KAMTUE, SUPANAT (2021) Discrete curvatures motivated from
Riemannian geometry and optimal transport: Bonnet-Myers-type diameter bounds and rigidity. Doctoral thesis, Durham University.
| PDF - Accepted Version Available under License Creative Commons Attribution 3.0 (CC BY). 1251Kb |
Abstract
This thesis gives an overview of three notions of Ricci curvature for discrete spaces, including Ollivier Ricci curvature (motivated from optimal transport), Bakry-mery
curvature (from Bochner’s formula in Riemannian geometry) and Erbar-Maas entropic Ricci curvature (from optimal transport). The first part of the thesis provides background knowledge in optimal transport theory and Riemannian geometry which is essential to the understanding of generalized Ricci curvatures for
metric measure spaces and the mentioned Ricci curvatures for graphs.
For each of the three discrete curvature notions, discussed in their respective part of the thesis, we provide the definition of the curvature and use hypercubes as an example for the curvature calculation. We study various curvature results with an emphasis on upper bounds of diameter and lower bounds of the spectral gap
for graphs with positive lower bound on the Ricci curvature. These results can be regarded as discrete analogues of the Bonnet-Myers theorem and the Lichnerowicz
theorem in Riemannian geometry. In addition, we deeply investigate into the rigidity results (analogous to Cheng’s rigidity) in attempt to classify all graphs
which yield the sharp diameter bound in the sense of Ollivier Ricci curvature and Bakry-mery curvature.
Item Type: | Thesis (Doctoral) |
---|---|
Award: | Doctor of Philosophy |
Keywords: | Ricci curvature; synthetic curvature; discrete curvature; optimal transport; graph diameter |
Faculty and Department: | Faculty of Science > Mathematical Sciences, Department of |
Thesis Date: | 2021 |
Copyright: | Copyright of this thesis is held by the author |
Deposited On: | 20 Sep 2021 10:14 |