We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham e-Theses
You are in:

Many-body interactions in a dissipative frozen strontium Rydberg gas

SADLER, DANIEL,PAUL (2016) Many-body interactions in a dissipative frozen strontium Rydberg gas. Doctoral thesis, Durham University.

PDF - Accepted Version


This thesis describes an investigation of Rydberg excitation within a high-density sample of cold strontium atoms. This sample is prepared using a two-stage magneto-optical trap, cooling first on a broad singlet transition and then a narrow triplet transition. Rydberg atoms are then created using a two-photon, three-level ladder type scheme and detected using a novel autoionisation technique. It is shown that, in the regime of high optical thickness on the probing transition, a significant Rydberg population can be created by photons that are multiply scattered before leaving the cloud.
The multiply scattered field is density-dependent and has strikingly different spectral properties from the incident laser light. This spectrum is convolved with the spectrum of the Rydberg atoms created via direct laser excitation and the two spectra can be isolated in post analysis. This technique provides a probe of the spectral distribution of the re-scattered light within the cloud, which may be qualitatively different from that of the transmitted light, and previously has not been measured directly. Additionally, this Rydberg population arising from the multiply scattered field can be seen in the spatial distribution of the Rydberg excitations within the atom sample. Finally, a careful analysis of the time dynamics of the Rydberg system reveals that multiple scattering co-exists with signatures of the Rydberg blockade in this strongly dissipative regime.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Faculty and Department:Faculty of Science > Physics, Department of
Thesis Date:2016
Copyright:Copyright of this thesis is held by the author
Deposited On:14 Dec 2016 12:04

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter