We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham e-Theses
You are in:

Quasi-integrable models in (2+1) dimensions

Rashid, Maher S. (1992) Quasi-integrable models in (2+1) dimensions. Doctoral thesis, Durham University.



Recently σ-models have received a lot of attention for many reasons. One interesting aspect of the CP(^n) sigma models is the fact they are the simplest Lorentz invariant models which possess topologically stable (minimum of the action) solutions in (2+0) dimensions. Unfortunately, it appears that Lorentz covariance and integrability are incompatable in (2+1) dimensions. In the literature a few integrable models were constructed in (2+1) dimensions at the expense of Lorentz invariance (e.g. modified chiral model,...). An alternative way to proceed is to retain Lorentz invariance and relax the property of integrability by replacing it with a new property of quasi-integrability. Zakrzewski and others have constructed an example of such quasi-integrable models. Their example is based on the CP(^1) model modified by the addition of two stabilising terms (the first called the "Skyrme-like" term and the second the "potential-like" term) to the basic Lagrangian. In this thesis we have addressed the following relevant questions: How unique is this model? What are the properties of its static structures (skyrmions)? Is it possible to generalise this model? Is quasi-integrabilty, as a property, shared by all CP(^2) models, or it is only restricted to the CP(^1) model? It turns out that the first stabilising term [i.e the Skyrme-like term) is only unique for CP(^1) model and this uniqueness does not survive the generalisations to larger coset spaces, say, CP(^n). The second stabilising term is not unique. By taking advantage of this observation, i.e arbitrariness of the potential term, a generalisation of Zakrzewski's model has become possible. Most important of all is the fact that all the CP" models are quasi-integrable provided one incurs the size instabilities of their soliton solutions.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Thesis Date:1992
Copyright:Copyright of this thesis is held by the author
Deposited On:16 Nov 2012 10:58

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter