We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham e-Theses
You are in:

Secondary flow reduction techniques in linear turbine cascades

Biesinger, Thomas Ernst (1993) Secondary flow reduction techniques in linear turbine cascades. Doctoral thesis, Durham University.



This thesis investigates a novel secondary flow reduction method. The inlet boundary layer to a linear turbine cascade is skewed by injection of air through an upstream slot to oppose regular generated negative stream wise vorticity. Other methods from the pertinent literature are reviewed on a broad basis. Detailed measurements of the flowfield in the Durham Linear Cascade facility have shown that substantial reductions in secondary flows and losses are possible. If the kinetic energy required for the blowing is taken into account by means of an availability analysis, no net gain in loss is achieved. Tests are performed at two different angles, of which the higher is typical for film cooling applications, and at a wide range of injection ratios. Calculation of the mixed-out losses show the tangential rather than spanwise momentum of the injected air is more effective in countering the generation of secondary flows. Computations using a state-of-the-art Navier-Stokes solver indicated shortcomings in modelling a flow governed by complex vortex dynamics. Improvements in the turbulence model and injection geometry could remedy this. The evaluation of turbulent and laminar production rates obtained without injection helps to explain total pressure loss generation mechanisms. The comparison of calculated and experimental eddy viscosities reveals the inadequacy of the Boussinesq assumption for high turning flows. The results obtained in this work are relevant to endwall film cooling applications. The tangential injection of air in front of the leading edge provides coolant in an optimum manner whilst possibly reducing secondary losses to a large extent. Disc cooling air, present in a real engine to prevent the ingestion of hot air from the mainstream, could be used to supply the injection.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Thesis Date:1993
Copyright:Copyright of this thesis is held by the author
Deposited On:16 Nov 2012 10:51

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter