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Abstract

Cloud radio access network (CRAN) has emerged as a promising mobile network

architecture for the current 5th generation (5G) and beyond networks. This thesis focuses

on novel architectures and optimization approaches for CRAN systems with massive

multiple-input multiple-output (MIMO) enabled in the wireless fronthaul link. In partic-

ular, we propose a joint design of wireless fronthaul and access links for CRANs and aim

to maximize the network spectral efficiency (SE) and energy efficiency (EE).

Regarding downlink transmission in massive MIMO CRANs, the precoding designs

of the access link are optimized by accounting for both perfect instantaneous channel state

information (CSI) and stochastic CSI of the access link separately. The system design

adopts a decompress-and-forward (DCF) scheme at the remote radio heads (RRHs), with

optimization of the multivariate compression covariance noise. Constrained by the max-

imum power budgets set for the central unit (CU) and RRHs, we aim to maximize the

network sum-rate and minimize the total transmit power for all user equipments (UEs).

Moreover, we present a separate optimization design and compare its performance, feasi-

bility, and computational efficiency with the proposed joint design. Considering the uplink

transmission, we utilize a compress-and-forward (CF) scheme at the RRHs. Assuming

that perfect CSI is available at the CU, our objective is to optimize the precoding matrix of

the access link while adopting conventional precoding methods for the fronthaul link. This

thesis also proposes an unmanned aerial vehicle (UAV)-enabled CRAN architecture with
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a massive MIMO CU as a supplement system to the terrestrial communication networks.

The locations of UAVs are optimized along with compression noise, precoding matrices,

and transmit power. To tackle the non-convex optimization problems described above,

we employ efficient iterative algorithms and conduct a thorough exploration of practical

simulations, yielding promising results that outperform benchmark schemes.

In summary, this thesis explores future wireless CRAN architectures, leveraging

promising technologies including massive MIMO and UAV-enabled communications.

Furthermore, this work presents comprehensive optimization designs aimed at further

enhancing the network efficiency.
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Ū Set of precoding matrices for the access link in downlink trans-

mission

U Precoding matrix for the access link

V̄ Set of precoding matrices for the access link in uplink transmis-

sion

vU,k, vC,m, qi Location of the k-th UAV, the m-th antenna at the CU, the i-th

UAV

Vi Index set of the compressed x̂R,i (Index set of the compressed

ŷR,i in Chapter 5 )

wi Normalized beamforming vector for transmit signal sR,k/sR,k

xR,i, xR,i, xU,k, xC Transmit signals

(x, y, z) 3-D Coordinate System

yU,k, yR,i Received signals
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Acronyms / Abbreviations

2G 2nd-Generation

3-D 3-Dimentional

3GPP 3G Partnership Project

3G 3rd-Generation

4G 4th-Generation

5G 5th-Generation

AF Amplify-and-Forward

BBU Baseband Unit

BCD Block Coordinate Descent

BLER Block Error Rate

bpcu bits per channel use

BSC Base Station Controller

BS Base Station

BTS Base Transceiver Station

CDMA Code-Division Multiple Access

CF Compress-and-Forward

CoMP Coordinated Multi-Point transmission and reception

CPU Central Processing Unit

CRAN Cloud/Centrali Radio Access Network

CSI Channel State Information

CU Central Unit

DCF Decompress-and-Forward

DC Difference of Convex

DF Decode-and-Forward

E-UTRAN Evolved UTRAN

EE Energy Efficiency

eMBB enhanced Mobile Broadband

eNodeB evolved NodeB

FDD Frequency Division Duplex
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FDMA Frequency Division Multiple Access

GERAN GSM Evolution RAN

GPS Global Positioning System

GSM Global System for Mobile Communications

H-CRAN Heterogeneous-CRAN

HetNet Heterogeneous Network

HPC High Performance Computing

IoT Internet of Things

IRS Intelligent Reflecting Surface

JCAS Joint Communication and Sensing

JDD Joint Decompression and Decoding

KKT Karush-Kuhn-Tucker

LoS Line-of-Sight

LP Linear Programming

LTE Long-Term Evolution

MEC Multi-access Edge Computing

MF Matched Filter

MIMO Multiple-Input and Multiple-Output

mIoT massive IOT

MMSE Minimum Mean Square Error

mMTC massive Machine Type Communications

MM Majorization-Minimization

MR Maximum-Ratio

MU-MIMO Multi-User MIMO

NLoS None-Line-of-Sight

NR New Radio

OFDMA Orthogonal FDMA

QCQP Quadratically Constrained Quadratic Programming

QoS Quality of Service

QP Quadratic Programming
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RAN Radio Access Network

RF Radio Frequency

RNC Radio Network Controller

RoF Radio over Fiber

RRH Remote Radio Head

RZF Regularized Zero-forcing

SAA Sample Average Approximation

SC-FDMA Single-Carrier FDMA

SCA Successive Convex Approximation

SDP Semidefinite Programming

SDR Semidefinite Relaxation

SE Spectral Efficiency

SINR Signal-to-Interference-plus-Noise Ratio

SSUM Successive Upper bound Minimization

TDD Time Division Duplex

TDMA Time-Division Multiple Access

UAV Unmanned/Uncrewed Aerial Vehicle

UE User Equipment

ULA Uniform Linear Array

UMi Urban Microcell

UMTS Universal Mobile Telecommunications System

UPA Uniform Planar Array

URLLC Ultra-Reliable and Low Latency Communications

UTRAN UMTS Terrestrial RAN

W-CDMA Wideband Code-Division Multiple Access

ZF Zero-Forcing



Chapter 1

Introduction

By the end of 2022, over 95% of the global population has been covered by 3rd-generation

(3G) and advanced mobile broadband networks, making mobile internet connectivity

accessible to over 55% of the worldwide population, according to the latest reports [1, 2].

The current 5th-generation (5G) network is designed to support up to 106 devices per

km2 and deliver peak data rates of up to 20 gigabits/s for downlink, along with ultra-low

latency ranging from 1 and 10 milliseconds [3]. The target by 2030 is to provide mobile

network access to 100% of the population, with over 54% of connections being supported

by 5G [1, 4]. Beyond the enhancements in data throughput and bandwidth offered by

5G networks over their 4th-generation (4G) predecessors, 5G and beyond networks also

represent a paradigm shift in networking technology, unlocking novel applications and

opportunities in industry 4.0 [5], smart cities, healthcare, retail and so on. A wide range

of usage scenarios have been explored and proposed for 5G and future networks [6, 7],

which can be broadly classified into three categories [8, 9]:

• Enhanced mobile broadband (eMBB): eMBB offers wireless high-speed broad-

band services in densely populated areas. Its key features comprise enhanced

seamless connectivity and robust support for user mobility.

• Massive machine type communications (mMTC): mMTC, also known as massive

Internet of Things (mIoT), aims to stably support ultra-dense and massive numbers
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of devices with low rates and energy.

• Ultra-reliable and low latency communications (URLLC): URLLC prioritizes

mission-critical applications that are highly sensitive to latency and system relia-

bility. It is vital to optimize every step of the uplink and downlink transmission

process, as well as strategies aiming at shortening data processing response time.

The impact of future communication networks is far-reaching and encompasses every

aspect of our daily lives. It is not just about delivering faster or superior services, but

rather utilizing technologies as a catalyst to enable a range of services that will be integral

to our lives. This thesis aims to explore some potential scenarios for future applications

in an efficient and cost-effective manner.

1.1 Motivation

With the accelerated development of manufacturing in the recent several decades, hardware

components could be massively produced with higher accuracy and lower costs. It enables

the central processing unit (CPU) to achieve higher processing speed and become smaller

and lighter. Portable electronic devices, as a result, are capable of being equipped with

complicated modules to meet users’ daily requirements. Especially since the beginning of

the 21st century, there has been an explosive growth in demand for internet access from

mobile phones. Wireless radio access network (RAN) technologies, which enable wireless

communication between user devices and the core network, are thus widely studied both

commercially and academically.

The 2nd-generation (2G) cellular network is the first one that implemented entirely

digital transmission since the early 1990s [10]. Global system for mobile communications

(GSM) is a standard employed in 2G networks that utilizes time-division multiple access

(TDMA) technologies. The enhanced data rates for GSM evolution RAN (GERAN)

based on GSM represents one of the 2G RANs, which comprises base station controllers

(BSCs) and base transceiver stations (BTSs). It was superseded by 3G universal mobile

telecommunications service (UMTS), which utilizes wideband code-division multiple
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access (W-CDMA) as its primary technology [11]. This was accomplished through

the implementation of radio network controllers (RNCs) and NodeBs in UMTS terrestrial

RANs (UTRANs). Subsequently, the 4G long-term evolution (LTE) technology was

introduced, which involves the use of evolved NodeBs (eNodeBs). The widely-used method

in LTE evolved UTRANs (EUTRANs) is frequency division multiple access (FDMA), with

orthogonal FDMA (OFDMA) employed in the downlink and single-carrier FDMA (SC-

FDMA) in the uplink. Each evolution has resulted in a significant increase in transmission

rate and a decrease in latency. Since 3rd Generation Partnership Project (3GPP) release

15 [12], the first phase of 5G specifications started in 2017 and the era of 5G new radio

(NR) has come in. Until the submission date of this thesis, the standardization of 5G

Advanced is in progress and the corresponding release 18 is expected to be finished in

2024 [13].

In future wireless networks, delivering a high data rate will remain the main driver

along with other features such as high reliability and low latency while supporting a large

number of users in a scalable fashion. In the physical layer, some criteria are used to

evaluate the quality of wireless communication networks. In this thesis, we mainly take

the following two aspects into account:

• Spectral Efficiency (SE): Over a limited bandwidth at the given frequency spectrum,

SE is a measurement of how efficiently the information can be transmitted. The unit

is written as bits/s/Hz, which measures the average number of bits that can be reliably

transmitted over the channel per second per hertz. Channel capacity determines the

upper bound of SE that can be achieved for a specific range of bandwidth, given the

transmit power and noise variance.

• Energy Efficiency (EE): There are plenty of definitions of EE across various

scenarios [14] to evaluate the communication network, but its fundamental objective

remains consistent, which is the minimization of the total energy consumption while

maintaining a certain quality of service (QoS) requirement, such as high throughput

and low latency.

To meet the exponential growth of internet of things (IoT) demand, RAN becomes a
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vital part of wireless telecommunication systems which realize cooperation among all units

on a large scale. With the rapid evolution of telecommunication technologies, potential

next-generation RAN is under research to further improve SE and EE. Cloud/Centralized

RAN (CRAN) is known to be one of the most competitive structures for future networks

[15].

Inspired by centralized signal processing technology, the CRAN architecture was first

proposed in 2010 [16] with the objective of providing higher SE and EE. “C” represents

centralized processing, Cooperative radio, Cloud and Clean (green). The primary idea

of CRAN is to pool the baseband units (BBUs) of several base stations (BSs) altogether

in a central unit (CU) rather than placing them separately in each BS [17]. In general,

CRAN physically decouples the function of traditional BSs into two main parts: the major

signal processing is centralized and merged into a BBU pool, and the distributed remote

radio heads (RRHs) replace the conventional BSs and operate as relays. One of the major

advantages of CRAN systems is to alleviate the burden of classical BSs by reducing their

computational and hardware complexities. The CU undertakes most of the computational

burden from the conventional distributed BSs to provide centralized high-performance

computations, large-area cooperation and interference management. Meanwhile, RRHs

with low complexity and power consumption can be deployed cost-effectively to realize

interference mitigation and cooperation. To exploit this, the RRHs should be distributed

remotely and cover a large service area. The network densification can thus be achieved

to further improve SE. Figure 1.1 shows a general structure of CRANs. There are two

links involved in the CRAN architecture. The transmission link for RRHs to serve user

equipments (UE) in their local cells is referred to as the access link. Each RRH is connected

to the BBU and the transmission link between them is referred to as the fronthaul link.

The combined structure of one centralized BBU and multiple RRHs can manage a highly

cooperative communication network and provide a wide range of seamless coverage.

In this thesis, we propose a joint design of wireless fronthaul and access links in

CRANs and optimize both network SE and EE. Before conducting the research, there are

a few key questions that need to be answered:
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Backhaul Link Fronthaul Link Access Link

Core

Network BBU Pool RRHs
UEs

Figure 1.1: General CRAN architecture.

• Why consider CRAN?

The rise of IoT has stimulated the exploration of new RANs, such as heterogeneous

network (HetNet) [18] as a cellular network structure which integrates diverse cell

sizes, such as macro/microcells, picocells, and femtocells. Achieving high network

densification and cell cooperation to mitigate intra-cell interference demands the

flexible deployment and centralized processing support. Additionally, cell-free sys-

tems leveraging massive multiple-input and multiple-output (MIMO) technologies

[19] offer another promising direction for future RANs, where a large number of

access points provides wide coverage while serving relatively few UEs. CRAN

is capable of providing high-performance computing and cooperation for both ar-

chitectures. Moreover, emerging technologies such as intelligent reflecting surface

(IRS) [20, 21], joint communication and sensing (JCAS) [22], and multi-access

edge computing (MEC) [23] have garnered significant attention and can be seam-

lessly integrated and supported by the CRAN architecture.

• Why consider wireless fronthaul links?

Most of the existing works have mostly regarded the fronthaul link as a finite-
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capacity link [24, 25] or a wired link (such as radio of fiber (RoF) technique

[26]), constraining network designs by a fixed fronthaul capacity. However, wired

networks can be prohibitively expensive, particularly for ultra-dense deployment

in future RANs. Wireless communication, on the other hand, can provide mobile

and temporary connectivity and support multiple access with a single transmitter.

Moreover, in certain deployment scenarios such as difficult terrains and rural areas,

using the wireless medium for fronthaul links could be more advantageous due

to its lower deployment cost and greater flexibility in placement and adjustment.

Furthermore, wireless collaboration or integration with other telecommunication

networks, such as aerial or satellite communication, can be enabled by employing

antennas at the CU and leveraging the CU’s capabilities.

• Why consider fully centralized structure?

Since some parts of the responsibilities can be centralized and managed by the CU,

various protocols to split the function between the central and distributed units can

be employed based on specific applications. As more functions become centralized

in the cloud, the fronthaul link bears a greater burden [27]. Our goal is to improve

the whole network performance at the physical layer by increasing the maximum

achievable throughput and reducing the cost of transmit power, where the fully

centralized structure presents the greatest challenge in achieving this goal. Moreover,

partial centralization is inadequate in supporting some advanced functionalities such

as spatial cooperation among distributed MIMO and coordinated multiple point

transmission and reception (CoMP) for the access link [27]. To this end, we adopt

a fully centralized structure and aim to jointly optimize both fronthaul and access

links to improve SE and EE in this thesis.

1.2 Research Challenges

However, challenges always coexist when guiding new visions into reality. Therefore,

this thesis aims to address the following limitations and difficulties of the CRAN while
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exploring and extending practical scenarios.

• Limited Wireless Fronthaul Capacity:

In the CRAN architecture, the fronthaul link plays a crucial role as it constrains

the maximum throughput that can be communicated between the CU and RRHs.

Although a wired fronthaul link can provide high throughput, the lack of flexibility

and high cost of deployment and maintenance is non-negligible [17]. Wireless

fronthaul link further increases the burden on the whole network. Improving the

SE and EE of fronthaul links is key to enhancing the overall performance of the

network.

• Fast and Low-cost Deployment and Mobility:

To achieve densely deployed networks, it is vital to minimize the size, cost, and

weight of the traditional BSs. Full centralization can alleviate the burden on the

RRHs, making them the lightest and most cost-effective units. These units can

be swiftly mobilized and conveniently relocated (especially wirelessly connected),

while also demanding minimal maintenance in the future. However, this approach

leads to a heavy burden on the fronthaul link, thereby emphasizing the need for

effective compression schemes.

• Imperfect Channel State Information (CSI):

Most of the work on CRAN assumes that the CU perfectly knows the instantaneous

CSI of the wireless access link, on which the beamforming matrices are designed

based. However, obtaining perfect CSI is costly even in time division duplex (TDD)

mode. It is more practical to have only stochastic CSI available but the absence of

accurate CSI can result in a reduction in the achievable capacity.

• Support for Aerial Communication:

Given the CU’s ability to operate high-performance computations, integrating aerial

communications into the CRAN is a promising architecture. This integration enables

the clustering and centralization of most of the signal processing and network control

from conventional flying platforms to the CU, resulting in a lighter weight and

longer hovering time for drones. Seamless extensive cooperation with both aerial
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and terrestrial entities can be achieved and enhanced in a cost-effective manner.

However, it presents challenges to wireless access of flying platforms, where both

SE and EE are significantly limited, especially for the fronthaul link. Furthermore,

the positions of aerial units and compression schemes need to be designed properly.

1.3 Contributions

To address the challenges mentioned above and further improve SE and EE, we propose

novel CRAN architectures and evaluate their performances in this thesis. Our contributions

can be summarized as follows:

• Joint design of wireless fronthaul and access link in Massive MIMO CRANs:

Unlike most of the existing works in CRAN, where the wired fronthaul is assumed as

an ideal bit-pipe with a fixed capacity constraint, we propose a novel architecture of

CRAN with massive MIMO enabled in the fronthaul link and focus on optimizing

varying capacity constraints in the wireless fronthaul link. A joint cooperative

design of fronthaul and access links is proposed while considering the impact

of multivariate compression noise and interference that naturally exist in wireless

channels. In particular, the precoding matrices for the access link, the quantization

covariance matrices, and transmit powers are jointly optimized to maximize the

network sum-rate and minimize the total power consumption. Additionally, we

present designs with lower computational complexity, including the independent

point-to-point compression strategy and separate optimization designs [28, 29] for

wireless fronthaul and access links, which are compared to the proposed joint design

in terms of achieved performance, feasibility, and computational time.

– In the downlink transmission, the decompress-and-forward (DCF) scheme

is utilized at the RRHs. Also, different levels of CSI knowledge, namely

instantaneous CSI and stochastic CSI, are both considered in the optimization

problems aiming to improve network SE and EE. While the framework for
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incorporating instantaneous CSI into the system design is relatively simple,

the lack of CSI knowledge presents a significant challenge. To address this

issue, we present an ergodic sum-rate maximization problem that assumes the

availability of only the stochastic CSI.

– In the uplink transmission, perfect knowledge of CSI is assumed to be avail-

able at the CU. Two conventional precoding methods, namely maximum-ratio

(MR) and zero-forcing (ZF) combining, are adopted for the access link. The

compress-and-forward (CF) scheme is utilized at the RRHs aiming to improve

the sum-rate of the proposed designs.

All the aforementioned problems are non-convex and thus hard to solve. We utilize

iterative algorithms based on successive convex approximation (SCA) to tackle the

corresponding problems by transforming them into relaxed convex semidefinite re-

laxation (SDR) problems [30]. We also provide proof that the optimized solution

from the proposed algorithms is feasible and optimal for the original problems. Fur-

thermore, we provide comprehensive numerical results and compare our proposed

designs to benchmark schemes.

• Multi-UAV-enabled CRANs with Massive MIMO:

We propose a unmanned/uncrewed aerial vehicle (UAV)-enabled CRAN with a

massive MIMO BBU as a supplement system to the terrestrial communication

networks. UAVs are regarded as flying RRHs that are integrated into CRAN1

which aims to reduce the circuit and signal processing complexity as well as power

consumption in UAVs. Unlike the existing works, we adopt a more realistic system

model with DCF relaying at the flying RRHs and jointly optimize both wireless

fronthaul and access links including the placements of the UAVs. The idea of UAV-

UE paired is described and the corresponding optimization problem is presented.

We propose an iterative algorithm by decomposing and reformulating the original

problems into two convex SDR subproblems, the solution of which is proven to be

1As a result, the proposed architecture will inherit all the benefits of the conventional CRAN architecture.
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optimal for the proposed model. Numerical simulations are conducted to present the

trajectory of UAVs’ optimized placements. In addition, the network performance is

evaluated by comparing it to the benchmark schemes.

1.4 Thesis Structure

The remainder of this thesis is organized as follows:

• Chapter 2: In this chapter, we introduce the essential background of relevant

technologies and concepts used in this thesis, followed by a comprehensive literature

review of state-of-the-art research.

• Chapter 3: The downlink of a CRAN architecture with wireless fronthaul and access

links is investigated in this chapter, where a CU equipped with a very large antenna

array serves multiple multi-antenna RRHs that in turn provide service to a number

of UEs. The assumption of perfect knowledge of instantaneous CSI available at the

CU is made for designing the precoding matrices of the access link. Constrained

by the transmit power budgets, a joint design of both fronthaul and access links

is proposed. The corresponding optimization problems aiming to maximize the

sum-rate and minimize the total power consumption are formulated. Separate

designs of fronthaul and access links are also investigated with low complexity.

Iterative algorithms are presented for solving the resulting problems. The proposed

algorithms are evaluated and compared with benchmarks.

• Chapter 4: Adopting the same system model proposed in Chapter 3, only the

knowledge of stochastic CSI of the access link is available at the CU for system

designing in this chapter. We propose both joint and separate designs targeting to

maximize the ergodic sum-rate over multiple coherence blocks and minimize the

transmit power consumption. The resulting optimization problems are hard to solve

directly. Iterative algorithms were presented and compared to benchmark schemes
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to demonstrate their superiority in achieving higher SE and EE.

• Chapter 5: The uplink transmission in CRAN with massive MIMO utilized in the

fronthaul link is considered in this chapter. Maximizing the system SE and EE

involves jointly optimizing the precoders at the UEs, the quantization noise covari-

ance matrices, and transmit powers at the multi-antenna RRHs and UEs. To solve

the resulting non-convex problems, iterative algorithms based on the majorization-

minimization (MM) approach method are proposed. Two precoding schemes at the

central unit are considered, namely MR and ZF combining.

• Chapter 6: A novel architecture of multi-UAV-enabled CRAN is proposed in

this chapter. In particular, we propose to deploy the UAVs as flying RRHs to

serve ground UEs. The CU is equipped with a large-scale antenna array to serve

the flying RRHs and affords all the baseband signal processing. To optimize the

proposed architecture, the problem of maximizing the minimum rate of UEs is

considered by jointly optimizing UAVs placement, quantization noise variance, and

power control. The corresponding optimization problem is not convex and to solve

it an efficient iterative algorithm is derived by combining the block coordinate

descent and successive convex approximation (SCA) methods. Numerical results

demonstrate the superior performance of the proposed algorithm compared to the

two benchmark schemes.

• Chapter 7: In this chapter, conclusions are drawn about the primary findings and

results from our work. Potential future work is also discussed.
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Chapter 2

Background and Literature Review

This chapter provides a concise overview of the background and state-of-the-art research

on several relevant technologies employed in this thesis. We first provide an overview of

the concept of CRAN architecture in Section 2.1. In Section 2.2, we introduce the fun-

damental concept of MIMO and relevant technologies. Section 2.3 introduces UAV-aided

communication with advantages and challenges. Section 2.4 gives a brief introduction to

convex optimization problems which are widely used for solving our proposed models.

Finally, the latest research on the aforementioned technologies, as well as their combined

design is presented in Section 2.5.

2.1 CRAN Architecture

Ultra-dense deployment and flexible centralized processing are the key enablers for future

networks [31]. CRAN is a promising technology to achieve both functions and meet the

requirements of future wireless communication networks [15]. The primary idea of CRAN

is to migrate the baseband processing from the BSs to the CU [17]. Therefore, the low-

complexity and low-cost BSs, also known as the RRHs, can be managed to cooperate with

each other and effectively suppress interference, resulting in higher SE and EE. The CU
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communicates with the RRHs through the fronthaul links while the RRHs communicate

with the UEs via the access links.

2.1.1 Function Splits

As in conventional RANs, the protocol layers operated by BSs can be generally categorized

as the L3 network layer, L2 data link layer and L1 physical layer. Since some features can be

centralized into the CU, different split options in these three layers can be applied between

the central and distributed units [32]. According to the standardization of 3GPP [33], there

are 8 separate options depending on the applications, as shown in Figure 2.1. Several works

have discussed and compared different function splits [27, 31, 34, 35].

Full centralization is the most promising CRAN architecture where the functional split

happens between the radio frequency (RF) and physical (PHY) layer. In another word,

all three layers are executed in the CU whereas only RF functionality is performed at the

RRHs. This structure is clear and simple with significant benefits in terms of flexible

deployment, low cost and simple maintenance [36]. However, large amounts of data need

to be transmitted uplink/downlink through the fronthaul link which thus requires high

capacity and low latency in a fully centralized structure.

Centralized processing allows distributed RRHs to operate as relays and forward

messages to UEs. There are various strategies for processing at a relay. Decode-and-

forward (DF) is one of the most common techniques in which relay nodes decode the

received signal before forwarding the decoded signals to the destination. However, in the

downlink transmission, DF requires the local CSI at each RRH to encode signals for UEs

within the coverage. Additionally, it suffers from intra-cell interference among RRHs. An

alternative approach to overcome these issues is to generate the precoding design of the

access link at the CU to achieve interference management and transmit its compressed

information to the RRHs prior to the data transmission. In the uplink, RRHs require the

knowledge of codebooks used by UEs in order to decode the signals correctly, as well
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as the knowledge of fronthaul CSI to encode the signals transmitted to CU. However,

acquiring this information leads to a heavy burden on the fronthual link and is not feasible

in practice. Also, both transmission requires RRHs to undertake part of baseband signal

processing. Therefore, signal quantization and compression schemes are preferable for a

full centralization structure of CRANs with wireless fronthaul link [27].

2.1.2 Quantization and Compression

In the recent decade, there have been many studies on compression and decompression

schemes for wireless fronthaul links, aiming to increase network capacity. From the

perspective of information theory, the compression process can be viewed as a Gaussian

test channel [37], in which the input consists of uncompressed signals and the output

comprises compressed signals.

For the DCF scheme in the CRAN downlink transmission, denote xn as an input

sequence of n independent and identically distributed (i.i.d.) samples in a point-to-point

compression system. For a given test channel with a rate R, xn is compressed into an

index M within a codebook C = {x̂n(1), · · · , x̂n(2nR)} for transmission. At the receiver

side, M is decompressed to obtain the corresponding sequence x̂n. In order to recover the

signals successfully,

R ≥ I(xn; x̂n) (2.1)

needs to be satisfied. For multivariate compression systems [38–40], assuming that

there are NR RRHs and NR ≜ {1, . . . , NR} is the RRHs set. Denote M chosen

codebooks C1, · · · , CNR known at both transmitters and receivers, where each codebook

Ci = {x̂n
i (1), · · · , x̂n

i (2
nRi)} has rate Ri. The sequence xn is compressed randomly and

conditionally independently intoNR indices, which indicates the corresponding codewords

x̂n
i , . . . , x̂

n
NR

. The signals can be reliably decompressed only if

∑
i∈S

RS ≥
∑
i∈S

h(x̂n
i )− h(x̂n

S |xn), ∀S ⊆ {1, . . . , NR}. (2.2)
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This thesis utilizes and compares both independent and multivariate compression schemes

for the proposed models.

For the CF scheme in the CRAN uplink transmission, denote yn as the signals received

at the RRH intended to be compressed as ŷn
i and forwarded to the CU. For the conventional

single-user compression scheme,

R ≥ I(yn; ŷn) (2.3)

has to be satisfied in order to recover yn successfully. For Wyner–Ziv distributed cod-

ing [40, 41], define a compression order {π(1), . . . , π(NR)}. Therefore, the CU can

leverage the decompressed signals {ŷn
π(1), . . . , ŷ

n
π(i−1)} as the side information before de-

compressing the signal ŷn
π(i). All signals can be decompressed successfully only if the

conditions

Rπ(i) ≥ I(yn
π(i); ŷ

n
π(i)|ŷn

π(1), . . . , ŷ
n
π(i−1)), ∀i ∈ NR, (2.4)

are satisfied.

2.2 MIMO

MIMO is a wireless communication technology that enables spatial multiplexing by em-

ploying multiple antennas at both the transmitter and receiver to increase the data transmis-

sion capacity [42,43]. Let M and K denote the number of transmit and receive antennas,

respectively, the channel model H ∈ CK×M is given as

H ≜


h1

h2

...

hK

 =


h11 h12 · · · h1M

h21 h22 · · · h2M

...
...

hK1 hK2 · · · hKM

 , (2.5)

where the (i, j)-entry of H represents the channel response from the j-th transmit antenna

to the i-th receive antenna. For a Rician distributed channel, hij is given by

hij =
√
βi

(√
κ

κ+ 1
h̄ij +

√
1

κ+ 1
h̃ij

)
, (2.6)
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where βi represents the large-scale fading. κ ≥ 0 corresponds to the Rician factor

defined as the power ratio between the line-of-sight (LoS) and non-line-of-sight (NLoS)

components. When κ = 0, the channels exhibit Rayleigh fading with complex small scale

fading h̃ij following a normal distribution

h̃ij ∼ CN (0, 1). (2.7)

When κ → ∞, in contrast, the channels behave as deterministic LoS propagation with

phase shift, i.e.,

h̄ij = e−i 2π
λ
Dij , (2.8)

where λ is the carrier wavelength and Dij is the distance between the i-th antenna at the

transmitter and the j-th antenna at the receiver. i denotes the imaginary unit.

Considering a horizontal ULA used for transmission, Figure 2.2 shows the path of a

transmitted waveform from each antenna in the ULA. In reality, when the distance between

the receiver and transmitter is large enough, the rays transmitted from antennas can be

approximated as parallel. Therefore, the LoS channel from the ULA to the i-th receive

antenna at the receiver side is given as

hi = [h11h12 · · ·h1M ] =
√
βi

[
1 e−i 2π

λ
d cos(ϕi) . . . e−i 2π

λ
(M−1)d cos(ϕi)

]
, (2.9)

where d ≜ λ
2

denotes the antenna spacing and ϕi ∈ [0, 2π) is the azimuth angle of

departure. Provided an accurate azimuth angle ϕk between the transmitter and a specific

ϕi

(M − 1)d cosϕi

2d cosϕi d cosϕi

dd

ULA

. . .

. . .

Figure 2.2: LoS propagation line at the transmitter side with a ULA.
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k-th receiver, applying the normalized digital beamforming, represented by

hH
k

∥hH
k ∥

=
1

M
[h̄∗

11h̄
∗
12 · · · h̄∗

1M ] =
1

M

[
1 ei 2π

λ
d cos(ϕk) . . . ei 2π

λ
(M−1)d cos(ϕk)

]
, (2.10)

as the steering vector, can effectively direct and concentrate the beams towards the intended

target. Figure 2.3 depicts the received gain for various azimuth angles.

2.2.1 Massive MIMO

Massive MIMO is an extension of MIMO that describes systems with hundreds or even

thousands of antennas for transmission and/or reception. In both LoS propagation and

Rayleigh fading channels, narrower beams can be achieved by using more antennas for

transmission, which allows for more precise targeting of signals towards their intended

destinations. Assuming that all transmit antennas are omnidirectional, Figure 2.4 illus-

trates the beam shape generated by different numbers of transmit antennas M , all with

the same total transmit power. As the number of transmit antennas increases significantly,

a phenomenon known as channel hardening occurs [42]. This means that the channels

directed towards the target tend to be deterministic, with favorable propagation charac-

teristics that reduce the impact of small-scale fading and frequency dependence as the

number of antennas increases. The more antennas applied at the transmitter side, the more
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Figure 2.3: Power gain of beams transmitted from ULA versus different azimuth angles

ϕi for 2GHz wavelength, M = 10, d = λ
2
, and p represents normalized power.
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Figure 2.4: Power gain of beams transmitted from ULA with different numbers of array

elements M for 2GHz wavelength, ϕk = 90◦, d = λ
2
, and p represents normalized power.

accurately the beam power is directed at the receivers. Specifically, these channels are

asymptotically orthogonal, meaning that they behave as

∥hi∥2

E{∥hi∥2}
M→∞−−−−→ 1, ∀i = 1, 2, . . . , K, (2.11a)

hH
i hi′√

E{∥hi∥2}E{∥hi′∥2}
M→∞−−−−→ 0, ∀i, i′ = 1, 2, . . . , K, i ̸= i′. (2.11b)

The conclusion in [44] showed that asymptotic orthogonality would exist in the LoS

scenario if a ULA or uniform planar array (UPA) is applied, but not uniform circular array

(UCA). It appears that the asymptotic orthogonality of channels leads to a higher signal-to-

interference-plus-noise ratio (SINR), which lets the effective throughput approach capacity

bounds as the number of antennas M increases.

2.2.2 CSI Acquisition

Point-to-point MIMO, multi-user MIMO (MU-MIMO), and massive MIMO in TDD and

frequency division duplex (FDD) modes require varying levels of CSI [42]. Assuming that

the number of transmit antennas is greater than or equal to the number of receive antennas,

i.e., M ≥ K, in the downlink transmission, the channel training burden is strongly affected

by the number of antennas M at the BS. Due to channel reciprocity in TDD mode, the CSI
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estimated from the uplink channel training can be utilized in downlink data transmission in

the same coherence time [45]. The BS can learn the CSI from the uplink pilot transmission

with a minimum length of K and then easily estimate the downlink channels and precode

signals for downlink transmission. Especially for massive MIMO, downlink training is

unnecessary when M → ∞. In FDD mode, on the other hand, downlink training needs M

pilots, whereas uplink training requires K pilots and extra resources for sending quantized

CSI back to the UE. It is non-practical for channel training in FDD mode with a large

number of BS antennas due to high complexity. It is clear that TDD operation is more

suitable for massive MIMO with M ≫ K.

2.3 UAV-enabled Communication

In recent years, wireless communication systems which employ UAVs have attracted

extensive attention and have been widely studied for both military and civilian applications

[46, 47]. According to different functionalities, sizes, control methods, and application

scenarios, UAVs can be classified into two main categories based on wing configuration

[47]. The first category includes fixed-wing UAVs that can have higher flying velocity

and better endurance, while the second category is the rotary-wing UAVs that can hover

in the sky and takeoff/land vertically like a tiny counterpart of the helicopter. UAVs are

regarded as a good candidate for coverage extension due to their low cost, fast deployment,

dynamic adjustment, and adaptability in severe environments and non-reachable areas

[48–50]. Particularly, UAV-aided communications are indispensable in some situations

where conventional terrestrial communication systems are overloaded or even nonexistent,

e.g., temporary network coverage of major sports events or emergency network coverage

in disasters [51].

Due to the varying altitudes of UAVs typically ranging from 1.5 to 300 meters, the

wireless channels associated with UAV communication systems are often more dominated

by the LoS channel component [47,52] than those associated with terrestrial communica-
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tions. As a result, Rician fading [53,54] and free space fading [55,56] channel models are

commonly utilized in UAV wireless communications. This is beneficial for UAV-enabled

communication to achieve stable connection and QoS requirements. The diagram pre-

sented in Figure 2.5 depicts a scenario wherein multiple UAVs are employed in a CRAN

architecture as flying RRHs.

2.4 Convex Optimization

Generally, optimization problems are NP-hard according to computational complexity

theory, which cannot be solved within polynomial time. However, convex optimization

is one type of mathematical problems which has effective solutions, e.g., interior-point

methods [57]. As convex functions and convex optimization problems are widely used in

this thesis, a brief introduction is given in this section.

UEs

RRHs

UAVs

CU

Core Network

: Air-to-ground access link : Fronthaul link
: Terrestrial access link : Backhaul link

Figure 2.5: UAV-enabled CRAN architectures.
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Assuming that the domain of function f : Rn −→ R is a convex set, which is equivalent

to [57]

θx1 + (1− θ)x2 ∈ domf, ∀x1, x2 ∈ domf and ∀θ ∈ [0, 1] , (2.12)

function f(x) can be defined as convex if and only if

f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2), ∀x1, x2 ∈ domf and ∀θ ∈ [0, 1] ,

(2.13)

is satisfied. Especially, function f is affine if the equality in (2.13) holds, whereas function

f is strictly convex if only the inequality holds.

An optimization problem can be generally formed as

min
x∈Rn

f0(x), (2.14a)

s.t. fi(x) ≤ 0, i = 1, . . . ,m, (2.14b)

hi(x) = 0, i = 1, . . . , p, (2.14c)

where x is optimization variable, f0(x) in (2.14a) is the objective function aimed to be

minimized. (2.14b) and (2.14c) are the constraints need to be satisfied. The problem

(2.14) is convex if and only if inequality constraints f0, . . . , fm are convex and equality

constraints h1, . . . , hp are affine.

2.4.1 Common Convex Problems

It is clear that if functions f0, . . . , fm are all affine, as a special case of convex problems,

the problem is called LP, which could be written in a standard form as

min
x∈Rn

bT
0 x, (2.15a)

s.t. bT
i x+ ci ≤ 0, i = 1, . . . ,m, (2.15b)

h(x) = 0, (2.15c)
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where b0, . . . ,bm are vectors with constant elements and c1, . . . , cm are scalars. With

convex quadratic functions included in both objective function and constraints, it leads to

QCQP, which has the form as

min
x∈Rn

xTA0x+ bT
0 x, (2.16a)

s.t. xTAix+ bT
i x+ ci ≤ 0, i = 1, . . . ,m, (2.16b)

h(x) = 0. (2.16c)

where Ai ∈ Rn×n satisfies Ai = AH
i ⪰ 0, ∀i. LP is a special case of the QCQP problem

with Ai = 0,∀i.

In fact, all the aforementioned convex optimization problems can be collectively seen

as a more general problem called SDR. The standard model of SDR is given as [30]

min
x∈Rn

tr(CTX), (2.17)

s.t. tr(AT
i X) = bi, (2.18)

X ⪰ 0. (2.19)

Convex SDR can be solved efficiently by interior-point methods and is broadly used in

this thesis. However, almost all the proposed problems in this thesis are non-convex

problems and thus difficult to solve. By transforming these non-convex problems into

convex SDR problems while preserving the same constraints, we can obtain solutions

and attain convergence. The conversion and relaxation of these problems, as well as

the associated algorithms, are of practical significance and will be elaborated upon in

subsequent chapters

2.4.2 Convexity Preservation

Certain operations and compositions of functions are known to preserve convexity. Based

on the frequent usage in this thesis, we enumerate some examples here.

• Operations: Denote non-negative scalar x and positive semi-definite matrix X ⪰ 0
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as variables, we have [57]
Function Curvature Monotonicity∑

i aixi, ∀ai ≥ 0 affine non-decreasing

1/x concave non-increasing

|x|, ∥X∥2 convex non-monotonic

log(x), log det(X) concave non-decreasing

• Function composition: Consider a composition function f = h ◦ g defined as [57]

f(x) = h(g(x)), domf = {x ∈ domg|g(x) ∈ domh}, (2.20)

with the existence of second derivative with respect to variable x, which is given as

f ′′(x) = h′′(g(x))g′(x)2 + h′(g(x))g′′(x). (2.21)

f is convex only if one of the following is satisfied

– h is convex and non-decreasing and g is convex;

– h is convex and non-increasing and g is concave.

f is concave only if one of the following is satisfied

– h is concave and non-decreasing and g is concave;

– h is concave and non-increasing and g is convex.

2.5 State-of-the-art Research

In this section, the latest research on architectures and technologies related to our proposed

models are introduced.

2.5.1 CRAN

Since the proposal of the CRAN architecture in 2011, there have been numerous sur-

veys conducted on this topic. [32, 35] presented a list of promising research directions
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of CRAN research at a very early stage. [27] focused on the research on the constrained

fronthaul as well as signal compression and quantization for both uplink and downlink

transmission. [58, 59] presented the evolution of RANs and a vision of the current 5G

network with its expected QoS. Also, comprehensive research on CRAN and advanced

heterogeneous-CRAN (H-CRAN) was provided from both academic and commercial per-

spectives, including mobile operators and vendors. [36] summarized recent studies on

CRAN architecture, SE and EE enhancement, interference management, delay, and secu-

rity, along with their respective solution approaches. Besides throughput enhancement,

resource allocation in CRAN is an important topic to improve EE, which has been ex-

tensively covered in several review papers. [60] surveyed the EE improvement using

large-scale cooperative processing and cloud-based CoMP in H-CRAN. [14] provided a

comprehensive survey of EE optimization problems in CRAN in terms of different ad-

jectives, constraints, corresponding algorithms, and applications. Furthermore, various

structures of CRAN are currently under review and widely discussed. [34] presented an

extensive overview of the different function splits on the protocol stack between the CU

and DU. [15, 61] have compared the full and partial centralized CRAN.

The CRAN architecture involves three types of links, namely backhaul, fronthaul, and

access links, and their joint design is of practical interest to improve network SE and

EE. The backhaul link connects CRANs to the core network, and reviews on backhaul

solutions in the 5G perspective were provided by [62]. Some works have simply assumed

ideal fronthaul links without constraints while focusing on MU-MIMO in the access

link. Different from traditional cellular networks, spatial multiplexing can be achieved

by employing a large number of distributed RRHs serving multiple UEs simultaneously.

CoMP was identified as a key feature in the previous LTE-A structure [63], but it was

mainly achieved by neighboring cells, where the number of multi-points was normally less

than five. However, with centralized processing in CRAN, large-scale cloud-based CoMP

can be achieved, allowing UEs to receive signals from a large number of distributed low-

cost RRHs. [64,65] considered each RRH and UE equipped with only a single antenna in

the downlink transmission. [64] used MIMO in the access link by enabling RRH selection
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to serve UEs. Power allocation was optimized aiming to maximize the average weighted

sum-rate of the CRAN network. However, this work utilized regularized zero-forcing

(RZF) as the precoding method and only the regularization factor was optimized for the

problems. [65] applied massive MIMO in the access link where the number of RRHs is ten

times that of UEs. EE was aimed to be maximized and constrained by the target network

sum-rate. However, the CSI was assumed perfectly known at the transmitters. Further

works proposed to use multiple antennas in both RRHs and UEs. [66] considered stochastic

CSI in the sum-rate maximization problem to mitigate the interference cancellation.

However, large-scale cooperative processing among distributed RRHs requires high-

performance fronthaul links with large capacity and low latency. Since large amounts

of data need to be collected and processed by the CU and also be transmitted from

the CU via the fronthaul link, it can become a bottleneck even if an optical-fiber cable

is deployed [40]. [26] provided an in-depth analysis of the modulation and resource

allocation schemes in CRANs with RoF fronthaul links. The signal compression and

quantization scheme is the key to improving the system performance such as SE and

EE [17, 27]. As studied in [67], there are two prominent schemes in the CRAN system

according to RRH operation type, namely DF and DCF-based schemes. Both schemes are

proposed to maximize the weighted sum-rate and compared with benchmarks. However,

it is worth noting that in this work, only the independent point-to-point DCF scheme

was considered. [68] introduced a spatial DCF scheme. In the downlink transmission,

the multivariate compression studied in [38, 39] is one of the promising approaches in

CRAN systems. The work in [39] proved that the effect of quantization noises can be

suppressed by designing its correlation properly. In [38], a joint design of precoding

scheme and multivariate fronthaul compression was proposed for CRAN architecture. In

this work, the system design was considered for both perfect CSI and imperfect effective

CSI scenarios. However, this work assumed the fronthaul link to have finite capacity

and considered only hybrid analog-digital beamforming. It is worth noting that fully

digital precoding can achieve better performance. For uplink transmission, CF schemes

such as conventional single-user compression and Wyner-Ziv coding can be employed
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at the RRHs to quantize the received signals from the UEs, and then forward them

to the CU [41, 69–76]. [69, 75, 76] focused on the joint decompression and decoding

(JDD) in the uplink transmission with finite fronthaul capacity. [72,73] further considered

the successive decoding method utilized at the CU, along with the Wyner-Ziv coding

to compress the signals received at the RRHs. However, the above-mentioned works

only considered the fronthaul link with a given limited capacity and did not take its

optimization into account. [74] aimed to jointly optimize both the fronthaul and access

links in the uplink transmission and compare the performance of DF and CF. However, in

this work, only conventional single-user compression was considered, and a very limited

number of receive antennas were utilized at the CU. Furthermore, [77] jointly maximized

the sum-rate of uplink and downlink transmission in full-duplex CRANs by optimizing

beamforming and compression covariance matrices. However, this work only considered

the independent point-to-point compression scheme for the downlink and the conventional

single-user compression for the uplink.

Meanwhile, some works have focused on the joint design under the assumption that

both links are wireless, particularly in the case of the full centralization structure, which

places a greater load on the fronthaul links. [78] studied several beamforming designs for

both wireless fronthaul and access links and provided theoretical performance bounds for

the proposed system. However, the beamforming matrices of the two links were optimized

separately and only amplify-and-forward (AF) relaying mechanism was considered at the

RRHs. [28] managed to mitigate the inter-cluster interference by jointly designing the

wireless fronthaul and access links, which were compared to the separate designs. The

SE was maximized by optimizing the beamforming schemes and compression strategies.

However, this paper only considered the independent point-to-point compression scheme.

Also, a very limited number of antennas were used at each unit for transmission or

reception, e.g., 4 antennas at the CU and a single antenna at both the RRHs and UEs. [79]

studied the joint beamforming and multivariate compression scheme in the downlink

transmission, while [74] considered joint precoding design and conventional single-user

compression scheme in the uplink. However, both of only considered a limited number
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of antennas at the CU and did not exploit the potential benefits of massive MIMO for the

fronthaul link.

2.5.2 UAV-enabled Communication

Wireless communication is a crucial enabling technology for UAVs, which are anticipated

to present promising business prospects in the forthcoming decade [47, 51, 80]. Based

on the Rician fading model widely used in air-to-ground communications, the trade-

off between minimum data rate and UAV altitude for maximum coverage was studied

in [53]. [54] presented a UAV-enabled cooperation scheme for cancelling the interference

in ground cellular networks with the Rician fading channel model. Both [53] and [54] did

not take the fronthaul links into account. [80] considered CoMP in the CRAN by applying

UAVs as RRHs and dynamically optimized the UAV placement for max-min rate fairness.

For access links, the authors derived lower and upper bound expressions for the achievable

rates in both LoS and Rayleigh fading channels. However, the fronthaul links in [80] were

regarded as ideal channels without any limitations and interference. [55] and [56] both

studied the UAV trajectory while [55] focused on optimizing the EE of the system and [56]

concentrated on optimizing the system throughput. Both of them utilized the free space

channel model which is not realistic.

The use of multi-UAV-enabled wireless communication systems with centralized signal

processing was considered in [80–83]. [80] studied CoMP in CRAN by using UAVs as

RRHs and dynamically optimized the UAV placement for max-min rate fairness. [81]

considered multi-UAV trajectory control to maximize the minimum rate. In both [80]

and [81] the fronthaul links were assumed to have unlimited/very high capacity. [82]

maximized the sum-rate in the uplink of CRAN with LoS fronthaul and access links by

optimizing the UE association, UAV placement, and UEs’ and UAVs’ transmit powers.

However, both the fronthaul and access links were assumed to be interference-free by

using orthogonal frequency bands for different users. [56] studied the joint design of UAV

trajectory and power control. The authors in [80] proposed a CoMP architecture with the
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optimization of UAV placements. However, the fronthaul link in these papers was only

considered as an ideal capacity-limited transmission link. In our work, we propose a more

practical architecture by studying the transmission strategy and the design of power control

in both fronthaul and access links. In order to mitigate the interference in the fronthaul

links, we consider massive MIMO because the channel coefficients become asymptotically

orthogonal as the number of CU antennas goes to infinity [44, 84].

The constrained flying time is a severe defect due to the limited battery capacity in

UAVs [55]. Apart from the power used for hovering, energy usage for other purposes

such as signal processing and transmission needs to be reduced in order to achieve longer

service time. The CRAN framework is a promising solution for this challenge. CRAN

can be regarded as a special relay-enabled communication architecture where the selection

and placement of RRHs and UEs have a significant impact. [85] introduced a two-step

optimization problem designing the precoding scheme and RRH selection jointly. [86]

studied the imperfect CSI scenario with the optimization of EE. However, the RRHs in both

papers had fixed locations and thus the authors aimed to select appropriate UEs to be served

for higher data throughput. Integrating massive MIMO technology at the CU to support

drones shows significant potential to further improve the network throughput. In [87],

a comprehensive 3-dimentional (3-D) LoS channel model was proposed under massive

MIMO scenarios with UAVs. The results showed that the low complexity encoding, e.g.

MF and ZF, is capable of achieving excellent data rates.

In our work, unlike the existing works, we adopt a more practical system model with a

massive MIMO CU and a DCF relaying protocol at the flying RRHs and jointly optimize

both the fronthaul and access links including the placements of the UAVs. To the best

of the authors’ knowledge, this work is the first to use massive MIMO and compression

at the CU and DCF at the flying RRHs to improve the capacity of the wireless fronthaul

links in multi-UAV-enabled CRANs, where usually the fronthaul link is the bottleneck.
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Chapter 3

Design of Wireless Downlink Transmis-

sion in Massive MIMO CRANs

with Perfect Instantaneous CSI

3.1 Introduction

In this chapter, we leverage massive MIMO to enhance the fronthaul link’s capacity in

a CRAN architecture. This improvement in fronthaul capacity has a positive impact on

the entire system’s overall capacity. We aim to maximize the sum-rate of all UEs and

minimize power consumption by jointly designing the wireless fronthaul and access links.

To achieve this, we formulate the optimizing problems that take both links into account.

The proposed optimization problems adopt the DCF scheme at the RRHs and account

for the quantization noise. We also optimize the precoding matrices of the access link

and transmit power of both links. However, solving these problems can be challenging.

To address this issue, we first linearize relevant terms within non-convex constraints and

then reformulate the problem as an SDR problem. The proposed algorithm is proven to

be convergent and provides optimal solutions for the original problem. We also consider
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the problem where the fronthaul and access links are separately designed [28, 29] and the

corresponding algorithm is provided.

The system model of downlink transmission using wireless fronthaul and access links

is presented in Section 3.2. In Section 3.3, we formulate the optimization problems based

on the assumption that perfect knowledge of instantaneous CSI is available at the CU.

Additionally, we provide a detailed description of the corresponding iterative algorithms.

In Section 3.4, the superiority of our proposed approaches is demonstrated by comparing

their abilities to increase the sum-rate and reduce total power consumption with two

benchmark schemes. This chapter is concluded in Section 3.5.

3.2 System Model

We consider the downlink transmission in a CRAN consists of a CU equipped with a

massive ULA of M omnidirectional antennas for transmission. The CU provides wireless

service toNU multi-antenna UEs throughNR RRHs that are serving as relays. In particular,

M ≫ NR. Each RRH is equipped with a single antenna for reception and N antennas for

transmission while each UE has K receive antennas. The distance between antennas in

each node is equal to half of the carrier wavelength. For notational convenience, we let

NR ≜ [1, . . . , NR] and NU ≜ [1, . . . , NU] denote the sets of RRHs and UEs, respectively.

The downlink transmission involves two wireless links, namely the fronthaul and

access links, which are assumed to operate in different time/frequency domains to avoid

interference between them. Specifically, let hi ∈ C1×M denote the channel vector between

the CU and the i-th RRH, i ∈ NR, and thus the fronthaul link can be defined as H =

[hT
1 ,h

T
2 , . . .h

T
NR
]T . By appropriately placing the CU and RRHs, a clear LoS path can be

achieved and thus the channels are modelled as

hi =
√

βLoS
i

[
1 ei 2π

λ
d cos(ϕi) . . . ei 2π

λ
(M−1)d cos(ϕi)

]
, (3.1)

where βLoS
i represents the large-scale fading coefficient, d is the antenna spacing, and
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ϕi ∈ [0, 2π) is the azimuth angle of arrival to RRH i from the CU. βLoS
i is assumed to be

constant over frames and known at the CU as both the CU and RRHs are fixed. i denotes

the imaginary unit. We assume ϕi ̸= ϕj for i ̸= j such that lim
M→∞

|h̄H
i h̄j| → 0 if i ̸= j [43].

Similarly, the access link is expressed as Gk = [Gk,1, . . . ,Gk,NR ], where Gk,i ∈ CK×N

represents the channel matrix between the k-th UE and the i-th RRH, k ∈ NU, i ∈ NR.

We adopt a block fading channel model, where the fading coefficients are constant within

each time block and statistically independent from one block to another. The access link

is modelled as Rayleigh fading channels, which can be expressed as

Gk,i =
√
αk,i G̃k,i, (3.2)

where αk,i denotes the large-scale fading coefficient and G̃k,i ∈ CK×N is a matrix with

elements modelled as CN (0, I). The schematic diagram of the proposed system is shown

in Figure 3.1.

In terms of downlink data transmission, we adopt the DCF relaying strategy [39]

where the RRHs first decompress the received signal from the CU and then forward the

decompressed signals to the UEs. Let Mk ∈ {1, . . . , 2nLRk}, k ∈ NU, denote the message

to be transmitted from the CU to the k-th UE, where nL is the block length and Rk is the

CU

. . .
M

RRH1

RRHi

RRHNR

...

...

N

N

N

UE1

. . .

UEk

. . .

UENU

. . .

...

...

K

K

K

hi
Gk,i

: Fronthaul link : Access link

Figure 3.1: System model of downlink transmission in the proposed massive MIMO

CRAN architecture.
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rate of message Mk. First, the CU encodes the message Mk as sU,k ∈ CnR×1 ∼ CN (0, I),

where nR ≤ min(K,NNR) denotes the number of data streams, and then precodes the

encoded signal as

xR,i =
∑
k∈NU

Uk,isU,k, (3.3)

where Uk,i ∈ CN×nR denotes the precoding matrix for signal sU,k. To account for the

limited capacity of the wireless fronthaul link, the CU quantizes and compresses the

precoded signals xR,i ∈ CN×1. We adopt the Gaussian quantization test channel to model

the quantization process [39], and hence, the resulting quantized signal, x̂R,i, can be written

as

x̂R,i = xR,i + ωi, (3.4)

where ωi ∈ CN×1 ∼ CN (0,Ωii) represents the Gaussian quantization noise, which is

independent of xR,i. Ωii denotes the covariance of the compression noise. Intuitively,

the smaller the quantization noise level the more accurate the signal, and vice versa.

The CU then compresses the quantized signal x̂R,i to generate the compression index

Vi ∈ {1, 2, . . . , 2nLCi}, where Ci is the rate of message Vi that can be interpreted as the

capacity of the fronthaul link between the CU and RRH i. Note that the signals x̂R,i,

i ∈ NR, could be either compressed independently or jointly [39]. In particular, if the

signals are independently compressed the quantization noises for different RRHs will be

uncorrelated, i.e., E[ωiω
H
j ] = 0, for i ̸= j. However, if the signals are jointly compressed

the quantization noises for different RRHs will be correlated, i.e., E[ωiω
H
j ] ̸= 0, for

∀i, j ∈ NR. Using joint compression allows to improve the achievable rates compared to

independent compression. Since the independent compression can be seen as a special case

of joint compression, we adopt joint compression and the two compression schemes will

be compared in the numerical results. For notational convenience, denote Ω ≜ E[ωωH ],

where ω ≜ [ωT
1 ,ω

T
2 , . . . ,ω

T
NR
]T . For independent compression, Ω is a block diagonal

matrix, i.e., Ω = diag{Ω11, . . . ,ΩNRNR}. The compressed signal Vi is then encoded as

a baseband signal sR,i ∼ CN (0, 1). The signal sR,i is next beamformed towards RRH i,
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using the beamforming vector wi ∈ CM×1, to produce the following transmit signal

xC =
∑
i∈NR

√
piwisR,i, (3.5)

where pi is the CU transmit power corresponding to signal sR,i intended for RRH i. In

this chapter, without loss of generality, we consider the ZF precoding method1, which is a

conventional low-complexity linear precoder [43]. Hence, wi, i ∈ NR, is expressed as

wi =
bi

∥bi∥
, (3.6)

where bi is the i-th column of

B ≜ HH(HHH)−1. (3.7)

Assuming that the CU has a maximum average transmit power Pmax
C , from (3.5) and (3.6),

the average transmit power at the CU is constrained as E[∥xC∥2] =
∑

i∈NR
pi ≤ Pmax

C .

Through the fronthaul link, the received signal at the i-th RRH from the CU is given

by

yR,i = hixC + nR,i, (3.8)

where nR,i ∈ CM×1 ∼ CN (0, σ2
RI) is the noise received at the i-th RRH. From (3.5) and

(3.8), the received signal at RRH i can be recast as

yR,i =
√
pihiwisR,i +

∑
j∈NR\{i}

√
pjhiwjsR,j + nR,i. (3.9)

Next, RRH i decodes sR,i based on yR,i and consequently recovers the message Vi. The

achievable rate Ci of message Vi, is given as

Ci ≤ Cfr,i(p) ≜ log

∑
j∈NR

pjhiwjw
H
j h

H
i + σ2

R∑
j∈NR\{i} pjhiwjwH

j h
H
i + σ2

R
, (3.10)

where p ≜ [p1, p2, . . . , pNR ]
T . Based on the decoded message Vi, RRH i can determine

the quantized signal x̂R,i. With joint compression at the CU, in order for RRH i to recover

1Other methods such as matched filter (MF), RZF, and minimum mean square error (MMSE) could

easily be considered.
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x̂R,i, according to the rate-distortion theory, the condition

φm({Uj}j∈NU ,Ω) ≜
∑
i∈Sm

log det

(
ΓH

i

(∑
j∈NU

UjU
H
j

)
Γi +Ωii

)
− log det

(
ΓH

Sm
ΩΓSm

)
≤
∑
i∈Sm

Ci (3.11)

where Uj ≜ [UT
j,1,U

T
j,2, . . . ,U

T
j,NR

]T , j ∈ NU, must be satisfied for all subsets Sm ⊆ NR,

m ∈ NS = {1, . . . , 2NR − 1} [39]. Matrix ΓSm denotes a matrix that is obtained by

stacking matrices Γi, i ∈ Sm, horizontally, e.g., if Sm = {1, 2, 4} then ΓSm = [Γ1Γ2Γ4].

Γi ∈ CNNR×N is an all zero matrix except the submatrix from row (i − 1)N + 1 to iN ,

which is an identity matrix of size N . Note that in order to decompress the received

signal, each RRH needs to be informed by the CU about the used compression codebooks.

The decoded signal x̂R,i is then transmitted by RRH i to all UEs through the access link.

Assuming that RRH i has a maximum average transmit power Pmax
R,i , from (3.4), the

average transmit power at RRH i must be constrained as

E[∥x̂R,i∥2] =
∑
k∈NU

tr
(
ΓH

i UkU
H
k Γi

)
+ tr (Ωii) ≤ Pmax

R,i , (3.12)

where the partial entries Ωii can be expressed as diag (Ωii) ≜ ΓH
i ΩΓi, i ∈ Sm.

For the access link, the signals received by the k-th UE is given by

yU,k =
∑
i∈NR

Gk,ix̂R,i + nU,k, (3.13)

where nU,k ∈ CK×1 ∼ CN (0, σ2
UI) is the Gaussian noise at the k-th UE. By substituting

(3.4) into (3.13), the received signal at UE k can be rewritten as

yU,k = GkUksU,k +
∑

j∈NU\{k}

GkUjsU,j +
∑
i∈NR

Gk,iωi + nU,k. (3.14)

The first, second, and third terms in (3.14) represent the desired signal to be decoded, the

interference from other UEs, and the quantization noise contribution, respectively. Based

on the received signal in (3.14), UE k decodes the message Mk and its achievable average

rate is given by

Cac,k ({Uj}j∈NU ,Ω) ≜ log det

I+
GkUkU

H
k G

H
k∑

j∈NU\{k}
Gk(UjUH

j +Ω)GH
k + σ2

UI

 . (3.15)
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3.3 Problem Formulation

In this chapter, we assume that the CU has perfect instantaneous CSI knowledge, which

is used to design the precoding and quantization noise covariance matrices. We propose

two optimization problems: the sum-rate maximization problem and the total power

minimization problem. However, solving these problems is challenging due to their non-

convexity. To address this, we transform them into convex problems, which can easily

be solved using interior point methods. We provide the algorithms to obtain the final

optimized solutions and prove that the solutions obtained by the proposed algorithms are

also feasible for the original problems.

3.3.1 Sum-rate Maximization

Given the ever-increasing demand for mobile data throughput, we start by focusing on the

sum-rate maximization problem. Our objective is to maximize the sum-rate among all

UEs, subject to the constraints imposed by the wireless fronthaul capacity, quantization

noise, and power budgets of both the CU and RRHs. In this section, both joint and separate

designs are proposed to maximize the sum-rate, along with corresponding algorithms to

solve these problems.

3.3.1.a Joint Design of Fronthaul and Access Links

Based on the system model presented above, we propose a joint design to optimize both

wireless fronthaul and access links. First, the corresponding optimization problem for

network sum-rate maximization can be formulated as

maximize
p≥0, {Uj}j∈NU⪰0, Ω⪰0

∑
k∈NU

Cac,k ({Uj}j∈NU ,Ω) (3.16a)

s.t. φm({Uj}j∈NU ,Ω) ≤
∑
i∈Sm

Cfr,i(p), ∀m ∈ NS , (3.16b)

∑
i∈NR

pi ≤ Pmax
C , (3.16c)

∑
k∈NU

tr
(
ΓH

i UkU
H
k Γi

)
+ tr (Ωii) ≤ Pmax

R,i , ∀i ∈ NR. (3.16d)
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Constraint (3.16b) ensures that the quantized signals are recoverable at the RRHs, while

constraints (3.16c) and (3.16d) are the power constraints for the CU and RRHs, respectively.

By inspecting the objective function (3.16a), the fronthaul constraint (3.16b), and the

power constraints the fronthaul constraint (3.16c) and (3.16d), we can identify that this

problem belongs to the class of non-convex problems. Since it is difficult to solve,

we reformulate the problem into a class of DC problems and solve it using the MM

method [88, 89].

Adopting the approach given in [39], the first step is to make a change of variable

Ūj ≜ UjU
H
j ⪰ 0. (3.17)

For simplicity, denote Ū ≜ {Ūj : ∀j ∈ NU} as the set of precoding matrices in the

access link, such that we have a function Cac,k(Ū ,Ωi) in the objective function (3.16a)

and φi(Ū ,Ωi) in the first constraint function (3.16b). However, the change of variable

Uj in (3.17) does not guarantee that the optimal solution of Uj can be obtained from

the optimized value of Ūj . To this end, we introduce a rank constraint into the problem

(3.16) to ensure the solution is feasible for the original problem, resulting in the following

reformulation

maximize
p≥0, Ū⪰0, Ω⪰0

∑
k∈NU

Cac,k
(
Ū ,Ω

)
(3.18a)

s.t. φm(Ū ,Ω) ≤
∑
i∈Sm

Cfr,i(p), ∀m ∈ NS , (3.18b)

∑
i∈NR

pi ≤ Pmax
C , (3.18c)

∑
k∈NU

tr
(
ΓH

i ŪkΓi

)
+ tr (Ωii) ≤ Pmax

R,i , ∀i ∈ NR, (3.18d)

rank
(
Ūk

)
≤ nR, ∀k ∈ NU, (3.18e)

where rank constraint (3.18e) guarantees the recovery of Uj from a given Ūj . Solving this

problem is still challenging due to the rank constraint (3.18e), and the non-convex or non-

concave functions Cac,k
(
Ū ,Ω

)
, φm(Ū ,Ω) and Cfr,i(p). As a result, finding an optimal

solution can be computationally complex and time-consuming. To address the challenges

Page 61 of 162



CHAPTER 3. Design of Downlink Transmission with Perfect Instantaneous CSI

presented by the non-convex constraints, we apply the MM method. Specifically, we use

this method to reformulate the non-convex functions as the difference of two concave

functions. This reformulation enables us to linearize the terms responsible for the non-

convexity of the problem, thereby making it possible to solve the problem efficiently.

Based on (3.15), Cac,k(Ū ,Ω) can be rewritten as

Cac,k(Ū ,Ω) = log det

(∑
j∈NU

Gk(Ūj +Ω)GH
k + σ2

UI

)

− log det

 ∑
j∈NU\{k}

Gk(Ūj +Ω)GH
k + σ2

UI

 , (3.19)

which is the difference of two concave functions with respect to the optimization variables

Ū and Ω. To transform the objective function (3.18a) into a concave function, it is

necessary to linearize the second term of (3.19). Since the second term is a concave

function, it is upper bounded by its first order Taylor expansion at the given point ( ˜̄U , Ω̃).

Therefore, Cac,k(Ū ,Ω) is lower bounded by its convex expression as

Cac,k(Ū ,Ω) ≥ C lb
ac,k

(
Ū ,Ω| ˜̄U , Ω̃

)
≜ log det

(
Gk

(∑
j∈NU

Ūj +Ω

)
GH

k + σ2
UI

)
− log det (Ξk)

− 1

ln(2)
tr

Ξ−1
k ×

Gk

 ∑
j∈NU\{k}

Ūj +Ω

GH
k −Ξk

, (3.20)

where Ξk ≜ Gk

(∑
j∈NU\{k}

˜̄Uj + Ω̃
)
GH

k + σ2
UI.

To convexify constraint (3.18b), it is necessary to transform φm(Ū ,Ω) and Cfr,i(p)

into convex and concave functions, respectively. Based on (3.11), the left-side function

φm(Ū ,Ω) is the difference of two concave terms. To make this function convex, the first

Taylor expansion can be applied to linearize the first term, which is the non-convex part.
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Therefore, for the given point at ( ˜̄U , Ω̃), φm(Ū ,Ω) can be expressed by its upper bound as

φm

(
Ū ,Ω

)
≤ φub

m

(
Ū ,Ω| ˜̄U , Ω̃

)
≜ − log det

(
ΓH

Sm
ΩΓSm

)
+
∑
i∈Sm

log detΘi,

+
1

ln(2)

∑
i∈Sm

tr

(
Θ−1

i ×

(
ΓH

i

∑
j∈NU

ŪjΓi +Ωii −Θi

))
, (3.21)

where Θi ≜ ΓH
i

∑
j∈NU

˜̄UjΓi + Ω̃ii. Similarly, the right-hand side function Cfr,i(p) of

constraint (3.18b) needs to be converted to a concave function. In particular, (3.10) can

be rewritten as

Cfr,i (p) = log
(
fip+ σ2

R
)
− log

(
f̄ip+ σ2

R
)
, (3.22)

where fi ≜ [fi,1, fi,2, . . . , fi,NR ] with its j-th element fi,j = hiwjw
H
j h

H
i , and f̄i ≜

[fi,1, . . . , fi,i−1, 0, fi,i+1, ..., fi,NR ]. In order to convexify Cfr,i(p), the second concave

term log2
(
f̄ip+ σ2

R
)

needs to be linearized by using the first order Taylor expansion.

Hence, Cfr,i(p) can be replaced by its lower bound at a given point p̃ as

Cfr,i (p) ≥ C lb
fr,i (p|p̃)

≜ log
(
fip+ σ2

R
)
− log

(
f̄ip̃+ σ2

R
)
− 1

ln(2)

f̄i
f̄ip̃+ σ2

R
(p− p̃). (3.23)

Due to the convexness of φub
m

(
Ū ,Ω

)
and concaveness of C lb

fr,i(p), constraint (3.18b) can

be replaced by a convex inequality as

φub
m

(
Ū ,Ω| ˜̄U , Ω̃

)
≤
∑
i∈Sm

C lb
fr,i (p|p̃) , (3.24)

which is a tighter constraint than (3.18b) and thus all solutions satisfying (3.24) are feasible

to (3.18b).

According to (3.19)-(3.24), problem (3.18) can be reformulated as

maximize
p≥0, Ū⪰0, Ω⪰0

∑
k∈NU

C lb
ac,k

(
Ū ,Ω| ˜̄U , Ω̃

)
(3.25a)

s.t. (3.24), (3.18c) - (3.18e).
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Furthermore, we relax the rank constraint (3.18e) [90] and the resulting problem becomes

an SDR problem. As the constraint on the rank of Ū is relaxed, there is no guarantee that

the resulting solution Ū⋆ satisfies the rank constraint. However, we can prove that the rank

of the optimal solution Ū⋆ obtained from the relaxed problem always satisfies the rank

constraint (3.18e) and hence Ū⋆ is also an optimal solution to problem (3.25). We have

the following theorem.

Theorem 3.3.1 The solution to problem (3.25), Ū⋆
k,∀k ∈ NU, always satisfies rank(Ū⋆

k) ≤

min(K,NNR).

Proof 1 Please see the Appendix.

As a result, optimization problem (3.25) without rank constraint (3.18e) is a convex prob-

lem and can be solved easily using interior point methods such as the CVX optimization

toolbox [91]. In addition, constraint (3.24) is locally tighter than the original constraint

(3.18b) in problem (3.18) at the given point. Furthermore, objective function (3.25a) to

be maximized is the lower bound of (3.18a). Therefore, the optimized variables derived

from problem (3.25) are within the feasible domain of the original problem (3.18). The

optimal precoding matrix U⋆
j , ∀j ∈ NU, can be obtained from Ū⋆

j by using the well-known

eigenvalue decomposition technique. Specifically, we have Ū⋆
j = V̄D̄V̄H , where D is

the diagonal matrix containing the eigenvalues and V is the matrix containing the corre-

sponding eigenvectors. Therefore, U⋆
j is given by U⋆

j = VD
1
2 , where D is a diagonal

matrix whose diagonal elements are the non-zero diagonal elements of D̄ and the columns

of V are the corresponding eigenvectors.

Algorithm 1 outlines the steps for maximizing the sum-rate of all UEs. Due to the

convexity of problem (3.25), the optimized achievable sum-rate is non-decreasing and the

convergence is guaranteed to be achieved when the iteration number r → ∞ [92].

3.3.1.b Separate Design of Fronthaul and Access Links

The proposed Algorithm 1 has offered a solution for the joint design of both the fronthaul

and access links. However, despite the convexity of problem (3.25), the computational
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Algorithm 1. Joint design based sum-rate maximization for perfect instantaneous CSI in

downlink transmission.
1: Input: Essential system parameters, including fronthaul channels H, access channels

G;

2: Initialization: Set r := 0 and a feasible point {p(0) ≥ 0, Ū (0) ⪰ 0,Ω(0) ⪰ 0};

3: repeat

4: Update r := r + 1;

5: Find the optimal solution {p(r), Ū (r),Ω(r)} by solving convex problem (3.25)

based on the given point {p(r−1), Ū (r−1),Ω(r−1)} :

maximize
p(r)≥0, Ū(r)⪰0, Ω(r)⪰0

∑
k∈NU

C lb
ac,k
(
Ū (r),Ω(r)|Ū (r−1),Ω(r−1)

)
s.t. φub

m

(
Ū (r),Ω(r)|Ū (r−1),Ω(r−1)

)
≤
∑
i∈Sm

C lb
fr,i
(
p(r)|p(r−1)

)
,

∀m ∈ NS , (3.26a)∑
i∈NR

p
(r)
i ≤ Pmax

C , (3.26b)

∑
k∈NU

tr
(
ΓH

i Ū
(r)
k Γi

)
+ tr

(
Ω

(r)
ii

)
≤ Pmax

R,i , ∀i ∈ NR,

(3.26c)

6: until convergence;

7: Output: {p⋆, Ū⋆,Ω⋆} := {p(r), Ū (r),Ω(r)}.
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complexity is still significant, and the solution requires a large amount of time and memory,

which will be further discussed in Subsection 3.4.1. For this reason, to reduce the com-

plexity of the proposed problems, we propose to optimize the fronthaul and access links

separately [28,29]. In particular, the fronthaul link is optimized at first and its correspond-

ing optimization problem aims to maximize the fronthaul data rate Cfr,i(p), ∀i ∈ NR, with

respect to the power allocation variable p. There are two optimization strategies to maxi-

mize the data rate for the system, namely max-min and sum-rate. The max-min approach

aims to ensure that all users receive a minimum guaranteed data rate. In other words, the

goal is to allocate resources in such a way that the data rate for the worst-performing user

is maximized. On the other hand, the sum-rate approach aims to maximize the total data

rate across all users, regardless of the individual channel qualities for each user.

For the individual-rate problem, we aim to maximize the individual rate of all

Cfr,i(p), ∀i ∈ NR, that is

maximize
p≥0

min
i∈NR

Cfr,i(p), (3.27a)

s.t.
∑
i∈NR

pi ≤ Pmax
C . (3.27b)

For the sum-rate problem, we aim to maximize the sum of all fronthaul rates
∑

i∈NR
Cfr,i(p)

and the problem can be formulated as

maximize
p≥0

∑
i∈NR

Cfr,i(p), (3.28a)

s.t.
∑
i∈NR

pi ≤ Pmax
C . (3.28b)

It is clear that the only difference between problems (3.27) and (3.28) is the objective

function. The main reason for introducing two problems is that the entire system’s design

is not based solely on the fronthaul links. Simply ensuring that all RRHs have fair and

ensured fronthaul rates may not be sufficient to guarantee that all UEs achieve the highest

data rates via the access link. The comparison of two problems (3.27) and (3.28) will be

discussed in Subsection 3.4.2.

By convexifying the objective function Cfr,i(p) as shown in (3.23), problem (3.27) can
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easily be transformed into a convex problem as

maximize
p≥0

min
i∈NR

C lb
fr,i (p|p̃) (3.29a)

s.t. (3.27b).

Similarly, the problem (3.28) can be rewritten as

maximize
p≥0

∑
i∈NR

C lb
fr,i (p|p̃) (3.30a)

s.t. (3.27b).

Hence, both convex problems (3.29) and (3.30) can be solved using the CVX optimization

toolbox.

Next, by defining {C⋆} := {C⋆
i |C⋆

i = Cfr,i(p
⋆), i ∈ NR} as the achievable fronthaul

capacity, where p⋆ is the optimal solution obtained from problem (3.29) or (3.30), we can

formulate the corresponding sum-rate maximization problem for the access link as

maximize
Ū⪰0, Ω⪰0

∑
k∈NU

Cac,k
(
Ū ,Ω

)
(3.31a)

s.t. φm(Ū ,Ω) ≤
∑
i∈Sm

C⋆
i , ∀m ∈ NS , (3.31b)

(3.18d), (3.18e).

Similar to the transformation in (3.20) and (3.21) and relaxation of rank constraint (3.18e),

non-convex problem (3.31) can be reformulated as

maximize
Ū⪰0, Ω⪰0

∑
k∈NU

C lb
ac,k

(
Ū ,Ω| ˜̄U , Ω̃

)
(3.32a)

s.t. φub
m

(
Ū ,Ω| ˜̄U , Ω̃

)
≤
∑
i∈Sm

C⋆
i , ∀m ∈ NS , (3.32b)

(3.18d),

which is a convex problem and hence can be solved using the CVX optimization toolbox.

Additionally, similar to the problem (3.25) in the previous Subsection 3.3.1.a, all the

optimized values from problem (3.32) are also in the domain of the original problem

(3.31).
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In summary, the problem has been divided into two subproblems. The fronthaul link

is optimized firstly with respect to transmit power p by solving problem (3.29) or (3.30).

Using the optimized capacity of the fronthual channel, problem (3.32) optimizes the access

link with respect to precoding matrices Ū and quantization covariance matrices Ω. The

detailed steps to solve problems (3.29) and (3.32) are given in Algorithm 2. To study the

different optimization methods on the fronthaul capacity, both individual-rate and sum-

rate maximization problems are included in Algorithm 2 based on problems (3.29) and

(3.30), respectively.

Compared to Algorithm 1, the proposed separate design in Algorithm 2 decomposes

the problem into two simpler optimization problems and thus has lower complexity than

the proposed joint design. We will compare and discuss the achievable sum-rates and the

actual optimization time of the proposed algorithms in Subsection 3.4.2.

3.3.2 Total Transmit Power Minimization

In addition to data rate, power consumption is a critical factor when designing communi-

cation networks. This section focuses on the design of a communication system that aims

to minimize the total transmit power while ensuring the fulfillment of QoS requirements

of achieving guaranteed minimum data rates for UEs. To achieve this goal, we propose

a joint optimization of both the fronthaul and access links. Our objective is to minimize

the total transmit power at both the CU and RRHs, taking into account the required data

rates of the UEs, as well as the power budgets of the CU and RRHs. Depending on the

specific situation, there are two approaches to ensuring that UEs achieve their target data

rates. One way is to consider each UE individually, where each UE k has a desired rate

γk, ∀k ∈ NU. We have

Cac,k(Ū ,Ω) ≥ γk, ∀k ∈ NU. (3.34)
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Algorithm 2. Separate design based sum-rate maximization for perfect instantaneous CSI

in downlink transmission.
1: Input: Essential system parameters, including fronthaul channels H, access channels

G;

2: Initialization (first loop): Set l := 0 and a feasible point {p(0) ≥ 0};

3: repeat

4: Update l := l + 1;

5: Find the optimal solution p(l) and corresponding set {C lb
fr,i(p),∀i ∈ NR} based on

the known p(l−1) by solving one of the following problems:

• Individual-rate problem (3.29): maximize
p(l)≥0

min
i∈NR

C lb
fr,i(p

(l)|p(l−1))

s.t.
∑
i∈NR

p
(l)
i ≤ Pmax

C ;

• Sum-rate problem (3.30): maximize
p(l)≥0

∑
i∈NR

C lb
fr,i(p

(l)|p(l−1))

s.t.
∑
i∈NR

p
(l)
i ≤ Pmax

C ;

6: until convergence;

7: update p⋆ := p(l) and {C⋆} := {C⋆
i |C⋆

i = Cfr,i(p
⋆), i ∈ NR};

8: Initialization (second loop): Set r := 0 and a feasible point {Ū (0) ⪰ 0,Ω(0) ⪰ 0};

9: repeat

10: Update r := r + 1;

11: Find the optimal solution {Ū (r),Ω(r)} by solving problem (3.32) based on the

known {p⋆, Ū (r−1),Ω(r−1)}:

maximize
Ū(r)⪰0, Ω(r)⪰0

∑
k∈NU

C lb
ac,k
(
Ū (r),Ω(r)|Ū (r−1),Ω(r−1)

)
s.t. φub

m

(
Ū (r),Ω(r)|Ū (r−1),Ω(r−1)

)
≤
∑
i∈Sm

C⋆
i , ∀m ∈ NS ,∑

k∈NU

tr
(
ΓH

i Ū
(r)
k Γi

)
+ tr

(
Ω

(r)
ii

)
≤ Pmax

R,i , ∀i ∈ NR,

12: until convergence;

13: Output: {p⋆, Ū⋆,Ω⋆} := {p(l), Ū (r),Ω(r)}.
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Another way is to consider the sum-rate of all the UEs, which means∑
k∈NU

Cac,k(Ū ,Ω) ≥ γ, (3.35)

where γ is a given required sum-rate of the access link.

Similar to the sum-rate problem in the previous section, the total power minimization

problem can thus be formulated as

minimize
p≥0, Ū⪰0, Ω⪰0

∑
k∈NU

tr
(
Ūk

)
+ tr (Ω) +

∑
i∈NR

pi (3.36a)

s.t. (3.34) or (3.35), (3.36b)

(3.18b) - (3.18e).

Following the derivation steps (3.20) - (3.24) and the relaxation of rank constraint (3.18e),

problem (3.36) can be transformed into the following SDR problems

• Individual-rate: minimize
p≥0, Ū⪰0, Ω⪰0

∑
k∈NU

tr
(
Ūk

)
+ tr (Ω) +

∑
i∈NR

pi

s.t. C lb
ac,k

(
Ū ,Ω| ˜̄U , Ω̃

)
≥ γk, ∀k ∈ NU, (3.37a)

(3.24), (3.18c), (3.18d),

• Sum-rate: minimize
p≥0, Ū⪰0, Ω⪰0

∑
k∈NU

tr
(
Ūk

)
+ tr (Ω) +

∑
i∈NR

pi

s.t.
∑
k∈NU

C lb
ac,k

(
Ū ,Ω| ˜̄U , Ω̃

)
≥ γ, (3.37b)

(3.24), (3.18c), (3.18d),

which can be optimally solved using interior point algorithms such as the CVX optimiza-

tion toolbox [91]. However, it is worth noting that setting a higher value for γ may

render the problems infeasible. Similar to Algorithms 1 and 2 in Subsection 3.3.1, the

optimized results obtained from the reformulated convex problem (3.37) is feasible to the

original problem (3.36). Starting from a feasible point {p(0) ≥ 0, Ū (0) ⪰ 0,Ω(0) ⪰ 0}, a

local optimized result can be achieved by solving problem (3.37) until convergence. The

algorithm to solve the transmit power minimization problem is detailed in Algorithm 3.
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Algorithm 3. Joint design based transmit power minimization for perfect instantaneous

CSI in downlink transmission.
1: Input: Essential system parameters, including fronthaul channels H, access channels

G, and

• Average Initialization: an average distributed feasible point {p(0) ≥ 0, Ū (0) ⪰

0,Ω(0) ⪰ 0};

• Sum-rate Based Initialization: an optimized feasible point {p(0) ≥ 0, Ū (0) ⪰

0,Ω(0) ⪰ 0} obtained from the sum-rate maximization problem solved in Algorithm

1;

2: Initialization: Set r := 0;

3: repeat

4: Update r := r + 1;

5: Find the optimal solution {p(r), Ū (r),Ω(r)} by solving problem (3.37) based on

the given point {p(r−1), Ū (r−1),Ω(r−1)}:

• Individual-rate:

minimize
p(r)≥0, Ū(r)⪰0, Ω(r)⪰0

∑
k∈NU

tr
(
Ū

(r)
k

)
+ tr

(
Ω(r)

)
+
∑
i∈NR

p
(r)
i ,

s.t. C lb
ac,k
(
Ū (r),Ω(r)|Ū (r−1),Ω(r−1)

)
≥ γk, ∀k ∈ NU,

(3.26a), (3.26b), (3.26c);

• Sum-rate: minimize
p(r)≥0, Ū(r)⪰0, Ω(r)⪰0

∑
k∈NU

tr
(
Ū

(r)
k

)
+ tr

(
Ω(r)

)
+
∑
i∈NR

p
(r)
i ,

s.t.
∑
k∈NU

C lb
ac,k
(
Ū (r),Ω(r)|Ū (r−1),Ω(r−1)

)
≥ γ,

(3.26a), (3.26b), (3.26c);

6: until convergence;

7: Output: {p⋆, Ū⋆,Ω⋆} := {p(r), Ū (r),Ω(r)}.
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However, it is worth noting that by choosing the initial point based on the sum-rate

maximization problem, which has been fully discussed in Subsection 3.3.1, a better locally

optimized result may be achieved. The main concern, in this case, is to what extent the

choice of the initialization point affects the final optimized results. Previously, a uniformly

distributed initialization point (denoted as average initial method) was chosen among all

the involved units in the system, such as allocating the total transmit power of CU equally

and maximally to all antennas at CU. This initialization method is intended to ensure that

the optimization process starts from a fair and balanced starting point, with each unit

having an equal opportunity to contribute to the optimization results. To the best of our

knowledge, there is no initialization method that has been proven to be superior to others

in terms of low complexity, high feasibility and practicality. Except for the averaged

initialization which has been used for the sum-rate maximization problem, in this case,

another initialization point (denoted as sum-rate based initial method) can be utilized for

the power minimization problem by taking the optimal solutions obtained from Algorithm

2. Apparently, this method incurs longer computational time and memory than the one

that utilizes average initialization because the sum-rate maximization problem must be

solved first. The impact of the initialization point on the final optimized results will be

shown and compared in Subsection 3.4.3, in order to determine the effectiveness of using

an optimized initialization point for the power minimization problem.

3.4 Numerical Results

In this section, we evaluate the performance of the proposed algorithms by simulating a 2

GHz downlink communication channel. The system parameters in our simulation, unless

otherwise stated, are set as follows: NR = 5, NU = 10, M = 200, N = 2, K = 1,

Pmax
C = 10 W and Pmax

R ≜ Pmax
R,i = 10 W, ∀i ∈ NR. We assume that the UEs are

uniformly distributed 2 [19] inside a square area of 1 km2. The heights of CU, RRHs, and

2Note that non-uniform UE distributions [93] can also be employed for simulations, without affecting

the behavior of the proposed models and algorithms.
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UEs are assumed as 25 m, 10 m, and 1.5 m from the ground, respectively. The minimum

distance among all RRHs and between CU and RRHs is set as 100 m. The large-scale

fading of the fronthaul link βLoS and the access link αNLoS are in line with the urban

macrocell and urban microcell Street Canyon model in Table 7.4.1-1 of [94], respectively.

The noise level σ2
R, σ2

U are modelled as thermal noise with the room temperature 290 K

and 5 dB noise figure over 20 MHz bandwidth channel.

To solve the problems, we use the CVX optimization toolbox (version 2.2) in MATLAB

[91]. Although all of our problems have been transformed into SDR problems and they

are theoretically guaranteed to be solvable, no solver is perfect, and there is no “best”

solver that can outperform the others on every model [91] in terms of stability and speed.

In our simulations, we employ both SDPT3 [95, 96] and SeDuMi [97] solvers comparing

their feasibility and computational time in this section. The precision of the CVX solver

is set to “best” with an iteration stopping precision of 10−2.

While CVX is a powerful and well-developed tool for convex problems, it is important

to note that “it will sometimes fail to converge even for problems known to have solutions”

[91]. CVX applies the successive approximation method, particularly with functions like

log det(.) that we frequently use in our problems. This method is generally effective in

solving most of our problems with concrete realizations and parameters, but it may still fail

occasionally, even when confirmed solutions exist. Some potential solutions for solving

log det(.) problems, such as Mosek solver, are unable to solve most of our problems.

The primary reason for this difficulty is that our optimization problems typically involve

a large number of variables and constraints, which can require significant memory and

computational resources to obtain results. Also, the high complexity of the proposed

problems can also contribute to a lack of stability. Also, it seems CVX is not reliable

with MATLAB parallel computing toolbox, at least not formally supported, which caused

problems to allocate massive parallel realizations into multi-core HPC and evaluate the

average performance over a large number of scenarios. Given the “imperfection” of CVX,

thus, we will also evaluate the feasibility of our proposed problems using different solvers

and algorithms in the actual simulations throughout this thesis.
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To demonstrate the effectiveness of the proposed algorithms, we propose two bench-

mark schemes:

• Benchmark 1: Independent block quantization [39]. In this benchmark scheme,

we consider the independent block quantization method. Specifically, the signal

intended for the i-th RRH is compressed independently, which means

E[ωiω
H
j ] = 0, ∀i ̸= j ∈ NR, (3.38)

and thus Ω is a block-diagonal matrix in the optimization problem (3.18). The steps

to solve the corresponding problem are the same as those for problem (3.18).

• Benchmark 2: Independent diagonal quantization. In this benchmark scheme,

each element of the signal xR,i is compressed and quantized independently. There-

fore, there is no correlation among all the quantization noise elements, which means

Ωii = E[ωiω
H
i ] = diag (ωi,1, · · · , ωi,N) , ∀i ∈ NR, (3.39)

where ωi,1, · · · , ωi,N denote the quantization power for each antenna. Therefore, Ω

is a diagonal real-valued matrix. The steps to solve the corresponding problem are

the same as those used for problem (3.18).

It is worth noting that for Benchmarks 1 and 2, the term log det
(
ΓH

Sm
ΩΓSm

)
in the

quantization condition (3.11) could be expressed as
∑

i∈Sm
log det

(
ΓH

i ΩΓi

)
. Therefore,

the constraint (3.18b) can be collapsed into a simple version

φi(Ū ,Ω) ≤ Cfr,i(p), i ∈ NR. (3.40)

Previously, the number of constraint (3.18b) is 2NR−1 and the size of optimized variableΩ

is N2N2
R for Algorithm 1 and 2. However, the number of constraint (3.40) is only NR and

Ω has N2NR and NNR elements to optimize in the Benchmarks 1 and 2, respectively. The

computational complexity is related to the number of constraints and the size of optimized

variables [91].
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3.4.1 Convergence and Complexity Comparison

To compare different algorithms and solvers in terms of computational time, feasibility,

convergence, and achievable optimized results such as sum-rates and power consumption,

we conduct a simulation using 100 randomly generated sets of RRH and UE positions.

Fronthaul channel models are generated based on the 3-D distances between CU and RRH

antenna elements, as described in equation (3.1). For each set of locations and fronthaul

model, we generate 5 random access channel models to account for extreme scenarios.

Therefore, there are 500 realizations in total, of which the following results are based on

the average performance. The metric we adopt in this thesis to measure the complexity of

the solutions is the actual simulation running time. The simulations are performed using

MATLAB 2022a, with CVX (version 2.2) as the accompanying software platform, while

the hardware setup consists of 2 CPU cores (2 x AMD EPYC 7702) and 256GB RAM.

Figures 3.2 and 3.3 compare the computational running time of both solvers for different

algorithms. Figure 3.2 shows the actual running time for optimization problem within each

iteration while Figure 3.3 displays the overall time required for the proposed algorithms

to converge. Although the y-axes have different scales, both figures exhibit similar trends.

This suggests that two figures have a similar proportionality constant, which represents the

number of interactions required by the proposed algorithms to converge. Due to the low

computational complexity of Benchmarks 1 and 2, it is reasonable to observe significantly

Table 3.1: Feasibility of joint design in Algorithm 1, separate design in Algorithm 2, and

two benchmarks using solvers SDPT3 and SeDuMi.

Algorithm

Solver
SDPT3 SeDuMi

Joint design 100.0% 100.0%

Separate design - Ind-rate 100.0% 100.0%

Separate design - Sum-rate 94.8% 99.8%

Page 75 of 162



CHAPTER 3. Design of Downlink Transmission with Perfect Instantaneous CSI

Joint d
esig

n

    
    

    
   

Separate desig
n

    
   I

nd-ra
te

Separate desig
n

    
   S

um-ra
te

    
Benchmark 1

    
    

    
       

Benchmark 2
0

50

100

150

200

C
o
m

p
u
ta

ti
o
n
al

 t
im

e 
(s

)

SDPT3

Sedumi

Figure 3.2: Actual average running time within each iteration of the proposed algorithms

for both SDPT3 and SeDuMi solvers. The computational time is based on MATLAB

running on 2 CPU cores (2 x AMD EPYC 7702) with 256GB RAM.
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Figure 3.3: Total running time of the proposed algorithms for both SDPT3 and SeDuMi

solvers. The computational time is based on MATLAB running on 2 CPU cores (2 x

AMD EPYC 7702) with 256GB RAM.
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lower running time for these approaches in comparison to the proposed algorithms.

Figure 3.4 illustrates the optimized results for different approaches, where both solvers

perform similarly. Joint design and separate design with sum-rate fronthaul design stand

out from the other methods, achieving a significantly higher sum-rate. It is noteworthy

that these two designs also require the longest computational time, as shown in Figures

3.2 and 3.3. The final obtained sum-rate is similar for both solvers. As shown in Table

3.1, it is clear that both solvers demonstrate high feasibility.

Figure 3.5 displays the convergence speed of various methods. We only show the

results obtained using the SDPT3 solver here as SeDuMi exhibits a similar trend. It is

apparent that all methods exhibit nearly identical non-decreasing growth rates and converge

within 20 to 30 iterations.

3.4.2 Sum-rate Maximization Problem

Now, we evaluate the impact of several key parameters on the achievable sum-rate using

joint design, detailed in Algorithm 1, and separated design, presented in Algorithm 2.

Specifically, we investigate how some parameters affect the performance, including the

number of RRHs and UEs operating in the system, the number of antennas equipped on

these units, and the power budgets. To evaluate the performance of different scenarios,

we generate hundreds of scenarios with randomly located RRHs and UEs, along with

hundreds of random channel realizations. The final results are obtained as the average

of all realizations. In this section, 100 random locations of RRHs and UEs with their

corresponding fronthaul and access links are generated for simulations. The following

results are based on the average performance of these 100 models.

Figure 3.6 shows the impact of the number of antennas M at the CU on the achievable

sum-rate. It can be observed that the achievable sum-rate keeps increasing with the

increasing number of antennas at the CU. It is clear that the joint design in Algorithm 1

outperforms separate designs and benchmarks, as demonstrated not only in Figure 3.6 but
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Figure 3.4: Achievable sum-rate of the proposed algorithms and benchmarks using the

SDPT3 and SeDuMi solvers.
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Figure 3.6: Achievable sum-rate versus number of antennas M at the CU.

4 6 8 10 12 14

Number of UEs,  N
U

18

20

22

24

26

28

S
u
m

-r
at

e 
(b

it
s/

s/
H

z)

Joint design

Separate design - Ind-rate

Separate design - Sum-rate

Benchmark 1

Benchmark 2

Figure 3.7: Achievable sum-rate versus number of UEs NU.
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also across all the following results. This figure indicates that the separate design with

optimized fronthaul sum-rate achieves a network sum-rate close to that of the joint design,

and much better than the separate design with individually optimized fronthaul rates.

This difference is attributed to the variable {C⋆} that connects two separate problems in

Algorithm 2. The separate fronthaul design with individual-rate aims to maximize min
i

C⋆
i

by taking the worst channel into account, while the one with sum-rate maximizes
∑

i C
⋆
i by

taking the summation, which is the one consistent with the objective of the main sum-rate

maximization problem (3.31). Additionally, when the number of antennas M ≤ 100,

the separate design exhibits a relatively low sum-rate. This observation indicates that the

separate design is more sensitive to the limitations of the fronthaul capacity.

Figure 3.7 depicts the achievable sum-rate as a function of the number of UEs. The

sum-rate increases as the number of UEs increases, but the rate of growth decreases with

more UEs. The achievable rates are not proportional to the number of UEs, indicating

that the average resource allocated to each UE decreases as more UEs are added and may

be saturated with the larger number of UEs.

Figures 3.8 and 3.9 investigate the impact of the transmit power on the achievable rates,

where Figures 3.8 focuses on Pmax
C and Figure 3.9 on Pmax

R,i . It is observed from Figure 3.8

that Pmax
C has little effect on the achievable sum-rates, even if it is relatively small, etc.,

Pmax
C ≤ 1W. On the other hand, we observe that the optimized sum-rate increases rapidly

when Pmax
R,i ≤ 5W and continues to increase with a higher power allocation, as shown in

Figure 3.9. The reason behind this is that the fronthaul link uses massive MIMO, where

channel hardening can be achieved with larger numbers of antennas M even with very

little transmit power. It proves that massive MIMO is an effective technique for consuming

less power while ensuring a high transmission rate. Referring back to Figure 3.6, adding

more antennas at the CU could potentially further improve the sum-rate of the access link

without requiring a large amount of energy. Figure 3.9 shows that the transmit power

budgets on the RRHs strongly affect the achievable rate, especially when Pmax
R,i ∈ (0, 5)W.

One potential solution to increase the network sum-rate could be adding more transmit

antennas for the access link.
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Figure 3.8: Achievable sum-rate versus transmit power budget Pmax
C at the CU.
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3.4.3 Total Power Minimization Problem

Algorithm 3 aims to minimize the total transmit power while ensuring a given sum-rate for

the proposed network. However, it is possible that no solutions can satisfy a high sum-rate

under the given power budget. To address this, a feasibility check of the proposed problem

can be performed to confirm a proper value of the achievable sum-rate before minimizing

the total power consumption. The feasibility problem is based on problem (3.37) and can

be formulated as

minimize
p≥0, Ū⪰0, Ω⪰0

0

s.t. (3.37a) or (3.37b),

(3.24), (3.18c), (3.18d).

(3.41)

If the problem (3.41) can be solved, it means that the given sum-rate is achievable and the

power consumption might be further reduced by applying Algorithm 3 and vice versa.

We first study the impact of constraint (3.37a), which ensures minimum individual-

rate for each UE, solved in Algorithm 3. Figure 3.10 plots the feasibility of problem

(3.41) against the minimum required rate per user for various values of Pmax
C and Pmax

R

with different compression schemes, namely the multivariate and independent point-

to-point schemes. The initialization method is based on average initialization. It can

be observed that the feasibility increases with increasing power budgets Pmax
C and Pmax

R .

However, independent compression can achieve higher feasibility compared to multivariate

compression under all power constraints. The lower feasibility of multivariate compression

used in Algorithm 3 is due to the large number of inequalities in (3.24), which is given as

2NR − 1 = 31, while Benchmark 1 only has five inequalities for this constraint.

Figure 3.11 investigates the total power consumption versus the number of antennas M

under different minimum required rates. The optimized power consumption achieved by

the proposed algorithm notably decreases with increasing M whereas the gain is relatively

flat when M ≥ 200. Furthermore, it is shown that a higher requirement of the minimum

achievable rate results in the need for more transmit power, and the proposed joint design
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Figure 3.10: Feasibility of the proposed scheme versus minimum required rate per UE,

and for different power constraints Pmax
C = Pmax

R , ∀i ∈ NR.

50 100 150 200 250 300 350 400

Number of antennas at the CU,  M

2

4

6

8

10

12

14

16

T
o
ta

l 
tr

an
sm

it
 p

o
w

er
 (

W
)

 k
 = 1 bits/s/hz, Joint design - Ind-rate

 k
 = 1 bits/s/hz, Benchmark 1

 k
 = 0.5 bits/s/hz, Joint design - Ind-rate

 k
 = 0.5 bits/s/hz, Benchmark 1

Figure 3.11: Total power consumption of the proposed algorithm versus the number of

antennas M at the CU with γk = 1 bits/s/Hz and γk = 0.5 bits/s/Hz.
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Figure 3.12: Feasibility of the proposed scheme versus required sum-rate with different

initialization methods.

solved in Algorithm 3 with multivariate compression saves more power than independent

compression.

Next, we focus on the impact of constraint (3.37b), which ensures the achievable sum-

rate of all UEs. The effects of utilizing different initialization methods, based on both the

average allocation and the optimal variables obtained from Algorithm 1, are also compared.

We begin by evaluating the feasibility of the proposed joint design by simulating problem

(3.41) with sum-rate constraint (3.37b), as shown in Figure 3.12. Similar to Figure 3.10,

the independent compression yields higher feasibility than the multivariate compression

when utilizing the average initialization. However, by applying the optimized solutions as

the initial point to minimize the total power, the feasibility of multivariate compression

surpasses that of independent compression. In addition, both methods demonstrate higher

feasibility in comparison to the usage of average initialization. It is important to note that,

in this method, the sum-rate maximization problem given in Algorithm 1 must be solved

prior to the total power minimization problem.
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Figure 3.13: Convergence speed of the joint design proposed in Algorithm 3 against the

number of iterations with average initialization.
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Figure 3.14: Convergence speed of the joint design proposed in Algorithm 3 against the

number of iterations with sum-rate based initialization.
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Figures 3.13 and 3.14 investigate the transmit power with different requirements of

minimum achieved sum-rate γ. Figure 3.13 considers both the joint design and Benchmark

1 initialized by the uniformly allocated power and precoding matrices. It can be observed

that a higher sum-rate γ requires larger power consumption. For all values of γ, the

joint design outperforms Benchmark 1, which indicates that the total power can be further

reduced by applying the joint design. The same pattern is also reflected in Figure 3.14,

wherein the optimal solution obtained from the sum-rate maximization problem given

in Algorithm 1 is utilized as the starting point for solving the total power minimization

problems. However, although high transmit power is required, it is feasible to solve the

power minimization problem with γ = 20 bits/s/Hz in Figure 3.14, whereas in Figure

3.13, it is not possible due to the low feasibility of the average initialization method.

3.5 Conclusion

In this chapter, both joint and separate designs of the wireless fronthaul and access links

were proposed in a CRAN architecture featuring a massive MIMO CU. The proposed

designs focused on the downlink transmission, and assumed that the CU has access to the

perfect instantaneous CSI, on which the precoding designs of the access link were based.

The DCF compression scheme was adopted at the RRHs and the multivariate compression

noise was considered for the system optimizations. In particular, the optimization problems

were formulated aiming to maximize the sum-rate and minimize the total transmit power.

The problems were constrained by the power budgets of the CU and RRHs, as well as the

need to satisfy compression constraints to recover compressed signals successfully.

The resulting optimization problems were non-convex, making them difficult to solve.

However, by replacing the optimized variables, we were able to convexify the non-convex

functions and relax the rank constraint. This led to the formulation of convex SDR

problems, which can be optimally solved using interior point algorithms such as the

CVX optimization toolbox. We have provided a proof that the optimal results obtained
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from the reformulated problems are valid for the original optimization problems, as the

variable substitution does not alter the feasibility of the original problems. To solve the

reformulated problems, we proposed iterative algorithms with guaranteed convergence,

resulting in optimal solutions for the original problem.

Comprehensive numerical results have been provided in this chapter. We first discussed

the feasibility and computational complexity of the proposed algorithms and benchmarks

using two of the most common solvers, namely SDPT3 and SeDuMi, while also presenting

the convergence speed. We also performed numerous simulations to evaluate the impact

of system parameters, including the number of antennas M at the CU, the number of UEs

NU, and power budgets Pmax
C and Pmax

R , on the proposed algorithms and benchmarks.

The numerical results clearly demonstrated that the proposed joint design outperforms the

separate designs and both benchmarks in terms of the achieved sum-rate. However, it

should be noted that the separate designs and both benchmarks have significantly lower

complexity, and therefore require less computational time and memory. Furthermore,

the implementation of massive MIMO in the fronthaul link was observed to significantly

enhance the achievable sum-rate, suggesting the potential to also increase the sum-rate for

the access link for future models. Additionally, a superior decrease in power consumption

can be achieved by the proposed joint design compared to the separate designs and two

benchmark schemes.
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Chapter 4

Design of Wireless Downlink Transmis-

sion in Massive MIMO CRANs

with Stochastic CSI

4.1 Introduction

Obtaining perfect instantaneous CSI for the access link at the CU can improve system

design and increase data throughput. However, the acquisition of this information requires

a significant amount of resources, such as transmitting training sequences and forwarding

received pilots from the RRHs to the CU. Therefore, in this chapter, we consider a more

realistic scenario where only stochastic CSI for the access link is available at the CU [98].

To design the system, we formulate two non-convex problems to maximize the ergodic

sum-rate and minimize the total transmit power, respectively. Similar to Chapter 3, both

joint and separate designs are proposed for both problems. However, the presence of

expectation operations within the objective expressions makes the optimization problems

challenging to solve. Therefore, we employ the sample average approximation (SAA)

method to approximate the ergodic sum-rate. Then, we transform the problems into



4.2. Problem Formulation

convex SDR problems using the SCA method, which can be solved using interior-point

methods. The iterative algorithms are presented to solve the reformulated problems and

compare their performance with two proposed benchmark schemes.

In Section 4.2, we propose the joint and separate designs, along with their respective

optimization problems. These designs have the primary objectives of maximizing the

ergodic sum-rate and minimizing total power consumption. Also, the iterative algorithms

are presented and compared with benchmarks. The numerical results in Section 4.3

demonstrate the superiority of the proposed algorithms. Finally, we conclude the chapter

in Section 4.4.

4.2 Problem Formulation

While the fronthaul link can achieve a deterministic LoS channel by appropriately placing

the CU and RRHs, the presence of rich scatters resulting from the mobility and large

number of UEs creates challenges for the acquisition of CSI in the access channels.

Instead, the system design based on the stochastic CSI is of practical interest.

Since perfect instantaneous CSI of the access link is unavailable, the channel precod-

ing matrices Ū and compression noise Ω are designed and optimized for all coherence

blocks. In the following, optimization problems with stochastic CSI are formulated and

the corresponding algorithms to solve them are outlined and discussed.

4.2.1 Ergodic Sum-rate Maximization

Similar to the sum-rate maximization problem (3.18) for perfect instantaneous CSI, we first

aim to maximize the sum-rate of the system by optimizing transmit power p, precoders

Ū and quantization noise covariance matrix Ω, which is subjected to the quantization

constraint and power limits at CU and each RRH.
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4.2.1.a Joint Design of Fronthaul and Access Links

We follow the same steps used in Subsection 3.3.1 for the joint design of both fronthaul

and access links. The optimization problem can thus be formulated as

maximize
p≥0, Ū⪰0, Ω⪰0

∑
k∈NU

Rk (4.1a)

s.t. φm(Ū ,Ω) ≤
∑
i∈Sm

Cfr,i(p), ∀m ∈ NS , (4.1b)

∑
i∈NR

pi ≤ Pmax
C , (4.1c)

∑
k∈NU

tr
(
ΓH

i ŪkΓi

)
+ tr (Ωii) ≤ Pmax

R,i , ∀i ∈ NR, (4.1d)

rank
(
Ūk

)
≤ nR, ∀k ∈ NU, (4.1e)

where Rk represents the ergodic achievable rate for the k-th UE and is defined as [77, 98]

Rk ≜ E
[
Cac,k

(
Ū ,Ω

)]
. (4.2)

Constraint (4.1b) is the condition in order to dequantize the received signals successfully.

Constraints (4.1c) and (4.1d) are the transmit power constraints and (4.1e) represents the

rank constraint.

It is obvious that this problem is hard to solve due to the objective function (4.1a) as

the actual channel realization G is unknown. To tackle this problem, we use the SAA

method [38, 99] to obtain an approximate of the ergodic sum-rate. Precisely, we assume

that there are nB finite coherence blocks within the transmission time and thus Rk could

be rewritten as

Rk =
1

nB

nB∑
n=1

C
(n)
ac,k
(
Ū ,Ω

)
, when n → ∞, (4.3)

where C(n)
ac,k
(
Ū ,Ω

)
represents the capacity corresponding to the l-th channel G(l)

k . There-

fore, problem (4.1) can be re-expressed as

maximize
p≥0, Ū⪰0, Ω⪰0

1

nB

nB∑
n=1

∑
k∈NU

C
(n)
ac,k
(
Ū ,Ω

)
(4.4a)

s.t. (4.1b) - (4.1e).
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Apparently, the reformulated optimization problem (4.4) is still hard to solve due to

the non-convex function C
(n)
ac,k
(
Ū ,Ω

)
in the objective function (4.4a) and φm(Ū ,Ω) and

Cfr,i(p) in constraint (4.1b). Following the derivation (3.20) - (3.24) and the relaxation of

rank constraint (4.1e), problem (4.4) can be re-expressed as a convex problem

maximize
p≥0, Ū⪰0, Ω⪰0

1

nB

nB∑
n=1

∑
k∈NU

C
lb,(n)
ac,k

(
Ū ,Ω| ˜̄U , Ω̃

)
(4.5a)

s.t. φub
m

(
Ū ,Ω| ˜̄U , Ω̃

)
≤
∑
i∈Sm

C lb
fr,i (p|p̃) , ∀m ∈ NS , (4.5b)

(4.1c), (4.1d),

where constraint (4.5b) is locally tighter than the original constraint (4.1b) and the objective

function (4.4a) is locally lower bounded by (4.5a). Therefore, all solutions satisfying (4.5)

are feasible to original problem (4.4).

Algorithm 4 outlines the steps for maximizing the average sum-rate over the given

nB channels used to approximate the ergodic sum-rate. Due to the convexity of problem

(4.5), the optimized ergodic achievable sum-rate is non-decreasing and the convergence

is guaranteed to be achieved when the iteration number r → ∞ [92].

4.2.1.b Double-loop Joint Design of Fronthaul and Access Links

Although the complexity of Algorithm 4 is reasonably low due to the convexity of problem

(4.5), it is vital to know the impact of channel numbers nB on the average sum-rate. For this

reason, we adopt successive upper bound minimization (SSUM) method [77, 98], which

includes two nested loops, to solve the original problem (4.1). Algorithm 5 shows the steps

to optimize the sum-rate by adding new coherence channels iteratively. The outer loop

starts from one random single channel realization and one random set of feasible variables

{p(0) ≥ 0, Ū (0) ⪰ 0,Ω(0) ⪰ 0}. The optimized solution is updated by solving Algorithm

4 in the inner loop. Then, one more random channel realization is generated and added

to the problem in the next outer loop. Precisely, in the nB-th outer loop, there are nB

coherence channels involved and the optimized solution {p(n) ≥ 0, Ū (n) ⪰ 0,Ω(n) ⪰ 0}
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is obtained from the inner loop by averaging over nB channel realizations.

Due to the randomness of the new generated channel, the solutions obtained from the

previous loop may achieve a better or worse sum-rate for the new channel and thus can

result in an increase or decrease of the average sum-rate, respectively. Accordingly, the

trend of the optimized results from the outer loop is not guaranteed to be non-decreasing

or non-increasing. However, the optimized sum-rate becomes stabilized when r → ∞.

To explain it further, simulation results of convergence will be discussed in Subsection

4.3.1.

Algorithm 4. Joint design based ergodic sum-rate maximization for stochastic CSI in

downlink transmission.
1: Input: Total number of channel realizations nB > 0, with nB channel realizations

{G(1), . . . ,G(nB)} generated based on the same stochastic CSI;

2: Initialization: Set r := 0 and a feasible point {p(0) ≥ 0, Ū (0) ⪰ 0,Ω(0) ⪰ 0};

3: repeat

4: Update r := r + 1;

5: Find the optimal solution {p(r), Ū (r),Ω(r)} by solving problem (4.5) based on the

given point {p(r−1), Ū (r−1),Ω(r−1)}:

maximize
p≥0, Ū⪰0, Ω⪰0

1

nB

nB∑
n=1

∑
k∈NU

C
lb,(n)
ac,k

(
Ū (r),Ω(r)|Ū (r−1),Ω(r−1)

)
s.t. φub

m

(
Ū (r),Ω(r)|Ū (r−1),Ω(r−1)

)
≤
∑
i∈Sm

C lb
fr,i
(
p(r)|p(r−1)

)
, ∀m ∈ NS ,∑

i∈NR

p
(r)
i ≤ Pmax

C ,

∑
k∈NU

tr
(
ΓH

i Ū
(r)
k Γi

)
+ tr

(
Ω

(r)
ii

)
≤ Pmax

R,i , ∀i ∈ NR;

6: until convergence;

7: Output: {p⋆, Ū⋆,Ω⋆} = {p(r), Ū (r),Ω(r)}.
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Algorithm 5. Double-loop joint design based ergodic sum-rate maximization for stochas-

tic CSI in downlink transmission.
1: Initialization (outer loop): Set l := 0, R(0) := 0, maximum number of iterations

Lmax, and a feasible point {p(0) ≥ 0, Ū (0) ⪰ 0,Ω(0) ⪰ 0};

2: repeat

3: Update l := l + 1;

4: Generate a random channel matrix G(l) based the given stochastic CSI;

5: Initialization (inner loop): Set r := 0 and {p(l,0), Ū (l,0),Ω(l,0)} :=

{p(l−1), Ū (l−1),Ω(l−1)};

6: repeat

7: Update r := r + 1;

8: Find the optimal solution {p(l,r), Ū (l,r),Ω(l,r)} by solving problem (4.5) based

on the given point {p(l,r−1), Ū (l,r−1),Ω(l,r−1)}:

maximize
p≥0, Ū⪰0, Ω⪰0

1

l

l∑
n=1

∑
k∈NU

C
lb,(n)
ac,k

(
Ū (l,r),Ω(l,r)|Ū (l,r−1),Ω(l,r−1)

)
s.t. φub

m

(
Ū (l,r),Ω(l,r)|Ū (l,r−1),Ω(l,r−1)

)
≤
∑
i∈Sm

C lb
fr,i
(
p(l,r)|p(l,r−1)

)
,

∀m ∈ NS ,∑
i∈NR

p
(l,r)
i ≤ Pmax

C ,

∑
k∈NU

tr
(
ΓH

i Ū
(l,r)
k Γi

)
+ tr

(
Ω

(l,r)
ii

)
≤ Pmax

R,i , ∀i ∈ NR;

9: until convergence;

10: Update {p(l),Ū (l),Ω(l)}:={p(l,r),Ū (l,r),Ω(l,r)},R(l):=1
l

l∑
n=1

∑
k∈NU

C
lb,(n)
ac,k

(
Ū (l,r),Ω(l,r)

)
;

11: until |R(l) −R(l−1)| < 10−3 or l ≥ Lmax;

12: Output: {p⋆, Ū⋆,Ω⋆} = {p(l), Ū (l),Ω(l)}.
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4.2.1.c Separate Design of Fronthaul and Access Links

Similar to Subsection 3.3.1.b, we propose a separate design in order to reduce computa-

tional complexity. According to our system model described in Section 4.2, the UE side

has no prior acknowledgment of the access channels and thus we aimed to maximize the

ergodic sum-rate for the access link in the previous section. However, the fronthaul link

is assumed to be deterministic and thus perfect instantaneous CSI can be obtained. The

separate optimization of the fronthaul link is similar to the one used in Algorithm 2. The

details of the proposed separate designs are provided in Algorithm 6.

4.2.2 Total Transmit Power Minimization

Similar to Subsection 3.3.2, we aim to minimize the total transmit power while ensuring

that the UEs can achieve the required individual-rate or sum-rate over multiple time blocks

during the transmission. In order to achieve ergodic rates of UEs, similar to problem (3.36),

it can be expressed as

• Individual-rate: minimize
p≥0, Ū⪰0, Ω⪰0

∑
k∈NU

tr
(
Ūk

)
+ tr (Ω) +

∑
i∈NR

pi

s.t. Rk ≥ γk, ∀k ∈ NU, (4.9a)

(3.18b) - (3.18e),

• Sum-rate: minimize
p≥0, Ū⪰0, Ω⪰0

∑
k∈NU

tr
(
Ūk

)
+ tr (Ω) +

∑
i∈NR

pi

s.t.
∑
k∈NU

Rk ≥ γ, (4.9b)

(3.18b) - (3.18e).

The objective function and other constraints for ergodic rates are the same as those in

(3.36). Obviously, problem (4.9) is difficult to solve due to non-convex constraints (4.9a),

(4.9b), and (3.18b), as well as rank constraint (3.18e). By following the steps presented
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Algorithm 6. Separate design based ergodic sum-rate maximization algorithm for stochas-

tic CSI.
1: Input: Total number of channel realizations nB > 0, with nB channel realizations

{G(1), . . . ,G(nB)} generated based on the same stochastic CSI;

2: Initialization (first loop): Set l := 0 and a feasible point {p(0) ≥ 0};

3: repeat

4: Update l := l + 1;

5: Find the optimal solution p(l) and corresponding set {C lb
fr,i(p),∀i ∈ NR} based on

the known p(l−1) by solving one of the following problems:

• Individual-rate problem (3.29): maximize
p(l)≥0

min
i∈NR

C lb
fr,i(p

(l)|p(l−1))

s.t.
∑
i∈NR

p
(l)
i ≤ Pmax

C ;

• Sum-rate problem (3.30): maximize
p(l)≥0

∑
i∈NR

C lb
fr,i(p

(l)|p(l−1))

s.t.
∑
i∈NR

p
(l)
i ≤ Pmax

C ;

6: until convergence;

7: Update p⋆ := p(l) and {C⋆} := {C⋆
i |C⋆

i = Cfr,i(p
⋆), i ∈ NR};

8: Initialization (second loop): Set r := 0 and a feasible point {Ū (0) ⪰ 0,Ω(0) ⪰ 0};

9: repeat

10: Update r := r + 1;

11: Find the optimal solution {Ū (r),Ω(r)} based on the known {p⋆, Ū (r−1),Ω(r−1)}

by solving the following problem:

maximize
Ū(r)⪰0, Ω(r)⪰0

1

nB

nB∑
n=1

∑
k∈NU

C
lb,(n)
ac,k

(
Ū (r),Ω(r)|Ū (r−1),Ω(r−1)

)
s.t. φub

m

(
Ū (r),Ω(r)|Ū (r−1),Ω(r−1)

)
≤
∑
i∈Sm

C⋆
i , ∀m ∈ NS ,∑

k∈NU

tr
(
ΓH

i Ū
(r)
k Γi

)
+ tr

(
Ω

(r)
ii

)
≤ Pmax

R,i , ∀i ∈ NR,

12: until convergence;

13: Output: {p⋆, Ū⋆,Ω⋆} := {p(l), Ū (r),Ω(r)}.
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in Subsection (3.3.2), we employ a similar method presented in Algorithm 3 to solve the

problem (4.9). The steps are detailed in Algorithm 7.

4.3 Numerical Results of Stochastic CSI

This section presents simulations of the proposed model described in Section 4.2. We

study and compare the performance of the proposed Algorithms 3a-d and 7 are studied

and compared, especially in terms of the feasibility of the problem, optimized objective

value, convergence speed, and computational time. Unless otherwise stated, the simulation

parameters used in this section are the same as those used in Section 3.4.

4.3.1 Convergence and Complexity Comparison

Since all algorithms simulate a limited number of access channel modelsnB to approximate

the ergodic sum-rate, it is vital to determine the appropriate number of channels to use in

the simulations. A small nB can lead to a loss of generality, while a large nB can result in

increased problem complexity. Using an inappropriate number of nB in the simulations

can be problematic. Therefore, we first start by investigating the impact of nB.

Figure 4.1 compares the single-loop joint design presented in Algorithm 4 and double-

loop joint design proposed in Algorithm 5 in terms of the average sum-rate versus the

number of channels involved nB. The solver utilized to optimize the problems is SDPT3.

It can be seen that the achievable sum-rate has a decreasing trend when more channel

realizations are averaged for both algorithms. This trend is expected because one set of

optimized variables, that can achieve a high rate for one channel realization, may perform

badly for the others. It is worth noting that neither Algorithm 4 nor the outer-loop of

Algorithm 5 is a convex problem with respect to nB. Therefore, there is no guarantee that

the ergodic sum-rate converges to a critical point but will become stabilized if nB is large

enough.
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Algorithm 7. Joint design based transmit power minimization for stochastic CSI.
1: Input: Essential system parameters, including fronthaul channels H, access channels

G, and

• Average Initialization: a random feasible point {p(0) ≥ 0, Ū (0) ⪰ 0,Ω(0) ⪰ 0};

• Sum-rate Based Initialization: an optimized feasible point {p(0) ≥ 0, Ū (0) ⪰

0,Ω(0) ⪰ 0} obtained from the sum-rate maximization problem solved in Algorithm

4;

2: Initialization: Set r := 0;

3: repeat

4: Update r := r + 1;

5: Find the optimal solution {p(r), Ū (r),Ω(r)} of problem (4.9) based on the given

point {p(r−1), Ū (r−1),Ω(r−1)} by solving one of the following problems:

• Individual-rate:

minimize
p(r)≥0, Ū(r)⪰0, Ω(r)⪰0

∑
k∈NU

tr
(
Ū

(r)
k

)
+ tr

(
Ω(r)

)
+
∑
i∈NR

p
(r)
i

s.t.
1

nB

nB∑
n=1

C
lb,(n)
ac,k

(
Ū (r),Ω(r)|Ū (r−1),Ω(r−1)

)
≥ γk, ∀k ∈ NU,

(3.24), (3.18c), (3.18d);

• Sum-rate: minimize
p(r)≥0, Ū(r)⪰0, Ω(r)⪰0

∑
k∈NU

tr
(
Ū

(r)
k

)
+ tr

(
Ω(r)

)
+
∑
i∈NR

p
(r)
i

s.t.
1

nB

nB∑
n=1

∑
k∈NU

C
lb,(n)
ac,k

(
Ū (r),Ω(r)|Ū (r−1),Ω(r−1)

)
≥ γ,

(3.24), (3.18c), (3.18d);

6: until convergence;

7: Output: {p⋆, Ū⋆,Ω⋆} := {p(r), Ū (r),Ω(r)}.
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Figure 4.2 shows the average total running time for the single-loop and double-loop

joint design with the different number of channels nB. It is worth noting that for a

given nB ≥ 4, the double-loop joint design requires only a very short time to obtain the

converged optimal solution. According to Figure 4.1, it seems that the double-loop joint

design is not able to achieve an optimal sum-rate as high as the single-loop joint design.

One possibility for this observation is that the double-loop design might quickly converge

to a local minimum based on the first three involved channels. Although the double-loop

design has a very short computational time for each specific number of channels nB, the

accumulated time becomes longer than the single-loop design when nB ≥ 3. Therefore,

the single-loop joint design actually outperforms the double-loop design in terms of a high

achievable sum-rate and small computational time.

Since the fluctuation of both algorithms is very little when nB ≥ 10, a balance between

performance (such as improvement on achievable maximized sum-rate) and consumed

resources (such as computational memory and time) could be achieved when nB is large.
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Figure 4.1: Average sum-rate versus the number of channels nB for the single-loop joint

design presented in Algorithm 4 and double-loop joint design proposed in Algorithm 5.
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Table 4.1: Feasibility of the proposed joint and separate designs, as well as two benchmarks

using different solvers SDPT3 and SeDuMi.

Algorithm

Solver
SDPT3 SeDuMi

Single-loop joint design 100/100 18/20

Separate design - Ind-rate 100/100 18/20

Separate design - Sum-rate 94/100 15/20

In order to save some time without loss of generality, we choosen = 20 channel realizations

for the rest of the simulations and the double-loop joint design prescribed in Algorithm 5

will not be considered in the following Sections 4.3.2 and 4.3.3.

Figure 4.3 compares the running time among the joint design presented in Algorithm 4,

the separate designs proposed in Algorithm 6, and two benchmarks with two solvers, while

Table 4.1 lists their feasibility. Please note that the computational time shown in Figures

4.2 and 4.3 are calculated based on a single CPU core (2 x AMD EPYC 7702). In real

scenarios, the calculation will be processed by the CU and thus faster computational speed

can be achieved by utilizing multiple more powerful CPU cores. The convergence time of

the proposed algorithms is shown in Figure 4.3 is just a reference to time consumption.

The exact values are not of much interest to us but the difference among algorithms and

the trend with the increased number of involved channels nB is vital here, which can be

seen as an approximation of reality. Additionally, the computational time for the first loop

of separate designs in Algorithm 6 is very short and negligible compared to the second

loop. Therefore, the running time in Subfigures 4.3c - 4.3f is counted only based on the

second loop. Figure 4.3 illustrates that Sedumi typically requires less time to solve a single

convex problem and converges in most cases, in contrast to SDPT3, which requires longer

computation time but exhibits higher feasibility, as shown in Table 4.1. Both solvers

exhibit distinct advantages: Sedumi demonstrates higher computational efficiency but less

stability, whereas SDPT3 shows the opposite - greater stability but longer computation

time.
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Figure 4.3: Actual running time against the number of iterations with the proposed algo-

rithms and benchmarks using different solvers SDPT3 and SeDuMi. The computational

time is based on MATLAB running on 2 CPU cores (2 x AMD EPYC 7702) with 256GB

RAM. Page 101 of 162



CHAPTER 4. Design of Downlink Transmission with Stochastic CSI

5 10 15 20 25 30

Number of channels, n
B

0

100

200

300

400

500

C
o

m
p

u
ta

ti
o

n
al

 t
im

e 
(s

)

(g) Averaged running time of each iteration

for Benchmark 1

5 10 15 20 25 30

Number of channels, n
B

0

2000

4000

6000

8000

10000

C
o

m
p

u
ta

ti
o

n
al

 t
im

e 
(s

)

(h) Averaged total running time

for Benchmark 1

5 10 15 20 25 30

Number of channels, n
B

0

100

200

300

400

500

C
o

m
p

u
ta

ti
o

n
al

 t
im

e 
(s

)

(i) Averaged running time of each iteration

for Benchmark 2

5 10 15 20 25 30

Number of channels, n
B

0

2000

4000

6000

8000

10000

C
o

m
p

u
ta

ti
o

n
al

 t
im

e 
(s

) SDPT3

Sedumi

(j) Averaged total running time

for Benchmark 2

Figure 4.3: (Continued) Actual running time against the number of iterations with the

proposed algorithms and benchmarks using different solvers SDPT3 and SeDuMi. The

computational time is based on MATLAB running on 2 CPU cores (2 x AMD EPYC

7702) with 256GB RAM.
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Figure 4.4 presents average convergence behaviors of the proposed algorithms and

Benchmarks 1 and 2. We observe that the average achievable sum-rates of all the schemes

are non-decreasing and the convergence is achieved after approximately 20 iterations.

In this realization, the joint design scheme proposed in Algorithm 4 has shown better

performance than all other schemes, while the separate design prescribed in Algorithm 6

with optimized individual-rate has performed the worst. This can be attributed to the fact

that the separate designs of the fronthaul and access links, as implemented in Algorithm

6, leads to a slight decrease in the achievable sum-rate compared to the joint design. The

separate design scheme converges more slowly compared to the other schemes. This is

due to the fact that the optimization of the fronthaul links has to be completed before

the optimization of the access links can begin, which requires more iterations and hence

slower convergence. Although the independent point-to-point compression scheme can

still achieve higher rates than the separate designs, its feasibility is quite low, as shown

in Table 4.1. Benchmarks 1 and 2 show similar performance in the initial iterations, but

Benchmark 2 converges faster while Benchmark 1 achieves better performance towards
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Figure 4.4: Convergence speed of the proposed algorithms versus the number of iterations

with the proposed algorithms.
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the end. This is because Benchmark 1 involves more elements of the quantization noise

covariance matrix Ω in optimization than Benchmark 2, which leads to better performance

but a longer convergence time.

It is worth noting that the Benchmarks outperform the separate designs, unlike the

numerical results presented in previous Chapter 3, where the achievable sum-rate of the

separate designs is very close to that of the joint design. This indicates that although

the compression scheme is not jointly optimized among all RRHs, the ergodic network

sum-rate benefits a lot from the joint design of both fronthaul and access links. In the

case of a single channel with the knowledge of perfect instantaneous CSI, the compression

scheme takes on greater importance. Conversely, for multiple coherence channels, the

joint design is more vital for improving the ergodic sum-rate.

4.3.2 Sum-rate Maximization Problem

Figure 4.5 depicts the average sum-rate versus the number of antennas M at the CU. It can

be observed that the performance increases with increasing M . The proposed joint design

in Algorithm 4 performs better than Benchmarks 1 and 2 while the proposed separate

design performs the worst. Recall that in Benchmarks 1 and 2 the fronthaul and access

links are jointly designed. Therefore, the joint design of both fronthaul and access links

helps the fronthaul link achieve the best results, as expected.

In Figure 4.6, the average sum-rate versus the number of UEs NU is shown. It is

clear that the average sum-rate increases almost linearly with the number of UEs NU. The

average sum-rate against the power budget is evaluated in Figures 4.7 and 4.8. Figure 4.7

focuses on the impact of the available power at the CU with Pmax
R = 10W. For all the

schemes, we can observe that the average sum-rate increases with increasing power budget

at the CU but quickly saturates when Pmax
C ≥ 0.5 W. It is observable that the growth of

the average sum-rate is not significantly changing, especially when Pmax
C ≥ 0.4 W. On the

contrary, the average sum-rate keeps increasing with increasing Pmax
R,i ,∀i ∈ NR, as shown
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Figure 4.5: Average sum-rate versus the number of antennas M at the CU for the proposed

algorithms.
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in Figure 4.8. All the schemes benefit from the increased power budget at RRHs and have

further potential improvements. According to Figure 4.7, the bottleneck of the proposed

design is caused by the access link. To further improve the sum-rate performance of

the proposed system, future research may focus on optimizing the access link. Potential

solutions include employing more RRHs, increasing the number of transmit antennas

equipped at the RRHs, and allocating a higher power budget allocated for the access link.

4.3.3 Total Power Minimization Problem

Figure 4.9 shows the minimized total transmit power for different sum-rate requirements γ

with the joint design and two benchmarks. The joint design is solved in Algorithm 7 with

ensured sum-rate constraint, and initialized with the solution obtained from the sum-rate

maximization problem solved in Algorithm 4. Similar to Figures 3.12 and 3.13 presented

in Subsection 3.4.3, both methods are non-increasing and converge rapidly within 10

iterations. Larger sum-rate requirement γ results in higher power consumption. Although

the difference is almost negligible, the joint design proposed in Algorithm 7 saves more

energy than the two benchmarks, where each element of the signal x̄R,i is compressed and

quantized independently.

4.4 Conclusion

Unlike the scenario of perfect instantaneous CSI, which we have thoroughly discussed in

Chapter 3, we have considered the case where only stochastic CSI of the access link is

available at the CU in this chapter. In the fronthaul link employing massive MIMO, the

use of a large number of transmit antennas results in channel hardening, which increases

the capacity of the fronthaul links in our designs. In contrast, the limited information

available for the access channel poses challenges for designing the precoding matrices.

We proposed joint and separate designs for optimizing both the fronthaul and access links,
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Figure 4.9: Convergence of the joint design in Algorithm 7 against the number of itera-

tions with optimized initialization based on the sum-rate maximization problem solved in

Algorithm 4.

with the goal of maximizing the ergodic sum-rate subject to a certain power budget, as well

as minimizing the total transmit power while satisfying required rate constraints. As the

resulting optimization problems were non-convex, they were difficult to solve directly. To

address this issue, we transformed them into convex SDR problems and described iterative

algorithms to solve the reformulated problems. As the optimized variables were designed

to be employed for all coherence blocks, we also provided nested double-loop algorithms

to examine how the number of coherence blocks considered in the optimization problems

affects the results.

Numerical results have been provided to examine the proposed designs and algorithms

in this chapter. The computational time, feasibility, and convergence speed of all proposed

algorithms and benchmarks were presented and compared.
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Chapter 5

Design of Wireless Uplink Transmission

in Massive MIMO CRANs

5.1 Introduction

In this chapter, we consider the uplink transmission for the same CRAN architecture

proposed in Chapters 3 and 4, focusing on the joint design of wireless fronthaul and access

links with massive MIMO enabled for the fronthaul link. Specifically, we propose two

optimization problems. The first problem aims to maximize the total network sum-rate,

while the second problem aims to minimize the power consumption for data transmission

with an ensured sum-rate. Assuming that the CSI for both links is perfectly known to

the CU, we consider two conventional precoding methods for the fronthaul link, namely

MR and ZF combining. At the RRHs, the CF strategy is adopted and the point-to-

point independent compression scheme is considered. The compression covariance noise

constrains the capacity in both links, which poses a challenging problem for the system

design.

The system model is introduced in Section 5.2. In Section 5.2.1, we formulate the
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optimization problems for sum-rate maximization and total power minimization. Similar

to the problems introduced in Chapter 3, these problems are challenging to solve. To

address this issue, we change the optimized variables and transform them into convex

SDR problems by linearizing non-convex constraints. Iterative algorithms are proposed to

obtain optimal results for both optimization problems. In Section 5.4, numerical results are

presented and compared to the benchmarks. Finally, the chapter is concluded in Section

5.5.

5.2 System Model

We consider the uplink of a CRAN system, whereNU multi-antenna UEs wish to wirelessly

send their messages to the CU in two hops through NR multi-antenna RRHs, as depicted

in Figure 5.1. The CU is equipped with a massive ULA of size M . For k ∈ NU =

{1, . . . , NU}, the k-th user is equipped with K antennas, which brings on the total number

of antennas at all UEs to
∑

NU
K. For i ∈ NR = {1, . . . , NR}, the i-th RRH utilizes

N antennas for reception, with the total number of antennas at all RRHs for reception

is
∑

NR
N , and one antenna for transmission. This setting is favorable because in the

fronthaul links we have a massive MIMO channel and hence the assumption of using

single antenna RRHs for transmission in the fronthaul is of practical interest. We assume

that the access links (UEs-RRHs links) and fronthaul links (RRHs-CU links) are separated

in the time domain to avoid interference between them.

Let Mk ∈ {1, · · · , 2nLRk} denote the message to be transmitted by UE k to the CU,

where nL is the block length and Rk is the information rate in bits per channel use (bpcu).

Then, the k-th UE encodes its message using a Gaussian codebook into a data stream

sU,k ∈ CnR×1 of unit variance and transmits it using a linear precoder Vk ∈ CK×nR .

The resulting signal xU,k = VksU,k, with power constraint E{∥xU,k∥2} ≤ Pmax
U,k , is then

transmitted through the channel GT
k,i ∈ CN×K to the i-th RRH. A Rayleigh flat-fading

channel model is used for Gk,i, i.e., Gk,i =
√
αk,iG̃k,i, where αk,i is the large-scale fading
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coefficient of the channel between UE k and RRH i, and G̃k,i is a matrix of independent

Rayleigh coefficients with entries modeled as CN (0, 1). The received signal at the i-th

RRH from all UEs is then given by

yR,i =
∑
k∈NU

GT
k,ixU,k + nR,i, (5.1)

where nR,i ∼ CN (0, σ2
RI) is the additive noise at the i-th RRH. Next, the received signal

yR,i is transferred to the CU via a wireless fronthaul link.

Similar to [41], we adopt the CF relaying strategy at the RRHs. So, before forwarding to

the CU via the fronthaul links, the signal yR,i at the i-th RRH is quantized and compressed.

We adopt the Gaussian quantization test channel to model the quantization process [39],

and hence the resulting quantized signal, ŷR,i, can be written as

ŷR,i = yR,i + ωi, (5.2)

where ωi ∼ CN (0,Ωi) is the quantization noise, which is independent of yR,i. Next, ŷR,i

is compressed to generate the compression index Vi ∈ {1, . . . , 2nLCi}, where Ci is the rate.

Here, we assume point-to-point compression. The index Vi is then mapped into a complex

scalar symbol xR,i to be further transmitted by the i-th RRH, using a single antenna, to the

CU.

UE1

. . .

UEk

. . .

UENU

. . .

...

...

K

K

K

RRH1

RRHi

RRHNR

...

...

N

N

N

CU

. . .
M

: Access link : Fronthaul link

GT
k,i hT

i

Figure 5.1: System model of downlink transmission in the proposed massive MIMO

CRAN architecture.
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The received signal at the CU can be written as

yC =
∑
i∈NR

hT
i xR,i + nC, (5.3)

where hT
i ∈ CM×1 is the channel between the i-th RRH and the CU, nC ∼ CN (0, σ2

CI) is

the additive noise at the CU and E{|xR,i|2} = pR,i ≤ Pmax
R,i is the transmit power constraint

per RRH. Considering a scenario with LoS propagation, the channel vector hT
i can be

given by [43, 84]

hi =
√
βLoS
i h̄i, (5.4)

where βLoS
i is the large scale fading from the i-th RRH and

h̄i =
[
1 ej2π

δ
λ
cos(ϕi) . . . ej2π(M−1) δ

λ
cos(ϕi)

]
. (5.5)

Here, δ is the antenna spacing, λ is the carrier wavelength and ϕi is the angle of arrival

from the i-th RRH distributed uniformly in [0, 2π). At the CU, an estimate of the received

symbol x̂R,i is obtained from (5.3) using beamformer wi ∈ CM , which is designed based

on the perfectly known channel information available at the CU.

We further assume that the user codebooks and the RRH codebooks are available at

the CU. Consequently, a lossless decoding from the detected symbol ŷC,l to an index Vi

can be realized.

5.2.1 Joint Design

Under the model given in the previous section, we now discuss our proposed design, where

we use an optimization framework. The main question is how to jointly optimize the access

and fronthaul links to maximize the system sum-rate. To that end, before we formulate the

optimization problem, we first need to specify the fronthaul receive combining scheme

and the closed-form expression of the achievable rate per user. Here, we assume that the

perfect CSI for the access and fronthaul links is available at the CU.
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At the CU, the first step is to detect the signals xR,i, for all i ∈ NR, sent by the RRHs

from the received signal yC in (5.3). In particular, to detect the signal sent by the i-th RRH,

xR,i, a combining vector wi is applied to the received signal at the CU and the detected

signal is given by

x̂R,i = wih
T
i xR,i +

∑
j∈NR\{i}

wih
T
j xR,j +winC. (5.6)

Thus, we can compute the SINR of the i-th RRH as

SINRi =
|wih

T
i |2pR,i

σ2
C∥wi∥2 +

∑
j∈NR\{i}

|wihT
j |2pR,j

. (5.7)

Therefore, the rate Ci between RRH i and the CU is achievable if the condition

Ci ≤ Cfr,i({pR,i}) ≜ I(xR,i; x̂R,i)

= log2

1 +
|wih

T
i |2pR,i

σ2
C∥wi∥2 +

∑
j∈NR\{i}

|wihT
j |2pR,j

 (5.8)

is satisfied.

Later in Section 5.4, we will provide a showcase for two popular and simple com-

bining techniques which are MR and ZF processing. The combining matrix, W ≜[
wT

1 , . . . ,w
T
NR

]T , is given by

W =

H̄∗, for MR,

(H̄∗H̄T )−1H̄∗, for ZF,
(5.9)

with H̄ ≜
[
h̄T
1 , . . . , h̄

T
NR

]T . Plugging (5.9) into (5.7), the fronthaul SINR from the i-th

RRH under the MR and ZF schemes can be computed, respectively, as

SINRMR
i =

βLoS
i ∥h̄i∥4pR,i

σ2
C∥h̄i∥2 +

∑
j∈NR\{i} βj|h̄ih̄T

j |2pR,j
, (5.10)

and

SINRZF
i =

βLoS
i pR,i

[(H̄∗H̄T )−1]i,i
. (5.11)
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Based on the decoded signal xR,i, we get the corresponding compression index Ti. Given

Ti, the CU can determine the quantized signal ŷR,i. For independent point-to-point

compression at each RRH, the condition for successful decompression represents a special

case of (5.12), which is given as

φi({Vk},Ωii) ≜ I(yR,i; ŷR,i)

= log det

(∑
k∈NU

GT
k,iVkV

H
k G

∗
k,i + σ2

CI+Ωii

)
− log det (Ωii)

≤ Ci, ∀i ∈ NR. (5.12)

5.2.2 Achievable Rate

We now determine the achievable rate for each UE. First, define ŷR ≜
[
ŷT

R,1, . . . , ŷ
T
R,NR

]T ,

Gk ≜ [Gk,1, . . . ,Gk,NR ],nR ≜
[
nT

R,1, . . . ,n
T
R,NR

]T andω ≜
[
ωT

1 , . . . ,ω
T
NR

]T ∼ CN (0,Ω)

with Ω = diag({Ωi}i∈NR). Accordingly, we can write the received signal after quantiza-

tion from all RRHs by plugging (5.1) into (5.2) such that we obtain

ŷR =
∑
k∈NU

GT
kVksU,k + nR + ω

= GT
kVksU,k +

∑
j∈NU\{k}

GT
j Vjsj + nR + ω. (5.13)

By treating the interference as noise, the rate achievable by the k-th UE is given by

Rk ≤I(sU,k; ŷR)

= log det

(
I+

GT
kVkV

H
k G

∗
k∑

j∈NU\{k}G
T
j VjVH

j G
∗
j + σ2

RI+Ω

)

= log det

(∑
k∈NU

GT
kVkV

H
k G

∗
k + σ2

RI+Ω

)

− log det

 ∑
j∈NU\{k}

GT
j VjV

H
j G

∗
j + σ2

RI+Ω


≜Cac,k({Vk},Ω). (5.14)
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5.3 Problem Formulation

In this section, our objective is to enhance the network SE and EE in the uplink transmission

through joint optimization of wireless fronthaul and access links. Assuming that perfect

instantaneous CSI for both links is available to all the units involved in the system, we aim

to maximize the total sum-rate for UEs and also minimize the power consumption with

the ensured rate.

5.3.1 Sum-rate Maximization

Since the achievable rates for both links have been determined in Subsection 5.2.2, we now

aim at maximizing the weighted sum-rate, with a weighting coefficient wk, by optimizing

the quantization noise covariance matrices Ωi, the precoding matrices Vk and the transmit

power allocation pR,i at each RRH. The weighting coefficient wk can be selected to give

a priority to a specific user. It is important to note that the rate in (5.14) is achievable if

conditions (5.12) and (5.8) are satisfied.

Similar to the problems proposed in the previous Chapter 3, denote V̄ ≜ {V̄j :

∀j ∈ NU} as the set of precoding matrices in the access link, for simplicity, where

V̄j ≜ VjV
H
j , ∀j. Accordingly, the optimization problem can thus be formulated as

follows

maximize
V̄⪰0, Ωi⪰0, pR≥0

∑
k∈NU

wkCac,k(V̄ ,Ω) (5.15a)

s.t. φi(V̄ ,Ω) ≤
∑
i∈Sm

Cfr,i(pR), ∀m ∈ NS , (5.15b)

pR,i ≤ Pmax
R,i ,∀i ∈ NR, (5.15c)

tr
(
V̄k

)
≤ Pmax

U,k ,∀k ∈ NU. (5.15d)

Constraint (5.15c) follows the assumption that all RRHs have their own power budget of

Pmax
R,i . This should be allocated by each RRH for transmission and quantization. In this
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case, a lower quantization noise can be achieved by allocating more power for quantization

with the consequence of a lower power remaining for transmission. Constraint (5.15d)

limits the maximum transmit power for each UE with their own budgets.

Algorithm 8. Joint design based sum-rate maximization for perfect instantaneous CSI in

uplink transmission.
1: Input: Essential system parameters, including fronthaul channels H, access channels

G;

2: Initialization: Set r := 0 and a feasible point {V̄(0) ⪰ 0,Ω(0) ⪰ 0,p
(0)
R ≥ 0};

3: repeat

4: Update r := r + 1;

5: Find the optimal solution {V̄(r),Ω(r),p
(r)
R } by solving convex optimization prob-

lem (5.15) based on the known {V̄(r−1),Ω(r−1),p
(r−1)
R }

maximize
V̄(r)⪰0, Ω(r)⪰0, p

(r)
R ≥0

∑
k∈NU

wkC
lb
ac,k(V̄(r),Ω(r)|V̄(r−1),Ω

(r−1)
i ),

s.t. φub
i (V̄(r),Ω(r)|V̄(r−1),Ω(r−1)) ≤ Ci,∀i ∈ NR,

C lb
fr,i(p

(r)
R |p(r−1)

R ) ≥ Ci,∀i ∈ NR,

p
(r)
R,i ≤ Pmax

R,i ,∀i ∈ NR,

tr
(
V̄

(r)
k

)
≤ Pmax

U,k ,∀k ∈ NU,

6: until convergence;

7: Output: {V̄⋆,Ω⋆,p⋆
R} := {V̄(r),Ω(r),p

(r)
R }.

Due to the non-convex objective function (5.15a) and fronthaul constraint (5.15b),

problem (5.15) is difficult to solve. Similar to the solutions we provided in Chapter 3,

we approximate those functions by a sequence of concave/convex functions following

the MM method and solve the problem iteratively. Specifically, we approximate the

nonconvex/nonconcave terms, Cac,k
(
V̄ ,Ω

)
in the objective function (5.15a), as well as

φm(V̄ ,Ω) and Cfr,i(pR) in constraint (5.15b), by linearizing them using a Taylor series

Ψ(A,B) around the optimal point B obtained from an given point { ˜̄V , Ω̃, p̃R}, which is
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defined by

Ψ(A,B) ≜ log det(B) +
1

ln 2
tr(B−1(A−B)). (5.17)

Therefore, Cac,k
(
V̄ ,Ω

)
in the objective function (5.15a) can be approximated by its convex

lower bound as

Cac,k(V̄ ,Ωi) ≥ C lb
ac,k(V̄ ,Ωi| ˜̄V , Ω̃i)

≜ log det

(∑
k∈NU

GT
k V̄kG

∗
k + σ2

RI+Ω

)

−Ψ

 ∑
j∈NU\{k}

GT
j V̄jG

∗
j + σ2

RI+Ω,
∑

j∈NU\{k}

GT
j
˜̄VjG

∗
j + σ2

RI+ Ω̃

 .

(5.18)

In addition, for constraint (5.15b), φm(V̄ ,Ω) is upper bounded by a concave function as

φi(V̄ ,Ωi) ≤ φub
i (V̄ ,Ωi| ˜̄V , Ω̃i)

≜ Ψ

(
ΓH

i

(∑
k∈NU

GT
k V̄kG

∗
k

)
Γi + σ2

CI+Ωii,

ΓH
i

(∑
k∈NU

GT
k
˜̄VkG

∗
k

)
Γi + σ2

CI+ Ω̃ii

)

− log det
(
ΓH

Sm
ΩΓSm

)
, (5.19)

whereas Cfr,i(pR) is lower bounded by its convex approximation given as

Cfr,i(pR) ≥ C lb
fr,i(pR|p̃R)

≜ log2

(
σ2

C∥wi∥2 +
∑
i∈NR

|wih
T
i |2pR,i

)

−Ψ

σ2
C∥wi∥2 +

∑
j∈NR\{i}

|wih
T
j |2pR,j, σ

2
C∥wi∥2 +

∑
j∈NR\{i}

|wih
T
j |2p̃R,j

 .

(5.20)

In Algorithm 8, we summarize the steps to iteratively solve the resulting convex optimiza-

tion problem. The optimized objective value is guaranteed to be non-decreasing and reach

convergence [92].
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5.3.2 Total Power Minimization

In this section, we further consider increasing EE for a guaranteed achievable sum-rate

of the whole network. Similar to Subsections 3.3.2 and 4.2.2, the power minimization

problems for the uplink transmission can be formulated as

minimize
p≥0, V̄⪰0, Ω⪰0

∑
k∈NU

tr
(
V̄k

)
+
∑
i∈NR

pR,i, (5.21a)

s.t.
∑
k∈NU

C lb
ac,k
(
V̄ ,Ω

)
≥ γ, (5.21b)

φi(V̄ ,Ω) ≤
∑
i∈Sm

Cfr,i(pR), ∀m ∈ NS , (5.21c)

pR,i ≤ Pmax
R,i ,∀i ∈ NR, (5.21d)

tr
(
V̄k

)
≤ Pmax

U,k ,∀k ∈ NU, (5.21e)

where γ denotes the minimum guaranteed sum-rate for all UEs. The resulting problem

(5.21) is hard to solve due to non-convex constraints (5.21b) and (5.21c). The MM method

can be adopted to solve the problem iteratively and the steps are detailed in Algorithm 9.

5.4 Numerical Results

To evaluate the performance of our proposed system, we provide in this section some

numerical simulations. We consider a square area of size 1 km2, in which a CU is placed

in the center. Around the CU, there are NR = 4 uniformly distributed RRHs and NU = 10

uniformly distributed UEs, each of which is equipped with K = 2 and N = 3 antennas,

respectively. We make sure that the distance from RHHs to the CU is no closer than 10

m, and the distance between RRHs is no closer than 100 m. We consider the setup where

the transmission between the fronthaul links and access links are separated in the time

domain and operated at the same carrier frequency 1.9 GHz with the system bandwidth

B = 20 MHz. As a result, we assume there is no self-interference between the transmit

and receive antennas at the RRHs. For the fronthaul link, we consider LoS channel
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Algorithm 9. Joint design based transmit power minimization for perfect instantaneous

CSI in uplink transmission.
1: Input: Essential system parameters, including fronthaul channels H, access channels

G, and

• Average Initialization: a random feasible point {p(0) ≥ 0, Ū (0) ⪰ 0,Ω(0) ⪰ 0};

• Sum-rate Based Initialization: an optimized feasible point {p(0) ≥ 0, Ū (0) ⪰

0,Ω(0) ⪰ 0} obtained from the sum-rate maximization problem solved in Algorithm

1;

2: Initialization: Set r := 0;

3: repeat

4: Update r := r + 1;

5: Find the optimal solution {p(r), Ū (r),Ω(r)} by solving problem (5.21) based on

the given point {p(r−1), Ū (r−1),Ω(r−1)}:

minimize
p(r)≥0, V̄(r)⪰0, Ω(r)⪰0

∑
k∈NU

tr
(
V̄

(r)
k

)
+
∑
i∈NR

p
(r)
R,i,

s.t.
∑
k∈NU

C lb
ac,k
(
V̄(r),Ω(r)|V̄(r−1),Ω(r−1)

)
≥ γ,

φi(V̄(r),Ω(r)|V̄(r−1),Ω(r−1)) ≤
∑
i∈Sm

Cfr,i(p
(r)
R |p(r−1)

R ), ∀m ∈ NS ,

p
(r)
R,i ≤ Pmax

R,i , ∀i ∈ NR,

tr
(
V̄

(r)
k

)
≤ Pmax

U,k , ∀k ∈ NU;

6: until convergence;

7: Output: {p⋆, Ū⋆,Ω⋆} := {p(r), Ū (r),Ω(r)}.
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in (5.4) with a free-space path loss model. For the access link, we consider Rayleigh

fading channel with a rather realistic path loss model specified by 3GPP in [100], where

we use the scenario of urban microcell (UMi) with NLoS, and set the height of RRHs

hRHH = 22.5 m and the height of UEs hUE = 1.5 m. Unless otherwise stated, the power

budgets for the RRHs and the UEs are set as Pmax
R ≜ Pmax

R,i = 30 dBm, ∀i ∈ NR, and

Pmax
U ≜ Pmax

U,k = 20 dBm, ∀k ∈ NU, respectively. Throughout this section, we consider

that all UEs have the same weighting coefficients, i.e., wk = 1, ∀k ∈ NU.

We first show in Figure 5.2 the convergence of the proposed algorithm for the MR and

ZF combining schemes with different numbers of antennas at the CU, M . We can see that

for both MR and ZF, the convergence is achieved within 40 iterations. As expected, the ZF

schemes outperforms MR for all cases. Furthermore, increasing the number of antennas

at the CU always leads to a higher network sum-rate.

In Figure 5.3, we investigate the average sum-rate against the UEs transmit power

Pmax
U , where the average sum-rate is computed using Algorithm 8 with Pmax

R = 30 dBM

over several channel realizations. Figure 5.3 shows that the average sum-rate increases

linearly with Pmax
U . As we increase the number of antennas at the CU, M , the slope of

the curve increases for both MR and ZF combining schemes. Moreover, we can observe

that the ZF scheme generally outperforms the MR combining scheme. To achieve the

same average sum-rate of 30 bits/s/Hz, the MR combining scheme requires 150 more CU

antennas with slightly more UE transmit power than the ZF scheme. This is due to the

well-known fact that ZF can suppress the interference between RRHs more effectively.

To further investigate the effect of the fronthaul links on the performance, we evaluate

the average sum-rate against Pmax
R for Pmax

U = 20 dBm in Figure 5.4. The average sum-

rate initially increases as Pmax
R increases, but then appears to be bounded at high Pmax

R for

both MR and ZF combining schemes. Note that we only specify the maximum available

transmit power Pmax
R , which is the same for all RRHs. However, different RRHs can have

different transmit power pR,i as a variable of the optimization problem. Since Algorithm

8 should jointly give the optimal pR,i and Ωi, increasing Pmax
R is not expected to increase
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Figure 5.2: Convergence speed in terms of average sum-rate against iteration index of

the proposed algorithm for MR and ZF fronthaul beamforming with different number of

antennas at the CU, M .
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Figure 5.3: Average sum-rate with respect to the UE transmit power Pmax
U for MR and ZF

combining schemes, and for different number of antennas at the CU, M .
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Figure 5.4: Average sum-rate with respect to the maximum available transmit power at

RRHs Pmax
R for MR and ZF combining schemes, and for different numbers of antennas at

the CU, M .
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Figure 5.5: Convergence speed of the power minimization problem in Algorithm 9 with

sum-rate based initialization and minimum required sum-rate γ = 30 bits/s/Hz for MR

and ZF combining schemes, and for different numbers of antennas at the CU, M .
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the sum-rate beyond a certain point to satisfy constraint (5.15b). This might explain the

asymptotic behavior observed in Figure 5.4. In this regard, increasing the number of

antennas M and using a better fronthaul combining scheme can enlarge the feasibility set,

as can be seen from the curve that shifts upwards. As we increase M , the gap between the

curves appears to get smaller. It is shown more clearly for ZF, which indicates a bound in

M . We leave the further investigation of this bound as our future work.

In Figure 5.5, the total power minimization problem is simulated by utilizing the

average initialization as the starting point. Both ZF and MR combining schemes are

considered, along with different numbers of antennas M equipped at the CU. It is obvious

that the convergence is achieved rapidly within 10 iterations. For the MR scheme, a

larger number of antennas at the CU results in an obvious reduction in total consumption.

However, this trend is almost negligible for the ZF scheme. Despite the small impact of

increasing M , the ZF scheme still outperforms MR and achieves a significant reduction

in power consumption through the joint design presented in Algorithm 9.

Figures 5.6 and 5.7 compare the different initialization methods with various required

sum-rate γ. Figure 5.6 utilizes the average initialization method and the feasibility of such

problem is very small with large γ, especially when γ ≥ 10 bits/s/Hz. Conversely, Figure

5.7 employs the optimal solutions obtained from the sum-rate maximization problem

given in Algorithm 8, which is able to minimize the power consumption under a much

higher ensured sum-rate. Figure 5.6 illustrates that at the start of the optimization, the ZF

scheme requires slightly more total power than the MR scheme, whereas both schemes

substantially reduce power consumption to a low level by the end of the optimization

process. Conversely, Figure 5.7 demonstrates a distinct gap between the ZF and MR

schemes, with the ZF scheme requiring significantly less power, particularly when ensuring

a high sum-rate. For both scenarios, the proposed joint power minimization problem can

significantly reduce the total transmit power for both ZF and MR schemes.
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Figure 5.6: Convergence speed of the power minimization problem in Algorithm 9 with

average initialization method, M = 200, for different required sum-rate γ.
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5.5 Conclusion

In this chapter, we studied the utilization of massive MIMO fronthaul in the uplink

transmission of the CRAN system. To maximize the sum-rate and minimize the total power

consumption, we jointly optimized the precoding matrices at the UEs, the quantization

covariance matrices, and the transmit powers at the RRHs. The conventional precoding

methods, namely MR and ZF combining, were employed for the fronthaul transmission.

Furthermore, the CF method was used at the RRHs. Iterative algorithms have also been

presented to solve non-convex optimization problems based on the MM approach.

Numerical simulations were conducted to evaluate the performance of our proposed

design with respect to the MR and ZF combining schemes. As expected, the ZF scheme

outperformed the MR combining scheme. For both schemes, we observed an asymptotic

behavior of the sum-rate with respect to the maximum available transmit power at the

RRHs. This insight suggests that relaxing the fronthaul bottleneck by increasing the

available power at RRHs may be less effective. Alternatively, increasing the number of

antennas at the central unit may result in greater improvements.
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Chapter 6

Multi-UAV-enabled CRANs with Massive

MIMO

6.1 Introduction

In this chapter, we propose a novel architecture for multi-UAV-enabled CRAN. In par-

ticular, UAVs are proposed to be deployed as flying RRHs to serve ground UEs. Due

to many advantages such as fast configuration, high mobility, and low cost, using UAVs

as flying RRHs in CRAN is very promising in certain applications where conventional

CRAN might not be suitable. During unexpected or occasional situations, such as urgent

accidents or provisional events, the demand for data throughput to support monitoring

and information exchange can rapidly increase. Also, in case of disasters where terrestrial

communications might stop working (e.g., BSs are damaged), UAVs can be deployed

quickly and timely as flying BSs to ensure reliable coverage of the impacted area. The

combination of UAV-enabled communication and CRAN structure can realize temporary

and cost-effective communication requirements with fast deployment and wide-range cov-

erage. As the fronthaul links in the proposed CRAN architecture, unlike the conventional

one, have to be wireless, we propose to use a large-scale antenna array equipped at CU to



6.2. System Model

enhance the capacity of the fronthaul link.

The system model of the proposed architecture is presented in Section 6.2. To validate

the proposed model and aim to maximize the whole network, a max-min fairness opti-

mization problem and one of the potential solutions are proposed in Section 6.3. Section

6.4 provides numerical results to verify the effectiveness of the proposed system. Finally,

the conclusion of this chapter is drawn in Section 6.5.

6.2 System Model

Consider the downlink transmission in a UAV-enabled CRAN system consisting ofNU > 1

single-antenna UE and single-antenna UAV pairs 1. In such case, NR = NU represents the

number of UAVs. The CU is assumed to be equipped with a large-scale UPA of M ≫ NU

antennas. TDD transmission mode is adopted here to coordinate the transmissions among

the fronthaul and access links 2. For the sake of implementation simplicity, this chapter

assumes that direct links between the CU and the UEs either do not exist or are too weak

to be exploited.

Figure 6.1 shows the geometric model of the system. A 3-D coordinate system (x, y, z)

is established where the ground is set as the x-y plane. One corner antenna of UPA is

located at (0, 0, HC), where HC is the CU height. We assume that the UPA is equipped

with My rows of antennas where all the rows are parallel with the x-axis. Each row has

Mx antennas with an antenna spacing δ = λ/2, where λ is the wavelength. Hence, the

total number of antennas at the CU is M = MxMy. For notational convenience, we define

1We note that a UAV can serve multiple UEs via using multiple access techniques such as FDMA,

TDMA, code-division multiple access (CDMA), OFDMA, etc.

2Note that the investigation of the signalling overheads among the CU, UAVs, and UEs as well as their

costs and timeliness is beyond the scope of this chapter.
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Figure 6.1: System model of the proposed UAV-enabled CRAN.

the antenna element in the i-th column and the j-th row as the m-th antenna where

m = i+ (j − 1)Mx, ∀i ∈ {1, . . . ,Mx} , j ∈ {1, . . . ,My} . (6.1)

Also, we define NU = {1, . . . , NU}, NR = {1, . . . , NU} and NC = {1, . . . ,M} as the sets

of UEs, UAVs, and the antennas at the CU, respectively.

Based on this coordinate system, the location of the m-th antenna is defined as

vC,m = ((i− 1)δ, − (j − 1)δ sinϕ, (j − 1)δ cosϕ+HC) , (6.2)

where ϕ is the inclined angle between the array and the x-z plane as shown in Figure 6.1.

We assume that the UAVs fly at a constant altitude HR. The locations of the i-th UAV and

the k-th UE are defined as

qi = (xi, yi, HR), ∀i ∈ NR, (6.3)

and

vU,k = (xU,k, yU,k, 0), ∀k ∈ NU, (6.4)

respectively. Assuming that the locations of the UEs are constant and perfectly known.

Therefore, distance lmi between the m-th CU antenna element and the i-th UAV is

lmi = ∥qi − vC,m∥. (6.5)
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and distance dik between UAV i and UE k is

dik = ||qi − vU,k|| =
√

(xi − xU,k)2 + (yi − yU,k)2 +H2
R, (6.6)

It is worth noting that some essential information, such as the locations of CU and all UEs

and CSI for both links, is assumed to be well-known to all the units and keep constant in

the same frame due to the change in a very short time being negligible.

Let hi ≜ [h1i, . . . , hMi]
T and gk ≜ [g1k, . . . , gNk]

T denote the downlink channel

coefficients from all antennas at the CU to the i-th UAV and from all UAVs to the k-th UE,

respectively. Since the ground-to-air and air-to-ground channels are generally dominated

by the LoS link in practice, for simplicity, we assume that both the fronthaul and access

links are modelled as LoS channels [56, 80]. As a result, the channels between the m-th

CU antenna and the i-th UAV and between the i-th UAV and the k-th UE are defined as

hmi =

√
ξ

l2mi

h̄mi and gik =

√
ξ

d2ik
ḡik, (6.7)

respectively, where

h̄mi = e−i 2π
λ
lmi and ḡik = e−i 2π

λ
dik (6.8)

denote the phase shifts of the fronthaul and access links, respectively, and ξ represents

the path loss at the reference distance d0 = 1m in both links. For future use, we define

h̄i ≜ [h̄1i, . . . , h̄Mi]
T .

Denote the message that the CU intends to transmit to the k-th UE is encoded as

sU,k ∼ CN (0, 1). Thus the precoded signal sent from the paired k-th UAV is given as

x̄R,k =
√
pR,k sU,k, (6.9)

where pR,k is the power of x̄R,k. The CU first quantizes and compresses x̄R,k. We adopt the

decompress-and-forward relaying strategy and use the Gaussian quantization test channel

to model the quantization process [39]. Hence, the resulting quantized signal, xR,k, can

be expressed as

xR,k = x̄R,k + ωk, (6.10)
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where ωk ∼ CN (0,Ωk) is the compression noise. By assuming that the signals x̄R,k,

k ∈ NU, are compressed independently, their corresponding quantization noises are

hence uncorrelated, i.e., E[ωiω
∗
j ] = 0 for i ̸= j [39]. Let Ω = [Ω1, . . . ,ΩN ]

T . The

CU then compresses the quantized signal xR,i to generate the compression index Vi ∈{
1, 2, . . . , 2nLCi

}
, where nL denotes the coding block length and Ci denotes the rate

of message Vi. Subsequently, the CU encodes each message Vi to obtain the encoded

baseband signal sR,i ∼ CN (0, 1) and generates the normalized precoding vector wi ∈

CM×1 for sR,i. wi denotes the i-th column of the precoding matrix W ∈ CM×N . Here,

we consider two conventional low-complexity linear precoders, namely the MF and ZF

precoding methods. Thus, W can be expressed as

W ≜

 H̄∗/M, for MF,

H̄∗ (H̄T H̄∗)−1
, for ZF,

(6.11)

where H̄ ≜ [h̄1, . . . , h̄NR ]. It is worth noting that (6.11) is slightly different from ZF

method used in (3.7) as lmi is no longer fixed and needs to be taken into account in this

chapter. Next, the CU sends the precoded signal
∑
i∈NR

wi
√
pC,isR,i to the UAVs, where pC,i

is a real-valued coefficient represents transmit power. The signal received by the i-th UAV

is given by

yR,i = hT
i wi

√
pC,isR,i + hT

i

∑
j∈NR\{i}

wj
√
pC,jsR,j + nR,i, (6.12)

where nR,i ∼ CN (0, σ2
R) denotes the noise at the i-th UAV, i ∈ NR. Therefore, the rate Ci

through the fronthaul link should be constrained as

Ci ≤ Cfr,i(Q,pC) ≜ log2

(
1 +

pC,i
∣∣hT

i wi

∣∣2∑
j∈NR\{i}

pC,j |hT
i wj|

2
+ σ2

R

)
, (6.13)

where Q =
[
qT
1 , . . . , q

T
N

]T and pC = [pC,1, . . . , pC,N ]
T . Then, each UAV i decompresses

the signal received from the CU to recover the message xR,i. In order to decompress the

signals successfully at the UAVs, the message rate Ci should be bounded as [67]

Ci ≥ φi(pR,i,Ωi) ≜ log2

(
1 +

pR,i

Ωi

)
, i ∈ NR. (6.14)
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The message recovered by UAV i, xR,i, is then forwarded to its paired UE i. The signal

received by the k-th UE is given by

yU,k = gkk
√
pR,ksU,k +

∑
j∈NR\{k}

gjk
√
pR,jsU,j +

∑
j∈NR

gjkωj + nU,k, (6.15)

where nU,k ∼ CN (0, σ2
U) denotes the noise at UE k. Hence, the achievable rate for UE k

can be obtained as

Rk ≜ Cac,k (Q,pR,Ω) . (6.16)

In order to simplify the steps to solve the problem, it is easy to decompose Cac,k (Q,pR,Ω)

into two parts

Rk = Rk,1 (Q,pR,Ω)−Rk,2 (Q,pR,Ω) . (6.17)

where

Rk,1 (Q,pR,Ω) = log2

( ∑
j∈NR

(pR,j + Ωj) |gjk|2 + σ2
U

)
, (6.18a)

Rk,2 (Q,pR,Ω) = log2

( ∑
j∈NR\{k}

pR,j |gjk|2 +
∑
j∈NR

Ωj |gjk|2 + σ2
U

)
. (6.18b)

In the next section, we jointly optimize the power control coefficients, the quantization

noise variance, and the UAV placement according to the max-min fairness criterion3.

6.3 Max-min Fairness Optimization Problem

In this section, our goal is to maximize the minimum rate among all UEs via the opti-

mization of UAVs placement Q, power control pC,pR, and quantization noise variance

Ω. According to (6.13), (6.14), and (6.17), the corresponding optimization problem can

3Note that it is straightforward to extend this work to other criteria such as the sum-rate criterion.
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be formulated as

max
Q,pC,pR,Ω,C

min
k

Rk (Q,pR,Ω) , ∀k ∈ NU, (6.19a)

s.t. Ci ≤ Cfr,i(Q,pC), ∀i ∈ NR, (6.19b)

Ci ≥ φi(pR,i,Ωi), ∀i ∈ NR, (6.19c)

pR,i + Ωi ≤ Pmax
R,i , ∀i ∈ NR, (6.19d)

tr
{

diag (pC,1, . . . , pC,NR)W
HW

}
≤ Pmax

C , (6.19e)

∥qi − qj∥2 ≥ d2min, ∀i, j ∈ NR, i ̸= j, (6.19f)

pC,i ≥ 0, pR,i ≥ 0, Ωi ≥ 0, ∀i ∈ NR, (6.19g)

where C ≜ {Ci : ∀i ∈ NR} and dmin is the minimum safety distance between any two

UAVs to avoid collisions. (6.19d) and (6.19e) refer to the power constraints at each UAV

and the CU, respectively. Pmax
R,i and Pmax

C denote the maximum transmit powers at RRH i

and CU, respectively.

It is clear that problem (6.19) is very hard to solve because it is non-convex. To solve

it, we propose to decompose it into two convex sub-problems and solve them iteratively

by applying the BCD and SCA method [56].

6.3.1 Sub-Problem 1: UAV placement optimization

Firstly, for any given pC,pR,Ω, we aim to optimize the UAV placement Q. Therefore,

sub-problem 1 is derived from problem (6.19) as

max
Q,C

min
k

Rk,1 (Q)−Rk,2 (Q) , ∀k ∈ NU, (6.20a)

s.t. Ci ≤ Cfr,i(Q), ∀i ∈ NR, (6.20b)

Ci ≥ φi, ∀i ∈ NR, (6.20c)

∥qi − qk∥2 ≥ d2min, ∀i, k ∈ NR, i ̸= k. (6.20d)

It is observed that the objective function (6.20a) and constraints (6.20b) and (6.20c) are all

non-convex. Define slack variables S ≜ {Sik : ∀i ∈ NR, k ∈ NU}. Then, Rk,2 in (6.18a)
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can equivalently be rewritten as

Rk,2(S) = log2

(
ξ
∑

i∈NR\{k}

pR,i + Ωi

Sik

+ ξ
Ωj

Skk

+ σ2
R

)
. (6.21)

Thus, problem (6.20) can be recast as

max
Q,S,C

min
k

Rk,1 (Q)−Rk,2 (S) , ∀k ∈ NU, (6.22a)

s.t. Sik ≤ ∥qi − vU,k∥2, ∀i ∈ NR, k ∈ NU, (6.22b)

(6.20b), (6.20c), (6.20d).

Note that Rk,1 (Q) is neither convex nor concave with respect to qi, but it is convex with

respect to ∥qi−vU,k∥2. Define q(r)
i =

{
q
(r)
i ,∀i ∈ NR

}
as the placement solution from the

(r− 1)-th iteration. By taking the first-order Taylor expansion at the point ∥q(r)
i −vU,k∥2,

we can get the lower bound for Rk,1 with respect to ∥qi − vU,k∥2 as

Rk,1 = log2

(
ξ
∑
i∈NR

pR,i + Ωi

∥qi − vC,k∥2
+ σ2

U

)
≥
∑
i∈NR

−A
(r)
k,i

(
∥qi − vC,k∥2 − ∥q (r)

i − vC,k∥2
)
+B

(r)
k

≜ Rlb
k,1, ∀k ∈ NU, (6.23)

where

A
(r)
k,i =

ξ(pR,i + Ωi) log2 e

∥q(r)
i − vC,k∥4

( ∑
k∈NR

ξ(pR,k+Ωk)

∥q (r)
k −vC,k∥2

+ σ2
U
) (6.24)

and

B
(r)
k = log2

( ∑
k∈NR

ξ(pR,k + Ωk)

∥q (r)
k − vC,k∥2

+ σ2
U
)

(6.25)

are constants.

In the fronthaul links, since the antenna spacing at the CU is negligible compared with

the distance between the CU and UAVs, it is reasonable to assume that all the links to the

same UAV are identical and hence lmi ≈ li, ∀m ∈ NC. Therefore, the fronthaul channel
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model in (6.7) can be re-expressed as hmi =
√

ξ/l2i h̄mi, ∀i ∈ KR and thus the capacity

Cfr,i(Q,pC) in (6.13) can be simplified as

Cfr,i(Q,pC) = log2

(
1 +

pC,i

∣∣∣√ ξ
l2i
h̄T
i wi

∣∣∣2∑
j∈NR\{i}

pC,j

∣∣∣√ ξ
l2i
h̄T
i wj

∣∣∣2 + σ2
R

)
, (6.26)

As indicated in [44], asymptotic orthogonality would exist in LoS scenario if a UPA is

applied. The first term of the numerator in (6.26) tends to zero when M tends to infinity.

Therefore, we ignore this part for simplifying the optimization problem and the constraint

(6.20b) is replaced as

Ci ≤ Cfr,i(Q) ≈ log2

(
1 +

ξpC,i

σ2
R ||qi − vU,1||2

)
≜ C̃fr,i(qi), ∀i ∈ KR.

(6.27)

C̃fr,i(qi) is convex with respect to ∥qi−vU,1∥2, but constraint (6.27) is still non-convex with

respect to variableqi. Therefore, we derive the lower bound at the point ∥q(r)
i −vU,1∥2, ∀i ∈

NR, which is given by

C̃fr,i(qi) ≥ −E
(r)
i

(
∥qi − vU,1∥2 − ∥q(r)

i − vU,1∥2
)
+ F

(r)
i

≜ C̃ lb,1
fr,i (qi), (6.28)

where

E
(r)
i =

pC,i log2 e
σ2

R
ξ
∥q(r)

i − vU,1∥4 + pC,i∥q(r)
i − vU,1∥2

(6.29)

and

F
(r)
i = log2

(
1 +

ξpC,i

σ2
R∥q

(r)
i − vU,1∥2

)
(6.30)

are constants. Similarly, ∥qi − vU,k∥2 is convex with respect to qi, hence constraint

(6.22b) is non-convex. By applying the first-order Taylor expansion, the lower bound of

∥qi − vU,k∥2 at q(r)
i is given by

∥qi − vU,k∥2 ≥ ∥q(r)
i − vU,k∥2 + 2(q

(r)
i − vU,k)

T (qi − q
(r)
i ). (6.31)
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Also, we can get the lower bound for the ∥qi − qk∥2 in constraint (6.20d) as

∥qi − qk∥2 ≥ −∥q(r)
i − q

(r)
k ∥2 + 2(q

(r)
i − q

(r)
k )T (qi − qk). (6.32)

Now, using (6.23)-(6.32), problem (6.20) can be reformulated as

max
Q,S,C

min
k

Rlb
k,1 (Q)−Rk,2 (S) (6.33a)

s.t. Sik ≤ ∥q(r)
i − vU,k∥2 + 2

(
q
(r)
i − vU,k

)T ×
(
qi − q

(r)
i

)
, ∀i ∈ NR, k ∈ NU,

(6.33b)

Ci ≤ C̃ lb,1
fr,i (qi), ∀i ∈ NR, (6.33c)

d2min ≤ −∥q(r)
j − q

(r)
k ∥2 + 2

(
q
(r)
j − q

(r)
k

)T ×
(
qj − qk

)
, ∀j, k ∈ NR, j ̸= k,

(6.33d)

(6.20c),

which is a convex problem and can thus be solved iteratively using a standard convex

optimization toolbox such as CVX [91].

6.3.2 Sub-Problem 2: Power control and quantization noise variance

optimization

Now, for any given UAV placement Q, we aim to optimize the power coefficients pC,pR

and quantization noise Ω. From problem (6.19), we can obtain sub-problem 2 as follows

max
pC,pR,Ω,C

min
k

Rk,1 (pR,Ω)−Rk,2 (pR,Ω) , ∀k ∈ NU, (6.34a)

s.t. Ci ≤ Cfr,i(pC), ∀i ∈ NR, (6.34b)

Ci ≥ φi(pR,i,Ωi), ∀i ∈ NR, (6.34c)

pR,i + Ωi ≤ Pmax
R,i , ∀i ∈ NR, (6.34d)

tr
{

diag (pC,1, . . . , pC,NR)WWH
}
≤ Pmax

C , (6.34e)

pC,i ≥ 0, pR,i ≥ 0, Ωi ≥ 0, ∀i ∈ NR. (6.34f)
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Problem (6.34) is hard to solve due to the non-convexity of the objective function

(6.34a) and constraints (6.34b) and (6.34c). Let us define p
(r)
C and p

(r)
R as the given

power coefficients from the (r − 1)-th iteration where p
(r)
C =

[
p
(r)
C,1, . . . , p

(r)
C,N

]T
, Ω(r) =[

Ω
(r)
1 , . . . ,Ω

(r)
N

]
, and p

(r)
R =

[
p
(r)
R,1, . . . , p

(r)
R,N

]T
. For the objective function (6.34a), we can

derive an upper bound for the concave function Rk,2 (pR,Ω) at a given point (p(r)
R ,Ω(r)),

which is given by

Rk,2(pR,Ω) ≤
∑

i∈NR\{k}

I
(r)
k,i (pR,i − p

(r)
R,i) +

∑
i∈NR

I
(r)
k,i (Ωi − Ω

(r)
i ) + J

(r)
k

≜ Rub
k,2 (pR,Ω) , ∀k ∈ NU, (6.35)

where

I
(r)
k,i =

|gik|2 log2 e∑
j∈NR\{k}

p
(r)
R,j |gjk|

2 +
∑

j∈NR

Ω
(r)
j |gjk|2 + σ2

U

(6.36)

and

J
(r)
k = log2

( ∑
j∈NR\{k}

p
(r)
R,j |gjk|

2 +
∑
j∈NR

Ω
(r)
j |gjk|2 + σ2

U

)
(6.37)

are constants. Similarly, the right-hand-side of constraint (6.34c) has the following upper

bound at the point (p(r)
R ,Ω(r))

φi(pR,i,Ωi) ≤
log2 e

p
(r)
R,i + Ω

(r)
i

(pR,i + Ωi) + log2

(
p
(r)
R,i + Ω

(r)
i

)
− log2 e− log2 (Ωi)

≜ φub
i (pR,i). (6.38)

For constraint (6.34b), the lower bound for Cfr,i(pC) with respect to pC using the

first-order Taylor expansion at p(r)
C is

Cfr,i(pC) ≥ log2
( ∑
j∈NR

∣∣hT
i wj

∣∣2 pC,j + σ2
R
)
−

∑
k∈NR\{i}

X
(r)
i,k (pC,k − p

(r)
C,k)− Y

(r)
i

≜ C lb,2
fr,i (pC), (6.39)

where

X
(r)
i,k =

∣∣hT
i wk

∣∣2 log2 e∑
j∈NR\{k} |h

T
i wj|

2
p
(r)
C,j + σ2

R

(6.40)
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and

Y
(r)
i = log2

( ∑
j∈NR\{i}

∣∣hT
i wj

∣∣2 p(r)C,j + σ2
R

)
. (6.41)

Therefore, using (6.35)-(6.39), problem (6.34) can be recast as

max
pC,pR,Ω,C

min
k

Rk,1 (pR,Ω)−Rub
k,2 (pR,Ω) , ∀k ∈ NU, (6.42a)

s.t. Ci ≤ C lb,2
fr,i (pC), ∀i ∈ NR, (6.42b)

Ci ≥ φub
i (pR,i,Ωi), ∀i ∈ NR, (6.42c)

(6.34d), (6.34e), (6.34f),

which is a convex problem and hence can be solved iteratively using a standard convex

optimization toolbox such as CVX.

6.3.3 Iterative Algorithm

Similar to [56], we adopt the BCD algorithm and the overall solution for problem (6.19)

is given in Algorithm 10. It should be noted that the convergence of Algorithm 10 is

guaranteed [56]. Note that in sub-problem 1, we approximate (6.13) by (6.27) to simplify

constraint (6.19b), and as a result, the obtained optimal solution for sub-problem 1 may

not meet all the conditions in the original problem (6.19). However, a tighter function

(6.39) for the same constraint is used in sub-problem 2 and thus making sure any ultimate

solutions are all feasible for problem (6.19).

6.4 Numerical Results

In this section, we assess the performance of the proposed algorithm. We assume that

the UAVs are deployed in a rural environment and the UEs are randomly and uniformly

distributed within a square area of 1 km2 where the distance between its center and the
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Algorithm 10. Joint design based iterative sum-rate maximization for downlink transmis-

sion in UAV-enabled Massive MIMO CRANs.
1: Input: Essential system parameters and a feasible point {Q(0),Ω(0),p

(0)
C ,p

(0)
R };

2: Initialization: Set r := 0;

3: repeat

4: Update r := r + 1;

5: Solve problem (6.33) for given {Q(r−1),p
(r−1)
C ,p

(r−1)
R ,Ω(r−1)}, and denote the

optimal solution as {Q(r)};

6: Solve problem (6.42) for given {Q(r),Ω(r−1),p
(r−1)
C ,p

(r−1)
R }, and denote the op-

timal solution as {Ω(r),p
(r)
C ,p

(r)
R };

7: until convergence;

8: Output: {Q⋆,Ω⋆,p⋆
C,p

⋆
R} := {Q(r),Ω(r),p

(r)
C ,p

(r)
R }.

Table 6.1: Parameter settings for the simulation.

Parameters Description Value

HC Altitude of CU 30 m

HR Altitude of UAVs 60 m

ϕ Tilted angle of CU antenna arrays 0◦

λ Wavelength 0.5 m

δ Antenna spacing at CU 0.25 m

σ2
R, σ2

U Noise level in both Links −100 dBm

ξ Channel gain at 1m for both links −40 dB

Pmax
C Transmit power for CU 1 W

Pmax
R,i , ∀i ∈ NR Transmit power for each UAV 0.1 W

dmin Minimum safe distance between UAVs 10 m
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Figure 6.2: Path of UAV optimized positions in the proposed algorithms.

CU is denoted by D. Unless otherwise specified, we consider the following simulation

parameters are set as shown in Table 6.1.

Figure 6.2 shows the trajectory of the UAV placement optimized with iterations. It

is observed that the steps are getting smaller with each iteration and eventually become

stationary where the best placement is achieved.

Figure 6.3 investigates the convergence of the proposed algorithm and illustrates the

minimum rate against the iteration number for difference values of D. We consider the

scenario of N = 5 UAV-UE pairs and ZF precoding at the CU. For comparison purposes,

we consider two benchmark schemes. In the first scheme, referred to as Scheme I, only

the placement of UAVs is optimized; and in the second scheme, referred to as Scheme

II, only the power control at the CU and RRH is optimized. We can clearly see that

the proposed algorithm significantly outperforms the two benchmark schemes. Also, we

notice that as the distance between the CU and the served area, D, increases from 2000m

to 4000m the convergence speeds and achieved minimum rates of the algorithms decrease.

We also observe that the proposed algorithm and Scheme I have approximately the same
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Figure 6.3: Convergence speed of the proposed algorithm for N = 5 UAV-UE pairs with

ZF in the fronthaul link.

convergence speed, which is slower than that of Scheme II.

Figure 6.4 demonstrates the impact of the transmit power of UAVs on the minimum

rate achieved by each UE for different values of CU tranmit power. We considerK = 2 and

ZF precoding at the CU. We can see clearly that As the UAV transmit power increases the

minimum rate increases. Also, increasing the CU transmit power results in an improved

minimum rate. It is important to notice that as the CU transmit power increases the rate

of improvement of the minimum rate decreases and this can be explained by the fact that

beyond a certain value of the CU tranmit power the access link becomes the bottleneck

link.

Figure 6.5 compares the performance of the ZF and MF precoding methods in terms of

minimum rate versus the number of UEs, N , for different values of D. It is obvious that ZF

consistently performs better than MF in all cases. However, we can see that the minimum

rate drops rapidly with the increased number of UEs for both precoding methods. This is

because the rate is limited by the interference among UEs in the access link. One solution
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to improve the performance is to combine the use of multiple antennas and precoding in

the access link, which is beyond the scope of the current work and is left as an interesting

future work.

6.5 Conclusion

In this chapter, we have introduced a novel architecture of multi-UAV-enabled CRANs,

which features a massive MIMO fronthaul connection. The proposed architecture employs

UAVs as flying RRHs to establish connectivity with the terrestrial UEs. Unlike previous

designs presented in Chapters 3 and 4, the difficulties of this system model centered on

the placement of UAVs. While positioning UAVs closer to the UEs can result in better

access link quality, it can also lead to higher interference levels among different UEs and

a reduced capacity of the fronthaul link. Also, the precoding matrices of the access link

and quantization noise were considered in the proposed joint designs.

The optimization problem formulated to maximize the minimum rate among all UEs

posed significant challenges due to its high complexity. To address this issue, the problem

was divided into two sub-problems: one focused on optimizing the UAV placements, while

the other aimed to optimize the precoding and compression noise covariance matrices. By

transforming both optimization problems into convex SDR problems, an algorithm based

on BCD and SCA methods was proposed to solve both problems iteratively.

To illustrate the optimization process, numerical results were provided in this chapter,

including the path change of UAVs’ placement and the achievable minimum rate within

each iteration. It can be observed that our proposed design can significantly increase the

minimum achievable rate compared to the two benchmark schemes. Furthermore, the

impact of the number of UEs and the transmit power of UAVs on the achievable rate was

also investigated.
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Chapter 7

Conclusion and Future Work

In this thesis, we introduced innovative architectures and optimization designs for CRAN

with massive MIMO technology enabled in the wireless fronthaul link. The proposed

joint cooperative approach for the wireless fronthaul and access links was developed for

both downlink and uplink transmissions. Specifically, this thesis addressed the challenges

of optimizing varying capacity constraints of the wireless fronthaul link while considering

multivariate compression noise and interference that naturally exists in wireless channels.

Furthermore, this thesis presented other designs with lower computational complexity

and compared them to the joint design. These included the independent point-to-point

compression strategy and separate optimization designs for wireless fronthaul and access

links. To summarize this thesis, we now conclude the primary contributions and outcomes

of each chapter.

7.1 Conclusion

In Chapter 1, we first provided a concise introduction to the developmental history of RAN

and proceeded to present ongoing research in cloud-based RAN architecture, alongside

its potential future applications. Given the increasing attention to CRAN architecture
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in recent years, we focused our research on addressing several relevant questions and

challenges. Now, at the end of this thesis, we aim to address those challenges posed in

Chapter 1, based on our research in this thesis:

• Limited Wireless Fronthaul Capacity: Our proposed designs extensively utilized

massive MIMO technology at the fronthaul link. Numerical results from our com-

prehensive analysis have demonstrated that the deployment of large-scale antenna

arrays at the CU can substantially enhance fronthaul capacity without requiring an

increase in total transmit power. It also showed the future potential to increase

data throughput for the access link by employing more transmitting antennas at the

RRHs.

• Fast and Low-cost Deployment and Mobility: In our proposed models, we con-

sidered the least functionality left at the RRHs, thereby making them lighter and less

expensive, while fully centralizing most of the protocols at the CU. The wireless

connectivity of the fronthaul link is of utmost importance in our designs, as it serves

as a crucial factor in enhancing the mobility and portability of RRHs.

• Imperfect Channel State Information: We have thoroughly considered both per-

fect instantaneous CSI and stochastic CSI, and also proposed corresponding designs

in order to maximize the sum-rate and minimize the total power consumption for

both scenarios. The lack of CSI knowledge led to the difficulty in designing pre-

coding matrices, but through our proposed designs, it was still possible to increase

the network ergodic sum-rate across all coherence blocks.

• Support for Aerial Communication: We have proposed a novel model by employ-

ing UAVs as the flying RRHs embedded in CRAN architecture with a massive MIMO

fronthaul connection. UAVs’ high mobility and rapid deployment make them valu-

able partners for terrestrial communication networks, as they provide air-to-ground

LoS channels and extensive coverage. Moreover, our work has demonstrated that

jointly optimizing the placement of UAVs, precoding matrices, and compression

schemes can significantly increase the achievable data throughput of the whole

network.
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In Chapter 2, we presented an overview of the necessary background information on the

relevant technologies and concepts used in this thesis. This was followed by an extensive

review of the latest research in the field, providing a comprehensive understanding of the

current state-of-the-art.

In Chapter 3, we focused on the downlink transmission of the CRAN architecture

and proposed massive MIMO employed for enhancing the fronthaul networks. Perfect

instantaneous CSI of the access link was assumed for designing quantization schemes,

precoding matrices, and transmit power allocation. Numerical simulations are conducted

to demonstrate the superiority of the proposed designs and algorithms compared to the

benchmarks. In this chapter, we have thoroughly discussed and compared various solvers in

terms of their performance on the convex problems we proposed. Specifically, we evaluated

their feasibility, computational complexity, and convergence behavior. Numerical results

showed that employing joint compression and adequate number of antennas at the CU can

lead to a significant increase in the achievable sum-rate and a superior reduction in power

consumption.

In Chapter 4, we concentrated on the scenario where only stochastic CSI is available

at the CU. Adopting the same architecture as used in Chapter 3, we aimed to optimize

system SE and EE by considering ergodic rates as the objective functions and constraints,

respectively. Through several simulations, we conducted a thorough analysis of the impact

of key system parameters on the achievable SE and EE. These parameters included the

number of antennas at the CU, the number of UEs, and power budgets at both the CU and

RRHs. Compared to the system model with the assumption of perfect instantaneous CSI,

as studied in Chapter 3, the lack of CSI knowledge results in a considerable decrease in

the achievable sum-rates, as expected. However, through the joint design of both links, it

is possible to efficiently increase the ergodic sum-rates and decrease the required power

consumption. Furthermore, the increasing the number of antennas at the CU brings more

improvement.

In Chapter 5, we considered the uplink transmission in a massive MIMO CRAN with
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the CF scheme implemented at the RRHs to alleviate the burden of the fronthaul link. Two

conventional strategies, namely ZF and MRC, were utilized in the beamforming designs

for the fronthaul link, where ZF has generally outperformed MRC, as expected. The

impact of different numbers of antennas at the CU was investigated and demonstrated that

massive MIMO has the potential to significantly increase the achievable sum-rate.

In Chapter 6, we proposed to use UAVs as flying RRHs for establishing the connection

between the UEs and a CU equipped with a large-scale antenna array. The placement of

UAVs, quantization noise matrices, and transmit power allocation were jointly optimized

aiming to maximize the minimum rate among all UEs. The proposed algorithm divided the

resulting highly complex optimization problem into two sub-problems and demonstrated

superior performance in terms of fast convergence speed and increased achievable rates in

numerical simulations.

7.2 Future Work

Despite the significant progress we have made in this thesis, there are still several potential

scenarios that can be extended for practical applications. These extensions can be explored

in our future work.

• Estimation of CSI: The lack of CSI knowledge leads to a wide gap between the

achievable rate and theoretical maximum capacity. To improve system SE and EE,

some traditional channel estimation methods can be implemented such as minimum

mean square error (MMSE). This can be achieved by having UEs send training

pilots to the RRHs in the uplink transmission [101]. The downlink channels can

be estimated based on channel reciprocity in TDD mode. However, the received

pilots at the RRHs must be compressed and forwarded to the CU for processing

and computation in order to achieve cooperation among all RRHs and mitigate

interference in the access link. This can lead to difficulties in system design and

requires further investigation into estimation error, quantization error, and resource
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allocation.

• Hybrid Terrestrial and Non-terrestrial CRANs: We have studied both terrestrial

communications for uplink and downlink transmissions in Chapters 3-5, and also

non-terrestrial communication with multi-UAV-enabled CRANs in Chapter 6. To

further increase the communication network performance, the large-scale coopera-

tion enabled by hybrid communication networks is of practical interest for effectively

serving ground UEs distributed over a wide-range area. It can be achieved by lever-

aging the capability of high-performance CU in massive MIMO CRANs. However,

designing a dynamic activation scheme to select the most suitable servers (terrestrial

RRHs and/or UAVs) for each UE is a challenging task that needs further investiga-

tion in order to mitigate interference among all units to further increase system SE

and EE.
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Appendix

In this appendix, we prove Theorem 3.3.1. By following the framework used in [57,

Chapter 9], the Lagrangian of problem (3.25) is given by

L =
∑NU

j=1
tr
(
Ūj

)
+ tr (Q) +

∑NR

i=1
pi −

∑NU

j=1
tr
(
FjŪj

)
− tr (TQ)

+
∑

m∈NS
ηm

(
φub
m({Ūj},Q)−

∑
i∈Sm

C lb
fr,i(p)

)
−
∑NU

k=1
λk

(
C lb

ac,k({Ūj},Q)− γk
)
+ θ

(∑NR

i=1
pi − PC

)
+
∑NR

i=1
ρi

(∑NU

j=1
tr
(
ΓH

i ŪjΓi

)
+ tr (Qii)− PR,i

)
, (A.1)

where {ηm}, {λk}, θ, and {ρi}, {Fj}, and T are the Lagrange multipliers corresponding

to constraints of problem (3.25), {Ūj} ⪰ 0, and Q ⪰ 0, respectively. Since we are

interested in the rank of Ūj , we can reexpress the Lagrangian as a function of Ūj and

relevant Lagrange multipliers as follows

L =

NU∑
j=1

tr
(
Ūj

)
−

NU∑
j=1

tr
(
FjŪj

)
+

NR∑
i=1

NU∑
j=1

ρitr
(
ΓH

i ŪjΓi

)
+Ψ

+
∑

m∈NS

∑
i∈Sm

ηm
ln(2)

× tr

(( NU∑
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i
˜̄UjΓi + Q̃ii

)−1 NU∑
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ΓH
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)

+
1

ln(2)
tr

((
Gk

( NU∑
j ̸=k

˜̄Uj + Q̃

)
GH

k + σ2
UI

)−1

×
NU∑
j ̸=k

GkŪjG
H
k

))

−
NU∑
k=1

λk

(
log det

(
Gk

( NU∑
j=1

Ūj +Q

)
GH

k + σ2
UI

)
, (A.2)

where Ψ contains all the remaining terms of the Lagrangian in (A.1) that are independent

of Ūj . Since problem (3.25) is convex and satisfies Slater’s condition, Karush-Kuhn-
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Tucker (KKT) conditions provide necessary and sufficient conditions for optimality. The

KKT conditions relevant to our derivation are

∂L
∂Ū⋆

ℓ

= 0, ℓ ∈ NU, (A.3)

F⋆
ℓŪℓ = 0, ℓ ∈ NU. (A.4)

From (A.3), we have

∂L
∂Ūℓ

= I+
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∗
iΓ
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Hence
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ℓ = I+
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Let

Φk = Gk
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˜̄Uj + Q̃
)
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k + σ2
UI (A.7)
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j +Q⋆
)
GH

k + σ2
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Hence, we have
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As shown in [102, Theorem 1], the MM algorithm is guaranteed to converge to a stationary

point of the original non-convex problem. Therefore, after convergence, we have: ˜̄Uj =

Ū⋆
j and Q̃ = Q⋆. Hence, from (A.7) and (A.8), we obtain Ωk = Φk +GkŪkG

H
k . Since

Ūk ⪰ 0, then GkŪkG
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λk ≥ 0, this results in
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Clearly, rank(Υ) = NNR since Υ is the sum of an identity matrix of size NNR ×NNR

and positive semidefinite matrices.

On the other hand, since rank(Pℓ) = K (full rank) and rank(Gℓ) = min(K,NNR), then

rank
(

λ⋆
ℓ

ln(2)
GH

ℓ Ω
−1
ℓ Gℓ

)
= rank(GH

ℓ Ω
− 1

2
ℓ Ω

− 1
2

ℓ Gℓ) = rank(Gℓ) = min(K,NNR). Thus,

we have

rank(Fℓ) = rank(Υ− λ⋆
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≥ rank(Υ)− rank(
λ⋆
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ln(2)
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= NNR −min(K,NNR). (A.11)

where made use of rank(A−B) ≥ rank(A)− rank(B) [103].

From (A.4), we have

rank(Ū⋆
ℓ) ≤ Nullity(F⋆

ℓ) = NNR − rank(F⋆
ℓ)

≤ min(K,NNR), (A.12)
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where Nullity(A) denotes the dimension of the null space of A. For the special case of

K = 1 and from (A.12), we have rank(Ū⋆
ℓ) ≤ 1. Also, since Ū⋆

ℓ ̸= 0, i.e., rank(Ū⋆
ℓ) ≥ 1,

this implies that rank(Ū⋆
ℓ) = 1 and thus concludes the proof.
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