We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham e-Theses
You are in:

Far-infrared studies on molecular motions and interactions in liquids

James, Peter L. (1982) Far-infrared studies on molecular motions and interactions in liquids. Doctoral thesis, Durham University.



Far-infrared spectroscopy has been applied to the study of liquid phase molecular dynamics and interactions. The absorption and dispersion spectra of solutions of acetonitrile in carbon tetrachloride, across a range of temperatures and concentrations, have been obtained. These spectra have bean interpreted with the parameters obtained from a model developed from a generalised Langsvin equation of motion which includes intermolecular torque terms. The results obtained from the model analysis have been applied in an investigation of the non-reorientational contributions to the Raman and infrared bands arising from the and v(^1) and v(_3) modes. This study has shown that contrary to the assumptions commonly made, these contributions are not equal and some possible explanations for the discrepancies are given. A number of internal field theories are discussed and have been applied to the acetonitrile systems. The interpretation of the results of this analysis in terms of a simple model suggest that there is a preferred i.e. non-random orientation of the acetonitrile molecules in solution. A study of some tertiary alkyl ammonium halide solutions has revealed that there is a series of systems which separate into two liquid phases. Further investigation has highlighted the role of small amounts of water in these systems.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Thesis Date:1982
Copyright:Copyright of this thesis is held by the author
Deposited On:18 Sep 2013 09:26

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter