Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham e-Theses
You are in:

Fuzzy logic control of automated guided vehicle

Baxter, Jeremy (1994) Fuzzy logic control of automated guided vehicle. Doctoral thesis, Durham University.

[img]
Preview
PDF
6Mb

Abstract

This thesis describes the fuzzy logic based control system for an automated guided vehicle ( AGV ) designed to navigate from one position and orientation to another while avoiding obstacles. A vehicle with an onboard computer system and a beacon based location system has been used to provide experimental confirmation of the methods proposed during this research. A simulation package has been written and used to test control techniques designed for the vehicle. A series of navigation rules based upon the vehicle's current position relative to its goal produce a fuzzy fit vector, the entries in which represent the relative importance of sets defined over all the possible output steering angles. This fuzzy fit vector is operated on by a new technique called rule spreading which ensures that all possible outputs have some activation. An obstacle avoidance controller operates from information about obstacles near to the vehicle. A method has been devised for generating obstacle avoidance sets depending on the size, shape and steering mechanism of a vehicle to enable their definition to accurately reflect the geometry and dynamic performance of the vehicle. Using a set of inhibitive rules the obstacle avoidance system compiles a mask vector which indicates the potential for a collision if each one of the possible output sets is chosen. The fuzzy fit vector is multiplied with the mask vector to produce a combined fit vector representing the relative importance of the output sets considering the demands of both navigation and obstacle avoidance. This is operated on by a newly developed windowing technique which prevents any conflicts produced by this combination leading to an undesirable output. The final fit vector is then defuzzified to give a demand steering angle for the vehicle. A separate fuzzy controller produces a demand velocity. In tests carried out in simulation and on the research vehicle it has been shown that the control system provides a successful guidance and obstacle avoidance scheme for an automated vehicle.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Thesis Date:1994
Copyright:Copyright of this thesis is held by the author
Deposited On:16 Nov 2012 10:59

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter