Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham e-Theses
You are in:

Chiral analysis by NMR spectroscopy

Fulwood, Russell (1992) Chiral analysis by NMR spectroscopy. Doctoral thesis, Durham University.

[img]
Preview
PDF
3487Kb

Abstract

The analysis of the enantiomeric purity of chiral carboxylic acids requires a reagent to give acceptable NMR chemical shift non-equivalence with a wide range of substrate acids. Extensive studies of the behaviour of N-mono- methyl, N,N-dimethyl and cyclic amines as chiral solvating agents led to the finding that 1,2 diphenyl-1,2-diaminoethane can induce substantial non- equivalence in the diastereomeric salts of chiral a-phenyl and a-halo carboxylic acids. The diastereoisomeric complexes of the diamine with primary carboxylic acids (RCH(_2)CO(_2)H) presents an unusual case in which the internally enantiotopic methylene protons are rendered internally diasteretopic by an external non-covalently bonded reagent. Investigations of the physical parameters determining non-equivalence (stoichiometry, concentration, temperature and substrate enantiomeric purity), combined with NOE observations of the diastereomeric pairs and the crystal structure of the mono- hydrobromide salt were used to suggest the structure for the conformation responsible for shift non-equivalence. The zero valent platinum complex, 3-0-isopropylidene-2,3-dihydroxy-1,4- bis(diphenyl-phosphino)butane-platinum(0)-ethene (DlOP-Pt-ethene) was shown to be a versatile chiral derivatising agent for electron poor and strained η(^2)-donors. This was demonstrated by the enantiomeric purity determinations for alkynes, enones and norbornene derivatives. The crystal structure of DIOP-Pt-ethene was determined and found to be similar to the palladium analogue. If the achiral rhodium complex rhodium(I)-acetylacetone-diethene undergoes a reaction with 2 equivalents of a suitable chiral η(^2)-donor, it will result in the formation of 4 stereoisomers, two meso forms and a pair of enantiomers. The diasteroisomers should display chemical shift non-equivalence in the NMR spectrum of the product, reflecting the enantiomeric purity of the η(^2)-donor (self recognition). The derivatisation of rhodium(l)-acetylacetone-diethene with chiral η(^2)-donors was attempted.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Thesis Date:1992
Copyright:Copyright of this thesis is held by the author
Deposited On:18 Dec 2012 12:00

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter