We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham e-Theses
You are in:

Spectroscopic studies of the model traction fluid bis(cyclohexyl) succinate and related molecules

Dempster, Rorie (1994) Spectroscopic studies of the model traction fluid bis(cyclohexyl) succinate and related molecules. Doctoral thesis, Durham University.



Fourier transform infra-red spectroscopy/microscopy and Raman scattering/microscopy have been used to try and relate the microscopic behaviour (i.e. the molecular properties) with the macroscopic behaviour (i.e. the viscosity) of the model traction fluid Bis(cyclohexyl) Succinate. Other structurally related compounds have also been studied to assist with interpretation. Variable temperature studies produced few conclusive changes, with the balance between density and temperature effects giving rise to few spectroscopically visible changes. Some correlation between the viscosity of the molecules studied and the changes observed was seen. The appearance of two distinct carbonyl stretching bands which change in intensity with temperature indicates an intramolecular conformational change. There is considerable broadening of all the vibrational bands of the molecules studied as the pressure is increased indicating an increase in the vibrational relaxation rate. Repulsive interactions are also seen to dominate as the pressure is increased. Analysis using the Kubo model has shown that the carbonyl stretching band is more likely to be formed in the slow modulation regime. Unusual behaviour is exhibited in some spectra obtained from the dynamic pressure studies including unusual band shapes and negative going bands. The combination of high pressure, shear rate, and temperature in the centre of the elastohydrodynamic contact only allows the bis(cyclohexyl) succinate molecules to assume a single conformation. As these conditions lessen, the molecules become less constrained and different behaviour is observed. Three dimensional pressure and film thickness profiles have been used to explain the changes seen in terms of a combination of pressure and film thickness changes. Solution studies show there are strong attractive dipole-dipole interactions, probably localised at the carbonyl group, between the bis(cyclohexyl) succinate molecules. Using the Eyring fluid model and viscosity data, the molecular behaviour has been related to the viscosity of the molecules.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Thesis Date:1994
Copyright:Copyright of this thesis is held by the author
Deposited On:16 Nov 2012 11:01

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter