Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham e-Theses
You are in:

Liquid repellent surfaces

Coulson, Stephen Richard (2000) Liquid repellent surfaces. Doctoral thesis, Durham University.

[img]
Preview
PDF
5Mb
[img]
Preview
PDF
5Mb
[img]
Preview
PDF
3750Kb

Abstract

The work in this thesis is primarily aimed at supporting the NBe (Nuclear, Biological and Chemical) aspect of Crusader 21, the military clothing programme for the early 21st Century. This aims to produce a multi-purpose, systems-orientated combat ensemble for the UK Armed Services. Conventional "wet" techniques for chemically modifying fabrics have certain disadvantages, however employing plasma technology may provide a route for many novel "multi-functional effects" fabrics such as repellency against toxic chemical agents. In order to produce repellent coatings the surface must have a low surface energy. To obtain this, inert chemical groups need to be attached to the solid substrate. In addition to chemistry, surface roughness plays an important role in repellency. Liquid repellent surfaces have been produced by the pulsed plasma polymerisation of I H, 1 H,2H,2H -heptadecafluorodecyl acrylate. These films have chemical functionalities indicative of polymerisation occurring through the acrylate double bond, as shown by Infrared Spectroscopy analysis. Structural retention was optimised using experimental design techniques and resulted in a critical surface tension of wetting as low as 4.3 mN m-I (c.f. Teflon 18.5 mN m-I). Plasma deposition of a functionalised surface followed by reaction with a fluorinated alcohol proved less affective. Enhanced deposition rates for 1 H, 1 H,2H-perfluorododec-I-ene, over the saturated analogue, have indicated that polymerisation can occur during the off-time of the pulsed plasma period, via free radical polymerisation pathways. X-ray Photoelectron Spectroscopy (XPS) has indicated greater structural group retention for monomers containing double bonds. In order to obtain super liquid repellency the effect of surface roughness was investigated, where both commercially available rough surfaces and plasma roughened substrates were utilised. Once optimised, the rough surfaces were coated with 1 H, 1 H,2H,2H-heptadecafluorodecyl acrylate and produced super repellent films.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Faculty and Department:Faculty of Science > Chemistry, Department of
Thesis Date:2000
Copyright:Copyright of this thesis is held by the author
Deposited On:10 May 2011 16:29

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter