Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham e-Theses
You are in:

Magnetic properties of metallic fine particle systems

Lambrick, David Brynne (1986) Magnetic properties of metallic fine particle systems. Doctoral thesis, Durham University.

[img]
Preview
PDF
6Mb

Abstract

A study of the magnetic properties of metallic fine particle systems in the form of magnetic fluids has been made. The fluids were prepared utilising the organometallic decomposition route (detailed separately by N. Mason, Ph.D. thesis, Durham University 1986) and single metal systems containing Fe, Co and Ni were prepared from new precursors. The properties of the first hydrocarbon based mixed metal particle systems are also reported. For systems prepared with Fe precursors it is thought that the fine particles are not in the α-Fe phase but may be amorphous and/or consist of iron carbides. Co and Ni systems result in particles with bulk-metal like structures although Co usually forms in the f.c.c. phase. The h.c.p. is also observed. The mixed metal systems were of FeCo and Ni(_3)Fe and a tendency to form the superlattice or ordered structures was observed. In both cases Fe has been lost to the particles and this is thought to be due to the formation of volatile iron compounds during preparation and/or surfactant complexes. Narrow size distributions have been obtained in all cases with mean particle diameters in the range 4-10 nm and standard deviations of between 0.8 and 1.9. The form of the size distribution has been found to be Gaussian. A study of the anisotropy of the particles using torque and magnetisation measurements has found uniaxial anisotropy with the first anisotropy constant of the order lO(^5)Jmֿ(^3).The values observed are too large to be ascribed solely to shape anisotropy. Low temperature magnetisation measurements have revealed the existence of a paramagnetic component in the fluids. Loss of magnetisation has occurred in all systems and is thought to be due to oxidation of the metal.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Thesis Date:1986
Copyright:Copyright of this thesis is held by the author
Deposited On:15 May 2013 14:12

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter