We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham e-Theses
You are in:

Joint Design of Wireless Fronthaul and Access Links in Massive MIMO CRANs

HUANG, YINGJIA (2023) Joint Design of Wireless Fronthaul and Access Links in Massive MIMO CRANs. Doctoral thesis, Durham University.

PDF - Accepted Version


Cloud radio access network (CRAN) has emerged as a promising mobile network architecture for the current 5th generation (5G) and beyond networks. This thesis focuses on novel architectures and optimization approaches for CRAN systems with massive multiple-input multiple-output (MIMO) enabled in the wireless fronthaul link. In particular, we propose a joint design of wireless fronthaul and access links for CRANs and aim to maximize the network spectral efficiency (SE) and energy efficiency (EE).

Regarding downlink transmission in massive MIMO CRANs, the precoding designs of the access link are optimized by accounting for both perfect instantaneous channel state information (CSI) and stochastic CSI of the access link separately. The system design adopts a decompress-and-forward (DCF) scheme at the remote radio heads (RRHs), with optimization of the multivariate compression covariance noise. Constrained by the maximum power budgets set for the central unit (CU) and RRHs, we aim to maximize the network sum-rate and minimize the total transmit power for all user equipments (UEs). Moreover, we present a separate optimization design and compare its performance, feasibility, and computational efficiency with the proposed joint design. Considering the uplink transmission, we utilize a compress-and-forward (CF) scheme at the RRHs. Assuming that perfect CSI is available at the CU, our objective is to optimize the precoding matrix of the access link while adopting conventional precoding methods for the fronthaul link. This thesis also proposes an unmanned aerial vehicle (UAV)-enabled CRAN architecture with a massive MIMO CU as a supplement system to the terrestrial communication networks. The locations of UAVs are optimized along with compression noise, precoding matrices, and transmit power. To tackle the non-convex optimization problems described above, we employ efficient iterative algorithms and conduct a thorough exploration of practical simulations, yielding promising results that outperform benchmark schemes.

In summary, this thesis explores future wireless CRAN architectures, leveraging promising technologies including massive MIMO and UAV-enabled communications. Furthermore, this work presents comprehensive optimization designs aimed at further enhancing the network efficiency.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Faculty and Department:Faculty of Science > Engineering, Department of
Thesis Date:2023
Copyright:Copyright of this thesis is held by the author
Deposited On:19 Jun 2023 10:48

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter