Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham e-Theses
You are in:

Zeeman-tunable Modulation Transfer Spectroscopy

SO, CHLOE (2020) Zeeman-tunable Modulation Transfer Spectroscopy. Masters thesis, Durham University.

[img]
Preview
PDF - Accepted Version
14Mb

Abstract

Active frequency stabilization of a laser to an atomic or molecular resonance underpins many modern-day AMO physics experiments. With a flat background and high signal-to-noise ratio, modulation transfer spectroscopy (MTS) offers an accurate and stable method for laser locking. Despite its benefits, however, the four-wave mixing process that is inherent to the MTS technique entails that the strongest modulation transfer signals are only observed for closed transitions, excluding MTS from numerous applications. Here, we report for the first time the observation of a magnetically tunable MTS error signal. Using a simple two-magnet arrangement, we show that the error signal for the 87Rb F = 2 → F' = 3 cooling transition can be Zeeman-shifted over a range of ~10 GHz to any arbitrary point on the rubidium D2 spectrum. Modulation transfer signals for locking to the 87Rb F = 1 → F' = 2 repumping transition as well as 1 GHz red-detuned to the cooling transition are presented to demonstrate the versatility of this technique, which can readily be extended to the locking of Raman and lattice lasers.

Item Type:Thesis (Masters)
Award:Master of Science
Faculty and Department:Faculty of Science > Physics, Department of
Thesis Date:2020
Copyright:Copyright of this thesis is held by the author
Deposited On:04 Mar 2020 14:50

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter