Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham e-Theses
You are in:

Markov Chain Monte Carlo Methods for Exact Tests in Contingency Tables

KHEDRI, SHILER (2012) Markov Chain Monte Carlo Methods for Exact Tests in Contingency Tables. Doctoral thesis, Durham University.

[img]
Preview
PDF - Accepted Version
Available under License Creative Commons Public Domain Dedication CC0 1.0 Universal.

884Kb

Abstract

This thesis is mainly concerned with conditional inference for contingency tables, where the MCMC method is used to take a sample of the conditional distribution. One of the most common models to be investigated in contingency tables is the independence model. Classic test statistics for testing the independence hypothesis, Pearson and likelihood chi-square statistics rely on large sample distributions. The large sample distribution does not provide a good approximation when the sample size is small. The Fisher exact test is an alternative method which enables us to compute the exact p-value for testing the independence hypothesis. For contingency tables of large dimension, the Fisher exact test is not practical as it requires counting all tables in the sample space. We will review some enumeration methods which do not require us to count all tables in the sample space. However, these methods would also fail to compute the exact p-value for contingency tables of large dimensions. \cite{DiacStur98} introduced a method based on the Grobner basis. It is quite complicated to compute the Grobner basis for contingency tables as it is different for each individual table, not only for different sizes of table. We also review the method introduced by \citet{AokiTake03} using the minimal Markov basis for some particular tables. \cite{BuneBesa00} provided an algorithm using the most fundamental move to make the irreducible Markov chain over the sample space, defining an extra space. The algorithm is only introduced for $2\times J \times K$ tables using the Rasch model. We introduce direct proof for irreducibility of the Markov chain achieved by the Bunea and Besag algorithm. This is then used to prove that \cite{BuneBesa00} approach can be applied for some tables of higher dimensions, such as $3\times 3\times K$ and $3\times 4 \times 4$. The efficiency of the Bunea and Besag approach is extensively investigated for many different settings such as for tables of low/moderate/large dimensions, tables with special zero pattern, etc. The efficiency of algorithms is measured based on the effective sample size of the MCMC sample. We use two different metrics to penalise the effective sample size: running time of the algorithm and total number of bits used. These measures are also used to compute the efficiency of an adjustment of the Bunea and Besag algorithm which show that it outperforms the the original algorithm for some settings.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Keywords:Markov Chain Monte Carlo, MCMC, Contingency Tables, Fisher exact Test, Independence Hypothesis test conditional Inference
Faculty and Department:Faculty of Science > Mathematical Sciences, Department of
Thesis Date:2012
Copyright:Copyright of this thesis is held by the author
Deposited On:13 Nov 2012 11:58

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter