Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham e-Theses
You are in:

The isolation of useful bioproducts remaining from the large-scale fermentation of penicillium chrysogenum

Watson, Helen R. (2008) The isolation of useful bioproducts remaining from the large-scale fermentation of penicillium chrysogenum. Doctoral thesis, Durham University.

[img]
Preview
PDF
12Mb

Abstract

Chitin, a homopolymer of ß-(1-4) linked N-acetyl D-glucosamine units, and its deacetylated derivative chitosan have unique properties that may allow their utilisation in a diverse array of high-value applications. Currently chitinous materials are commercially produced from the waste products of the seafood processing industry, this supply is seasonal and the extraction procedures required harsh, resulting in products with heterogeneous characteristics. In this work novel methods of extraction of chitinous material from the dry fungal biomass remaining from the large-scale fermentation of Penicillium chrysogenum in the penicillin manufacturing industry were investigated, with the aim of avoiding or minimising the harsh chemical treatments. This work was carried out in partnership with Angel Biotechnology, who produce penicillin commercially and provided the waste biomass. It was determined that the chitinous material present in this biomass was too intractable for this to be a suitable commercial source of chitin, as large quantities of non-chitinous polysaccharide impurities remained in the product. Attempted enzymatic degradations of the fungal cell wall did not increase the level of purity of the extract. Comparison to other fungal sources of chitinous material indicated that P. chrysogenum does not provide the most efficient source of chitinous material. During the course of these studies it became apparent that there is no agreed literature procedure for the determination of the degree of deacetylation (DDA) of chitinous material, this characteristic is essential in determining the physiochemical properties of the polymer. In reviewing the procedures available we concluded that (^15)N solid-state NMR offered the most reliable method, however, its use was limited by the low natural abundance of (^15)N. We therefore developed a novel, efficient and directed strategy for the (^15)N labelling of chitinous material in fungal cells walls. This allows the direct determination of the DDA of chitinous material in whole fungal cells without the need for lengthy extraction procedures. The whole cell CPMAS ssNMR techniques developed may find many applications, such as monitoring cell wall biogenesis in response to varying nutrient conditions. Additionally, this may allow the rapid screening of fungal species to determine the concentration and DDA of chitinous material.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Thesis Date:2008
Copyright:Copyright of this thesis is held by the author
Deposited On:08 Sep 2011 18:24

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter