Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham e-Theses
You are in:

Photoelectric properties of ZnSe

Qidwai, A. A. (1982) Photoelectric properties of ZnSe. Doctoral thesis, Durham University.

[img]
Preview
PDF
3944Kb

Abstract

Various photoelectric techniques have been exploited in an investigation of the ionization energies of donor and acceptor type defects, and the photoionization cross-sections for electrons and holes from the acceptors in single crystals of zinc selenide doped with indium, gallium or copper. Measurements of d.c. photoconductivity and infra-red quenching were made on high resistivity material, whereas low resistivity samples were fabricated into Schottky diodes for investigation using transient photocapacitance and photocurrent techniques. Interest was focussed on zinc selenide doped with indium or gallium where strong compensation effects occurred, i.e. the resistivity increased with increasing indium (gallium) content. Self-activated acceptor centres with hole ionization energies of 0.59 eV and 0.55 eV were clearly revealed by the above techniques in indium or gallium doped samples. With increasing indium concentration a new acceptor with an ionization energy of 0.41 eV appeared. This may have been responsible for the compensation effect. To ensure that the observations were not affected by the presence of unintentionally incorporated copper impurities, Schottky diodes on samples deliberately doped with copper have also been examined. The dominant copper acceptor level was clearly revealed. It lay ~ 0.67 eV above the valence band.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Thesis Date:1982
Copyright:Copyright of this thesis is held by the author
Deposited On:16 Jul 2013 10:58

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter