ELBERS, WILLEM,HERMAN (2023) Neutrinos from horizon to sub-galactic scales. Doctoral thesis, Durham University.
| PDF - Accepted Version Available under License Creative Commons Attribution 3.0 (CC BY). 18Mb |
Abstract
A first determination of the mass scale set by the lightest neutrino remains a crucial outstanding challenge for cosmology and particle physics, with profound implications for the history of the Universe and physics beyond the Standard Model. In this thesis, we present the results from three methodological papers and two applications that contribute to our understanding of the cosmic neutrino background.
First, we introduce a new method for the noise-suppressed evaluation of neutrino phase-space statistics. Its primary application is in cosmological N-body simulations, where it reduces the computational cost of simulating neutrinos by orders of magnitude without neglecting their nonlinear evolution. Second, using a recursive formulation of Lagrangian perturbation theory, we derive higher-order neutrino corrections and show that these can be used for the accurate and consistent initialisation of cosmological neutrino simulations. Third, we present a new code for the initialisation of neutrino particles, accounting both for relativistic effects and the full Boltzmann hierarchy. Taken together, these papers demonstrate that with the combination of the methods described therein, we can accurately simulate the evolution of the neutrino background over 13.8 Gyr from the linear and ultra-relativistic regime at down to the non-relativistic yet nonlinear regime at . Moreover, they show that the accuracy of large-scale structure predictions can be controlled at the sub-percent level needed for a neutrino mass determination.
In a first application of these methods, we present a forecast for direct detection of the neutrino background, taking into account the gravitational enhancement (or indeed suppression) of the local density due to the Milky Way and the observed large-scale structure within 200 Mpc/h. We determine that the large-scale structure is more important than the Milky Way for neutrino masses below 0.1 eV, predict the orientation of the neutrino dipole, and study small-scale anisotropies. We predict that the angular distribution of neutrinos is anti-correlated with the projected matter density, due to the capture or deflection of neutrinos by massive objects along the line of sight.
Finally, we present the first results from a new suite of hydrodynamical simulations, which includes the largest ever simulation with neutrinos and galaxies. We study the extent to which variations in neutrino mass can be treated independently of astrophysical processes, such as feedback from supernovae and black holes. Our findings show that baryonic feedback is weakly dependent on neutrino mass, with feedback being stronger for models with larger neutrino masses. By studying individual dark matter halos, we attribute this effect to the increased baryon density relative to cold dark matter and a reduction in the binding energies of halos. We show that percent-level accurate modelling of the matter power spectrum in a cosmologically interesting parameter range is only possible if the cosmology-dependence of feedback is taken into account.
Item Type: | Thesis (Doctoral) |
---|---|
Award: | Doctor of Philosophy |
Keywords: | cosmology, large-scale structure, neutrinos, simulations, perturbation theory, galaxies |
Faculty and Department: | Faculty of Science > Physics, Department of |
Thesis Date: | 2023 |
Copyright: | Copyright of this thesis is held by the author |
Deposited On: | 03 Nov 2023 10:53 |