COSTA, ARMINDO,EMANUEL (2010) Topological Complexity of Configuration Spaces. Doctoral thesis, Durham University.
| PDF - Accepted Version 556Kb |
Abstract
In this thesis we study the homotopy invariant TC(X); the topological complexity of a space X. This invariant, introduced by Farber in [15], was originally motivated by a problem in Robotics; the motion planning problem. We study relations between the topological complexity of a space and its fundamental group, namely when the fundamental group is ”small”, i.e. either has small order or small cohomological dimension. We also apply the navigation functions technique introduced in [20] to the study of the topological complexity of projective and lens spaces. In particular, we introduce a class of navigation functions on projective and lens spaces. It is known ([25]) that the topological complexity of a real projective space equals one plus its immersion dimension. A similar approach to the immersion dimension of some lens spaces has been suggested in [31]. Finally, we study the topological complexity (and other invariants) of random right-angled Artin groups, i.e. the stochastic behaviour of the topological complexity of Eilenberg-MacLane spaces of type K(G, 1), where G is a right-angled Artin group associated to a random graph.
Item Type: | Thesis (Doctoral) |
---|---|
Award: | Doctor of Philosophy |
Keywords: | topological complexity; navigation functions; random graph groups |
Faculty and Department: | Faculty of Science > Mathematical Sciences, Department of |
Thesis Date: | 2010 |
Copyright: | Copyright of this thesis is held by the author |
Deposited On: | 11 May 2011 16:23 |