapter we discuss the framework of QCD factorisation which was introduced in 

the context of exclusive two-body non-leptonic B decays by Beneke, Buchalla, Neubert 

and Sachrajda in Refs. [10, 11]. We shall refer to the the original implementation of the 

framework as the BBNS approach. We also focus on its application to the radiative B 

decays B --t Vy, as presented by Bosch and B uchalla in Refs. [ 16, 17]. 

QCD factorisation allows a rigourous determination of the B decay matrix elements of 

the weak effective Hamiltonian (1.22) to leading order in the heavy-quark limit of QCD 

mb » AQco, and yields a neat factorisation formula. It relies on the factorisation of 

hadronic matrix elements into universal non-perturbative hadronic parameters, given by 

transition form factors and meson light-cone DAs, and process dependent hard-scattering 

kernels, calculable in perturbation theory. The validity of the QCD factorisation formula, 

to all orders in a 5 , and the impact of generally unknown power corrections, formally 

suppressed by powers of 1/mb, must be addressed case by case. The introduction of 

the QCD factorisation framework has made more discerning phenomenological studies of 

exclusive B decays possible whereby key observables, such as branching ratios, CP and 

isospin asymmetries, can be calculated and confronted with experimental data. 

The dependence of the factorisation formula on meson DAs, either directly or via LCSR 

calculations of the transition form factors, greatly motivates their study, with their better 

determination reducing the theoretical uncertainty of the QCD factorisation predictions, 

and aiding the quest to discover new physics effects from decay observables. 

We begin with a short introduction, in the context of B --t M1M2 decays, of the general 

features of QCD factorisation, and in particular, discuss the appearance of meson DAs. 
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We then discuss the framework as applied to the radiative B decays B ---t V r· We 

postpone all discussions of phenomenology to Chapter 7 in which we perform an analysis 

of the decays Bu,d ---t (p, w, K*)r and Bs ---t (K*, ¢ )r using QCD factorisation, augmented 

by the inclusion of the dominant power-suppressed corrections. 

6.1 Introduction 

QCD factorisation (QCDF) [10, 11] was introduced in the context of the "heavy-to-light" 

decays B ---t 1r1r where the factorisation of the relevant QCD matrix elements was shown 

to apply, to leading order in a 1/mb expansion, to a large class of non-leptonic B decays. 

Consequently, QCDF has opened up the rich and varied landscape of B decays to a more 

complete quantitative analysis. The existence of factorisation in non-leptonic decays is 

non-trivial and complicated by the possible gluonic interactions amongst the initial and 

final states. Conversly, leptonic and semi-leptonic decays factorise much more easily into 

the product of a quark current and a leptonic current, which cannot interact via gluon 

exchange. 

Phenomenologically, QCDF has been remarkably successful, especially given the range of 

processes for which the method holds. After its introduction, it was swiftly generalised 

to encompass 1r K final states [12], pseudoscalar-vector final states [121] and vector-vector 

meson final states [150]. The gluonic flavour-singlet contributions to B ---t K(*)"l(') decays 

were added by Ref. [120]. To date, the framework has been extended to many other 

processes, including for example, (double) radiative B decays B ---t 1(1, V) [17, 151] and 

B ---t 1l11 [71]. Also, other factorisation frameworks have since been developed and applied 

to the same problems: 

• Soft Collinear Effective Theory (SCET) [152-155] makes a careful distinction be­

tween a hierarchy of "hard" (mb), "hard-collinear" ( J Aqcnmb) and "collinear" 

(Aqcn) scales via contributions of internal quark and gluon lines. Details of the 

differences between the SCET and BBNS approaches to QCD factorisation can be 

found in Refs. [156-158]. 

• The Perturbative QCD (pQCD) approach [159], which yields a factorisation formula 

that depends on the mesons' transverse momenta. 

• The method of LCSRs, although having existed before the advent of QCDF, was 

applied to B ---t 1r1r, both to the matrix elements which exhibit factorisation and 
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also a class of power corrections, providing some useful complementary insights, see 

Refs. [160, 161]. 

We now go on to discuss the general features of QCDF. 

6.2 General Structure 

Consider the case of non-leptonic decays where the B meson decays into two mesons. The 

simplest way of dealing with the resulting matrix elements is to employ naive factorisation 

[162, 163]. Simply put, naive factorisation splits each local operator Qi of the effective 

Hamiltonian into two colour-singlet currents, whose matrix elements are proportional to 

a decay constant and a transition form factor respectively. For example, consider the 

four-quark operator Q~ == (DU)v-A(Ub)v-A then 

The motivation for factorising in this way comes from the colour transparency argument 

[164]. It follows that a major shortcoming of naive factorisation is that it assumes the 

exchange of gluons of virtualites J.l ;S mb to be negligible and hence rescattering between 

the decay products is not considered; there is then no mechanism for the generation of 

strong phase effects between different amplitudes. Also, the matrix elements (6.1) do not 

display the correct renormalisation-scale dependence. 

The framework of QCDF allows the calculation of CJ(as) corrections to naive factorisation, 

which occur at scales J.l ;S mb. It is constructed by observing the cancelation of infrared 

(IR) and collinear divergences, via consistent power-counting arguments, allowing the 

use of perturbation theory to describe the hard-gluon exchanges. The resulting intuitive 

factorisation formula thus presents a massive simplification of the long-distance QCD 

effects, with QCDF recovering naive factorisation in the limit mb --+ oo. In terms of two­

body non·::leptonic B decays~ to_ light .pseudoscalar mesons B --+ 1\11M 2 the factorisation 
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formula, as presented in Ref. [10], reads schematically as 

(M1M2IQiiB) = pB-.Mt 11 

duT/(u)</>2;M2(u) + (M1 ~ M2) 

+ 11 

dedudvT/1(e,u,v)</>s(e)</>2;M1 (v)</>2;M2(u) 

+ V(AQcD/mb) (6.2) 

where pB-.Mt is the relevant form factor, I:I,II are the hard-scattering kernels, </>s is 

one of the leading-twist DAs of the B meson and </>2;P the leading-twist DA of the final 

state meson P, and the Qi are the operators of the effective Hamiltonian. The matrix 

elements are given as the convolution of the universal DAs and the process dependent hard­

scattering kernels, with respect to the meson momentum fractions. Since the transition 

form factor and the DAs are real functions, all strong phases are generated by the hard­

scattering kernels and are suppressed by powers of a 8 • Factorisation has be proven to 

one-loop for "light-light" final states and two-loop for "heavy-light" final states [11]. It 

has be proven to all orders in as forB-> D1r using SCET [153]. 

The ability of QCDF to accurately describe B decay processes is limited by two main 

considerations; firstly, by the nature of the factorisation formula itself, which is valid up 

to power corrections 0(1/mb) and to a given order in as; and secondly by uncertainties 

of the necessary input parameters, such as the DAs, the transition form factors, the 

strange quark mass, the B meson decay constant fs etc. Whether a discrepancy between 

experiment and QCDF predictions can be put down to new physics, or not, requires an 

estimation of neglected power corrections; certainly the b quark mass is not asymptotically 

large mb "' 5 Ge V and power corrections are therefore expected to feature at the level 

of V(AQcD/mb) "' 10%. The size and nature of power corrections can be probed via 

phenomenology, however, the task is not straight forward; even the initial focus of the 

approach, the decays B-> 1r(K, 1r), which stands as a crucial test, has not been resolved 

satisfactorily, see for example Ref. [165] and Refs. [166, 167]. Better determined input 

parameters will nevertheless shed light, case by case, on whether power corrections are 

important, and the QCDF predictions must be used to determine or constrain CKM 

matrix elements (UT angles), or detect signs of new physics, with that in mind. 
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6.3 Light-Cone Distribution Amplitudes 

To leading-order in the heavy-quark limit the leading-twist final state meson DAs con­

tribute to the factorisation formula and can be safely truncated after the second Gegen­

bauer moment a2 . For pseudoscalar meson final states the two-particle twist-3 DAs come 

with large normalisation factors r: and are said to be chirally enhanced, and are therefore 

included even though they are formally 1/mb suppressed. The vector mesons do not have 

the same large normalisation factors but their two-particle twist-3 DAs are included in 

the BBNS approach for consistency. For a pseudoscalar or vector meson, with valence 

quark content qq', the normalisation factors are respectively 

(6.3) 

Three-particle twist-3 DAs are neglected because they do not come with large normalisa­

tions. The inclusion of the chirally enhanced DAs leads to end-point divergences from the 

convolutions of the two-particle twist-3 pseudoscalar DAs with the corresponding hard­

scattering kernels originating from both the hard-spectator scattering and annihilation 

contributions. The resulting divergent integrals signal the breakdown of factorisation and 

are parameterised by two universal unknown parameters XH,A, introducing a source of 

theoretical uncertainty to the BBNS approach [10]. 

At leading-twist the B meson is described by two DAs, only one of which is required as 

input for Eq. ( 6.2) and appears in the hard-spectator diagrams contributing to T,lf. The 

DAs of the B mesons are complicated by the fact that the momentum of the meson is 

shared in a highly antisymmetric way: the b quark has most of it. The B meson DAs are 

given, at leading-order in 1/mb, by 

(OifJ.a(O)bi3(z)IB(ps)) =if: [U6s +mb)'l]
13
" 11 

dee-i~(PB)+z_ [<PBI(e) +rL<PB2(e)l"a, 

(6.4) 

with the decay constant fs given by Eq. (3.21). With a careful choice of n_ = (1, 0, 0, -1) 

only the following normalisation conditions are required 

(6.5) 
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along with the first inverse moment of <I> 81 which is parameterised as 

(6.6) 

and the numerical value of )..8 is a source of uncertainty in the QCDF framework for both 

B ---t M1 M2 and B ---t V1. We now discuss the radiative decays B ---t V1 within QCDF. 

6.4 Radiative B decays to Vector Mesons 

We consider the leading contributions to the B ---t V 1 QCDF factorisation formula as of 

Refs. [16, 17,148, 168] in which a model independent framework is presented. Contributions 

that are power-suppressed by one power of 1/mb or more and are O(o:8 ) are not considered. 

At the quark level the decays are b ---t D1 transitions, where D = { s, d}. If otherwise 

not stated, in the following we refer to B ---t V 1 decays where B (V) denotes a bij ( Dij) 

bound state. For B ---t V 1 decays the matrix element of each relevant local operator in 

the effective Hamiltonian factorises as 

where eJ.L is the photon polarisation vector and Tfl-+V (0) is the relevant form factor. <P~v 

the leading-twist DA of the perpendicularly polarised final state vector meson (2.28); 

contributions from </>~.v are power-suppressed in the heavy-quark limit. Problems of end-, 

point divergences are not encountered in B ---t V 1 decays and the twist-3 vector meson 

DAdoes not feature- the B meson DAs (6.6) do however. The factorisation formula is 

accurate up to corrections suppressed by powers of 1/mb, as shown, and was proven to 

hold to all orders in 0:8 in SCET [169]. The form factor T1B-+V(O) has been calculated, for 

example, from LCSR in Ref. [112]. 

The B ---t V 1 decay produces either left- or right-handed photons, which therefore consti­

tute, in principle, two separate observable processes. In practise the direct measurement 

of the photon's helicity is very difficult; indirectly, however, it can be accessed by mea­

surement of the time-dependent CP asymmetry in B0 
---t V 01, which vanishes if one of 

them is absent, see Chapter 7. We define the two amplitudes as 

(6.8) 

92 



For (B) B decays the production of the (left-) right-handed photon is suppressed by 1/mb 

with respect to the opposite helicity. The decays are dominated by the electromagnetic 

dipole operator Q7,r> and as such are penguin mediated and so loop-suppressed. The 

operators Q~~R) are given by 

QL(R) - e D- (1 ± ) bF1w 7-y - - 2 mb a,_,v /'5 , 
87r 

(6.9) 

and generate left- (right-) handed photons. Their matrix elements can be parameterised 

in terms of the form factor T.f-+V as 

(V(p, TJhL(R)(q, e)IQ~~RllfJ) 
-

2
:

2 
mbTfl-+V (0) [cf-tvpa e:TJ~ppqa ± i{(e* · TJ*)(p · q)- (e* · p)(TJ*. q)} J 

-
2
:

2 
mbT.f-+V(O)SL(R), (6.10) 

where SL,R are the helicity amplitudes corresponding to left- and right-handed photons, 

respectively, and e,_, (TJ,_,) is the polarisation four-vector of the photon (vector meson). 

The leading-order diagram is given in Fig. 6.1 which is also the leading diagram for 

the form factor Tf"-... v. The factorisation formula (6.10) is therefore trivial to leading 

Figure 6.1: The leading contribution to B-+ VI' due to the electromagnetic dipole operator 
Q7-y-

order in et8 and the heavy-quark limit; the matrix element given by the standard form 

factor, the scattering kernel Tf by a purely kinematical function and Tfl does not feature. 

The electroweak penguin operators Q7, ... , 10 appear at higher-order and safely neglected 

in the analysis. All other operators begin to contribute at O(a8 ). The hard-vertex 

corrections contribute to T/ yielding functions of m~,c/ m~ and originate from penguin 

contractions of the operators Q1, ... ,6 and the chromomagnetic operator Q89 as shown in 

Fig. 6.2. The hard-spectator scattering diagrams of Fig. 6.3, in which the spectator quark 

of the B meson participates, contribute to T/ 1 and involve the same operators as the 

hard-vertex corrections. The hard-gluon exchange probes the momentum distribution of 

the B and vector mesons and so requires the introduction of the mesons' light-cone DAs, 
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)( )( 

Figure 6.2: Penguin contractions of Q1, ... ,6 (top line) and the chromomagnetic dipole operator 
Q8 (bottom line) contributing to the hard-vertex corrections ofT/ at O(a8 ). Crosses denote 
possible photon emission vertices. 

as suggested by the factorisation formula; it is in these contributions that the B meson 

DA parameter >.s and decay constants fs and fv appear. Also, the dominant power-

Figure 6.3: Penguin contractions of Q1, ... ,6 (left) and the chromomagnetic dipole operator Qs9 

(right) contributing to the hard-scattering kernel TP at O(a8 ). Crosses denote possible photon 
emission vertices at leading order. Photon emission from the other quark lines power-suppressed. 
Photon emission from the final state meson for Q89 breaks factorisation. 

suppressed weak annihilation (WA) contributions, shown in Fig. 6.4, are calculable in the 

QCDF approach, and involve the operators Q1, ... ,6 . WA contributions are 0(1/mb); photon 

emission from the b quark and the quarks in the vector meson is further suppressed and 

0(1/m&) - unless the weak interaction operator is Q5,6 , which can be Fierz transformed 

~· ~-into{D(-1 + r5 )qHq(l ""- r5)b~"and·"picks··up an additional-factor mn fromthe projection 

onto the B meson DA thus resulting in this contribution being 0(1/mb). Consequently, 

due to the large Wilson coefficients C1,2 these contributions are sizeable and important 

phenomenologically, see Chapter 7. 
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Figure 6.4: Weak annihilation contributions, which are suppressed by one power of 1/mb. 
Crosses denote possible photon emission vertices at leading order. The dominant mechanism for 
Q1, ... ,4 is the emission of the photon from the light quark in the B meson and for Q5,6 it is the 
emission from the final state vector meson quarks. Other possible emissions are either vanishing 
or more strongly suppressed. 

The decay amplitude is then given by 

(6.11) 

where the left-handed coefficients are given, to leading order in QCDF, by 

(6.12) 

and the right-handed parameters, for a b ~ D transition, by [170] 

(6.13) 

Explicit expressions for the 0 ( o:8 ) corrections to the left-handed coefficients can be found 

in Refs. [16, 17] and will be considered in Chapter 7, alongside the dominant power­

suppressed corrections. 
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Chapter 7 

B ----+ V r Beyond QCD Factorisation 

In this chapter we perform a phenomenological analysis of the exclusive radiative B de­

cays to vector mesons. We make use of the QCDF framework outlined in Chapter 6 

and investigate the impact of the leading power-corrections on the branching ratios, CP 

asymmetries and isospin asymmetries for all b ~ D transitions; Bu,d ~ (p, w, K*)! and 

Bs ~ (¢, K*)!. Weak annihilation effects, although power-suppressed, are calculable in 

QCDF, and are included for all decay modes in this analysis. The other power-suppressed 

contributions "beyond QCDF" considered are; soft photon emission from the soft B spec­

tator quark [72]; and long-distance contributions from heavy quark loops [170] and light 

quark loops [70] which have been estimated from LCSR. The estimation of the light quark 

loop contribution is new to the present analysis. Whereas the branching ratios are gen­

erally dominated by the leading contributions, and power-suppressed contributions play 

a minor role, the same cannot be said for the CP and isospin asymmetries for which the 

impact of power-corrections is in fact crucial. 

The motivation to study radiative B decays stems from a variety of sources: 

• as loop-induced, penguin mediated decays, they allow the extraction of the CKM 

matrix element JV't,(d,s)l complimentarily to the determination from B mixing and 

also that from the SM UT analysis based on the tree-level observables !Vub/Vcbl and 

·-'the angle" i. · · 

• They are sensitive to new physics contributions, which may occur within the pen­

guin loops, with the time-dependent CP asymmetry a very promising avenue of 

investigation. They are also subject to large short-distance QCD corrections, which 

now approach next-to-next-to-leading-order accuracy, see Refs. [186, 187]. 
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• The decay rates are of order G}aQED and are enhanced with respect to other loop­

induced non-radiative rare decays which are of order G}a~ED· Also, the b ~ s 

modes are CKM-favoured. Consequently there exist good experimental results for 

the exclusive branching ratios; B ~ K*'Y is known to 5%, but the b ~ d transitions 

are not so well known. 

As discussed in Chapter 6, the QCDF framework for B ~ V 'Y relies on the leading­

twist vector meson DA <f>tv· Moreover, the LCSR calculations of the form factors rt--->V 
and the parameters entering expressions for the soft-quark contributions rely also on the 

higher-twist DAs of the vector mesons and thus we find immediate use for the results 

of the twist-2 and twist-3 DA parameters of Chapter 4, as presented in Tab. 4.1 and 

Tab. 4.2. 1 

We begin with an introduction, and then go on to discuss the power-suppressed contri­

butions and investigate their impact on the decay observables. We extract the CKM 

parameter lvt,d/vtsl from the branching ratio results, assuming no new physics contribu­

tions, and discuss possible new physics contributions to the CP and isospin asymmetries. 

The material covered in this chapter follows that of Ref. [70]. 

7.1 Introduction 

B ~ V 'Y decays are a very rich and promising probe of flavour physics. Both the inclusive 

decay B ~ Xs'Y and the exclusive decays B ~ (K*, p)!' have been under scrutiny for many 

years, see for example Refs. [171, 172]. The experimental results for B ~ (p, w, K*)!' are 

shown in Tab. 7.1. For Bs ~ ¢>1' only an upper bound B(Bs ~ ¢>1') < 120 X w-6 exists 

and no experimental information is available for Bs ~ K*')' [27]. 

In the SM the decays are flavour-changing-neutral-current (FCNC) b ~ D')' transitions, 

mediated by penguin diagrams; they are therefore loop-suppressed and potentially very 

sensitive to new physics. To determine the relative sizes of contributions to the decays 

one must consider the following points: 

• the leading term is loop-suppressed rv 1/(47r)2 and proportional to c7 rv -0.3. 

1The analysis presented in Ref. [70] used preliminary input for the DA parameters, values for which 
were later finalised in Ref. [40]. The conclusions and numerics of the analysis are unaffected, due somewhat 
to the large errors attributed to the soft quark loop calculations in which the twist-3 DA parameters 
feature. 
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B X 106 BABAR [189] Belle [190] B X 106 HFAG [37] 

B----> (p,w)! 1.25~g:~~ ± 0.09 1 32+0.34+0.10 . -0.31-0.09 B+----> K*+l 40.3 ± 2.6 

B+----> P+l l.lO~g:~~ ± 0.09 0 55+0.42+0.09 . -0.36-0.08 Bo----> K*ol 40.1 ± 2.0 

Bo----> Pol 0.79~g:~6 ± 0.06 1 25+0.37+0.07 . -0.33-0.06 

B 0 ----> W/ < 0.78 0 96+0.34+0.05 . -0.27-0.10 

Table 7.1: Experimental branching ratios of exclusive b---. (d, s)! transitions. All entries are 
CP averaged. The first error is statistical, the second systematic. B ---. (p, w)! is the CP average 
of the isospin average over p and w channels: 

B(B ___. (p,w)!) = ~ {B(B± ___. P±l) + :~~ [B(B0
---. p01) + B(B0 

___. w1)] }· 

• Evidently from Eq. (6.11) for each mode there are two amplitudes proportional to 

different CKM factors )..~r:). For b ----> d transitions both )..~d) and )..~d) are ,....., ).. 3 , 

however, for b ----> s transitions )..~s) ,....., )..4 and )..~s) rv >.2 ; there is a relative CKM 

suppression of the up-quark contribution. 

• Power suppressed corrections from WA are formally ,....., 1/mb although come with 

large Wilson coefficients C1 ,....., -0.3 and C2 ,....., 1 and are not loop suppressed. The 

WA contributions drive the isospin asymmetries. 

• The production of "wrong" helicity photons is suppressed by mD/mb (6.13). The 

interplay of both helicity amplitudes generates the time-dependent CP asymmetries, 

which are small in the SM due to this suppression. 

7. 2 Wilson Coefficients 

Considerable effort has gone into calculating the Wilson coefficients to NLO accuracy. 

Using the expressions for the NLO anomalous dimension matrices available in the litera­

ture we employ the renormalisation techniques of Eqs. (1.24-1.31) to calculate the Wilson 

coefficients at the required scales. Numerical values of all the NLO Wilson coefficients Ci 

used in the analysis are given in Tab. 7.2. The situation is complicated by the fact that 

the QCDF results of Ref. [17] are given in terms of two bases. The first, the so-called 

BBL basis named after the authors of Ref. [173], is that of Eqs. (1.22) and (1.23) except 

with Q1 and Q2 exchanged with respect to the basis of Ref. [16]. The second is the 
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so-called CMM basis of Ref. [174, 175]. The two bases differ except for Q~(~~ = Q~(~M. 
Following Ref. [17], the CMM set is used for calculating hard-vertex corrections to the 

QCDF formulas and the BBL set at the lower scale /l>h rv ..,fAhj), (with >.h rv 0.5 GeV 

and p, = O(mb)) is used to calculate hard-spectator corrections. Power corrections are 

calculated from the BBL set at scale mb. 

NLO accuracy is mandatory only for C7 , as it is for this term only that the hadronic matrix 

element is also known to NLO accuracy. We evaluate all O(o:s) and power-suppressed 

corrections using both LO and NLO scaling for Wilson coefficients and hadronic matrix 

elements and include the resulting scale dependence in the theoretical uncertainty. 

CfMM(mb) CfMM(mb) CfMM(mb) CJMM(mb) CfMM(mb) C2MM(mb) C(MM(mb) 

-0.322 1.009 -0.005 -0.087 0.0004 -0.001 -0.309 

C~BL(mb) crBL(mb) CfBL(mb) C~BL(mb) C~BL(mb) c:BL(mb) CfMM(mb) 

-0.189 1.081 0.014 -0.036 0.009 -0.042 -0.170 

C~BL(P,h) crBL(P,h) CfBL(P,h) C~BL(P,h) C~BL(P,h) c:BL(P,h) CfMM(P,h) 

-0.288 1.133 0.021 -0.051 0.010 -0.065 -0.191 

Table 7.2: NLO Wilson coefficients to be used in the analysis, at the scales mb = 4.2 GeV and 
/l>h = 2.2 GeV. The coefficients labelled BBL correspond to the operator basis of Ref. [173] and 
given in Eq. (1.23), whereas CMM denotes the basis of Ref. [174]. We use o:8 (mz) = 0.1176 [27] 
and mt(mt) = 163.6 GeV [201]. Note that c~BL and crBL are exchanged with respect to 
the basis of Ref. [16] and that C~~f = C~~M. Following Ref. [17], the CMM set is used for 
calculating hard-vertex corrections to the Q~DF formulas and the BBL set at the lower scale 
fJ>h is used to calculate hard-spectator corrections. The BBL set at scale mb is used for the 
calculation of power-corrections. 

7.3 Leading and Power Suppressed Contributions 

It proves convenient to split to the coefficients in Eq. (6.11) into three contributions which 

we will investigate separately: 

U,QCDF(V) + U,ann(V) + U,soft(V) + 
an a7L a7L · · · ' 

U,QCDF(V) + U,ann(V) + U,soft(V) + 
a7R a7R a7R · · · ' (7.1) 
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where the leading term in the 1/mb expansion is given by Eq. (6.12) and all other terms 

are suppressed by at least one power of mb. The dots denote terms of higher order in as 

and further 1/mb corrections to QCDF, most of which are incalculable. We only include 

those power-suppressed terms that are either numerically large or relevant for isospin and 

CP asymmetries. 

7.3.1 Leading Contributions 

The diagrams giving the leading QCDF contributions are given in Chapter 6. It turns 

out that, at the level of two decimal places, all a~~CDF are equal and so are a~£QCDF.2 For 

central values of the input parameters of Tab. 7.8 we obtain 

a~~CDF(V) 

a~£QCDF(V) 

Vertex 
Corrections 

Hard-Spectator 
Corrections 

- (0.41 + 0.03i)- (0.01 + 0.01i) , 

-(0.45 + 0.07i) + (0.02- Oi). 

The size of the hard-spectator corrections is set by the factor 

(7.2) 

(7.3) 

For Bs decays one has to set !B ---+ !B. and correspondingly for the other B meson 

parameters. We estimate the value of >.B., the first inverse moment of the twist-2 B­

meson light-cone DA, from )..Bd by a simple scaling argument: 

(7.4) 

which follows from the assumption that the Bq DA peaks at the spectator momentum 

k+ = AQco, whereas that of Bs peaks at AQcD + m 8 • Its numerical value is given, along 

with all the other input parameters, in Tab. 7.8. 

7.3.2 Weak Annihilation 

aftnn encodes the 0(1/mb) contribution of the WA diagram of Fig. 7.1(a) which drives 

the isospin asymmetries and has been calculated in QCDF in Ref. [17] with a 8 corrections 

2 Explicit formulas for a~£QCDF, complete to CJ(a.), can be found in Ref. [17]. 
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given in Ref. [176] for p and K* and in Ref. [148] for w. WA receives contributions from the 

current-current operator Q2, which for b -------+ s transitions is doubly CKM suppressed, and 

QCD penguin operators Q3, ... ,6 , which are not CKM suppressed. Formulas for a~£1111 (p, K*) 

in QCDF can be found in Refs. [17, 148]; in this approximation, there is no contribution 

t 
U,ann 

o a7R . 

(a) 

q 

(b) 

Figure 7.1: (a) Weak annihilation diagram where photon emission from the B meson spectator 
quark is power-suppressed. The crosses denote possible photon emission vertices for Q5,6 only. 
(b) soft-gluon emission from a quark loop, where there is also a second diagram in which the 
gluon is picked up by the B meson. 

Preliminary results for the O(o:8 ) corrections to WA in B -------+ fYY were presented m 

Ref. [177]. In QCDF, the alf£1111 are expressed in terms of the hadronic quantities 

bv = 27r
2 

!Bmv fv 
T1B-.V (0) mBmb)..B ' 

(7.5) 

and d't, obtained by replacing 1/v -------+ 1/v in the integrand; 4>tv is the twist-2 DA of a 

transversely polarised vector meson, (2.28). Numerically, one finds, for instance for the 

p, bP = 0.22 and dP = -0.59, at the scale J-L = 4.2 GeV. As T1 ,....., 1/m~/2 and f 8 ""m'b112 

in the heavy-quark limit, these terms are 0(1/mb), but not numerically small because of 

the tree-enhancement factors of 1r
2

. 

For w, f(* and 4> we obtain 

a~t~n(w)lqcoF = Qdbw(ai + 2(a3 + a5) + a4) + Qd(d~ + d~)a6, 
a~tnn(w)lqcoF Qdbw(2(a3 + a5) + a4) + Qd(d~ + d~)a6, 

a~£1111 (¢)1 Qsb<P(a3 + a5) + Qs(dt + dt)a6, 
QCDF 

aU,ann(K*)I Q8 bK* a4 + Qs(d~· Qd/Qs + dt)a6, (7.6) 
7L QCDF 
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WA 

induced by 

CKM 

C (and P) 

>.2 (and 1) 

p 

1 

B--* (p,w) 

C and P 

1 

p 

1 

B --* K* s 

p 

1 

Table 7.3: Parametric size of WA contributions to B ----) V")'. C denotes the charged-current 
operators Q1,2, P the penguin operators Q3, ... ,6; their Wilson coefficients are small- see Tab. 7.2. 
CKM denotes the order in the Wolfenstein parameter >. with respect to the dominant amplitude 
induced by Q7. 

with a1 = C1 + C2/3, a3 = C3 + C4/3, a4 = C4 + C3/3, as = Cs + C6/3, a6 = C6 + Cs/3.3 

The expressions for¢> and K* are new; for w, we do not agree with [148]. Apart from for 

p and w, all the WA coefficients are numerically small and do not change the branching 

ratio significantly; the terms in a6 , however, are relevant for the isospin asymmetries. 

In Tab. 7.3 we show the relative weights of these diagrams in terms of CKM factors 

and Wilson coefficients. The numerically largest contribution occurs for B± --* P±T it 

comes with the large combination of Wilson coefficients C2 + CI/3 = 1.02 and is not 

CKM suppressed. For B 0 --* (p0 ,w)'Y it comes with the factor C1 + C2/3 = 0.17 instead 

and an additional suppression factor 1/2 from the electric charge of the spectator quark 

(d instead of u). For all other decays, WA is suppressed by small (penguin) Wilson 

coefficients. Apart from B--* (p,w)'Y, WA is not relevant so much for the total values of 

a7L, but rather for isospin breaking, which is set by photon emission from the spectator 

quark. WA is the only mechanism to contribute to isospin asymmetries at tree-level; see 

Ref. [176] for 0( as) contributions. 

In view of the large size of a~fnn(p) it is appropriate to have a look at further corrections. 

The most obvious ones are O(as) corrections to the QCDF expressions, shown in Fig. 7.2. 

As it turns out, the corrections to the B vertex in Fig. 7.2(a) are known: they also enter 

the decay B --* 'Yev and were calculated in Ref. [71, 178]. Numerically, they are at 

the level of 10%. Fig. 7.2(b) shows the vertex corrections to the V vertex, which are 

actually included in the decay constant fv. For the non-factorisable corrections shown in 

- Fig:-·7.2(c) preliminary results have·-been reported in Ref. [177] according to which these 

corrections are of a size similar to the B vertex corrections. 

In Ref. [176] also another class of 1/mb corrections to B --* K*'Y was calculated, namely 

3 Note that a1 .____. a2 as compared to [17] as in our operator basis (i.e. the BBL basis) Q1 and Q2 are 
exchanged. 
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(a) (b) (c) 

Figure 7.2: Example radiative corrections to weak annihilation. The corrections to the B 
vertex in (a) are known [71, 178] and those to the V vertex in (b) are included in fv. For the 
non-factorisable corrections in (c) only preliminary results are available [177]. 

O(o:8 ) corrections to the isospin asymmetry in this decay. As these corrections break 

factorisation (require an infra-red cut-off in the momentum distribution of the valence 

quarks in the K* meson) and are numerically small, we do not include them in our 

analysis. 

7.3.3 Long-Distance Photon Emission 

Another class of corrections is suppressed by one power of mb with respect to the QCDF 

contributions and is due to long-distance photon emission from the soft B spectator 

quark. A first calculation of this effect was attempted in Ref. [179] and was corrected and 

extended in Ref. [72]. The long-distance photon emission from a soft-quark line requires 

the inclusion of higher-twist terms in the expansion of the quark propagator in a photon 

background field, beyond the leading-twist (perturbative) contribution; a comprehensive 

discussion of this topic can be found in Ref. [69]. The quantity calculated in Ref. [72] is 

(p-(p)'y(q)l(du)v-A(ub)v-AIB-(p + q)) = 

e mPJPTJ~ {FvE11vpae~ppqa- iFA[e*11 (p · q)- q11 (e* · p)]} 
ms 

-e mp/p {~ Fv(SL + SR) + ~ FA(SL- SR)} (7.7) 
ms 2 2 

in terms of the photon-helicity amplitudes SL,R·4 In QCDF, FA,v are given by Qufs/ >.s 

and induce a term Qua2 bP in a~'tnn(p-). The long-distance photon contribution to Fv,A 

4 Eq. (7.7) differs from the one given in [72] by an overall sign, which is due to the different convention 
used in [72] (and in [69]) for the covariant derivative: D11 = 811 - ieQ,A11 instead of D11 = 811 + ieQ1A11 
as in this analysis. 
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was found to be [72] 

Fvoft = -0.09 ± 0.02 = QuGv. (7.8) 

with G A+ Gv = -0.24 ± 0.06 and Gv- G A = -0.030 ± 0.015. 5 In order to obtain concise 

expressions for a~£(m, it proves convenient to define one more hadronic quantity: 

(7.9) 

and correspondingly for other mesons. 9L is 0(1/m~) as Gv + GA has the same power 

scaling in mb as T1, i.e. rv m~312 , as one can read off from the explicit expressions in [179]. 

The difference Gv- GA, on the other hand, is a twist-3 effect due to three-particle light­

cone DAs of the photon and is suppressed by one more power of mb, i.e. 9R rv 1/m~. This 

quantity will enter the CP asymmetry. Our final expressions for a~ir_m then read: 

a~tnn(V) 

a~:nn(V) (7.10) 

Numerically, one has gf/bP = -0.3, so these corrections, despite being suppressed by 

one more power in 1/mb, are not small numerically and larger than the known O(as) 

corrections to QCDF from B ---t "(fv. Based on this, we feel justified in including these 

long-distance corrections in our analysis, while dropping the radiative ones of Figs. 7.2(a) 

and (c). For central values of the input parameters we find the following numerical values 

for the various WA and long-distance photon contributions, including in particular those 

to which Q1,2 contribute (with no Cabibbo suppression): 

a~'fn(K*o) 

u,ann( 0) 
a7L P 

a~tnn(w) 

-0.013- 0.001 LD, 

-0.001 - 0.004 LD, 

-0.024 + 0.003 LD. 

a~'fn(K*-) = 0.004 + 0.001 LD, 

a~£ann(p-) = 0.149- 0.043LD, 

(7.11) 

. 5J~gain, ~}l.§re i~.a.rel(l.ti.~~ sign with re§pect t(l.the results in [72] .. This comes from the fact that the 
product eF.4~~ is independent of the sign convention for e, and as we have changed the overall sign of 
(7.7) with respect to [72], we also have to change the sign of F.4°~. Stated differently: the relative sign 
between F.4°~ and p~avd in [72] is wrong because of a mismatch i~ sign conventions for e in the covariant 

' ' 
derivative. 
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The contribution from the long-distance photon emission is labelled "LD" (LD---t 1 at the 

end). The unexpectedly small a~'tnn(p0 ) is due to a numerical cancellation between the 

charged-current and penguin-operator contributions. Comparing these results with those 

from QCDF, Eq. (7.2), it is evident that WA is, as expected, largely irrelevant for the 

branching ratios, except for B± ---t p±f. 

7.3.4 Soft Quark Loops 

a~tt~ encodes soft-gluon emission from a (light or heavy quark) loop as shown in Fig. 7.1 (b). 

Soft-gluon emission from a charm loop was first considered in Ref. [182] as a poten­

tially relevant long-distance contribution to the branching ratio of B ---t K*"(, however, 

the same diagram also contributes dominantly to the time-dependent CP asymmetry in 

B0 ---t K*0"f [181]. As for afR, the dominant contributions to a~R(K*) were calculated in 

Ref. [170] and new to this analysis is their generalisation to the other vector mesons and 

the inclusion of contributions from light-quark loops. Motivation to include light quark 

loops sterns from the fact that they are doubly CKM-suppressed for b ---t S"f transitions, 

but not for b ---t d"(, for which they are on an equal footing as the heavy quark loops. 

The quark loop contributions are suppressed by one power of mb with respect to af£QCDF, 

but they also induce a right-handed photon amplitude which is of the same order in 

1/mb as afkQCDF (6.13), and this amplitude induces the time-dependent CP asymmetry. 

The asymmetry is expected to be very small in the SM and ex: mD/mb due to the chiral 

suppression of the leading transition (6.13), but could be drastically enhanced by new 

physics contributions - thus constituting an excellent "null test" of the SM [7, 170]. It 

was noticed in Refs. [180, 181] that the chiral suppression is relaxed by emission of a gluon 

from the quark loop and contributes dominantly to the time-dependent CP asymmetry 

in B 0 ---t K*0"(, which motivates the inclusion of these contributions. The task of the 

present analysis, however, is not so much to calculate these contributions to high accu­

racy, but to exclude the possibility of large contributions to the CP asymmetry. With 

this in mind, the theoretical uncertainties of the results are very generously estimated­

which is somewhat unavoidable due to the current uncertainties of the relevant hadronic 

·-1nptit paramet'ers. 

Potentially the most important contribution to the soft-gluon emission diagram in Fig. 7.1 (b) 

comes from the charged-current operator Qr with the large Wilson coefficient C2 '"" 1; 

it vanishes for Qf by gauge invariance. In addition, the penguin operators Q3,4,6 give 

a non-zero contribution. Details of the derivation of af'soft can be found in Ref. [70] in 
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which the following expression is obtained: 

U,soft (V) 
a7L(R) = 

2 

:-+V( ) {QuC2(lu ± Zu)(V) + QDC3(lD ± iD)(V) 
mbT1 0 

+ 2,= Q,(C,- C,)(l, ± i,)(V)}. (7.12) 

Here the sum over q runs over all five active quarks u, d, s, c, b. The contribution from Q5 

is proportional to mD and hence helicity suppressed and neglected. Assuming SU(3)p­

fiavour symmetry for the light quark loops, one has lu = ld = ls, and ditto for lu,d,s, 

which causes a cancellation of these contributions in the last term of Eq. (7.12). SU(3)p­

breaking effects are estimated to be around 10% [70]. The parameters lc(K*) and Zc(K*) 

were first calculated from three-point sum rules in Ref. [182] and were re-calculated in 

the more suitable method of LCSR via a local OPE in Ref. [170]. The analysis therein 

as been updated and extended to h, ib and the other particles p, w, K*, cp for the present 

analysis [70]. The results for lc and ic are given in the upper table of Tab. 7.4. Those for 

lb and lb are obtained as 

(7.13) 

For light-quark loops the photon is almost at threshold and the local OPE does not 

apply. In Ref. [70] a method was developed for calculating these contributions via LCSRs. 

Similar to the method of Ref. [160] used for the calculation of soft-gluon contributions to 

B ~ 1r1r, a dispersion relation approach is used to connect the off-shell matrix element to 

the physical regime q2 = 0. The results are presented in the lower table of Tab. 7.4. 

7.4 Phenomenological Results 

In this section we combine the different contributions to the factorisation coefficients alfL(R) 

and give results for the observables, namely the branching ratios, the isospin asymmetries 

and the time-dependent CP asymmetries. 
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le le le -Ze le + le 

B --t K* -355 ± 280 -596 ± 520 242 ± 370 -952 ± 800 

B--t(p,w) -382 ± 300 -502 ± 430 120 ± 390 -884 ± 660 

B 8 --t K* -347± 260 -342 ± 400 -4 ± 300 -689 ± 600 

Bs --t </J -312 ± 240 -618 ± 500 306 ± 320 -930 ± 750 

lu lu lu-lu lu + lu 

B --t K* 536 ± 70% 635 ± 70% -99 ± 300 1172 ± 70% 

B --t (p, w) 827 ± 70% 828 ± 70% -1 ± 300 1655 ± 70% 

Bs --t K* 454 ± 70% 572 ± 70% -118 ± 300 1025 ± 70% 

Bs --t </J 156 ± 70% 737± 70% -581 ± 300 893 ± 70% 

Table 7.4: Soft-gluon contributions from c-quark (upper table) and u-quark (lower table) loops 
in units KeV. The quantities leu and leu are defined in Ref. [70]. We assume equal parameters 
for p and w. his obtained as lb ~ lem~/:n~ and correspondingly for lb. The uncertainty for lu-lu 
is given in absolute numbers because of cancellations. In the SU(3)F-flavour limit assumed in 
this calculation one has lu = ld = ls = lq 

7.4.1 Branching Ratios 

The (non-CP-averaged) branching ratio of the b --t D1 decay B --t V 1 is given by 

B(B --t v1 ) = 

(7.14) 

with the isospin factors Cp±,K•,<J> = 1 and cpo,w = J2. The branching ratio for the CP­

conjugated channel B --t V 1 (b --t D1 at parton level) is obtained by replacing ;.,lfl --t 

(>..lf))*. With the input parameters from Tab. 7.8 and the lifetimes given in Tab. 7.7 we 

find the following CP-averaged branching ratios for B --t K*l, making explicit various 
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sources of uncertainty: 

TI J.L Vcb lu,c other 

(53.3 ± '13.5 ± '4.8' ± "1.8 ± '1.9' ± '1.3) X 10-6 

(53.3 ±~±5.8) X 10-6
, 

T1 J.L Vcb lu,c other 

(54.2 ± 13.2 ± '6.0 ± "1.8 ± "1.8 ± '1.4') X 10-6 

(54.2 ±~±6.7) X 10-6
. (7.15) 

T1 

We have added all individual uncertainties in quadrature, except for that induced by the 

form factor. The uncertainty in p, is that induced by the renormalisation-scale dependence, 

with p, = mb(mb) ± 1 GeV. "Other" sources of uncertainty include the dependence on the 

parameters in Tab. 7.6, on the size of LD WA contributions and the replacement of NLO 

by LO Wilson coefficients. The above results agree, within errors, with the experimental 

ones given in Tab. 7.1, within the large theoretical uncertainty induced by the form factor. 

As the uncertainties of all form factors in Tab. 7.8 are of roughly the same size, one might 

conclude that the predictions for all branching ratios will carry uncertainties similar to 

those in (7.15). This is, however, not the case: the accuracy of the theoretical predictions 

can be improved by making use of the fact that the ratio of form factors is known much 

better than the individual form factors themselves. The reason is that the values given 

in Tab. 7.8, which were calculated using the same method, LCSR.s, and with a common 

set of input parameters, include common systematic uncertainties (dependence on f B, mb 

etc.) which partially cancel in the ratio. In Ref. [183] the ratio of the K* and p form 

factors was found to be 
- rt·->K* (O) 

~P = B = 1.17 ± 0.09 . 
T

1 
-+p(O) 

(7.16) 

The uncertainty is by a factor 2 smaller than if we had calculated ~P from the entries in 

Tab. 7.8; analogously for w one finds 

(7.17) 

The difference between ~P and ~w is mainly due to the difference between Jj; and Jf. For 

the Bs form factors, we also need the ratio of decay constants fs./ fsd· The status of 

fs from Lattice QCD was reviewed in Ref. [184]; the present state-of-the-art calculations 
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are unquenched with N1 = 2 + 1 active flavours [185], whose average is !B./ !Bd = 1.23 ± 
0.07. Again, this ratio is fully consistent with that quoted in Tab. 7.8, but has a smaller 

uncertainty. One then finds the following ratios for Bs form factors: 

_ Tf--+K*(O) 
~K· = B k = 1.09 ± 0.09. 

Tl s----> • (0) 
(7.18) 

The uncertainty of ~R· is smaller than that of ~<I> because the input parameters for K* 

and K* are the same (except for G-odd parameters like af) and cancel in the ratio; the 

uncertainty is dominated by that of !B./ !Bd· To benefit from this reduced theoretical 

uncertainty in predicting branching ratios, one has to calculate ratios of branching ratios, 

which mainly depend on ~v and only mildly on T1 itself: in addition to the overall nor­

malisation, T1 also enters hard-spectator interactions and power-suppressed corrections, 

whose size is set by hadronic quantities ex: 1/T1. As these corrections are subleading (in 

a 8 or 1/mb), however, a small shift in T1 has only very minor impact on the branching 

ratios. The absolute scale for the branching ratios is set by the CP- and isospin-averaged 

branching ratio with the smallest experimental uncertainty, i.e. B ~ K*/; from Tab. 7.1, 

one finds: 

That is, we obtain a theoretical prediction for B(B ~ Vr) as 

B(B~v )I - [B(B~Vr)] B(B~K* )I 
I th- B(B ~ K*r) th I exp ' 

(7.20) 

where [ ... ]th depends mainly on ~v and only in subleading terms on the individual form 

factors Tt_,K* and Tt_,v_ It is obvious that, except for these subleading terms, this 

procedure is equivalent to extracting an effective form factor T1B_,K• (0) I elf from B ~ 

K*r and using Tf_,V(O)Ieff = T1B---->K*(O)Ieff/~v for calculating the branching ratios for 

B ~ v,. From (7.19) we find 

th exp_ 
B---->K* . I ... -~· ~ . 

Tl (0) elf = 0.267 ± 0.017 ± 0.006 = 0.267 ± 0.018, (7.21) 

where the theoretical uncertainty follows from the second uncertainty given in (7.15). 
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Eqs. (7.16), (7.17) and (7.18) then yield 

TB-->p(O) I 1 eff 
0.228 ± 0.023' 

rt·_.[(* (0) leff 0.245 ± 0.024' 

rt-·w(o)leff = o.2o5 ± 0.021, 

T~· ..... ¢(0) I = 0.260 ± 0.036. 
eff 

(7.22) 

Note that all effective form factors agree, within errors, with the results from LCSRs 

given in Tab. 7.8, which confirms the results obtained from this method; the crucial 

point, however, is that the uncertainties are reduced by a factor of 2 (except forT~· ..... <~>). 

We would like to stress that the motivation for this procedure is to achieve a reduction 

of the theoretical uncertainty of the predicted branching fractions in B -t (p, w)! and Bs 

decays. The effective form factors do not constitute a new and independent theoretical 

determination, but are derived from the experimental results for B -t K*l under the 

following assumptions: 

• there is no new physics in B -t K*1;6 

• QCDF is valid with no systematic uncertainties; 

• LCSRs can reliably predict the ratio of form factors at zero momentum transfer. 

From (7.14) and (7.22), we then predict the following CP-averaged branching ratios: 

B(B- -t P-1) 

B(Bo -t Pol) 

B(B0 
-t w1) 

B(Bs -t fC1) 

B(Bs -t <h) 

T1 Other 

(1.16 ± D.22 ± b.i3) x w-6
, 

(0.55 ± 0.11 ± o.o7) x w-6
, 

(0.44 ± o.o9 ± o.o5) x w-6 
, 

(1.26 ± o.25 ± o.18) x w-6
, 

(39.4 ± 10.1 ± 5.3) x w-6
, (7.23) 

where the first uncertainty is induced by the effective form factors and the second includes 

the variation of all inputs from Tab. 7.8 except for the angle 1 of the UT, which is 

~fixed.:.at 1 = 53°.7 The total uncertainty in each channel is "' 20%, except for B8 -t 

¢1, where it is 30%. The results for p and w agree very well with those of BABAR, 

6 Which is motivated by the results from inclusive B----> Xs! decays [186]. 
7The value of the UT angle 1 in Tab. 7.8 comes from Belle's Dalitz-plot analysis of the CP asymmetry 

in B- ----> (K~rr+rr-)K-, with K~rr+rr- [188] being a three-body final state common to both D0 and D0 . 

Other determinations all come with theoretical uncertainties and/or possible contamination by unresolved 
new physics, so we take this result as a reference point. 
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Tab. 7.1, but less so with the Belle results, although present experimental and theoretical 

uncertainties preclude a firm conclusion. Our prediction for Bs --+ qry is well below the 

current experimental bound 120 x 10-6 [27]. A branching ratio of the size given in (7.23) 

implies that 0(103 ) Bs --+ qry events will be seen within the first few years of the LHC. 

In Tab. 7.5 we detail the contributions of individual terms to the branching ratios. In all 

cases B is dominated by the QCDF contribution, with WA most relevant forB- --+ P-1· 

This is expected as WA enters with the large Wilson coefficient C2 "' 1. The effect is 

extenuated by long-distance (LD) photon emission, which itself is compensated by soft­

gluon emission. The other channels follow a similar pattern, although the size of the 

effects is smaller. 

B X 106 QCDF + WA (no LD) + WA (inc. LD) + soft gluons 

B- --t P-1 1.05 1.17 1.11 1.16 

Bo--t Pol 0.49 0.53 0.53 0.55 

Bo--t WI 0.40 0.42 0.42 0.44 

B- --t K*-1 39.7 38.4 38.3 39.4 

Bo--t K*ol 37.1 39.7 39.9 41.0 

B~ --t K*ol 1.12 1.22 1.23 1.26 

B~ --t (h 34.6 38.2 38.3 39.4 

Table 7.5: Contributions to CP-averaged branching ratios, using effective form factors and 
central values of all other input parameters, Tab. 7.8 (in particular 1 = 53°). LD stands for long­
distance photon-emission contributions. Each column labelled "+X" includes the contributions 
listed in the previous column plus the contribution induced by X. The entries in the last column 
are our total central values. 

We would like to close this section by making explicit the dependence of the three B --+ 

(p,w)! branching ratios on I· In Fig. 7.3 we plot these branching ratios, for central values 

of the input parameters, as functions of I· We also indicate the present experimental 

results from BABAR [189], Tab. 7.1, within their 10" uncertainty. 
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Figure 7.3: CP-averaged branching ratios of E ---) (p,w)J as function of UT angle/, using 
the effective form factors and central values of other input parameters. (a): E ± ---) P±/, (b): 
E 0 ---) p01, (c): E 0 ---) w1. The boxes indicate the l<T experimental results from BABAR 

[189], Tab. 7.1. Note that the resulting value of 1 from the average of all three channels is 
1 = (6l.O~i~:g(exp)~g:~) 0 - see Section 7.5. 

7.4.2 Isospin Asymmetries 

The asymmetries A1 (p) , A1 (K*), and A(p,w) are given by 

A(p,w) 

Ar(p) 

Ar (K *) = 

r( B 0 ---) W/ ) 
=-'-------'--- -1 
r(Bo--+ Pol ) , 

2f( B0 --+ P0! ) 
=--=----- - 1 
r(B±--+ p±1 ) ' 

f (B0 --+ K *0!)- f (B±--+ K *±!) 

f(B0 --+ K *0! ) + f(B± --+ K *±!) ' 

(7.24) 

(7.25) 

(7.26) 

where the partial decay rates are CP-averaged. Let us first discuss A(p, w) and A1(p) 

which are relevant for the experimental determination of B( B --+ (p , w )J), which in turn 

is used for the determination of IVid/l!tsl (or 1), see Section 7.5. The present experimental 
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-(5.3 ± 6.9)% (0.4 ± 5.3)% (5.7 ± 3.9)% (10.5 ± 2.7)% 

Table 7.6: Isospin asymmetry AI(P) for different values of r· 

statistics for b --t d"f transitions is rather low, so the experimental value of B( B --t (p, w )!') 
is obtained under the explicit assumption of perfect symmetry, i.e. f(B± --t p±"f) = 
2f(B0 

--t p0"f) = 2f(B0 
--t W"f). In reality, the symmetry between p0 and w is broken by 

different values of the form factors, and isospin symmetry between neutral and charged pis 

broken by photon emission from the spectator quark, the dominant mechanism of which 

is WA. From the formulas for individual branching ratios, Eq. (7.14), and the various 

contributions to the factorisation coefficients a¥L(R), we find 

th. 
~ 

A(p, w) = -0.20 ± 0.09 . (7.27) 

The uncertainty is dominated by that of the form factor ratio Tf--w(O)/Tt"" .... P(O) == 0.90± 

0.05. 8 The dependence on all other input parameters is marginal. The result (7.27) is not 

compatible with the strict isospin limit A(p,w) = 0. A1 (p), on the other hand, is very 

sensitive to "(, whereas the form factors drop out. It is driven by the WA contribution 

and, in the QCDF framework, vanishes if WA is set to zero. In Fig. 7.4(a) we plot A1(p) 

as function of "/, including the theoretical uncertainties. As suggested by the findings 

of Ref. [177], these results are not expected to change considerably upon inclusion of the 

non-factorisable radiative corrections of Fig. 7.2(c). In Tab. 7.6, we give the corresponding 

results for several values of 'Y, together with the theoretical uncertainty. Our result agrees 

very well with that obtained by the BABAR collaboration: AI(P)BaBar = 0.56±0.66 [189]. 

A1 (K*) was first discussed in Ref. [176], including power-suppressed O(as) corrections 

which unfortunately violate QCDF, i.e. are divergent. It is for this reason that we decide 

to drop these corrections and include only leading-order terms in a 8 • We then find 

J.L NLO<-->LO fa other 

(5.4 ± 1:0" ± '0:6' ± ~±ll6')% 
(5.4 ± 1.4)%' (7.28) 

8 Note that this result is dominated by the ratio of decay constants given in Tab. 7.8 and discussed in 
Ref. [70]. The experimental results entering these averages have a large spread which may cast a shadow 
of doubt on the averaged final branching ratios for (p0 , w) -+ e+ e- quoted by PDG [27]. 
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Figure 7.4: Left panel: isospin asymmetry A1(p), Eq. (7.25), as function of the UT angle 
'Y· Solid line: central values of input parameters; dashed lines: theoretical uncertainty. Right 
panel: AI(K*), Eq. (7.26), in percent, as function of the ratio r = aB/a~M of the combination 
of penguin Wilson coefficients a6 = C6 + C5/3. Solid line: central value of input parameters, 
dashed lines: theoretical uncertainty. The box indicates the present experimental uncertainty 
and the straight black lines the theory uncertainty in r. 

where NLO <--> 10 denotes the uncertainty induced by switching from N10 to 10 accu­

racy in the Wilson coefficients and "other" summarises all other sources of theoretical un­

certainty. As can be inferred from the entries in Tab. 7.1, the present experimental result 

is A 1(K*)exp = (3.2±4.1)%. In Ref. [176] it was pointed out that AI(K*) is very sensitive 

to the values of the Wilson coefficients c~~L in the combination a6 = cpBL + c~BL /3. In 

the SM, varying the renormalisation scale as J-i = mb(mb) ± 1 GeV and switching between 

10 and N10 accuracy for the Wilson coefficients, one has a6 = -0.039 ± 0.008, which 

actually induces the bulk of the uncertainty in Eq. (7.28). In Fig. 7.4(b) we plot A 1 (K*) 

as function of a6/ a~M, with a~M = -0.039. The figure clearly indicates that, although 

there is presently no discrepancy between theoretical prediction and experimental result, 

a reduction of the experimental uncertainty of A1 (K*) may well reveal some footprints of 

new physics in this observable. 

7.4.3 CP Asymmetries 

The'titne-odependent CP asynimetry in 13°-----+ V 0 'Y is given ai1alogciusly to Eq. (1.16) as 

(7.29) 

The above equation is technically only valid for b.f = 0 and while this is a good as­

sumption for B~ decays, it is not so for B~ decays. Although Eq. (7.29) can easily be 
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adapted to non-zero ~r s we refrain from doing so: the whole point in calculating the 

CP asymmetry is not so much to give precise predictions for S and C, but rather to 

exclude the possibility of large corrections to the naive expectation S rv mD/mb. With 

this is mind, small corrections from a non-zero ~rs are irrelevant. The time-dependent 

CP asymmetries are given in terms of the left- and right-handed photon amplitudes (6.8) 

by 

2Im (;(AL,)h + ARAR)) 

S(V!') = IA£1 2 + IARI 2 + IA£1 2 + IARI 2 ' 

IA£1 2 + IARI 2 ~ IA£1 2 -IARI 2 

C(V!') = IA£1 2 + IARI 2 + IA£1 2 + IARI 2 . 

(7.30) 

With AL,R and AL,R as given in (6.11). The indirect CP asymmetry S(V!') relies on 

the interference of both left- and right-helicity amplitudes and vanishes if one of them is 

absent; it thus probes indirectly the photon helicity. The direct CP asymmetry C(V I') 

is less sensitive to AR, but very sensitive to the strong phase of AL and vanishes if the 

radiative corrections to a~£QCDF, Eq. (7.2), are neglected. As the accuracy of the prediction 

of strong phases in QCDF is subject to discussion, and in any case C(V!') is less sensitive 

to new physics than S(V!'), we shall not consider direct CP asymmetries in this analysis. 

Let us briefly discuss the reason for the expected smallness of S. In the process b -t D)', 

in the SM, the emitted photon is predominantly left-handed in b, and right-handed in b 
decays. This is due to the fact that the dominant contribution to the amplitude comes 

from the chiral-odd dipole operator Q7 . As only left-handed quarks participate in the 

weak interaction, an effective operator of this type necessitates, in the SM, a helicity 

flip on one of the external quark lines, which results in a factor mb (and a left-handed 

photon) in bR -t DL/'L and a factor mD (and a right-handed photon) in bL -t DR/'R· 

Hence, the emission of right-handed photons is suppressed by a factor mD/mb, which 

leads to the QCDF prediction (6.13) for afR· The interesting point is not the smallness 

of the CP asymmetry per se, but the fact that the helicity suppression can easily be 

alleviated in a large number of new physics scenarios where the spin flip occurs on an 

internal line, resulting in a factor m)mb instead of mD/mb. A prime example is left­

right symmetric models [191], whose impact on the photon polarisation was discussed in 

Refs: [180, 181, 192]. These models also come in a supersymmetric version whose effect 

on b -t S/' was investigated in Ref. [193]. Supersymmetry with no left-right symmetry 

can also provide large contributions to b -t D/'R, see Ref. [194] for recent studies. Other 

potential sources of large effects are warped extra dimensions [195] or anomalous right­

handed top couplings [196]. Unless the amplitude for b -t D''fR is of the same order as 
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the SM prediction for b ---+ D!L, or the enhancement of b ---+ D!R goes along with a 

suppression of b ---+ D/L, the impact on the branching ratio is small, as the two helicity 

amplitudes add incoherently. This implies there can be a substantial contribution of new 

physics to b ---+ D1 escaping detection when only branching ratios are measured. 

We can calculate S directly from (7.30) and obtain, making explicit the contributions 

from different sources: 

S(P'Y) = 

soft 
mv/mb LD WA gluons 
~ ~ ,...-.._._ 

( 0.01 + 0.02 + 0.20 ± 1.6)% 

S(w1) = (0.01- 0.08 + 0.22 ± 1.7)% 

S(K*!) = -(2.9- 0 + 0.6 ± 1.6)% 

S(K*!) = 

S(cP,) = 

(0.12 + 0.03 + 0.11 ± 1.3)% 

(0 + 0 + 5.3 ± 8.2) X lQ-2 % 

(0.2 ± 1.6)%' 

(0.1 ± 1.7)%' 

= -(2.3 ± 1.6)%' 

(0.3 ± 1.3)%' 

(0.1 ± 0.1)%. (7.31) 

Including only the helicity-suppressed contribution, one expects, forB---+ K*/, neglecting 

the doubly Cabibbo suppressed amplitude in A~) 

S(K*!)Ino soft gluons = -2 ms sin cPd :=::::: -2.7%. 
mb 

(7.32) 

For Bs ---+ ¢1, one expects the CP asymmetry to vanish if the decay amplitude is pro­

portional to A~s), which, at tree-level, precludes any contributions of type sin(¢s)ms/mb 

and also any contribution from WA. This is because the mixing angle cPs is given by 

arg[(A~8)) 2 ], Eq. (1.15), and the interference of amplitudes in (7.30) also yields a factor 

(A~s)) 2 , if the individual amplitudes are proportional to A~s) or (A~8))*, respectively; this is 

indeed the case for the helicity-suppressed term m 8 /mb induced by the operator Q7 and 

the WA contributions to a¥R(¢), Eqs. (7.6) and (7.10), so that the phases cancel in (7.30). 

The actual results in (7.31) disagree with the above expectations because of the contribu­

tions from soft-gluon emission, which enter a¥R· Moreover, for S(¢1) this is because the 

soft-gluon emission from quark loops is different for u and c loops so that a7R =f. a7R and 

-h~~~~ AR (AL)--i~ ~ot proporti~n~l to A~8)((~~8))*). Note th~t a s~b~tantial enhancement 

of S(¢1) by new physics requires not only an enhancement of IARI (and IALI), but also the 

presence of a large phase in (7.30); this could be either a large Bs mixing phase which will 

also manifest itself in a sizable CP violation in, for instance, Bs ---+ J /'¢¢,see Ref. [28, 197]; 

or it could be a new weak phase in AR (and AL); or it could be a non-zero strong phase in 
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one of the a~~ coefficients. Based on the light quark loop results there is not much scope 

for a large phase in a7R (whose contribution is, in addition, doubly Cabibbo suppressed), 

but the situation could be different for a~~oft, where only the leading-order term in a 1/mc 

expansion is included, which does not carry a complex phase [70]. It is not excluded that a 

resummation of higher-order terms in this expansion will generate a non-negligible strong 

phase- which is not really relevant for our results in Eq. (7.31), but could be relevant 

for the interpretation of any new physics to be found in that observable. For S(K*!), on 

the other hand, no new phases are required, and any enhancement of iARi (and IALI) by 

new physics will result in a larger value of S(K*/). 

For all S except S(K*!), the uncertainty is entirely dominated by that of the soft-gluon 

emission terms lu,c - lu,c, whose uncertainties have been doubled with respect to those 

given in Tab. 7.4. The smallness of S((p,w)T) is due to the fact that the helicity factor 

is given by md/mb (we use mu,d/ms = 1/24.4 from ChPT). For K*, the suppression 

from the small mixing angle is relieved by the fact that both weak amplitudes in ).~) 
contribute so that the CP asymmetry is comparable with that of p and w. Despite the 

generous uncertainties, it is obvious that none of these CP symmetries is larger than 4% 

in the SM, which makes these observables very interesting for new physics searches. The 

present experimental result from the B factories, S(K*I) = -0.28 ± 0.26 [37], certainly 

encourages the hope that new physics may manifest itself in that observable. While a 

measurement of the b -------+ d CP asymmetries is probably very difficult even at a super­

flavour factory, S(K*!) is a promising observable forB factories [6], but not for the LHC. 9 

Bs -------+ ¢(-------+ K+ K-)1, on the other hand, will be studied in detail at the LHC, and in 

particular at LHCb, and any largely enhanced value of S(¢1) will be measured within the 

first years of running. 

7.5 Extraction Of CKM Parameters 

Let us now turn to the determination of CKM parameters from the branching ratios 

determined in Section 7.4.1. In this context, two particularly interesting observables are 

R = B(B-------+ (p,w)T) 
pfw - B(B-------+ K*!) ' 

R = B(B-------+ PT) 
P- B(B-------+ K*!) ' 

(7.33) 

9 K* has to be traced via its decay into a CP eigenstate, i.e. K 8 1r0 . Neutrals in the final state are not 
really LHC's favourites. 
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given in terms of the CP- and isospin-averaged branching ratios of B --> (p, w )r and 

B --> fYY, respectively, and B --> K*r decays. Rp;w has been measured by both BABAR 

and Belle [189, 190], a first value of Rp has been given by BABAR [189]. The experimental 

determinations actually assume exact isospin symmetry, i.e. f(B± --> P±r) := 2f(B0 --> 

p0/), and also r(B0 --> p0r) = r(B0 --> W/); and as we have seen in Section 7.4.2, 

these relations are not in fact exact. Hence, the present experimental results for Rp/w are 

theory-contaminated. As the isospin asymmetry between the charged and neutral p decay 

rates turns out to be smaller than the asymmetry between p0 and w, it would actually be 

preferable, from an experimental point of view, to drop the w channel and measure Rp 

instead of Rp;w, as done in the most recent BABAR analysis on that topic [189]. We will 

give numerical results and theory uncertainties for both Rp/w and Rp· 

One parametrisation of Rp;w often quoted, in particular in experimental papers, is 

vtd - mP mn 1 

I 1

2 ( 1 2/ 2 )3 
Rpjw = Vls 1- m1:./m~ ~~ [1 + ~R]' (7.34) 

with ~R = 0.1 ± 0.1 [198] and again assuming isospin symmetry for p and w. This 

parametrisation creates the impression that ~R is a quantity completely unrelated to 

and with a fixed value independent of lvtd/vtsl· We would like to point out here that this 

impression is wrong: ~R contains both QCD (factorisable and non-factorisable) effects 

and such from weak interactions. In Ref. [183] ~R is expressed in terms of the factorisation 

coefficients aVL, assuming isospin symmetry for p0 and w, as 

1+~R = 

(7.35) 

with Oao,± = a"7£(p0 ,±)ja7£(p0,±)- 1. Eq. (7.35) shows explicitly that ~R depends both 

on QCD (oa±,o) and CKM parameters (Rb, 1). The point we would like to make is that 

the calculation of ~R requires input values for Rb and r· Once these parameters (and 

, _th~_}YQlf~n§tein. P3.II:l,W{)1E;r, ).) a_r~ fix§g, l}qw~yer, il(td/vtsl is al~o. t:ixed .?-nd given by 

(7.36) 

Hence, as lvtd/vtsl and (Rb, 1) are not independent of each other, it is impossible to extract 

lvtd/vtsl from (7.34) with a fixed value of ~R. Of course Rp/w and Rp of (7.33) can be 
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used to extract information about CKM parameters, but in order to do so one has to 

settle for a set of truly independent parameters. Based on (7.36), one can exchange, say, 

"( for I Vfd/Vfs 1. 10 So we can either consider Rv as a function of the CKM parameters Rb 

and "( (let us call this the "( set of parameters) or as a function of Rb and I vtd/Vfs I (to be 

called the lvtxl set). Using the"( set, a measurement of Rv('Y, Rb) allows a determination 

of"(, whereas Rv(lvtd/vtsl, Rb) allows the determination of lvtd/Vfsl· In either case, the 

simple quadratic relation (7.34) between Rv and lvtd/Vfsl becomes more complicated. 

In Figs. 7.5 and 7.6 we plot the resulting values of lvtd/vtsl 2 and "(, respectively, as a 

function of Rv. Although the curve in Fig. 7.5(a) looks like a straight line, as naively 

expected from (7.34), this is not exactly the case, because of the dependence of b.R on 

lvtd/vtsl· In Fig. 7.5(b) we plot b.R for the lvtxl set of parameters. The dependence of 

b.R on lvtd/vtsl is rather strong. Apparently indeed b.R = 0.1 ±0.1 in the expected range 

0.16 < lvtd/vtsl < 0.24, but this estimate does not reflect the true theoretical uncertainty 

which is indicated by the dashed lines in the figure. 

It is now basically a matter of choice whether to use Rpfw to determine lvtd/vtsl or 'Y· 

Once one of these parameters is known, the other one follows from Eq. (7.36). In Fig. 7.6 

we plot 'Y as a function of Rp;w, together with the theoretical uncertainties. In Fig. 7. 7 

we also compare the central values of Rp/w with those of Rp, as a function of lvtd/Vfsl· 
Although the difference is small, Rp is expected to be larger than Rpfw· Rp/w and Rp are 

dominated by the uncertainties of ~P and as discussed in Ref. [183], a reduction of this 

uncertainty would require a reduction of the uncertainty of the transverse decay constants 

j(r of p and K*. With the most recent results from BABAR, Rp/w = 0.030 ± 0.006 [189], 

and from Belle, Rpjw = 0.032 ± 0.008 [190], we then find 

BABAR: 

Belle: 

1~}0.199~±~ ~ 

I Vfd 1- 0 207 +0.028 +0.014 
1 T - ' -0.033 -0.015 
Vts 

exp th ,...,.._, ,....,.._, 
"V = (61 0 +13.5 +8.9 )0 
I ' -16.0 -9.3 l 

"V = (65 7 +17.3 +8.9)o 
I ' -20.7 -9.2 ' (7.37) 

These numbers compare well with the Belle result [188] from tree-level processes, 'Y = 

. (5'3 ± 20) 0
, quoted in Tab. 7.8, and results from global fits [31]. We also would like to 

point out that the above determination of 'Y is actually a determination of cos 'Y, via 

Eq. (7.36), and implies, in principle, a twofold degeneracy 'Y +-t 27f- 'Y· This is in contrast 

10Strictly speaking, (7.36) only fixes cos')' as function of lvtd/vtsl, leaving a twofold degeneracy of f. 
Eq. (7.35), however, only depends on cos')', so that indeed one can unambiguously replace 1 by lvtd/Vtsl· 
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Figure 7.5: Left panel: llltd/lltsl2 as function of Rpfw• Eq. (7.33), in the lvtxl basis- see text. 
Solid line: central values. Dash-dotted lines: theoretical uncertainty induced by ~P = 1.17±0.09, 
(7.16). Dashed lines: other theoretical uncertainties, including those induced by IVubl, IVcbl and 
the hadronic parameters of Tab. 7.8. Right panel: b.R from Eq. (7.35) as function of lvtd/Vtsl 
in the lvtxl basis. Solid line: central values. Dashed lines: theoretical uncertainty. 
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to the determination from B ---+ D(*) K(*) in [188], which carries a twofold degeneracy 

'Y +----+ 1r + 'Y· Obviously these two determinations taken together remove the degeneracy 

and select 'Y :::::::: 55° < 180°. If 'Y :::::::: 55° + 180° instead, one would have 1'1-'td/'1-'tsl :::::::: 0.29 

from (7.36), which is definitely ruled out by data. Hence, the result (7.37) confirms the 

SM interpretation of 'Y from the tree-level CP asymmetries in B ---+ D(*) K(*). 
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1.530(9) ps 

Table 7.7: B lifetimes from HFAG [37]. 

CKM parameters and couplings 

A [27] lVcbl [202] IVubl 'Y [188] as(mz) [27] CtQED 

0.227(1) 42.0(7) X 10-3 4.0(7) X 10-3 (53± 20) 0 0.1176(20) 1/137 

B parameters 

fBq [184] fBs [184] ABq (J-Lh) [183] ABs (J-Lh) /-Lh 

200(25) MeV 240(30) MeV 0.51(12) GeV 0.6(2) GeV 2.2GeV 

p parameters 

fp Jf ar(p) a~(p) rt _ _,P(o) 

216(3) MeV 165(9) MeV 0 0.14(6) 0.27(4) 

w parameters 

fw J:!; ar(w) a~(w) Tf_,w(O) 

187(5) MeV 151(9) MeV 0 0.15(7) 0.25(4) 

K* parameters 

fK• j}(. af(K*) [61] a~(K*) T~q_,K• (0) TlBs->K* (0) 

220(5) MeV 185(10) MeV 0.04(3) 0.15(10) 0.31(4) 0.29(4) 

cp parameters 

f<P Jt at(¢) a~( cp) T~s_,<P(o) 

215(5) MeV 186(9) MeV 0 0.2(2) 0.31(4) 

quark masses 

ms(2 GeV) [199] mb(mb) [202] mc(mc) [200] mt(mt) [201] 

100(20) MeV 4.20(4) GeV 1.30(2) GeV 163.6(2.0) GeV 

Table 7.8: Summary of input parameters. The value of IVubl is an average over inclusive and 
exclusive determinations and the result from UTangles Refs. [31, 37, 203]. None of our results 

-- -is very sensitive to IVubl• -For an explanation of our•choice of the value of the UT angle ""f, see 
text. >.B. is obtained from >..Bq, see Eq. (7.4). The vector meson decay constants fv, Jf; are 
discussed in Ref. [70]; the values of the Gegenbauer moments af are compiled from various 
sources [54, 55, 59, 183] and include only small SU(3)p-breaking, in line with the findings for 
pseudoscalar mesons [57]. The form factors T1 are updates of previous LCSR results [112], 
including the updated values of the decay constants /p,w,c/J and of at{K*) [61, 62]. All scale­
dependent quantities are given at the scale J.t = 1 Ge V unless stated otherwise. 
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Chapter 8 

Summary and Conclusions 

This thesis has consisted of three main analyses centred on the investigations and determi­

nations of meson light-cone distribution amplitudes. We have seen how the determinations 

of decay observables in B decays are reliant on the sound understanding of both theoreti­

cal and experimental uncertainties with the work presented in this thesis striving towards 

the former. To summarise: 

We began, in Chapter 1, with a brief introduction defining the QCD Lagrangian, dis­

cussing CP violation and the !lB = 1 effective Hamiltonian. 

In Chapter 2 we investigated the structure of vector mesons distribution amplitudes to 

twist-3 accuracy. We included all SU(3)F-breaking and G-parity violating effects. The 

QCD equations of motion were implemented to unpick the interwoven relations between 

the distribution amplitudes ultimately expressing the two-particle twist-3 distribution 

amplitudes in terms of the three-particle twist-3 and two-particle twist-2 distribution am­

plitudes. The equations of motion result in integral equations which are readily solved 

order-by-order in conformal spin and to the order considered all the distribution ampli­

tudes are then expressed by a small number of non-perturbative parameters. Finite quark 

mass effects appear in the equation of motion and therefore impact the two-particle twist-

3 distribution amplitudes (2.48-2.50). Such effects also cause mixing between the twist-3 

hadronic parameters under renormaJisation scale evolution, see Eq. (2:63). 

In Chapter 3 we discussed the methods of QCD sum rules (the SVZ method) and QCD 

sum rules on the light-cone. We outlined the procedures with example correlation func­

tions and ended the chapter with an example calculation of the 0: 8 corrections to the gluon 

condensate contribution to a K meson sum rule. The calculation made use of the back-
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ground field technique and served to illustrate the calculation of radiative corrections to­

and extraction of- vacuum condensates in the SVZ method. The result of the calculation 

is in conflict with that in the literature, see Eqs. (3.41) and (3.42). 

In Chapter 4 we determined the leading hadronic parameters defined in Chapter 2 via 

SVZ sum rules. We calculated the three-particle twist-3 parameters to NLO in conformal 

spin, also including all G-parity violating terms and finite strange quark mass effects. 

The determination of the twist-3 parameters is new for K* and ¢. The results for the p 

agree within uncertainties with previous determinations and are presented in Tabs. 4.1 

and 4.2. We also calculate O(as) and O(m;) corrections to the quark condensate for the 

sum rules for aQ'.L(V), which for n = 2 is the first non-trivial Gegenbauer coefficient of 

the G-even particles p and ¢. We add this contribution to the existing sum rules taken 

from the literature and update the value of a~,.L ( ¢) which we find to be consistent with 

that found for K* and p; at2 (V) = at2 (V) within uncertainties. The results find direct 

application in QCD factorisation descriptions of B --+ V decays, and the light-cone sum 

rule analyses of B --+ V transition form factors. 

In Chapter 5 we calculated the form factors of B --+ rJ' semileptonic transitions from light­

cone sum rules, including the gluonic singlet contributions. We built upon the previous 

light-cone sum rule determination of the B --+ 'T/ form factor by casting the calculation 

consistently within the phenomenologically motivated 'Tl-'Tl' mixing scheme of Refs. [117, 

118]. We found that, as expected, these contributions are more relevant for f2' than for 

n and can amount up to 20% in the former, depending on the only poorly constrained 

leading Gegenbauer moment B~ of the gluonic twist-2 distribution amplitude of 'f/1
• The 

numerical results, with each contribution listed separately, are given by Eqs. (5.45) and 

(5.46). Consequently, it seems unlikely that the large exclusive B --+ 'f/1 K and inclusive 

B --+ 'T/' X branching ratios can be explained by a large B~, as it would have to assume a 

very extreme value. We also found that the form factors are sensitive to the values of the 

twist-2 two-quark Gegenbauer moments a~,r7' which, given the uncertainty of independent 

determinations, we have set equal to a2, see Fig.5.7. 

The ratio of branching ratios B(B--+ 'Tl'ev)/B(B--+ 'T/ev) is sensitive to both a2 and B~ and 

ma:y' be used to cohstraiil these parametel"s, once it is measui"ed with suffideil.t accuracy, 

see Fig. 5.8. The extraction of IVubl from these semileptonic decays, in particular B --+ 'f/ev, 

with negligible singlet contribution, although possible in principle, at the moment is 

obscured by the lack of knowledge of a2 . We would also like to stress that, in the framework 

of the quark-flavour mixing scheme for the 'Tl-'T/' system as used in this analysis, B --+ 'f/1 
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transitions probe only the T/q component of these particles. The Tis component could be 

probed directly for instance in the b ----t s penguin transition Bs ----t ry' c+e-, although such 

a measurement would also be sensitive to new physics in the penguin diagrams. 

In Chapter 6 we discussed the QCD factorisation (QCDF) approach of Refs. [10, 11] and 

its application to the radiative B decays B ----t V 1 of Refs. [16, 17]. We discussed the 

appearance of distribution amplitudes in the factorisation formulas and focused on the 

leading contributions to the B ----t V 1 decays. 

In Chapter 7 we performed a phenomenological analysis of the radiative B decays to 

vector mesons B ----t V 1, using the framework discussed in Chapter 6. We investigated 

the most relevant power-suppressed corrections to the QCDF predictions for the radiative 

decays Bu,d ----t (p, w, K*)T and Bs ----t (¢, K*)T. We use the QCDF framework presented in 

Refs. [16, 17] in which we find use for the twist-2 DA parameters determined in Chapter 4. 

Besides the leading QCDF contributions we included long-distance photon emission and 

soft-gluon mission from quark loops. These effects, although formally"' 1/mb with respect 

to the leading contributions, augment the QCDF predictions for the branching ratios, CP 

and isospin asymmetries. 

The impact of the power-suppressed corrections on the branching ratios is found to be 

very small, with the exception of the weak annihilation contributions to B± ----t P±l which 

are large due to a large combination of Wilson coefficients C2 + CI/3 = 1.02 and no 

CKM-suppression. Moreover, long-distance photon emission also impacts most here, see 

Eq. (7.11). An explicit break down of the results are given in Tab. 7.5. 

The isospin asymmetries A(p,w), A1(p) and A1(K*) are driven by weak annihilation and 

long-distance photon emission contributions. We found a non-zero asymmetry A(p, w) = 
-0.20 ± 0.09 which suggests the explicit assumption of perfect symmetry, i.e. f(B± ----t 

P±l) = 2f(B0 
----t p01) = 2f(B0 

----t WI) used to obtain the experimental value of B(B ----t 

(p, w h) is not so well justified. We found A1 (p) to depend strongly on the UT angle 1, 

as shown in Tab. 7.6. With our central value of 1 = 53° (see Tab 7.8) our result agrees 

very well with the BABAR result AI(P)BaBar = 0.56 ± 0.66 [189]. For A1(K*) we found 

a result consistent with the experimental result A1 (K*)exp = (3.2 ± 4.1)% and, via its 
~ -

sensitivity to the Wilson coefficien-t combination C5 + C6/3 conclude that a reduction 

in the experimental uncertainty may uncover signs of new physics contributing to these 

Wilson coefficients, see Fig. 7.4. 

The indirect CP asymmetries S(V1) are caused by the interference between the ampli­

tudes describing the production of left and right-handed photons, see Eqs. (6.8) and (7.30). 
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The right-handed amplitude is suppressed by mD/mb with respect to the left-handed one 

for l3 = bij decays (and vice versa for B decays). Due to this natural suppression in 

the SM we expect the CP asymmetries to be small, and this suppression can be relieved 

by many new physics senarios. We investigated the soft-gluon effects arising from soft 

heavy and soft quark loops. The calculation of these contributions makes use of the three­

particle twist-3 DA parameters determined in Chapter 4. They contribute to both the left 

and right-handed amplitudes, and so may also relieve to SM suppression. We found that 

although they do divert the results from the values naively expected, there is no scope for 

a large enhancement due to these power-suppressed contributions. The results are given 

in Eq. (7.31). 

Finally, using the most recent results from BABAR and Belle, we extracted the CKM 

parameter ratio lvtd/vtsl and equivalently the UT angle 1 from the ratio of branching 

ratios Rp/w· The results are 

BABAR: 

Belle: 

exp th 

I 

vtd 1 = o 199~ ±boi4 l/ . -0.025 . 
Vts 

I vtd 1- 0 207 +0.028 +0.014 
l T - • -0.033 -0.015 
Vts 

~ "' _ (65 7 +17.3 +8.9)o 
~ I - • -20.7 -9.~ . (8.1) 

and agree well with the Belle result 1 = (53± 20) 0 obtained from tree-level processes, 

and results from global fits [31]. The result confirms the SM interpretation of 1 from the 

tree-level CP asymmetries in B --t D(*) K(*). 
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Appendix A 

Light-cone Co-ordinates 

To perform the light-cone expansion one relate the meson's 4-momentum Pp,, polarisation 

vector e(A) and the coordinate Xp, to two light-like vectors Pp, and Zw We have the usual 

relations 

(A.l) 

and 

P 2 2 =mK., P · e(A) = 0 
' 

(A.2) 

so that the limit m'i<. ~ 0 gives p ~ P and x2 ~ 0 gives z ~ x. From this it follows 

that 

(A.3) 

The meson's polarization vector e(A) can be decomposed into projections onto the two 

light-like vectors and the orthogonal plane 

(A.4) 
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We also need the projector 9;
11 

onto the directions orthogonal to p and z 

Some useful scalar products are 

z·P=z·p 

Will use the notations 

J(x · P) 2 - x2m7<., 
m7<. (A) ---z·e 
2pz ' 

X· e(A). 

dj_- j_ dll 
Jl = gJlll , 

for arbitrary Lorentz vectors all, bll, c11 and dll and 

for null unit vectors n2 = n2 = 0 and n · n = 1. The following notation is also used: 

a·p 
a+= a· z, a_=--, 

p·Z 
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Appendix B 

Useful formulas for sum rule 

determinations 

B.l Loop Integrals 

Here we summarise the loop integrals needed for calculating the twist-3 correlation func­

tions in Chapter 4. At one loop, one has (z2 = 0) [59] 

J [dLk] ifkk·z (k. z)n - (-1)a+b (- 2)D/2-a-b ( . )n r(a + b- D/2) 
e (k2)a((k- p)2)b - p p z r(a)f(b) 

X 11 
dw ei(1-w)fwz WD/2-1-b(1 _ w)Df2+n-1-a' 

(B.1) 

where the integration measure is defined as dDk = i/(47r) 2 [dLk] and fk is an arbitrary 

numerical factor, which in the cases considered in Chapter 4 is either v or v. One also 

needs the integral 

. ,~· _j)dLz] eiftl·z (l~;~~~~·:j:)d 
= (-1) D24 (k2)D/2-c-d (k. p)(k. z)i r(c + d- D/2) t du ei(l-u)ftk·z UD/2-1-d(1- u)D/2+j-c 

r(c)f(d) lo 
(- 1)D24(k2)D/2+1-c-d(. )(k· )j_1 r(c+d-D/2-1) 

+ p z z 2f(c)f(d) 

X 11 du ei(1-u)ftk·z uDI2-d(1- u)D/2-l+j-c (j + ift(1- u)(k. z)) . (B.2) 
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Two-loop integrals are obtained by combining the above one-loop integrals. 

B.2 Borel Subtraction 

To derive the sum rules from 1T~.v, 11"~-v and 1rf.v we use the relation 
' ' ' 

1 [ 2 . J a Sa ( ) 
;Ims -q -zO =r(-a)r(l+a)8s' (B.3) 

where s = -q2 , to find the imaginary part. Using the following notation for the Borelisa­

tion and continuum subtraction procedure 

A - -s/M2 1
so 1 

Bsub [X] - ds e - lmsX , 
0 7r 

(B.4) 

and the definition of the Borel transform ( 3.14) allows one to write the required results 

as 

Bsub [ (q!)a] Bsub [ln( -q2
)) = - M 2 + 100 

ds e-s/M
2 

, 
so 

A [ 2 2 ] Bsub q ln( -q ) 

A [ln( -q
2
)] 

Bsub 2 q 

A [ln( -q
2
)] 

Bsub 4 q 

A [ 2 2) Bsub ln( -q ) 

- M4 + roods e-s/M2 s' 
}so 

! ()() 21 
'YE -lnM2 + dse-s/M-, 

so s 

1 ( 2) !oo s/M2 1 
M 2 

1 - 'YE + ln M + ds e- 2 , 
so s 

2M2 
( 'YE - ln M 2

) + 21
00 

ds e-s/M
2 

ln s, 
so 

where 'YE is Euler's constant. 

B.3 Input Parameters 

(B.5) 

For the twist-2 and twist-3 DA parameter sum rule determinations of Chapter 4 we use 

the following input parameters: 

To evaluate the sum rules for the three-particle twist-3 DA parameters we use the following 
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(qq) = ( -0.24 ± 0.01)3 GeV3 (ss) = (1- 83) (qq) 

(qcrg8 Gq) = m6 (qq) (scrgsGs) = (1 - 8s) (qcrgsGq) 

(~ G2
) = (0.012 ± 0.003) GeV4 

m6 = (0.8 ± 0.1) GeV2 
, 83 = 0.2 ± 0.2, 85 =0.2±0.2 

m8 (2 GeV) = (100 ± 20) MeV f-----t m8 (1 GeV) = (133 ± 27) MeV 

mq(P,) = m 8 (p,)j R, R = 24.6 ± 1.2 

O:s(Mz) = 0.1176 ± 0.002 t-----t 0:8 (1 GeV) = 0.497 ± 0.005 

Table B. I: Input parameters for sum rules at the renormalisation scale J-L = 1 GeV. The value 
of m 8 is obtained from unquenched lattice calculations with N1 = 2 flavours as summarised 
in [204], which agrees with the results from QCD sum rule calculations [205]. mq is taken from 
chiral perturbation theory [206]. a8 (Mz) is the PDG average [27]. 

values of the continuum threshold s0 

s~(p) (1.3 ± 0.3) GeV2
, s~(K*) = (1.3 ± 0.3) GeV2

, s~(4>) = (1.4 ± 0.3) GeV2
, 

st(p) (1.5 ± 0.3) GeV2
, st(K*) = (1.6 ± 0.3) GeV2

, st(4>) = (1.7 ± 0.3) GeV2
. 

(B.6) 

The threshold for the p channel is from [13]. 
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