Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham e-Theses
You are in:

N3LO-Renormalon-Inspired Resummations and Fully Analytic
Infra-red Freezing in Perturbative QCD

PASCALIUS, LAI,HO,SHIE (2013) N3LO-Renormalon-Inspired Resummations and Fully Analytic
Infra-red Freezing in Perturbative QCD.
Doctoral thesis, Durham University.

[img]
Preview
PDF (N3LO-Renormalon-Inspired Resummations and Fully Analytic Infra-red Freezing in Perturbative QCD)
1170Kb

Abstract

We make use of the recent calculation of d3 by Baikov, Chetrykin and Kuhn of N3LO QCD vacuum polarization to analyze the inclusive tau-decay ratio Rτ . We perform an all-orders resummation of the QCD Adler D function for the vector correlator, in which the part of perturbative coefficients containing the leading power of b, the first QCD beta-function equation coefficient, is resummed to all-orders. We match the resummation to the exactly
known next-to-leading order (NLO), next-NLO (N2LO) and next-N2LO (N3LO) results, we employ the Complete Renormalization Group Improvement (CORGI) approach in which all RG-predictable ultra-violet logarithms are resummed to all-orders, removing all dependence on the renormalization scale. Hence the NLO, N2LO and N3LO CORGI result can be obtained and compared with the “leading b” all-orders CORGI result. Using an appropriate weight function, we can numerically integrate these results for the Adler D function in the complex energy plane to obtain so-called "contour-improved" results for the ratio Re+e− and its tau-decay analogue Rτ . A table showing the differences of αs(M2τ ) and αs(M2 Z) extracted from NLO, N2LO and N3LO CORGI as well as all-orders CORGI results were made, together with αS(M2τ) and αS(M2Z) extracted directly from Fixed-Order-Perturbation Theory at NLO, N2LO and N3LO. We also compared the ALEPH data for
Rτ(s) with the all-orders CORGI result fitted at s = m2τ.

We then go on to study the analyticity in energy of the leading one-chain term in a skeleton expansion for QCD observables. We show that by adding suitable non-perturbative terms in the energy regions Q2 > Λ2 and Q2 < Λ2 (where Q2 = Λ2 is the Landau pole of the one loop
coupling), one can obtain an expression for the observables which is a holomorphic
function of Q2, for which all derivatives are finite and continuous at Q2 = Λ2. This function is uniquely constrained by the requirement of asymptotic freedom, and the finiteness as Q2→0, up to addition of a non-perturbative holomorphic function. This full analyticity replaces the piecewise analyticity and continuity exhibited by the leading one-chain term itself. Using The Analytic Perturbation Theory (APT) Euclidean functions introduced by Shirkov and collaborators, we finally matched the equations K(L)PT +K(L)NP and U(L)PT + U(L)NP with a resummation of coefficients extracted from their Borel Transform multiplied by the APT Euclidean functions in the one loop case. For D(L)PT + D(L)NP , it is shown that it freezes to 2/b. Considering the GDH Sum Rule, we construct an analytic function which fits well with data from Jefferson Laboratory (JLab) for 0 < Q < 2GeV.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Keywords:Renormalons, QCD, Quantum Chromodynamics, Perturbation Theory, Analytic Perturbation Theory, CORGI
Faculty and Department:Faculty of Science > Physics, Department of
Thesis Date:2013
Copyright:Copyright of this thesis is held by the author
Deposited On:28 Apr 2014 16:26

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter