Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham e-Theses
You are in:

Supersymmetric Sigma Models And Their Indices

FEARN, SAM,MATTHEW (2018) Supersymmetric Sigma Models And Their Indices. Doctoral thesis, Durham University.

Full text not available from this repository.
Author-imposed embargo until 04 June 2019.

Abstract

Supersymmetric indices for sigma models are known to compute topological invariants of the target space on which the sigma model is built. In the case where the target space is a K3 surface, the worldsheet of the sigma model enjoys an N=4 superconformal symmetry. A supersymmetric index known as the elliptic genus can be constructed for this theory and decomposed into a sum of massless and massive characters of the N=4 superconformal algebra governing the symmetries. This index exhibits a phenomenon known as Mathieu moonshine, in which the coefficients of the massive characters in that decomposition are dimensions of representations of the sporadic group Mathieu 24. In this thesis, motivated by this moonshine phenomenon for theories with N=4 superconformal symmetries, we consider sigma models which exhibit a larger N=4 superconformal symmetry on the worldsheet, and discuss two supersymmetric indices which could be applied to such sigma models in search of a new moonshine. We discuss the states which contribute to these indices and calculate one of them for some specific theories.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Keywords:Conformal and W Symmetry; Discrete and Finite Symmetries; Extended Supersymmetry; Representation Theory
Faculty and Department:Faculty of Science > Mathematical Sciences, Department of
Thesis Date:2018
Copyright:Copyright of this thesis is held by the author
Deposited On:06 Jun 2018 11:47

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter