SO, CHLOE (2020) Zeeman-tunable Modulation Transfer Spectroscopy. Masters thesis, Durham University.
| PDF - Accepted Version 14Mb |
Abstract
Active frequency stabilization of a laser to an atomic or molecular resonance underpins many modern-day AMO physics experiments. With a flat background and high signal-to-noise ratio, modulation transfer spectroscopy (MTS) offers an accurate and stable method for laser locking. Despite its benefits, however, the four-wave mixing process that is inherent to the MTS technique entails that the strongest modulation transfer signals are only observed for closed transitions, excluding MTS from numerous applications. Here, we report for the first time the observation of a magnetically tunable MTS error signal. Using a simple two-magnet arrangement, we show that the error signal for the 87Rb F = 2 → F' = 3 cooling transition can be Zeeman-shifted over a range of ~10 GHz to any arbitrary point on the rubidium D2 spectrum. Modulation transfer signals for locking to the 87Rb F = 1 → F' = 2 repumping transition as well as 1 GHz red-detuned to the cooling transition are presented to demonstrate the versatility of this technique, which can readily be extended to the locking of Raman and lattice lasers.
Item Type: | Thesis (Masters) |
---|---|
Award: | Master of Science |
Faculty and Department: | Faculty of Science > Physics, Department of |
Thesis Date: | 2020 |
Copyright: | Copyright of this thesis is held by the author |
Deposited On: | 04 Mar 2020 14:50 |